Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Padding with Compressed Air  

E-Print Network [OSTI]

We commonly find plants using padding to transport liquids or light solids short distances from tankers into storage tanks. Padding can wreck havoc in compressed air systems with limited storage, undersized cleanup equipment (dryers and filters...

Beals, C.

2004-01-01T23:59:59.000Z

2

Fundamentals of Compressed Air Systems  

Broader source: Energy.gov [DOE]

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

3

Compressed Air Energy Storage System  

E-Print Network [OSTI]

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

4

Making Compressed Air System Decisions  

E-Print Network [OSTI]

spawned an entire industry dedicated to manufacturing equipment designed to remove moisture, lubricant, particulate and vapor contaminants from compressed air. Purification equipment, such as air dryers and filters, are used alone or in combination... to reduce the amount of contaminants in the compressed air to the desired purity. All compressed ESL-IE-96-04-32 Proceedings from the Eighteenth Industrial Energy Technology Conference, Houston, TX, April 17-18, 1996 air purification equipment requires...

Porri, R. E.

5

Compressed air energy storage system  

DOE Patents [OSTI]

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

6

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network [OSTI]

plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy...

Burke, J. J.; Bessey, E. G.

7

Compressed Air System Optimization  

E-Print Network [OSTI]

Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

Aegerter, R.

8

Outline Inverted File Building Compression for Inverted Files Building and Compression Techniques for Inverted  

E-Print Network [OSTI]

Outline Inverted File Building Compression for Inverted Files Building and Compression Techniques for Inverted Files Roi Blanco Dpt. Computing Science, University of A Coruna December 13, 2005 Roi Blanco Building and Compression Techniques for Inverted Files #12;Outline Inverted File Building Compression

Barreiro, Alvaro

9

Compressed Air Audits using AIRMaster  

E-Print Network [OSTI]

&M measures. An introduction to the AIRMaster software is provided. Goals The project goals were to develop and test a method and tools to perform Compressed Air System audits. The audits should use only simple instrumentation during a relatively short... air system leaks. 2. AIRMaster Software and User's Manual. AIRMaster is a spreadsheet-based program that can model part load system operation with up to five rotary screw and reciprocating compressors operating simultaneously with varying...

Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

10

Chapter 22: Compressed Air Evaluation Protocol  

SciTech Connect (OSTI)

Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

Benton, N.

2014-11-01T23:59:59.000Z

11

Advanced Management of Compressed Air Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

12

Compressed Air Energy Storage for Offshore  

E-Print Network [OSTI]

transmitting peak power levels. A solution to these issues is a novel high-efficiency compressed air energy

Perry Y. Li; Eric Loth; Terrence W. Simon; James D. Van De Ven; Stephen E. Crane

2011-01-01T23:59:59.000Z

13

Industrial Compressed Air System Energy Efficiency Guidebook.  

SciTech Connect (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

14

A Compressed Air Reduction Program  

E-Print Network [OSTI]

A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

Hawks, K. D.

15

Alternative Refrigerants for Building Air Conditioning  

E-Print Network [OSTI]

The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

Bivens, D. B.

1996-01-01T23:59:59.000Z

16

Compressed Air Energy Storage Act (Kansas)  

Broader source: Energy.gov [DOE]

This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

17

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

None

2012-11-30T23:59:59.000Z

18

Compressible air cushioning in liquid-solid impacts Peter D. Hicks  

E-Print Network [OSTI]

Compressible air cushioning in liquid-solid impacts Peter D. Hicks Department of Mechanical of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK. r.purvis@uea.ac.uk Abstract--Air cushioning the influence of air compressibility. Building on earlier incompress- ible analyses, a local asymptotic model

Purvis, Richard

19

Evaluation of the Compressed Air Challenge Training Program:...  

Broader source: Energy.gov (indexed) [DOE]

Executive Summary Evaluation of the Compressed Air Challenge Training Program: Executive Summary This is the executive summary of a report on an evaluation of the Compressed Air...

20

Evaluation of the Compressed Air Challenge Training Program:...  

Broader source: Energy.gov (indexed) [DOE]

Final Report Evaluation of the Compressed Air Challenge Training Program: Final Report This is the final report on an evaluation of the Compressed Air Challenge (CAC) training...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Compressed Air Load Reduction Approaches and Innovations  

E-Print Network [OSTI]

are assessed. It is a common practice in facilities to simply add compressor capacity when faced with supply pressure or volume deficiencies, increasing the energy consumption associated with compressed air systems in industry. Additionally, in recent years...

D'Antonio, M.; Epstein, G.; Moray, S.; Schmidt, C.

2005-01-01T23:59:59.000Z

22

Understanding the Basics of Compressed Air Systems  

E-Print Network [OSTI]

, contaminated filters, conversion to electrically operated hoists, and the use of centrifugal fans or compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price...

Herron, D. J.

23

Compressed Air Systems Audits - Why? And How?  

E-Print Network [OSTI]

% of the compressed air costs, most with little or no capital investment. Almost always, in the event of a capital outlay, energy savings alone afford less than one-year payback. Many energy utility companies energetically support these efforts, and some.... Secondly, join us in the definition of compressed air as a system, the totality of which is comprised of the Supply Side and the Demand Side. The Supply Side is the compressors and their controls, receivers (primary storage tanks), aftercoolers, filters...

Kemp, H. L.

2004-01-01T23:59:59.000Z

24

INTEGRATION OF WIND TURBINES WITH COMPRESSED AIR ENERGY STORAGE  

E-Print Network [OSTI]

and an unpredictable nature, can be overcome. After an overview on storage systems, the Compressed Air

I. Arsie; V. Marano; G. Rizzo; M. Moran

25

Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge  

E-Print Network [OSTI]

Portland, OR Portland, OR ABSTRACT This paper presents the results from two compressed air programs supported by the Northwest Energy Efficiency Alliance (Alliance) over the last five years. In 1997 the Alliance funded the Northwest regional version...Resource Group Portland, OR COMPRESSED A[R CHALLENGE The Compressed Air Challenge (CAC) is a national collaborative that develops and provides resources to educate industrial plant operating staff on ways to increase net profits through compressed air...

Anderson, K. J.; Annen, B.; Scott, S.

26

Energy Efficiency in Compressed Air Systems  

E-Print Network [OSTI]

Energy use in compressed air systems accounts for typically 10% of the total industrial electricity consumption. It also accounts for close to 99% of the CO2 footprint of an air compressor and approximately 80% of the life cycle costs of a...

Hingorani, A.; Pavlov, A.

2010-01-01T23:59:59.000Z

27

Advanced Controls for Industrial Compressed Air Systems  

E-Print Network [OSTI]

at a Goulds Pumps manufacturing plant in Seneca Falls, New York, and is currently undergoing field testing. The compressed air system will optimize the energy efficiency of the 7 compressor system (1,850hp) at Goulds, while reducing system pressure...

Vold, P.; Gabel, S.; Carmichael, L.; Curtner, K.; Cirillo, N. C. Jr.

28

Compressed air | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC Jump to: navigation,Area (Keith, Et Al., 1992) |1988) |air Jump

29

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network [OSTI]

50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

30

Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars  

E-Print Network [OSTI]

This paper introduces new concepts in compressed air piping, sizing, and system design beyond the conventional pipe sizing charts and standard system layout guide lines. The author shows how compressed air velocity has a very significant impact...

Van Ormer, H.

2005-01-01T23:59:59.000Z

31

Minimize Compressed Air Leaks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA:May1.docEx5.docof Energy Adverse MotorCompressed Air

32

COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...

33

Techno-economic Performance Evaluation of Compressed Air  

E-Print Network [OSTI]

PNNL-22235 Techno-economic Performance Evaluation of Compressed Air Energy Storage in the Pacific of Compressed Air Energy Storage in the Pacific Northwest BP McGrail JE Cabe CL Davidson FS Knudsen DH Bacon MD air energy storage (CAES) in the unique geologic setting of inland Washington and Oregon. The basic

34

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

35

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect (OSTI)

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

36

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

None

2012-11-30T23:59:59.000Z

37

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

wind- diesel-compressed air energy storage system for remotestudy for the compressed air energy storage technology bydesign of compressed air energy storage electric power

Kim, H.-M.

2012-01-01T23:59:59.000Z

38

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

Williams, Compressed air energy storage: Theory, resources,study for the compressed air energy storage technology byplant for compressed air energy storage power generation,

Rutqvist, J.

2013-01-01T23:59:59.000Z

39

Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system  

E-Print Network [OSTI]

of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

40

Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage  

E-Print Network [OSTI]

for Underground Compressed Air Energy Storage Hyung-Mok Kimperformance of compressed air energy storage (CAES) in linedcavern (LRC); Compressed air energy storage (CAES); TOUGH-

Kim, H.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network [OSTI]

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

42

Utilization of CO2 as cushion gas for porous media compressed air energy storage  

E-Print Network [OSTI]

design of compressed air energy storage electric powerS and Williams RH, Compressed Air Energy Storage: Theory,Porous media compressed air energy storage (PM-CAES): theory

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

43

The Many Faces of a Compressed Air Audit  

E-Print Network [OSTI]

with independent compressed air consultant organizations. Energy Audits Supplied by DOE-Sponsored University Students University students led by their instructors as part of their training perform these studies. Often the reports are accurate about...Air Power USA, Inc. PO Box 292 Pickerington, OH 43147 740 862-4112 740 862-8464 (Fax) www.airpowerusainc.com THE MANY FACES OF A COMPRESSED AIR AUDIT Industrial Energy Technology Conference May 9-12, 2006 New Orleans, LA Today...

Kemp, H. L.

2006-01-01T23:59:59.000Z

44

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect (OSTI)

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

45

Building Air Quality Alliance Program fro Building Management  

E-Print Network [OSTI]

Indoor air quality (IAQ) has emerged as a major concern for building owners, managers, engineers and tenants. As the public recognizes the importance of healthy, comfortable. and productive indoor environments, their awareness and demand for good...

Kettler, G. J.

1998-01-01T23:59:59.000Z

46

Pre-In-Plant Training Webinar (Compressed Air)  

Broader source: Energy.gov [DOE]

This pre-In-Plant training webinar for the Better Plants Program covers the basics of finding energy savings in Compressed Air systems and introduces the AIRMaster+ software tool.

47

Efficiency of compressed-air systems. Final report  

SciTech Connect (OSTI)

The program undertaken by this contract is intended to quantify the current state of knowledge in American industry concerning the energy efficient design and operation of industrial compressed air systems and system components. Since there is no standard reference for designers and operators of compressed air systems which provides guidelines for maximizing the energy efficiency of these systems, a major product of this contract was the preparation of a guidebook for this purpose.

Not Available

1983-01-01T23:59:59.000Z

48

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion  

E-Print Network [OSTI]

advantages, only compressed air energy storage (“CAES”) has the storage capacity of pumped hydro, but with

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

49

Paper Number (Assigned by IFPE Staff) Compressed Air Energy Storage for Offshore Wind Turbines  

E-Print Network [OSTI]

transmitting peak power levels. A solution to these issues is a novel highefficiency compressed air energy

Perry Y. Li; Eric Loth; Terrence W. Simon; James D. Van De Ven; Stephen E. Crane

50

High-Efficiency Window Air Conditioners - Building America Top...  

Broader source: Energy.gov (indexed) [DOE]

Window Air Conditioners - Building America Top Innovation This photo shows a window air conditioning unit in place in a window frame. Window air conditioners are inexpensive,...

51

Air ejector augmented compressed air energy storage system  

DOE Patents [OSTI]

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

52

Abstract--For a Compressed Air Energy Storage (CAES) approach to be viable, the air compressor/expander must be  

E-Print Network [OSTI]

Abstract-- For a Compressed Air Energy Storage (CAES) approach to be viable, the air compressor improvement can also be determined using this method. I. INTRODUCTION novel Compressed Air Energy Storage advantage of pneumatics. High pressure (~20-30MPa) compressed air is stored in a dual chamber storage vessel

Li, Perry Y.

53

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network [OSTI]

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

54

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

55

Compressed Air Audits: A Holistic Approach -Addressing the Air System as a Whole  

E-Print Network [OSTI]

energy savings. The quality and comprehensiveness of manufacturing facilities, and therefore audits, vary widely and it is important to consider experience. Compressed Air Technologies has audited nearly 200 manufacturing facilities since our inception...

Shaver, D.

2011-01-01T23:59:59.000Z

56

Estimating Energy Savings in Compressed Air Systems  

E-Print Network [OSTI]

are frequently overestimated because the methods used to estimate savings neglect to consider important factors such as compressor control and type, storage, and multiple compressor operation. In this paper, a methodology is presented for modeling air... compressor performance and calculating projected energy savings from easily obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load power or average fraction rated capacity. The methodology...

Schmidt, C.; Kissock, J. K.

2004-01-01T23:59:59.000Z

57

FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...  

Broader source: Energy.gov (indexed) [DOE]

FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

58

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network [OSTI]

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed air-grid alternative to the large-scale compressed air energy storage systems we propose to examine the viability

Deymier, Pierre

59

DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM  

E-Print Network [OSTI]

regulation and gen- erator power tracking for a Compressed Air Energy Storage (CAES) system, a nonlinearDRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY available wind power in normal situations. Storing energy in high pressure compressed air is attractive

Li, Perry Y.

60

OPTIMAL CONTROL EXPERIMENTATION OF COMPRESSION TRAJECTORIES FOR A LIQUID PISTON AIR COMPRESSOR  

E-Print Network [OSTI]

compressor is the critical part of a Compressed Air En- ergy Storage (CAES) system. Efficient and fast and expansion has many applications in pneumatic and hydraulic systems, including in the Compressed Air Energy CAES system, high pressure (20-30MPa) compressed air is stored in a dual chamber storage vessel

Li, Perry Y.

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Measure Guideline: Air Sealing Attics in Multifamily Buildings  

SciTech Connect (OSTI)

This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

Otis, C.; Maxwell, S.

2012-06-01T23:59:59.000Z

62

Iterative Optimal and Adaptive Control of a Near Isothermal Liquid Piston Air Compressor in a Compressed Air Energy Storage System  

E-Print Network [OSTI]

in a Compressed Air Energy Storage System Farzad A. Shirazi, Mohsen Saadat, Bo Yan, Perry Y. Li, and Terry W/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the one in the Com- pressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been

Li, Perry Y.

63

Typical Problems of AHU and Air Movement in Buildings  

E-Print Network [OSTI]

occupied zones #0;?#0;?#0;?#0;? Wrong Air Handling Process and ControlWrong Air Handling Process and Control #0;?#0;?#0;?#0;? TP4: Dislike fresh air?TP4: Dislike fresh air? #0;?#0;?#0;?#0;? TP5: Reheat of VAVBOX at partial load time in summerTP5: Reheat... of VAVBOX at partial load time in summer #0;?#0;?#0;?#0;? Unexpected Air Movement in BuildingsUnexpected Air Movement in Buildings #0;?#0;?#0;?#0;? TP6: Chimney effect leading to fresh air intake in highTP6: Chimney effect leading to fresh air intake in high...

2006-01-01T23:59:59.000Z

64

Compressed air energy storage technology program. Annual report for 1980  

SciTech Connect (OSTI)

All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

Kannberg, L.D.

1981-06-01T23:59:59.000Z

65

E-Print Network 3.0 - af compressed air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Page 1 of 8 2011-xx-xxxx Summary: Page 1 of 8 2011-xx-xxxx Improving Compressed Air Energy Efficiency in Automotive Plants Nasr... are typically large users of compressed...

66

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

During building cooling the chillers supply 42 °P water towith 42°P supply air always reduced cooling and totalpart-load) cooling with cold air supply. In most California

Bauman, F.S.

2008-01-01T23:59:59.000Z

67

Compressed air energy storage technology program. Annual report for 1979  

SciTech Connect (OSTI)

The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

Loscutoff, W.V.

1980-06-01T23:59:59.000Z

68

Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance  

SciTech Connect (OSTI)

In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

Not Available

2005-04-01T23:59:59.000Z

69

Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems  

SciTech Connect (OSTI)

In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

2006-04-01T23:59:59.000Z

70

Air movement preferences observed in office buildings  

E-Print Network [OSTI]

Movement – Good or Bad? Indoor Air 14: 40-45. Toftum, J (Quality Survey. Indoor Air 14 (8): 65–74. Internationalon the Perception of Indoor Air Quality during Immediate and

2007-01-01T23:59:59.000Z

71

California Air Resources Board's "California Green Building Strategy"  

E-Print Network [OSTI]

California Air Resources Board's "California Green Building Strategy" Collectively, energy use. Significant GHG emission reductions can be achieved through the design and construction of new green buildings $56 billion in electricity and natural gas costs. Green buildings provide a cost-effective strategy

72

Want Some Money Back from your Compressed Air System? Check Out These Top 10 Areas to Look  

E-Print Network [OSTI]

Compressed air is often overlooked in energy studies because many people don't fully understand compressed air equipment, the air system or what it costs to produce compressed air power. For those willing to look and use some good old common sense it is...

Van Ormer, H.

2004-01-01T23:59:59.000Z

73

Investment-Grade Compressed Air System Audit, Analysis, and Upgrade in a Pulp and Paper Mill  

E-Print Network [OSTI]

INVESTMENT-GRADE COMPRESSED AIR SYSTEM AUDIT, ANALYSIS, AND UPGRADE IN A PULP & PAPER MILL Paresh S. Parekh, P.E. Principal ABSTRACT An investment-grade compressed air audit, analysis, design, and upgrade in an industrial facility requires a..., West Tacoma Division, located in Washington State, had production capability of 540 tons per day of recycle newsprint manufactured from TMP and recycled paper. Over the years, as mill capacity increased, various sizes and types of air compressor...

Parekh, P. S.

74

Building Efficiency and Indoor Air Quality - You Can Have Both  

E-Print Network [OSTI]

dioxide sensors controlling inlet dampers or fan control systems. As the people load varies causing changes in carbon dioxide level, the controls can vary the amount of ventilation air entering the building. A second method is removing the contaminants...

Kettler, G. J.

1998-01-01T23:59:59.000Z

75

Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines q  

E-Print Network [OSTI]

Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind compressed air energy storage. Maximizes energy production, levels load, downsizes electrical parts, meets presents the modeling and control for a novel Compressed Air Energy Storage (CAES) system for wind turbines

Li, Perry Y.

76

Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to  

E-Print Network [OSTI]

Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel components can be downsized for demand instead of supply. A novel Compressed Air Energy Storage (CAES

Li, Perry Y.

77

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network [OSTI]

monoxide and nitrogen dioxide from gas appliances;health, indoor air quality, nitrogen dioxide, radon The workin residen- (CO), nitrogen dioxide (NOz), formaldehyde (

Hollowell, C.D.

2012-01-01T23:59:59.000Z

78

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.  

E-Print Network [OSTI]

BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits

79

Beyond Leaks: Demand-side Strategies for Improving Compressed Air Efficiency  

E-Print Network [OSTI]

Staggering amounts of compressed air are wasted or misapplied in otherwise well run manufacturing facilities, often adding thousands of dollars in extra operating cost per year. The process of eliminating this expensive waste requires a thorough...

Howe, B.; Scales, B.

80

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network [OSTI]

plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network [OSTI]

energy efficiency goals and adopt energy conservation measures. Application of the types of compressed air best practicesEnergy Efficiency and Market Potential of Electric Motor System in China. China Machine Pressu re, [4] Best Practices

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

82

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect (OSTI)

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

83

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

SciTech Connect (OSTI)

We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

2006-06-01T23:59:59.000Z

84

Natural air motion in passive buildings  

SciTech Connect (OSTI)

The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few experimental results are presented. Observations of stratification are discussed, similitude experiments are described, and the beginnings of a complete-system mathematical model are presented.

Balcomb, J.D.; Jones, G.F.

1985-01-01T23:59:59.000Z

85

Total Building Air Management: When Dehumidification Counts  

E-Print Network [OSTI]

are realized when systems are designed with a total operating strategy in mind. Thls strategy takes Cheryl L. White Technical Consultant Eddleson & Rowe, Assoc. Denver, Colorado into consideration every factor of buildmg air management includmg: 1...-89 specifies at least 15 CFM per person. In Denver Colorado where relative humidity of outdoor air is low and outdoor design temperature is 92" F DB/65" F WB, this may be a cost effective method of assuring high IAQ. In other parts of the country - Houston...

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

86

Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System  

E-Print Network [OSTI]

controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine storage vessel. The storage vessel contains both liquid and compressed air at the same pressure. Energy significant reduction in generation costs. Among all different types of energy storage approaches, compressed

Li, Perry Y.

87

Indoor Air Quality Assessment of the San Francisco Federal Building  

SciTech Connect (OSTI)

An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

2008-07-01T23:59:59.000Z

88

Air Barriers for Residential and Commercial Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission, StorageIndustry andAir Barriers

89

Near Isothermal Compressed Air Energy Storage Approach For Off-Shore Wind Energy using an Open Accumulator  

E-Print Network [OSTI]

Near Isothermal Compressed Air Energy Storage Approach For Off-Shore Wind Energy using an Open · Increase capacity factor Approach: · Store energy in high-pressure (300bar) compressed air vessel · High Air Energy Storage Approach For Off-Shore Wind Energy using an Open Accumulator Contact: Prof. Perry

Li, Perry Y.

90

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

Kim, H.-M.

2012-01-01T23:59:59.000Z

91

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network [OSTI]

Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

92

Improving Compressed Air System Efficiency- Know What You Really Need  

E-Print Network [OSTI]

($17,000/year saved) by reducing air use without reducing production. Another, by monitoring air production and energy requirements of the system, selected a properly sized 75 hp compressor to replace a worn-out 250 hp compressor and paid for the new...

Terrell, R. E.

93

Design and evaluation of an advanced adiabatic compressed air energy storage system at the Michigan-Utah mine.  

E-Print Network [OSTI]

??Compressed air energy storage (CAES) is considered a viable option for matching intermittent sustainable energy and the production of peak electrical demand. Economic advantages of… (more)

Beeman, Michael G

2010-01-01T23:59:59.000Z

94

Air Conditioner User Behavior in a Master-Metered Apartment Building  

E-Print Network [OSTI]

Air conditioner operation was studied in order to understand how energy consumption and peak power are determined by user behavior, equipment operation and building characteristics. In a multi-family building, thirteen room air conditioners were...

Kempton, W.; Feuermann, D.; McGarity, A. E.

1987-01-01T23:59:59.000Z

95

Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings  

E-Print Network [OSTI]

Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

Gugercin, Serkan

96

Improving Energy Efficiency of Compressed Air System Based onSystem Audit  

SciTech Connect (OSTI)

Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

Shanghai, Hongbo Qin; McKane, Aimee

2007-06-01T23:59:59.000Z

97

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

98

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents [OSTI]

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

99

A study on the air permeability as affected by compression of three French soils  

E-Print Network [OSTI]

by changing the soil structure and the physical properties of soils. It changes the mechanical strength, water of the changes in soil mechanical strength, aeration and hydraulic properties (Horn et al., 1995; Kozlowski, 19991 A study on the air permeability as affected by compression of three French soils Anh Minh Tang 1

Paris-Sud XI, Université de

100

Engineering Design Example CompressedCompressed--Air System for a Manufacturing PlantAir System for a Manufacturing Plant  

E-Print Network [OSTI]

*1.35=1900 cfm. · Centrifugal or reciprocating compressor may be chosen (later). From handbooks: P kk /)1 to operate C/A tools: Compressor and piping layoutCompressor and piping layout Air supply circumferentially: · Estimate the load [cfm] based on current and future demand. · Size the compressor(s). · Size the pipes so

Kostic, Milivoje M.

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Two stroke homogenous charge compression ignition engine with pulsed air supplier  

DOE Patents [OSTI]

A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

Clarke, John M. (Chillicothe, IL)

2003-08-05T23:59:59.000Z

102

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

SciTech Connect (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

103

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS)ColumbusDHeatGeothermal AreaAir Energy Storage

104

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

E-Print Network [OSTI]

reductions from energy-efficiency building technologies andreductions from energy-efficiency building technologies andLBNL-49750 Energy Efficiency in Buildings as an Air Quality

Vine, Edward

2002-01-01T23:59:59.000Z

105

Natural air motion and stratification in passive buildings  

SciTech Connect (OSTI)

Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

1984-01-01T23:59:59.000Z

106

Measuring Outdoor Air Intake Rates into Existing Building  

SciTech Connect (OSTI)

Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

2009-04-16T23:59:59.000Z

107

Proceedings: Indoor Air 2005 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON  

E-Print Network [OSTI]

Proceedings: Indoor Air 2005 2118 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON PRIMARY of reactions of ozone on building products and on their emissions in indoor air. For this purpose, 12 building products were exposed to ozone in a dedicated experimental setup. The measured ozone removal rate

Paris-Sud XI, Université de

108

A method of building an aggregated indicator of air-pollution impacts  

E-Print Network [OSTI]

A method of building an aggregated indicator of air-pollution impacts Thierry GOGER, Robert JOUMARD intend to build a global environmental impact indicator of air pollution to assess transport-generated air pollution, while simultaneously conserving the value of the environmental impact of each type

Paris-Sud XI, Université de

109

How to Substantially Reduce the Biggest Energy Wasters in Compressed Air Systems  

E-Print Network [OSTI]

will vary from $2,190 per year to vortex type to $438 per year top heated pipe. A full treatment of the subject is available in the book ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS, authored by Hank van Ormer, Air Power USA Inc. As much as 75% to 80...% energy savings are available by prudent selection and application of cabinet coolers. OPEN BLOWS Open blows in various material moving processes offer exceptional energy conservation opportunities Often times we find 1/4" open tubes blowing...

Kemp, H. L.

2005-01-01T23:59:59.000Z

110

Saving Energy in Industrial Compressed Air Systems: Issues and Obstacles in DSM Program Design  

E-Print Network [OSTI]

in capturing this potential through utility-sponsored DSM programs. Baltimore Gas & Electric Company (BG&E) has been investigating compressed air program design since 1991, and has offered rebate programs since January 1992. This paper will review BG... of performance, and incentive mechanisms. BACKGROUND Utility DSM for industrial customers has generally been developed as an offshoot of commercial programs targeting a few common end uses - lighting, HVAC, and motors. As DSM matures, however, utilities...

Trojanowski, D.; Parfomak, P.

111

INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

Hollowell, C.D.

2011-01-01T23:59:59.000Z

112

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

Price, P.N.

2011-01-01T23:59:59.000Z

113

Modeling VOC sorption of building materials and its impact on indoor air quality  

E-Print Network [OSTI]

Sorption of volatile organic compounds (VOCs) by building materials can have significant effect on the indoor VOC concentration levels and indoor air quality in buildings. The objective of this study was to investigate ...

Zhang, Jinsong, 1975-

2001-01-01T23:59:59.000Z

114

Building comparable synthetic health-related indicators of air quality in cities  

E-Print Network [OSTI]

: air pollution, spatial variation, indicator, cities, environmental epidemiology halshs-00551471 pollution. Two questions are addressed: How can one build comparable pollution indicators, at the global? How can one build comparable pollution indicators that take into consideration the daily pollution

Paris-Sud XI, Université de

115

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect (OSTI)

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

Not Available

2005-08-01T23:59:59.000Z

116

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network [OSTI]

Critical Analysis of Nitrogen Dioxide Air Quality Standards.contaminants-. ;--- ---- nitrogen dioxide from gas stoves,buildings: nitrogen dioxide (N02), formaldehyde (HCHO), and

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

117

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

Field Evaluation of Cold Air Distribution Systems. EPRIand J.S. Elleson. 1988. Cold Air Distribution Design Guide.Field Evaluation of a Cold Air Distribution System. EPRI

Bauman, F.S.

2008-01-01T23:59:59.000Z

118

HVAC Cabinet Air Leakage Test Method - Building America Top Innovation...  

Energy Savers [EERE]

their air sealing practices to reduce the amount of air leaking at ducts and duct boots, testing showed that distribution systems still leaked at air handlers and furnace...

119

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

DOE Patents [OSTI]

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

120

Compressed Air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity InvolvementCompositional Variation

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Porous media experience applicable to field evaluation for compressed air energy storage  

SciTech Connect (OSTI)

A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

Allen, R.D.; Gutknecht, P.J.

1980-06-01T23:59:59.000Z

122

E-Print Network 3.0 - adiabatic compressed air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Compression Summary: Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic... Liquefaction Hydrogen Compression 12;3 Praxair at a...

123

EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California  

Broader source: Energy.gov [DOE]

DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

124

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development

125

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network [OSTI]

Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

126

Compressed Air Systems Optimized: What Do You Really Need and How to Get It at the Lowest Total Cost  

E-Print Network [OSTI]

it in the field. We discuss all the proven supply side optimization strategies with real examples and results. ISO air quality standards are discussed and how their interpretation impacts the cost of operating compressed air systems. We offer best practice methods...

McAuley, J. G.; McAuley, J.

2010-01-01T23:59:59.000Z

127

INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

the effect of air pollution on human health, 2) the designgenerated indoor air pollution on human health; and if borneAir Pollution Control Association, Portland, Oregon (June 27-July 1, 1976). vJorld Health

Hollowell, C.D.

2011-01-01T23:59:59.000Z

128

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

1988. Cold Air Distribution Design Guide. EPRI Report EM-match the cold air distribution design, the floor-to-floorinclude cold air distribution in their designs. The projects

Bauman, F.S.

2008-01-01T23:59:59.000Z

129

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

Cold Air Distribution Systems. EPRI Report EM-5447, ElectricAir Distribution Design Guide. EPRI Report EM-5730, ElectricAir Distribution System. EPRI Report CU-6690, Vol. 1 and 2,

Bauman, F.S.

2008-01-01T23:59:59.000Z

130

INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS  

E-Print Network [OSTI]

new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

131

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

E-Print Network [OSTI]

1) indoor pollutant source control, and 2) air cleaning.control is complicated by the large number and changing nature of indoor pollutant sources. Particle air

Sidheswaran, Meera

2010-01-01T23:59:59.000Z

132

Thermo-fluidal behavior of the air in a cavern for the CAES-G/T[Compressed Air Energy Storage Gas Turbine  

SciTech Connect (OSTI)

In this paper, a numerical analysis was performed to gain the detailed features of the thermo-fluidal behavior of the air inside the cavern for the compressed air storage gas turbine (CAES-G/T). The CAES-G/T, a peak shave power plant is now on the installation in Japan, where energy is stored in off peak period by compressed air in an underground cavern at pressure up to 80 atm abs. In the present work, an analytical model based on the two-dimensional laminar flow on the cross-section of the circular cavern was developed to quantify the effect of the transient process occurring in the cavern and wall during injection, storage and release of compressed air in the experimental circular cavern. the air was introduced until the required pressure inside the cavern is reached, then it was released outside after the storage period. It was found that the stratified temperature distribution was maintained in the cavern during compression and expansion periods. The wall temperature varied together with the variation of the air temperature with time, leading to the heat storage in the wall.

Tada, Shigeru; Yoshida, Hideo; Echigo, Ryozo; Oishi, Yasushi

1999-07-01T23:59:59.000Z

133

Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid  

E-Print Network [OSTI]

and limitations of retrofit technology for these characteristic structures have been the focus of the experience gained through the design and installation of a system adapted to a building constructed in the early 1960's. The existing split package air...

Arnas, O. A.; McQueen, T. M.

1984-01-01T23:59:59.000Z

134

Proceedings of Healthy Buildings 2009 Paper 680 Do forced air HVAC systems have a role in healthy homes?  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 680 Do forced air HVAC systems have a role in healthy-extreme weather conditions. #12;Proceedings of Healthy Buildings 2009 Paper 680 Thus, a central forced air

Siegel, Jeffrey

135

Simulation- Assisted Audit of an Air Conditioned Office Building  

E-Print Network [OSTI]

Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 performances of the installation. Finally, some significant retrofit opportunities are proposed. BUILDING DESCRIPTION Building design The considered building is an existing... Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 In nominal heating conditions (outdoor : -10?C/RH 90%; indoor : 20?C/RH50%), with ?t = 30 K, this gives a sensible power demand of: g1843g4662g3046,g3041g3042g3040 =g343623...

Bertagnolio, S.; Lebrun, J.; Hannay, J.; Silva, C. A.

136

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network [OSTI]

of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity...

Kosar, D.

1998-01-01T23:59:59.000Z

137

Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design  

SciTech Connect (OSTI)

A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

138

INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

incorporating energy efficient designs. Indoor air qualityincorporating energy efficient designs. In the future, theenergy efficient ventilation standards and ventilation designs

Hollowell, C.D.

2011-01-01T23:59:59.000Z

139

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

SciTech Connect (OSTI)

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

140

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network [OSTI]

Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

Price, P.N.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

available. The cooling plant is an ice harvester designedused for ice making or for building cooling. During iceyears. The cooling plant is a Mueller ice harvester system

Bauman, F.S.

2008-01-01T23:59:59.000Z

142

Building America Technology Solutions for New and Existing Homes: Air Leakage and Air Transfer Between Garage and Living Space  

Broader source: Energy.gov [DOE]

In this project, Building Science Corporation worked with production home builder K. Hovnanian to conduct testing at a single-family home in Waldorf, Maryland, constructed in accordance with the 2009 International Residential Code. The team used automated fan pressurization and pressure monitoring techniques to conduct a series of 25 tests to measure the garage and house air leakage and pressure relationships and the garage-to-house air leakage.

143

Monitored Performance of an Office Building with an Under-floor Air Distribution System  

E-Print Network [OSTI]

- conditioning equipment was assessed and energy and ventilation improvements suggested. The building was found to fall within good practice and standard practice for energy usage in air-conditioned commercial office buildings for the United Kingdom.... However, if not installed or designed properly, these systems can use as much or more energy than a conventional HVAC system. The results of long-term monitoring and short-term measurements in a commercial office building with a UFAD are presented...

Walker, C.; Norford, L.

2005-01-01T23:59:59.000Z

144

Evaluation of hard-rock-cavern construction methods for compressed-air energy storage: Final report  

SciTech Connect (OSTI)

This report presents the results of construction cost and schedule estimates for caverns mined in hard rock for 100-MW and 220-MW compressed air energy storage (CAES) plants with 10 hours storage capacity and using either water-compensated cavern operation with constant turbine-inlet pressure operation on uncompensated cavern operation with sliding turbine-inlet pressure operation. The estimates are made for caverns mined by large-parallel-tunnel methods and by room-and-pillar methods. The results indicate that, for the cavern sizes involved, the room-and-pillar method is cost-competitive with the large-parallel-tunnel methods, but the method requires marginally more construction time. The largest cavern size in the estimates may, however, be approaching the size where the room-and-pillar method may no longer be competitive. The technical feasibility of water curtains for preventing or minimizing leakage of air from CAES hard-rock caverns is evaluated, and construction cost and schedule estimates are made for uncompensated caverns. It is concluded that the performance of water curtains is dependent upon the accuracy of the values of site specific variables and assumptions utilized in the design. A method is presented for assessing if a water curtain may be economical for a compensated CAES cavern. Such an assessment for a water curtain for an uncompensated CAES cavern is more complex and beyond the scope of this study. Also, a program for testing the operation of a water curtain in conjunction with an air-storage cavern operation is proposed. For the specific cavern sizes considered in this report, the estimated water-curtain construction costs and times for the uncompensated room-and-pillar caverns are found to be greater than for the uncompensated large-parallel-tunnel caverns. 11 refs., 18 figs., 19 tabs.

Thrasher, J.E.; Lange, R.B.

1988-04-01T23:59:59.000Z

145

Study of building material emissions and indoor air quality  

E-Print Network [OSTI]

Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

Yang, Xudong, 1966-

1999-01-01T23:59:59.000Z

146

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

that represented an energy-efficient design in the currentnew products and energy-efficient designs for systems usingenergy use. However, with the fairly efficient cold air system designs

Bauman, F.S.

2008-01-01T23:59:59.000Z

147

An Integrated Air Handling Unit System for Large Commercial Buildings  

E-Print Network [OSTI]

are developed to compare the energy performance and indoor air quality between the OAHU and conventional AHU systems (single AHU). The OAHU uses significantly less energy than the conventional system in both winter and summer. The OAHU also provides better...

Song, L.; Liu, M.

2001-01-01T23:59:59.000Z

148

Innovative Systems for Solar Air Conditioning of Buildings  

E-Print Network [OSTI]

for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

Kessling, W.; Peltzer, M.

2004-01-01T23:59:59.000Z

149

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

SciTech Connect (OSTI)

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

150

Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294)! Principal Investigators: Perry Li1,a, Terry Simon1,b, James Van de Ven1,c, Eric Loth2,d, Steve Crane3,e!  

E-Print Network [OSTI]

Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294 compressed air approach. It is desired to store wind energy at the power of 3MW for about 8 hours during not require special geological sites or additional fossil fuel as in conventional compressed air storage

Li, Perry Y.

151

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

SciTech Connect (OSTI)

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M.J.

1981-11-01T23:59:59.000Z

152

Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.  

SciTech Connect (OSTI)

This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

Lee, Moo Yul; Bauer, Stephen J.

2004-06-01T23:59:59.000Z

153

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air-Conditioner Energy Consumption in  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air efficiency filters (Points A, B, and C, respectively). #12;Proceedings of Healthy Buildings 2009 Paper 474

Siegel, Jeffrey

154

Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin  

E-Print Network [OSTI]

This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

155

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary  

SciTech Connect (OSTI)

An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

156

Energy Conservation of Air Conditioning Systems in Large Public Buildings  

E-Print Network [OSTI]

cold seasons, the closed middle air layer absorbs the solar energy, and becomes the buffer layer of space between the inside and outside because of the glasshouse effect. In this case, the indoor heat loss can be reduced. While during the hot... and natural climatic microenvironment for the people indoor. Considering the energy conservation and the ecological environmental protection, this system not only satisfies the aesthetic need of the architecture, but also is the need of developing...

Liu, P.; Li, D.

2006-01-01T23:59:59.000Z

157

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

158

Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency Huawei Zhu Zhejiang Urban and Rural Planning Design Institute... conditioning system has led to extensive criticism. 2. THE CHARACTERISTICS OF THE VARIABLE REFRIGERANT VOLUME AIR CONDITIONING SYSTEM AND ITS PRESENT APPLICATION ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 2...

Zhu, H.

2006-01-01T23:59:59.000Z

159

Building Pressure Control in VAV System with Relief Air Fan  

E-Print Network [OSTI]

, recently, Wang and Liu developed a motor power based fan airflow station., which determines the fan airflow using the measured fan motor power, the fan speed or control system command to VFD, and the in-situ fan motor power curve. Since the fan power... power can be obtained directly from VFD [5]. The motor power based fan airflow station method can be applied to the fan-tracking to perform a better building pressurization. The theory of the motor power based fan airflow station can be referred...

Pang, X.; Liu, M.; Zheng, B.

2005-01-01T23:59:59.000Z

160

Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)  

SciTech Connect (OSTI)

This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

Not Available

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings  

SciTech Connect (OSTI)

A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

Wallingford, K.M.

1987-01-01T23:59:59.000Z

162

Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)  

SciTech Connect (OSTI)

In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

Not Available

2014-10-01T23:59:59.000Z

163

Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction  

E-Print Network [OSTI]

During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

164

Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design  

E-Print Network [OSTI]

11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows with same thermal behaviour). For heat conduction in walls, it results from electrical analogy

Paris-Sud XI, Université de

165

Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing  

SciTech Connect (OSTI)

This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-04-12T23:59:59.000Z

166

Control and Optimization of Vapor Compression Cycles Using Recursive Least Squares Estimation  

E-Print Network [OSTI]

Vapor compression cycles are the primary method by which refrigeration and air-conditioning systems operate, and thus constitute a significant portion of commercial and residential building energy consumption. This thesis presents a data...

Rani, Avinash

2012-10-19T23:59:59.000Z

167

Hot Air Stratification of Ceiling Air Supply in a Large Space Building  

E-Print Network [OSTI]

The effects of different states of air supply and airflow patterns on temperature gradient distribution are calculated and analyzed with the help of FFSV3.0 software, using the LB models and LES and RANS methods. An experimental study with upper...

Wang, H.; Wang, Z.; Liu, C.

2006-01-01T23:59:59.000Z

168

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect (OSTI)

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

169

CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?  

SciTech Connect (OSTI)

This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William; Fisk, William J.

2007-08-01T23:59:59.000Z

170

Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings  

SciTech Connect (OSTI)

This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

Fisk, William J.

2006-05-01T23:59:59.000Z

171

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect (OSTI)

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

172

Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.  

SciTech Connect (OSTI)

The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark Andrew

2013-03-01T23:59:59.000Z

173

Identification of the Flow Resistance Coefficient and Validation of a Building Air Conditioning System  

E-Print Network [OSTI]

for HRC estimation is investigated in this paper. And some conclusions can be got as follows: 1) The MGO method is applicable for S value identification. The method is based on the principle for multi goal optimization. The process can be widely used...ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency, Vol. IV-11-2 Zhijian Hou Identification of the Flow Resistance Coefficient and Validation of a Building Air Conditioning System Zhiwei Lian...

Hou, Z.; Lian, Z.

2006-01-01T23:59:59.000Z

174

Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building  

E-Print Network [OSTI]

Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes...

Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

2006-01-01T23:59:59.000Z

175

Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction  

E-Print Network [OSTI]

This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 k...

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

2010-01-01T23:59:59.000Z

176

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network [OSTI]

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

177

Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator  

E-Print Network [OSTI]

Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature...

Maiya, M. P.; Ravi, J.; Tiwari, S.

2010-01-01T23:59:59.000Z

178

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network [OSTI]

energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

Diamond, Richard

179

Building a Business Case for Compressed Natural Gas in Fleet Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS FebBuilding a Business

180

Building a Business Case for Compressed Natural Gas in Fleet Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS FebBuilding a

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits  

SciTech Connect (OSTI)

Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

None

1980-10-01T23:59:59.000Z

182

Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)  

SciTech Connect (OSTI)

While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

Not Available

2014-11-01T23:59:59.000Z

183

The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing  

E-Print Network [OSTI]

In this paper, we show that the air-conditioning usage in residential buildings in Beijing grows rapidly in relation to the development of civil construction. More and more people are not satisfied with the current style of only using split air-conditioning...

Sheng, G.; Xie, G.

2006-01-01T23:59:59.000Z

184

Preliminary design study of compressed-air energy storage in a salt dome. Volume 4. CAES turbomachinery design. Final report  

SciTech Connect (OSTI)

A summary is presented of the study undertaken by the Turbomachinery Subcontractor on Task 1, according to instructions received from the Middle South Services (MSS), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The subject of this study was to investigate the question of whether it would be possible to build an air storage generating plant capable of operating economically and using leached-out salt domes as air reservoirs. In the course of the work performed on Task 1, the Turbomachinery Subcontractors have on various occasions supplied information on the results obtained, in the form of preliminary subreports. The present summary includes all the previous reports, most of which have been revised to a large extent.

Not Available

1982-06-01T23:59:59.000Z

185

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability  

SciTech Connect (OSTI)

The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

Lessard, R.D.; Blecher, W.A.; Merrick, D.

1981-09-01T23:59:59.000Z

186

Sorbent-Based Gas Phase Air Cleaning for VOCs in Commercial Buildings  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, William J.

2006-01-01T23:59:59.000Z

187

EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York  

Broader source: Energy.gov [DOE]

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

188

The Compressed Air Challenge Training Program is a cutting-edge, national program designed to help you find cost-effective  

E-Print Network [OSTI]

-of-use pressure requirements » Investigating and addressing high-volume, intermittent applications » Taking stock applications · Taking stock of what you have · Compressed air system maintenance · Day 1 summary and evaluation · Taking measurements · What is happening here? Part 1 · Developing a system profile · What is happening

Lin, Zhiqun

189

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

SciTech Connect (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

190

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

SciTech Connect (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

191

Preliminary design study of compressed-air energy storage in a salt dome. Volume 1: executive summary. Final report  

SciTech Connect (OSTI)

The preliminary design and cost estimate of a compressed air energy storage (CAES) plant located in the Middle South Utilities (MSU) system are summarized in this report. The 220 MWe CAES plant which stores air in two solution mined salt caverns, is located at the Carmichael salt dome near Jackson, Mississippi. The facility criteria, site selection and the turbomachinery and auxiliaries, are briefly described together with an outline of the proposed procedure for developing the caverns. Using this information and data, the preliminary CAES plant design was prepared; also the capital cost estimate, cash flow and project schedule were developed. The Environmental Assessment did not reveal any major site impediments to the construction of the plant. However, it is believed that an EIS is required primarily because CAES is a new technology without precedent in the United States. Although a final system planning study was not completed because of lack of funds, from preliminary analysis a CAES plant does not appear to be economic in the MSU system before the mid 1990s. This is due to the unique features of the MSU system. For other systems under more favorable conditions, CAES may be economic at an earlier date. The construction of a CAES plant with salt cavern air storage may by considered ready for use as a commercial electric generating plant. The experience at the Huntorf plant in West Germany demonstrates the technical feasibility of the CAES concept. Certain details of the plant defined in this study are different from the Huntorf plant. Design verification by limited testing and analysis would provide added confidence to those considering a CAES plant.

Not Available

1982-01-01T23:59:59.000Z

192

Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System  

SciTech Connect (OSTI)

Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle dispersion. The results of these simulations suggest the air blender should be included in the stack system to ensure qualification of the stack.

Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

2013-01-23T23:59:59.000Z

193

Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey  

E-Print Network [OSTI]

ambient Proceedings of Healthy Buildings 2006, Lisbon,Vol.and operation of healthy buildings Introduction Indoor airdatabase Proceedings of Healthy Buildings 2006, Lisbon,Vol.

Huizenga, C; Abbaszadeh, S.; Zagreus, Leah; Arens, Edward A

2006-01-01T23:59:59.000Z

194

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network [OSTI]

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

195

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862  

E-Print Network [OSTI]

Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

2014-01-01T23:59:59.000Z

196

Preliminary design study of compressed-air energy storage in a salt dome. Volume 6. CAES plant design. Final report  

SciTech Connect (OSTI)

The preliminary plant design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc. (MSS), is presented. The design is based upon the facility criteria; the specific site; and the systems, subsystems, and components identified in the other task of this study. The proposed 220-MW(e) plant is located at the Carmichael salt dome near Jackson, Mississippi. The compressed air is stored in two solution-mined caverns in the salt dome. The plant area, exclusive of the remote fuel unloading facility, occupies 20 acres. An equipment list, a plot plan, and general arrangement drawings define the CAES plant. The details concerning the major equipment and the operation of the mechanical systems are described. The capital investment cost (exclusive of owner's cost) of the 220-MW(e) CAES plant is $85.6 million in 1979 dollars or $389/kW. This cost is based on firing the turbines with No. 2 fuel oil. As an alternative, the capital investment cost under the same conditions for a plant firing No. 6 oil is $90.9 million or $413/kW. The project schedule from start of licensing to commercial operation is estimated to be 70 months, with actual construction (including dewatering of the caverns) estimated to be 39 months. Based on the cost estimate developed in this task and the modified financial data and fuel cost projections, the economic introduction of CAES into the MSS system was examined for the No. 2 oil-fired plant. Due to lack of funds, the economic analysis did not extend beyond the year 1988. No system analysis of the No. 6 oil-fired plant was made. The economic introduction of CAES in the MSS system before 1990 is unlikely because the older oil-fired units in the MSS system may be economically used for cycling and peaking, if required. For a system with a different composition of generating units (i.e., low-cost, coal-fired plants), CAES may be economical at an earlier date.

Not Available

1982-04-01T23:59:59.000Z

197

A model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

198

Model for thermally driven heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

Jones, G.F.; Balcomb, J.D.; Otis, D.R.

1985-01-01T23:59:59.000Z

199

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network [OSTI]

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

200

Draft or breeze? preferences for air movement in office buildings and schools from the ASHRAE database  

E-Print Network [OSTI]

17-22, Copenhagen. Healthy Buildings 2009, September 13-17,and 6% wanted less. Healthy Buildings 2009, September 13-17,Slightly warm Warm Hot Healthy Buildings 2009, September 13-

Hoyt, Tyler; Zhang, Hui Ph.D; Arens, Edward

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS: FINAL REPORT  

E-Print Network [OSTI]

STUDIES OF EFFECTS OF ENERGY CONSERVATION r1EASURES ON AIR41 T EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE80-2 EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE

Dimmick, R.L.

2013-01-01T23:59:59.000Z

202

Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York  

Broader source: Energy.gov [DOE]

In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

203

Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings  

E-Print Network [OSTI]

indoor pollutant source control measures and air cleaningof indoor pollutant source control measures or gas phase aircontrol indoor pollutants, by allowing lower energy costs from reduced outdoor air

Dutton, Spencer M.

2014-01-01T23:59:59.000Z

204

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network [OSTI]

1) indoor pollutant source control, and 2) air cleaning.control is complicated by the large number and changing nature of indoor pollutant sources. Particle air

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

205

Compressed Air Systems  

Broader source: Energy.gov [DOE]

Efficiency Vermont offers rebates to encourage the installation of efficient compressors. Rebates amounts are dependent on the type of equipment. There is no set limit on the amount of rebates that...

206

Compressed Air Supply Efficiency  

E-Print Network [OSTI]

displacement control flow meter, Aerzna DN 65. Results from these tests are summarized and presented in the graph below: X Axis - % Full Scale 1. Eldridge 8240MPNH Y ? Axis - % Error 2. FCI ST 98 3. Sierra 640S-M8 4... compressor for trimming, the actual performance (CASE Index of 193), was way below that was expected. The results immediately indicated a need for a better sequencing control. In this case, the engineers in this plant set up a new controller with a PLC...

Joseph, B.

2004-01-01T23:59:59.000Z

207

Best Practice For the Location of Air and Thermal Boundaries in Small Commercial Buildings  

E-Print Network [OSTI]

Suspended t-bar ceilings are common in commercial buildings. Research has found that these ceilings are very leaky, and several problems arise from this. If the space above the ceiling is vented to outdoors, the entire building becomes leaky...

Cummings, J. B.; Withers, C. R.

2000-01-01T23:59:59.000Z

208

Colorado State University Industrial Assessment Center Report CO0564 1 AR No. 1 -Repair Compressed Air Leaks  

E-Print Network [OSTI]

Colorado State University Industrial Assessment Center Report CO0564 1 AR No. 1 - Repair Compressed was then divided by 0.25 hours to convert the energy consumption into kW, so the #12;Colorado State University

209

Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler  

E-Print Network [OSTI]

a Healthy Building Abstract Current guidelines for green buildings are cursory and inadequate for specifying assessment models. Introduction At the beginning of the 21st century, "green building design" can be seen through terms such as "sustainable development," "ecotourism," "ecotaxation," "socially responsible

Chen, Qingyan "Yan"

210

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network [OSTI]

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants...

Abernethy, D.

211

Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance  

SciTech Connect (OSTI)

Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

2013-09-01T23:59:59.000Z

212

Operation of Energy-Efficient Air-Conditioned Buildings: An Overview  

E-Print Network [OSTI]

To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air-conditioned...

Khalil, E. E.

2010-01-01T23:59:59.000Z

213

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-  

E-Print Network [OSTI]

AND AN AIR- SOURCE HEAT PUMP B. Filliard1 ; A. Guiavarch1 ; M. Jabbour1 . 1: MINES ParisTech ­ CEP ­ Centre simultaneously equipped with air-source heat pumps and photovoltaic collectors is constantly increasing of the heat pump is installed in the attic just beneath the PV collector, which preheats the incoming air

Boyer, Edmond

214

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

SciTech Connect (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

215

air heaters: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

meteorological fields Aerosol Emissions; Northern Hemispheric 152 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

216

Building Envelope Air Leakage Failure in Small Commercial Buildings Related to the Use of Suspended Tile Ceilings  

E-Print Network [OSTI]

, there is the likelihood that loose fitting tiles may be pushed open at higher test pressures. This indicates that the airtightness may change depending on the pressure differential that occurs across the ceiling. A typical 4 square foot ceiling tile weighs only 4... foot by 2 foot air distribution registers (representing 2.3% of ceiling area) were sealed off during the test to eliminate duct pathways and leaks from being measured. While the room was depressurized, the wall electric outlets were checked to see...

Withers, C. R.; Cummings, J. B.

2000-01-01T23:59:59.000Z

217

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Critical Analysis of Nitrogen Dioxide Air Quality Standards.22 Gaseous Emissions: Nitrogen Dioxide, Carbon Monoxide,3- 4 GASEOUS EMISSIONS: NITROGEN DIOXIDE, CARBON MONOXIDE,

Cairns, Elton J.

2011-01-01T23:59:59.000Z

218

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network [OSTI]

decreases between cooling coils and supply registers andoutlet of the cooling coils and the supply registers causeddecreased the cooling capacity of the supply air exiting

Fisk, W.J.

2011-01-01T23:59:59.000Z

219

The Effect of Turbulent Mixing on Compression Ignition of a Lean Hydrogen/Air Mixture Jacqueline H. Chen1  

E-Print Network [OSTI]

automotive engines known as homogeneous charge compression ignition combustion (HCCI). By operating under overall fuel-lean conditions, and hence, at lower temperatures, HCCI can potentially achieve high engine, the primary mode of combustion in this regime is thought to occur by volumetric autoignition. Therefore, HCCI

Im, Hong G.

220

Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings  

SciTech Connect (OSTI)

The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

2011-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Preliminary design study of compressed-air energy storage in a salt dome. Volume 2. Facility-design criteria. Final report  

SciTech Connect (OSTI)

The facility design criteria for a compressed-air energy storage (CAES) plant located at the Middle South Services, Inc. (MSS), is presented in this final report. Both engineering criteria and economic criteria are considered. Based on a detailed evaluation of qualifications, Brown Boveri Corporation was selected as the turbomachinery supplier for the CAES plant. After analyzing three power cycles, a high-power-fired/low-power-fired heat cycle with an exhaust gas recuperator was selected as the preferred cycle. A weekly cycle of 5 days per week, 8 hours per day for power generation was chosen for the MSS system. The compression duration is 8 hours per day, 5 days per week, plus 16 hours per weekend. The fuel heat rate is estimated at approximately 4000 Btu/kWh. Capacity of the selected CAES plant is 220 MW(e). Although only a single module is considered in this study, MSS prefers that the selected salt dome site accommodate a four-module plant. The financial data and anticipated fuel costs that apply to the MSS system are identified. Historically, the MSS system has been fueled by natural gas or oil. Proposed new baseload generating capacity is either nuclear or coal fired. Preliminary results indicate a slight economic advantage in an optimized MSS expansion plant without CAES. For the 1986 through 2005 time period studied, existing oil-fired steam plants provide the compression energy for the CAES plant additions. This penalizes CAES operating costs, which would benefit from compression energy supplied by low-cost, coal-fired units, if these units were available. When the final capital cost of the CAES plant is developed in Task V, the MSS fuel costs and financial data will be reexamined and the CAES economics reevaluated.

Not Available

1982-04-01T23:59:59.000Z

222

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

SciTech Connect (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

223

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network [OSTI]

Calculated time integrated energy balance term in the 5 thCalculated time integrated energy balance term in the 5 thof air tightness and energy balance Hyung-Mok Kim 1 , Jonny

Kim, H.-M.

2012-01-01T23:59:59.000Z

224

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

225

Enhanced Operation Strategies for Air-Conditioning and Lighting Systems Toward Peak Power Reduction for an Office Building in Kuwait  

E-Print Network [OSTI]

Enhanced?Operation?Strategies?for?Air? Conditioning?and?Lighting? Systems?Toward?Peak?Power?Reduction? for?an?Office?Building?in?Kuwait F. Alghimlas A. Al-Mulla G.P. Maheshwari D. Al-Nakib Building and Energy Technologies Department...?Increase?in?Power?and?Energy? 6160 6450 6750 7250 7480 7750 8400 8900 9070 9710 27.0 27.5 29.3 31.1 33.1 35.6 37.9 41.6 42.6 45.2 25 30 35 40 45 50 5500 6500 7500 8500 9500 10500 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Y e a r l y E...

Alghimlas, F.; Al-Mulla, A.; Maheshwari, G.P.; Al-Nakib, D.

2012-01-01T23:59:59.000Z

226

Building Aautomation system embedded air-handling unit performance degradation detector  

E-Print Network [OSTI]

, September 14-17, 2014 Building Energy Efficiency Laboratory @ OU 23 Acknowledgements Dr. Gang Wang University of Miami Dr. Mike Brambley PNNL Funding agencies: 1. PNNL (2011): Summer research. 2. ASHRAE (2011-2013): Developing standard procedures...

Song, L.; Wang, G.

2014-01-01T23:59:59.000Z

227

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network [OSTI]

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

228

E-Print Network 3.0 - air-conditioned office buildings Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from 6:00 a.m. to 2... Bachman Hall Multi-Purpose Building ... Source: Hawaii Natural Energy Institute Collection: Renewable Energy 13 UNITED STATES PATENT AND TRADEMARK OFFICE...

229

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network [OSTI]

on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings...

Spain, S.

1985-01-01T23:59:59.000Z

230

Evaluating Indoor Air Quality (IAQ) as Modifying Factor in Designing Public School Buildings in Jordan  

E-Print Network [OSTI]

.D. Hind Al-Momani Department of Architecture Jordan University of Science and Technology Irbid-Jordan Hikmat_ali@yahoo.com Hikmat@just.edu.jo Phone... http://www.consumer voice usa.com, sick building and toxic mold.27/3/2003 http://www.consumer voice usa.com, do you have a ?sick building ?? 27/3/2003 http://www.epa.gov/iaq/schools/tfs/guide5.html. IAQ tools for schools kit ?IAQ coordinator...

Ali, H. H.; Al-Momani, H.

2004-01-01T23:59:59.000Z

231

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

E-Print Network [OSTI]

Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [° C]lss. AirConditioning - a Modelica li- o brary for dynamic

Wetter, Michael

2010-01-01T23:59:59.000Z

232

Air temperature thresholds for indoor comfort and perceived air quality  

E-Print Network [OSTI]

in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

Zhang, Hui; Edward, Arens; Pasut, Wilmer

2012-01-01T23:59:59.000Z

233

Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings  

SciTech Connect (OSTI)

We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

Jones, G.F.; Balcomb, J.D.

1985-01-01T23:59:59.000Z

234

Study of the Outside Air Enthalpy Effects in the Screening of Metered Building Energy Data  

E-Print Network [OSTI]

and humid climate would be better performed by using hOA. Study cases are also presented to illustrate the difference between application of hOA and TOA in energy use data analysis for buildings with different functions. The statistics study shows...

Ji, J.; Baltazar, J. C.; Claridge, D.

235

Influence of Fault and Optimization of PID Parameters in Building Air-Conditioning System  

E-Print Network [OSTI]

200 400 600 800 0 200 400 600 800 8 10 12 14 16 18 Supply air flow volume A ir flo w v ol um e[ m 3 / h] A ir flo w v ol um e[ m 3 / h] (b)Supply air flow volume Time[hour] 0 10 20 0.6 0.8 1 1.2 1....4 18161412108 Time[hour] Secondary inlet water temp. Secondary outlet water temp. Secondary pump water flow volume w at er fl ow v ol um e[ m 3 / h] Te m p. [d eg .C ] (d)Secondary inlet & outlet water temp. / water flow volume 10...

Kuniyoshi, K.; Akashi, Y.; Sumiyoshi, D.; Song, Y.

2005-01-01T23:59:59.000Z

236

Modeling the exit velocity of a compressed air cannon Z. J. Rohrbach, T. R. Buresh, and M. J. Madsen  

E-Print Network [OSTI]

whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that nei- ther process, launched from a cannon with initial gas pressure P0. We model the cannon as a reservoir of volume V0

Madsen, Martin John

237

Effective positioning of portable air cleaning devices in multizone residential buildings  

E-Print Network [OSTI]

including ion generators, electrostatic precipitators, and HEPA filters. Air cleaning devices are often and some electrostatic precipitators at the high end of this range (e.g., Offermann et al., 1985.1 ­ 0.2 when the entire house is considered. Similar ! values for a HEPA filter and electrostatic

Siegel, Jeffrey

238

Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings  

E-Print Network [OSTI]

, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ

239

Office Building Uses Ice Storage, Heat Recovery, and Cold-Air Distribution  

E-Print Network [OSTI]

Ice storage offers many opportunities to use other tcchnologies, such as heat recovery and cold-air distribution. In fact, by using them, the designer can improve the efficiency and lower the construction cost of an ice system. This paper presents a...

Tackett, R. K.

1989-01-01T23:59:59.000Z

240

Preliminary design study of compressed-air energy storage in a salt dome. Volume 3. Design of the air-storage cavern in salt. Final report  

SciTech Connect (OSTI)

This report was prepared as a result of a contract between Middle South Services, Inc. and Fenix and Scisson, Inc. The conceptual design was prepared for two sites, Hazlehurst and Prothro as two known possible sites. It was later expanded to include a third site, Carmichael as the first two sites were not then available. This required the design and costing at various depths, 670 m (2200 ft), 488 m (1600 ft) and 1067 m (3500 ft) to the top of the cavern. It also involves variation in the size of the caverns for various weekly cycles of required air pressure to supply the turbine during peak load periods. The air is released from the caverns at 310 Kg/sec for eight hours per day, five days per week and the caverns replenished through compressors eight hours per day seven days per week. The pressure ranges from a maximum of 70 bars at the beginning of the week to 50 bars at the end of the generating period on Friday. The temperature of the input and outlet air is assumed to be 140/sup 0/C. This agrees with the estimated temperature of the cavern at Carmichael which allows for an isothermal operation. During preparation of the report no technical or environmental barriers were found.

Not Available

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan  

SciTech Connect (OSTI)

The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

None

1980-12-01T23:59:59.000Z

242

Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.  

E-Print Network [OSTI]

Quality Improvement and Energy Conservation in Buildings J.R. Gosselin Q. Chen* Fellow ASHRAE ABSTRACT indoor air quality (Sherman and Matson, 1997). Indoor air quality (IAQ) is important since up to 90

Chen, Qingyan "Yan"

243

Thermal and air quality acceptability in buildings that reduce energy by reducing minimun airflow from overhead diffusers  

E-Print Network [OSTI]

for rating the performance of air outlets and inlets. ANSI/comfort with a variable air volume (VAV) system. InternalGuidelines: Advanced Variable Air Volume (VAV) Systems.

2012-01-01T23:59:59.000Z

244

Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > SunBuilding America-funded

245

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

Petrie, T.W.; Childs, P.W.

1998-06-01T23:59:59.000Z

246

Design, modelling and control of a gas turbine air compressor .  

E-Print Network [OSTI]

??The production of compressed air constitutes a considerable portion of industrial electrical consumption. An alternative to electrically driven air compression systems is a gas turbine… (more)

WIESE, ASHLEY PETER

2014-01-01T23:59:59.000Z

247

Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype  

SciTech Connect (OSTI)

This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

Kozubal, E.; Woods, J.; Judkoff, R.

2012-04-01T23:59:59.000Z

248

Preliminary design study of compressed-air energy storage in a salt dome. Volume 5. System, subsystem, and component design approach. Final report  

SciTech Connect (OSTI)

The approach to system, subsystem, and component design for a compressed-air energy storage (CAES) plant located in the Middle South Services, Inc., is presented in this final report. The design approach is based on the facility design criteria described in Volume 2 and the site conditions at the Carmichael salt dome located near Jackson, Mississippi. For the selected weekly cycle, Brown Boveri Corporation selected a single-casing design of fired-high-power and fired-low-power turbines. The high-power (HP) turbine operates at inlet conditions of 609.2 psia (42 bar) and 1021.4/sup 0/F (550/sup 0/C), while the low-power (LP) turbine operates at 159.5 psia (11 bar) and 1633.4/sup 0/F (890/sup 0/C). A tubular design of exhaust gas recuperator heats the incoming air from the storage cavern from 138.4/sup 0/F (60/sup 0/C) to 692/sup 0/F (367/sup 0/C). The compressor design is a single-shaft, tandem-compound arrangement with a 3600-rpm LP compressor and a 6850-rpm HP compressor. The LP compressor is a combination six-stage axial, three-stage radial compressor with an integral cooler and diffuser built into the casing. The HP compressor is a five-stage radial compressor with external intercooler provided after both the second and fourth stages. Fenix and Scisson, Inc., selected two half-size air storage caverns, each capable of delivering full-turbine air mass flow. A solutioning rate of 1750 gpm will allow completion of both caverns without prolonging construction schedule. Fuel is No. 2 distillate, which is delivered on a weekly basis. Rather than construct a rail siding to the plant, a trade-off study showed it more economical to pump the fuel oil to the CAES plant through a seven-mile buried pipeline from the nearest existing rail line. The exhaust gas recuperator, synchronous clutches, and gear case between the HP and LP compressors are key components which require special attention in design and fabrication to ensure reliable CAES plant operation.

Not Available

1982-04-01T23:59:59.000Z

249

Preliminary design study of compressed-air energy storage in a salt dome. Volume 7. Environmental and safety assessment. Final report  

SciTech Connect (OSTI)

The construction of a 220 MWe CAES facility by the Middle South Utilities is proposed. The plant consists of two subsurface air storage, coupled to a surface peak-load electric generating station to provide a more efficient utilization of installed base-load generating capacity. The caverns are solutioned-mined in the Carmichael Salt Dome. An investigation was made to assess the environmental feasibility and consequences of the construction and operation of a Compressed Air Energy Storage (CAES) facility for the Middle South Service System. A site evaluation effort was made for 47 sites. The results of these investigations led to the choice of the Carmichael site as the preferred location. The proposed plant will be located in a rural portion of central Mississippi near Carmichael, about 25 miles south of Jackson. The site and transmission facilities will occupy less than 25 acres. The judgment in selecting the preferred transmission line routing and facilities was in minimizing environmental impacts. Environmental information pertaining to several disciplines was accumulated by direct contact with State and Federal agency representatives, Mississippi Natural Heritage Program personnel and experts from the nearby site under consideration. Following the gathering of pertinent data from knowledgeable sources, an intensive one week site survey was conducted by senior environmental scientists and engineers. Based upon the available engineering data and field evidence used in preparing this Environmental Assessment, the conclusion reached is that a full length Environmental Impact Statement should be prepared prior to the construction and operation of the proposed facility, the rationale being: (1) the technologies associated with CAES the facility, and (2) this facility will probably be the first of its kind in the US, and therefore will be closely scrutinized for ts potential impacts.

Not Available

1982-04-01T23:59:59.000Z

250

Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions  

SciTech Connect (OSTI)

The flame regimes of ignition and flame propagation as well as transitions between different flame regimes of n-heptane-air mixtures in a one-dimensional, cylindrical, spark assisted homogeneously charged compression ignition (HCCI) reactor are numerically modeled using a multi-timescale method with reduced kinetic mechanism. It is found that the initial mixture temperature and pressure have a dramatic impact on flame dynamics. Depending on the initial temperature gradient, there exist at least six different combustion regimes, an initial single flame front propagation regime, a coupled low temperature and high temperature double-flame regime, a decoupled low temperature and high temperature double-flame regime, a low temperature ignition regime, a single high temperature flame regime, and a hot ignition regime. The results show that the low temperature and high temperature flames have distinct kinetic and transport properties as well as flame speeds, and are strongly influenced by the low temperature chemistry. The pressure and heat release rates are affected by the appearance of different flame regimes and the transitions between them. Furthermore, it is found that the critical temperature gradient for ignition and acoustic wave coupling becomes singular at the negative temperature coefficient (NTC) region. The results show that both the NTC effect and the acoustic wave propagation in a closed reactor have a dramatic impact on the ignition front and acoustic interaction.

Ju, Yiguang; Sun, Wenting; Burke, M. P.; Gou, Xiaolong; Chen, Zheng

2011-01-01T23:59:59.000Z

251

Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

2012-01-01T23:59:59.000Z

252

Energy efficiency improvements in Chinese compressed airsystems  

SciTech Connect (OSTI)

Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2007-06-01T23:59:59.000Z

253

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect (OSTI)

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

254

System and method for pre-cooling of buildings  

DOE Patents [OSTI]

A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

Springer, David A.; Rainer, Leo I.

2011-08-09T23:59:59.000Z

255

POWER CHARACTERISTICS OF INDUSTRIAL AIR COMPRESSORS Chris Schmidt  

E-Print Network [OSTI]

of control, and potential problems such as inadequate compressed air storage, over-sized compressors are compared to suggested guidelines for energy-efficient air compression. INTRODUCTION Compressed air's annual electric costs, and the unit energy cost of compressed air ranges from about $0.15 to $0.35 per

Kissock, Kelly

256

A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building  

SciTech Connect (OSTI)

The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The plants used in the rooftop greenhouse and on the floors were made up of a number of species selected for the following functions: daytime metabolic carbon dioxide (CO{sub 2}) absorption, nighttime metabolic CO{sub 2} absorption, and volatile organic compound (VOC) and inorganic gas absorption/removal for air cleaning. The building contains a reported 910 indoor plants. Daytime metabolic species reported by the PBC include Areca Palm, Oxycardium, Rubber Plant, and Ficus alii totaling 188 plants (21%). The single nighttime metabolic species is the Sansevieria with a total of 28 plants (3%). The 'air cleaning' plant species reported by the PBC include the Money Plant, Aglaonema, Dracaena Warneckii, Bamboo Palm, and Raphis Palm with a total of 694 plants (76%). The plants in the greenhouse (Areca Palm, Rubber Plant, Ficus alii, Bamboo Palm, and Raphis Palm) numbering 161 (18%) of those in the building are grown hydroponically, with the room air blown by fan across the plant root zones. The plants on the building floors are grown in pots and are located on floors 1-6. We conducted a one-day monitoring session in the PBC on January 1, 2010. The date of the study was based on availability of the measurement equipment that the researchers had shipped from Lawrence Berkeley National Lab in the U.S.A. The study date was not optimal because a large proportion of the regular building occupants were not present being New Year's Day. An estimated 40 people were present in the building all day during January 1. This being said, the building systems were in normal operations, including the air handlers and other HVAC components. The study was focused primarily on measurements in the Greenhouse and 3rd and 5th floor environments as well as rooftop outdoors. Measurements included a set of volatile organic compounds (VOCs) and aldehydes, with a more limited set of observations of indoor and outdoor particulate and carbon dioxide concentrations. Continuous measurements of Temperature (T) and relative humidity (RH) were made selected indoor and outdoor locations.

Apte, Michael G.; Apte, Joshua S.

2010-04-27T23:59:59.000Z

257

Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage  

E-Print Network [OSTI]

. These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess...

Wang, S.; Xu, X.; Ma, Z.

2006-01-01T23:59:59.000Z

258

Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine  

DOE Patents [OSTI]

A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

2014-05-13T23:59:59.000Z

259

Occupant satisfaction in mixed-mode buildings  

E-Print Network [OSTI]

Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

260

Occupant satisfaction in mixed-mode buildings  

E-Print Network [OSTI]

Environmental Quality in Green Buildings”. Indoor Air; 14 (Financial Benefits of Green Buildings. Report to California’to incorporate other green building features (75% were LEED-

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Compression embedding  

DOE Patents [OSTI]

A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

1998-07-07T23:59:59.000Z

262

Compression embedding  

DOE Patents [OSTI]

A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Bradley, Jonathan N. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

263

E-Print Network 3.0 - air ct cisternography Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

James E. Mason* and Cristina L. Archer1 Summary: supply with electricity from compressed air energy storage combustion turbine (CAES CT) power plants... compressed air energy...

264

Compression embedding  

DOE Patents [OSTI]

A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Bradley, Jonathan N. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

265

Compression embedding  

DOE Patents [OSTI]

A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

1998-03-10T23:59:59.000Z

266

air bag system: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an advanced gas engine... Lindsay, B. B.; Koplow, M. D. 1988-01-01 46 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

267

Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study  

SciTech Connect (OSTI)

Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

2006-10-01T23:59:59.000Z

268

Phase A: Initial Development of an Advanced Diagnostic Procedure for Air-Side Retrofits in Commercial Buildings  

E-Print Network [OSTI]

of Buildings Energy Research at the United States Department of Energy (DOE) through the Existing Buildings Efficiency Research Program at Oak Ridge National Laboratory (ORNL). Neither the ESL, TEES, DOE, or ORNL, or any of their employees, makes any warranty.... Reference herein to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the ESL, TEES, DOE, ORNL, or any agency...

Reddy, T. A.; Kissock, J. K.; Katipamula, S.; Claridge, D. E.

1994-01-01T23:59:59.000Z

269

Compressed gas fuel storage system  

DOE Patents [OSTI]

A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

2001-01-01T23:59:59.000Z

270

Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar  

Broader source: Energy.gov [DOE]

This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

271

The politics of consensus-building : case study of diesel vehicles and urban air pollution in South Korea  

E-Print Network [OSTI]

Look at the three efforts to resolve public disputes over diesel passenger cars and urban air quality management in South Korea. this dissertation explores the main obstacles in nascent democracies to meeting the necessary ...

Kim, Dong-Young, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

272

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

273

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network [OSTI]

of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source...

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

274

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

electricity demand responses in a building. The remedieselectricity demand responses for a building. An alternativedemand response (DR), is widely suggested for building HVAC

Yu, Jong Keun

2010-01-01T23:59:59.000Z

275

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

with a sound, integrated building design, and then to paydesign, efficient technology and properly integrated buildingintegrated whole building systems Achieving a high level of building performance is the result of careful, informed design and execution so that building

2013-01-01T23:59:59.000Z

276

A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits  

SciTech Connect (OSTI)

Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

2015-01-01T23:59:59.000Z

277

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network [OSTI]

Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

Trcka, Marija

2010-01-01T23:59:59.000Z

278

Best compression: Reciprocating or rotary?  

SciTech Connect (OSTI)

A compressor is a device used to increase the pressure of a compressible fluid. The inlet pressure can vary from a deep vacuum to a high positive pressure. The discharge pressure can range from subatmospheric levels to tens of thousands of pounds per square inch. Compressors come in numerous forms, but for oilfield applications there are two primary types, reciprocating and rotary. Both reciprocating and rotary compressors are grouped in the intermittent mode of compression. Intermittent is cyclic in nature, in that a specific quantity of gas is ingested by the compressor, acted upon and discharged before the cycle is repeated. Reciprocating compression is the most common form of compression used for oilfield applications. Rotary screw compressors have a long history but are relative newcomers to oilfield applications. The rotary screw compressor-technically a helical rotor compressor-dates back to 1878. That was when the first rotary screw was manufactured for the purpose of compressing air. Today thousands of rotary screw compression packages are being used throughout the world to compress natural gas.

Cahill, C.

1997-07-01T23:59:59.000Z

279

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect (OSTI)

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2011-01-01T23:59:59.000Z

280

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

Petrie, T.W.; Childs, P.W.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building Operator Certification  

E-Print Network [OSTI]

Building Operator Certification Energy Efficiency through Operator Training CATEE December 18, 2013 – San Antonio, TX Dennis Lilley, CEM, PMP ESL-KT-13-12-49 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Building Operator Certification Energy Efficiency through Operator Training What is Building Operator Certification? Industry-recognized credential in energy efficient building operation practices Created with 100 industry experts Launched in 1996 9...

Lilley, D.

2013-01-01T23:59:59.000Z

282

Arnold Schwarzenegger INDOOR-OUTDOOR AIR LEAKAGE  

E-Print Network [OSTI]

;#12;Indoor-Outdoor Air Leakage in Apartments and Commercial Buildings Appendix A Air Infiltration Model for Large Buildings Appendix B Analysis of Commercial Building Data Appendix C Commercial Building Data contains data and discussion of the leakage parameter in commercial buildings. The leakage parameter

283

Occupant satisfaction in mixed-mode buildings.  

E-Print Network [OSTI]

Air-conditioning Engineers Emmerich, S.J. and J. Crum. 2005.conditioned buildings (Emmerich and Crum, 2005), and fewer

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

284

Occupant satisfaction in mixed-mode buildings  

E-Print Network [OSTI]

Air-conditioning Engineers Emmerich, S.J. and J. Crum. 2005.conditioned buildings (Emmerich and Crum, 2005), and fewer

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

285

Building America Webinar: High Performance Space Conditioning...  

Energy Savers [EERE]

Strategies for Affordable Housing Building America Webinar: High Performance Space Conditioning Systems, Part II - Air Distribution Retrofit Strategies for Affordable...

286

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

287

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

MĂĽller, Jens-Dominik

288

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

289

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1  

E-Print Network [OSTI]

. As the compressed gas cools at constant pressure in a storage reservoir, the potential energy of the gas de- creases process and enables efficient energy storage through gas compression. Current applications involving piston Gas compression Air compressor Compression efficiency a b s t r a c t A liquid piston concept

Li, Perry Y.

290

Occupant satisfaction in mixed-mode buildings.  

E-Print Network [OSTI]

to incorporate other green building features (75% were LEED-Design, and is a green building rating system developed bythe U.S. Green Building Council. From Proceedings, Air

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

291

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

292

Use of First Law Energy Balance as a Screening Tool for Building Energy Use Data: Experiences on the Inclusion of Outside Air Enthalpy Variable  

E-Print Network [OSTI]

Quality controlled energy-use data is the foundation of energy performance evaluation for a building. The “Energy Balance Load” (EBL), a parameter derived from the first law of thermodynamics based on a whole-building energy analysis, has been...

Masuda, H.; Ji, J.; Baltazar, J. C.; Claridge, D. E.

293

MAD-AIR  

E-Print Network [OSTI]

with stress- related illness rather than the anwr that spells RELIEF. Air flow in, through ad arourd a house is an important concern in the building we call haw. !lb enhance air flow and change the various corditions or properties of the air, a variety...

Tooley, J. J.; Moyer, N. A.

1989-01-01T23:59:59.000Z

294

Extension of the high load limit in the Homogeneous Charge Compression Ignition engine  

E-Print Network [OSTI]

The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

Scaringe, Robert J. (Robert Joseph)

2009-01-01T23:59:59.000Z

295

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect (OSTI)

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2005-05-15T23:59:59.000Z

296

Compressed Gas Safety for Experimental Fusion Facilities  

SciTech Connect (OSTI)

Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

Lee C. Cadwallader

2004-09-01T23:59:59.000Z

297

E-Print Network 3.0 - air volume air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Use Summary: pressure, and for modeling the change in system pressure as function of compressed air storage volume... important system variables such as system pressure and...

298

Commercial & Institutional Green Building Performance  

E-Print Network [OSTI]

Buildings Voluntary Green Building Programs: • LEED www.usgbc.org • Living Building Challenge living-future.org/lbc • Green Globes www.greenglobes.com • WELL Buildings wellbuildinginstitute.com • ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

2014-01-01T23:59:59.000Z

299

E-Print Network 3.0 - air act issues Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Knowledge-Innovation-Leadership www.me.iastate.edu Technical Feasibility of Compressed-Air Energy Storage... the use of compressed air in a natural aquifer structure for use as...

300

Energy efficiency buildings program, FY 1980  

SciTech Connect (OSTI)

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

Not Available

1981-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

inAir: Sharing Indoor Air Quality Measurements and Visualizations  

E-Print Network [OSTI]

evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

Mankoff, Jennifer

302

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of… (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

303

ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

Quality Measurements in Energy- Efficient Buildings; April,air are built into energy-efficient buildings, 2 Burnersuse to design new energy efficient buildings and to analyze

Sonderegger, R. C.

2011-01-01T23:59:59.000Z

304

Power Characteristics of Industrial Air Compressors  

E-Print Network [OSTI]

and with different loads are discussed as case studies. The case studies illustrate how to identify the type of control, and potential problems such as inadequate compressed air storage, over-sized compressors, and compressed air leaks from the power signatures...

Schmidt, C.; Kissock, K.

305

OPTIMAL EFFICIENCY-POWER TRADEOFF FOR AN AIR MOTOR/COMPRESSOR WITH VOLUME VARYING HEAT TRANSFER CAPABILITY  

E-Print Network [OSTI]

of air. These results could ben- efit applications such as compressed air energy storage where both high and expansion is both energy efficient and power-dense. An ex- ample would be compressed air energy storage. One density of compressed air storage (about 20 times greater than hydraulic accumulators), and the high power

Li, Perry Y.

306

Raw Data Compression in Computed Tomography: Noise Shaping  

E-Print Network [OSTI]

Raw Data Compression in Computed Tomography: Noise Shaping Yao Xie (team member: Adam Wang) Project.1 Background X-ray computed tomography (CT) builds on the physical principles of radiography. It uses multiple ring that has a limited data transfer rate. Compression can be used to reduce the data rate through

Xie, Yao

307

E-Print Network 3.0 - air-conditioning units part Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fans... : Use of mechanical equipment such as refrigeration, air conditioning, heating systems, ventilating fans... -handling units and mechanical, compressed air, and electric ......

308

E-Print Network 3.0 - air vents discharge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519 6.2. Compressed air energy storage... and discharge rates for many cycles. Indeed, the high cycling...

309

E-Print Network 3.0 - air entrained concrete Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

; Materials Science 10 By-Products Utilization Summary: . Keywords: aggregates, air entrainment, autogenous shrinkage, compressive strength, concretes, drying... on...

310

Exergy Analysis of Industrial Air Compression  

E-Print Network [OSTI]

the ambient temperature and the other at 1,000? C. Clearly, the high temperature energy is more valuable since it can transfer heat to products at lower temperatures or be used to generate useful work via a heat engine. The low temperature energy..., in contrast, is virtually worthless. (Transferring heat to a product at ambient temperature would require a huge heat exchanger and/or a very long time, and the efficiency of a heat engine operating between near ambient and ambient temperature would...

Bader, W. T.; Kissock, J. K.

311

Compressed Air Best Practices Tools Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized

312

Compressed Air Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2 DocumentationA variety of hybridThis photo shows

313

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 Department ofHallam NuclearMarch10storage

314

Training: Compressed Air Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartment of

315

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design  

E-Print Network [OSTI]

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design Dr. Jelena and Nuclear Engineering, Pennsylvania State University Background: Sustainable Building Design Buildings Sustainable building design need to optimize building energy consumption while providing good indoor air

Bjørnstad, Ottar Nordal

316

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

climates, annual electricity consumption of UFAD is alwaysso the cooling electricity consumption has become importantsummers, the electricity consumption for air conditioning

Yu, Jong Keun

2010-01-01T23:59:59.000Z

317

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network [OSTI]

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC… (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

318

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network [OSTI]

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

319

Better Buildings Challenge Reports First Year's Savings; Partners...  

Energy Savers [EERE]

in West Hartford, Connecticut, the company has repaired leaks in the facility-wide compressed air system and added additional insulation to existing paint line ovens....

320

Advanced Technologies and Practices - Building America Top Innovations...  

Energy Savers [EERE]

and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor air quality and safety...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building America Best Practices Series, Vol. 10 - Retrofit Techniques...  

Broader source: Energy.gov (indexed) [DOE]

air leaks in homes, while ensuring healthy levels of ventilation and avoiding indoor air pollution. baairsealingreport.pdf More Documents & Publications Building America...

322

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Combustion Safety Using Appliances for Indoor Air (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Combustion Safety Using Appliances for Indoor Air...

323

Sequential Compressed Sensing  

E-Print Network [OSTI]

Compressed sensing allows perfect recovery of sparse signals (or signals sparse in some basis) using only a small number of random measurements. Existing results in compressed sensing literature have focused on characterizing ...

Malioutov, Dmitry M.

324

Compressed gas manifold  

DOE Patents [OSTI]

A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

2001-01-01T23:59:59.000Z

325

Determining the Right Air Quality for Your Compressed Air System |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartment of Energy , March

326

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

327

Hydrogen Delivery Liquefaction and Compression  

Broader source: Energy.gov [DOE]

Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

328

Model-based benchmarking with application to laboratory buildings  

E-Print Network [OSTI]

hydraulic elevators more than buildings with counterweighted elevators. Efficient air distribution VAV laboratories will use considerably less energy

Federspiel, Clifford Ph.D.; Zhang, Qiang; Arens, Edward Ph.D

2002-01-01T23:59:59.000Z

329

Air-To-Water Heat Pumps with Radiant Delivery in Low Load Homes, Tucson, Arizona and Chico, California (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas: Transmission,AirAir-Cooled Traction

330

air-fuel ratio: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

331

air kerma rate: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price... Herron, D. J. 414...

332

air kerma rates: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price... Herron, D. J. 414...

333

Thermal Bypass Air Barriers in the 2009 International Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building America Top Innovation Thermal Bypass Air Barriers in the 2009 International Energy...

334

Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines  

DOE Patents [OSTI]

A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

Flowers, Daniel L. (San Leandro, CA)

2005-08-02T23:59:59.000Z

335

RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

Nero, A.V.

2010-01-01T23:59:59.000Z

336

INTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE  

E-Print Network [OSTI]

Integrated Design of Commercial Building Ceiling Systems Integrated Design of Residential Ducting & Air FlowINTEGRATED ENERGY SYSTEMS: PRODUCTIVITY & BUILDING SCIENCE Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design of Small Commercial HVAC Systems

337

ACEEE Summer Study on Energy in Industry, West Point, NY, July 19-22. 1 Modeling and Simulation of Air Compressor Energy Use  

E-Print Network [OSTI]

compressor energy use to estimate energy savings in compressed air systems from air use reduction and other pressure, and for modeling the change in system pressure as function of compressed air storage volume assessments of mid-sized industries, we found that the average unit energy cost of compressed air ranges from

Kissock, Kelly

338

Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes  

E-Print Network [OSTI]

buildings to climate change, concerns over the detrimental air quality impacts of high performance green

Less, Brennan

2012-01-01T23:59:59.000Z

339

Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods  

E-Print Network [OSTI]

Pollutant Control Index: A New Method of Characterizing Ventilation in Commercial Buildings." Proceedings of Indoor Air'

Sherman, Max H.

2014-01-01T23:59:59.000Z

340

A New Compressive Imaging Camera Architecture using Optical-Domain Compression  

E-Print Network [OSTI]

for processing, to a "computa- tional signal processing" (CSP) paradigm, where analog signals are converted nonlinear techniques. 1.1. Compressive sensing CSP builds upon a core tenet of signal processing a decorrelating transform to compact a correlated signal's energy into just a few essential coefficients.1

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Technologies Office: 179D DOE Calculator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

or 0.60ft for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify...

342

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

343

The effects of plasticization and storage on quality of freeze-dried and compressed carrot bars  

E-Print Network [OSTI]

of this study were: To evaluate the effects of selected plasticizing methods on quality of stored freeze-dried compressed carrot cubes. To evaluate the effects of storage temperature on quality of freeze-dried compressed carrot cubes. To subjectively... carrots. than for those which had not been compressed before storage. Retention was much lower for compressed carrots packed in air compared to those packed in an inert gas or in vacuum (Hendel, 1973). Subjective Analysis Although taste panel...

Greaves, Donald William

1978-01-01T23:59:59.000Z

344

Air blast type coal slurry fuel injector  

DOE Patents [OSTI]

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

345

Air blast type coal slurry fuel injector  

DOE Patents [OSTI]

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, R.G.

1984-08-31T23:59:59.000Z

346

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

347

Building Environmental Health Capacity in Allegheny County  

E-Print Network [OSTI]

Building Environmental Health Capacity in Allegheny County: Environmental Indicators Outcomes standard Air Quality Computer Systems Days exceeding ozone standard Air Quality Computer Systems Attainment of the annual PM-2.5 standard (Fine particulates) Air Quality Computer Systems Annual PM-2.5 level Air Quality

348

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

In: Proceedings of Healthy Buildings 2009, Syracuse, NY,In: Proceedings of Healthy Buildings 2006, Lisbon, 2006;V.residences. Proceedings of Healthy Buildings 2009, Syracuse,

Mendell, Mark

2014-01-01T23:59:59.000Z

349

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

350

A Survey and Critical Review of the Literature on Indoor Air Quality, Ventilation and Health Symptoms in Schools  

E-Print Network [OSTI]

from the California Healthy Building Study, Phase 1.ASHRAE IAQ 91 Healthy Buildings, Atlanta, GA, ASHRAE, 228-1 of the California Healthy Building Study. Indoor Air, 3:

Daisey, Joan M.

2010-01-01T23:59:59.000Z

351

Closed-loop air cooling system for a turbine engine  

DOE Patents [OSTI]

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

352

Compressed Air Storage Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #9 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 * August 2004 Industrial

353

Compressed Air System Control Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #7 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized9 * August 2004 Industrial7 *

354

Minimize Compressed Air Leaks; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #3 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMy nameMid-LevelMidwestSept. 2005 |9 Suggested63

355

Analyzing Your Compressed Air System; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #4 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,AnAnTubaAnalysis -Department4 * August

356

Hydrogen Delivery Liquefaction & Compression  

E-Print Network [OSTI]

Hydrogen Delivery Liquefaction & Compression Raymond Drnevich Praxair - Tonawanda, NY Strategic Initiatives for Hydrogen Delivery Workshop - May 7, 2003 #12;2 Agenda Introduction to Praxair Hydrogen Liquefaction Hydrogen Compression #12;3 Praxair at a Glance The largest industrial gas company in North

357

LAPPED TRANSFORMS COMPRESSION  

E-Print Network [OSTI]

Chapter 6 LAPPED TRANSFORMS FOR IMAGE COMPRESSION Ricardo L. de Queiroz Digital Imaging Technology aspects of lapped transforms and their applications to image compression. It is a subject that has been extensively studied mainly because lapped transforms are closely related to filter banks, wavelets, and time

de Queiroz, Ricardo L.

358

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

359

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

360

Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space - Waldorf, Maryland (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4,Brent Nelson About2014Whole-HouseAir Leakage and

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Combined rankine and vapor compression cycles  

DOE Patents [OSTI]

An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

2005-04-19T23:59:59.000Z

362

Compression molding of aerogel microspheres  

DOE Patents [OSTI]

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

1998-03-24T23:59:59.000Z

363

Compression molding of aerogel microspheres  

DOE Patents [OSTI]

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

Pekala, R.W.; Hrubesh, L.W.

1998-03-24T23:59:59.000Z

364

Modeling Compressed Turbulence  

SciTech Connect (OSTI)

From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

Israel, Daniel M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

365

Variable valve timing in a homogenous charge compression ignition engine  

DOE Patents [OSTI]

The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

2004-08-03T23:59:59.000Z

366

A prediction of energy savings resulting from building infiltration control  

E-Print Network [OSTI]

, temperature ('C) Indoor, or room, temperature of building ('C) Temperature of exterior surface of a building wall, window or roof ( C) Sol-air temperature for a wall or other building surface ('C) Interchangeable with T, Difference between building room... infiltration Designating airflow into a building surface Maximum model Minimum Interaction heat transfer calculation model N North Pressure Surface South sa Sol-air Room tot Total CHAPTER I INTRODUCTION 1. 1 OBJECTIVES Heating and cooling...

McWatters, Kenneth Rob

1995-01-01T23:59:59.000Z

367

E-Print Network 3.0 - automated air sampling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

14 Page 1 of 8 2011-xx-xxxx Summary: Page 1 of 8 2011-xx-xxxx Improving Compressed Air Energy Efficiency in Automotive Plants Nasr... are typically large users of compressed...

368

Consider Compressed Combustion  

E-Print Network [OSTI]

, and costs. In addition, overall advantages for applications involving energy sharing, such as cogeneration are even greater. Thus, compressed combustion should be considered seriously as an economical alternative to conventional heaters, especially in energy...

Crowther, R. H.

1982-01-01T23:59:59.000Z

369

Mechanical Compression Heat Pumps  

E-Print Network [OSTI]

MECHANICAL COMPRESSION HEAT PUMPS Thomas-L. Apaloo and K. Kawamura Mycom Corporation, Los Angeles, California J. Matsuda, Mayekawa Mfg. Co., Tokyo, Japan ABSTRACT Mechanical compression heat pumping is not new in industrial applications.... In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been...

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

370

Image compression technique  

DOE Patents [OSTI]

An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

Fu, C.Y.; Petrich, L.I.

1997-03-25T23:59:59.000Z

371

Research and Application of RCF Technology in Public Building  

E-Print Network [OSTI]

, China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings 7. REFERENCES ASHRAE, 2013, “2013 Handbook-Fundamental, Thermal Comfort”, American Society of Heating, refrigeration and Air-Conditioning Engineers, Inc...Radiant Ceiling plus Fresh Air Research and Application of RCF Technology in Public Buildings ???????????? AirStar Air Conditioning Technology Group (HK) Ltd ?????????? AirStar Environment Technology Group Ltd ?????????????? YanTong Zhu...

Yan, J.; Pan, D.

2014-01-01T23:59:59.000Z

372

Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Air Quality Air Quality To preserve our existing wilderness-area air quality, LANL implements a conscientious program of air monitoring. April 12, 2012 Real-time data...

373

Homogenous charge compression ignition engine having a cylinder including a high compression space  

DOE Patents [OSTI]

The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

2003-12-30T23:59:59.000Z

374

TO: Deans, Directors and Building Coordinators FROM: Dennis Kamite  

E-Print Network [OSTI]

air conditioning systems will be shut down as follows: No central air conditioning from 6:00 a.m. to 2 Bachman Hall Multi-Purpose Building Sinclair Library Wist Addition (Everly Hall) Wist Hall No central air conditioning from 7:30 a.m. to 4:00 p.m. for the following buildings: HPER Complex Law Library Law School

375

Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings  

E-Print Network [OSTI]

of Environmental Economics and Management, Lighting Design and Application, Academy of Management Executive, Artificial Intelligence Review, Indoor Built Environment, Journal of Corporate Real Estate, Science, Indoor Air, and Healthy Buildings, Journal of Real..., Science, Indoor Air, Healthy Buildings, Journal of Real Estate Research, Journal of Property Investment and Finance, Journal of Sustainable Real Estate. Reputable Organizations Rocky Mountain Institute, Environmental Protection Agency (EPA), Energy...

Freeman, Janice

2013-04-29T23:59:59.000Z

376

Air Force Renewable Energy Programs  

Broader source: Energy.gov (indexed) [DOE]

in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics Air Force Energy Use Air Force Facility Energy Center Current RE...

377

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network [OSTI]

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration...

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

378

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

379

Conserve Energy by Optimizing Air Compressor System  

E-Print Network [OSTI]

is the compressed air plant(s), cating air compressors with one 60-hp and one 30-hp which many times include compressors, ancillary screw compressor; (2) the repiping of the existing equipment, and/or an operating sequence that is screw compressors cooling water...

Williams, V. A.

380

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

382

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

383

E-Print Network 3.0 - absorption air conditioner Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rating Summary: size systems such as absorption or vapor compression air-conditioners or heat pumps, the following... degradation. There are two possible designs for adjusting the...

384

air-fuel ratio control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

385

E-Print Network 3.0 - air pressure effect Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure, and for modeling the change in system pressure as function of compressed air storage volume... of this method for estimating energy savings ... Source: Kissock,...

386

E-Print Network 3.0 - air pressure Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pressure, and for modeling the change in system pressure as function of compressed air storage volume... of this method for estimating energy savings from reducing...

387

E-Print Network 3.0 - air conditioning applications Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

motors, materials handling and welding. Estimates... Page 1 of 8 2011-xx-xxxx Improving Compressed Air Energy Efficiency in Automotive Plants Nasr... are typically large users of...

388

E-Print Network 3.0 - air void contents Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

air-voids. The remaining unshaded region(s) ... Source: Pitchumani, Ranga - Department of Mechanical Engineering, Virginia Tech Collection: Engineering 62 Compression Behaviour of...

389

E-Print Network 3.0 - air abrasion dental Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resistance of Concrete Summary: -1561 2002 14:5 417 CE Database keywords: Fly ash; Air entrainment; Compressive strength; Concrete; Abrasives... affecting the abrasion...

390

E-Print Network 3.0 - acceptable indoor air Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Summary: pollutants, human exposure to indoor air pollution, and control of indoor pollutants. Much of the research... building energy, indoor air quality, or...

391

E-Print Network 3.0 - administration indoor air Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Summary: pollutants, human exposure to indoor air pollution, and control of indoor pollutants. Much of the research... building energy, indoor air quality, or...

392

Effects of operating conditions, compression ratio, and gasoline reformate on SI engine knock limits  

E-Print Network [OSTI]

A set of experiments was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each condition the effect of spark ...

Gerty, Michael D

2005-01-01T23:59:59.000Z

393

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

394

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect (OSTI)

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

395

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

396

Natural ventilation possibilities for buildings in the United States  

E-Print Network [OSTI]

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

397

Direct Digital Control in Air Conditioning Systems for Energy Efficiency  

E-Print Network [OSTI]

the function and the level of the building, but also save energy. At present, air-conditioning design in internal commercial buildings is becoming more complex and enormous. The proportion of air conditioning systems in the whole building is getting larger...

Liu, W.; Ye, A.; Li, D.

2006-01-01T23:59:59.000Z

398

Building America Technology Solutions for New and Existing Homes...  

Energy Savers [EERE]

Air-to-Water Heat Pumps with Radiant Delivery in Low Load Homes (Fact Sheet) Building America Technology Solutions for New and Existing Homes: Air-to-Water Heat Pumps with Radiant...

399

Building America Whole-House Solutions for Existing Homes: Passive...  

Energy Savers [EERE]

Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

400

A Guide to Building Commissioning  

SciTech Connect (OSTI)

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Recent development in green buildings  

SciTech Connect (OSTI)

Because of the environmental concerns about some materials used in buildings, particularly chlorofluorocarbon (CFC) fluids used as the blowing agent for insulation materials and as refrigerants used in the air conditioning systems have led to a search for environmentally safe alternatives. For insulation materials, new non-CFC blowing agents are still under development. However, the old insulation materials in the buildings will stay because they do not pose any further environmental damage. It is a different story for refrigerants used in air conditioning systems. This study reports that the change-over from CFC to non-CFC refrigerants in the existing and future air conditioning equipment could be a chance not only to take care of the environmental concerns, but to save energy as well. Alternative air conditioning technologies, such as the desiccant dehumidification and absorption systems, and the potential of some natural substances, such as carbon dioxide, as the future refrigerants are also discussed.

Mei, V.C.

1996-12-31T23:59:59.000Z

402

Building America Whole-House Solutions for New Homes: Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes: Field Testing of Compartmentalization Methods for Multifamily Construction Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building...

403

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

Other: Thermal properties of envelope; air-tightness; energyof Overall Thermal Transfer Value to Building Envelope Hongenvelope provisions: Roof Wall system Fenestration system Infiltration Other: Thermal

Janda, K.B.

2008-01-01T23:59:59.000Z

404

DOE Announces Webinars on Better Buildings Challenge Education...  

Energy Savers [EERE]

typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 7: Live Webinar on Better Buildings...

405

DOE Announces Webinars on Building Energy Optimization Tool Training...  

Broader source: Energy.gov (indexed) [DOE]

typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. May 15: Live Webinar on Building Energy Optimization Tool...

406

DOE Announces Webinars on the Better Buildings Case Competition...  

Energy Savers [EERE]

typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars July 3: Live Webinar on Better Buildings...

407

Exterior Rigid Insulation Best Practices - Building America Top...  

Broader source: Energy.gov (indexed) [DOE]

Effec guid-exterior rigid insulation.jpg For years, Building America research teams have advocated using the thermal, air, and vapor properties of rigid foam sheathing insulation...

408

Building America Whole-House Solutions for New Homes: Challenges...  

Energy Savers [EERE]

of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC...

409

Building America Whole-House Solutions for Existing Homes: Passive...  

Broader source: Energy.gov (indexed) [DOE]

Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California (Fact Sheet) Building America Whole-House Solutions for Existing Homes: Passive...

410

Building America Final Expert Meeting Report: Simplified Space...  

Broader source: Energy.gov (indexed) [DOE]

Energy Resources for Consumers (SERC) Success Story: Maryland Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

411

Inspiring and Building the Next Generation of Residential Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficient and offer improved air quality, comfort and greater durability. In response, building codes are constantly increasing in rigor and consumers are expecting more...

412

CFD Simulation and Measurement Validation of Air Distribution at the Hunan International Exhibition Center  

E-Print Network [OSTI]

The Hunan International Exhibition Center (HIEC) is a large space building. A stratified air-conditioning system on the second floor of the building has been adopted. Due to some problems with the air supply jet diffuser, CFD simulations were...

Deng, T.; Zhang, Q.; Zhang, G.; Yuan, H.

2006-01-01T23:59:59.000Z

413

Influence of Air Conditioner Operation on Electricity Use and Peak Demand  

E-Print Network [OSTI]

Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

1987-01-01T23:59:59.000Z

414

High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback  

SciTech Connect (OSTI)

This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

2007-12-31T23:59:59.000Z

415

Compressive Rendering of Multidimensional Scenes  

E-Print Network [OSTI]

Compressive Rendering of Multidimensional Scenes Pradeep Sen, Soheil Darabi, and Lei Xiao Advanced of using compressed sensing to reconstruct the 2D images produced by a rendering system, a process we called compressive rendering. In this work, we present the natural extension of this idea

Sen, Pradeep

416

Proceedings of Healthy Buildings 2009 Paper 141 Removal of Indoor Ozone with Reactive Materials: Preliminary Results and  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 141 Removal of Indoor Ozone with Reactive Materials air quality. #12;Proceedings of Healthy Buildings 2009 Paper 141 Removing ozone from indoor

Siegel, Jeffrey

417

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

EUI) predicted with building energy models created using theusing EPA model ? Health benefits of reduced energy usage (

Mendell, Mark

2014-01-01T23:59:59.000Z

418

Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices  

E-Print Network [OSTI]

A simple prototype air conditioning unit driven entirely by solar energy is proposed aiming at replacing the conventional vapor compression air conditioning systems which are reasonable for the global warming. The proposed model is supposed...

Elsamni, O. A.; Sahmarani, K.J.; Obied, F. K.

2010-01-01T23:59:59.000Z

419

E-Print Network 3.0 - air case study Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Industry, West Point, NY, July 19-22. 1 Modeling and Simulation of Air Compressor Energy Use Summary: (Compressed Air Challenge, 2002). Multiple case studies and analyses for...

420

MODELING AND TRAJECTORY OPTIMIZATION OF WATER SPRAY COOLING IN A LIQUID PISTON AIR COMPRESSOR  

E-Print Network [OSTI]

and expansion has many applications in pneumatic and hydraulic systems, including in the Compressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been proposed in [1,2]. Since the air

Li, Perry Y.

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ENERGY EFFICIENT BUILDINGS PROGRAM Chapter from the Energy and Environment Division Annual Report 1980  

SciTech Connect (OSTI)

The aim of the Energy Efficient Buildings Program is to conduct theoretical and experimental research on various aspects of building technology that will permit such gains in energy efficiency without decreasing occupants' comfort or adversely affecting indoor air quality. To accomplish this goal, we have developed five major research groups. The foci of these groups are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality; Building Energy Analysis; Energy Efficient Windows and Lighting; and Building Energy Data, Analysis and Demonstration.

Authors, Various

1981-05-01T23:59:59.000Z

422

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

423

A Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern  

E-Print Network [OSTI]

and hydrogen storage in salt caverns. Compressed Air Energy Storage (CAES) is experiencing a rise in interest-form solutions of the blow-out problem. These solutions are applied to the cases of compressed air storageA Simplified Solution For Gas Flow During a Blow-out in an H2 or Air Storage Cavern Pierre BĂ©rest

Boyer, Edmond

424

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

425

Finding Structure via Compression Jason L. Hutchens  

E-Print Network [OSTI]

Structurevia Compression Jason L. Hutchens and Michael D. Alder (1998) Finding Structure via Compression. In D.M.W

426

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents [OSTI]

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

427

Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG)  

E-Print Network [OSTI]

need heavier trucks and vans to haul equipment, on the other hand, and they could be assigned either1 5/2014 Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG): Build adopted natural gas in 2011 because of the fuel's environmental and cost benefits. BuildSense's customers

428

Continuous Control in Buildings with Bond Graphs  

E-Print Network [OSTI]

and reductions in room air mixing, International conference on Environmental Ergonomics August 2-7. Zhang H., Arens E., Huizinga C., Han T., 2010, Thermal sensations and comfort models for non- uniform and transient environments, Building and Environment...

Zeiler, W.

2011-01-01T23:59:59.000Z

429

Ventilation Air Preconditioning Systems  

E-Print Network [OSTI]

capacity. Optional Morning Warm-up If connected to a liquid condenser bundle, the icemaking chiller can serve as a heat recovery heat pump. The chiller can freeze ice in the early morning to provide heat for morning warm-up, and use the ice... the cooling coil or drain pan re-evaporates and is delivered to occupied space during compressor off-cycles. Although heat recovery between the exhaust air and ventilation air can reduce the impact on the HVAC system, many buildings do not have central...

Khattar, M.; Brandemuehl, M. J.

1996-01-01T23:59:59.000Z

430

Commissioning to avoid indoor air quality problems  

SciTech Connect (OSTI)

This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

Sterling, E.M.; Collett, C.W. (Theodore D. Sterling and Associates, Ltd., Vancouver, British Columbia (Canada)); Turner, S. (Healthy Buildings International Inc., Fairfax, VA (United States)); Downing, C.C. (Environmental Science and Technology Lab., Georgia Technology Research Inst., Atlanta, GA (United States))

1992-10-01T23:59:59.000Z

431

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

432

air exchange effectiveness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- TxSpace Summary: not same as Qactual because of the interaction of heat conduction, solar radiation, and air infiltration in the building components Liu and Guidelines for...

433

New Air and Water-Resistive Barrier Technologies for Commercial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Air and Water-Resistive Barrier Technologies for Commercial Buildings Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: 3M - Minneapolis, MN DOE Funding:...

434

anthropometry air displacement: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system. Open Access Theses and Dissertations Summary: ??As...

435

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

436

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

437

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

438

Improved Building Performance Through Effective Communication & Training  

E-Print Network [OSTI]

IMPROVED BUILDING PERFORMANCE THROUGH EFFECTIVE COMMUNICATION & TRAINING Rick Bates Project Manager Environmental Education Foundation Gilbert, AZ ABSTRACT This paper describes the procedures involved in the development of a... variety of stake holders with respect to “Best Practices” for improved indoor air quality during the design, construction, operation and maintenance of commercial, educational, institutional, and large residential buildings. Specific training...

Bates, R.

2005-01-01T23:59:59.000Z

439

Compression effects on pressure loss in flexible HVAC ducts  

SciTech Connect (OSTI)

A study was conducted to evaluate the effect of compression on pressure drop in flexible, spiral wire helix core ducts used in residential and light commercial applications. Ducts of 6 inches, 8 inches and 10 inches (150, 200 and 250 mm) nominal diameters were tested under different compression configurations following ASHRAE Standard 120-1999--Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings. The results showed that the available published references tend to underestimate the effects of compression. The study demonstrated that moderate compression in flexible ducts, typical of that often seen in field installations, could increase the pressure drop by a factor of four, while further compression could increase the pressure drop by factors close to ten. The results proved that the pressure drop correction factor for compressed ducts cannot be independent of the duct size, as suggested by ASHRAE Fundamentals, and therefore a new relationship was developed for better quantification of the pressure drop in flexible ducts. This study also suggests potential improvements to ASHRAE Standard 120-1999 and provides new data for duct design.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

440

Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint  

SciTech Connect (OSTI)

A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

Lowenstein, A.; Slayzak, S.; Kozubal, E.

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Automatic Continuous Commissioning of Measurement Instruments in Air Handling Units  

E-Print Network [OSTI]

by International Energy Agency (IEA) and widely studied in the research projects of Annex 40[2] and Annex 47[3]. An open publication [4] found a media payback period of 4.8 years for commissioning of new buildings in United States. Additionally, commissioning... w Chilled water fanr Return air fan val Valve rtn Return air exh Exhaust air fans Supply air fan coil Cooling coil REFERENCES [1] Buildings Rese Lawrence Be [2] IEA ECBCS...

Xiao, F.; Wang, S.

2006-01-01T23:59:59.000Z

442

STRATEGIC PLAN TO REDUCE THE ENERGY IMPACT OF AIR CONDITIONERS  

E-Print Network [OSTI]

Acknowledgements This report represents the efforts of many experts from the air conditioning industry who Manufacturer Freus Air Conditioning Jim Bazemore Consultant Energy Market Innovations, Inc. Doug Beaman of Heating and Air Conditioning Industries Kahn Air Conditioning Tav Commins Staff, Buildings

443

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

444

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ŤHow do we first do no harm with high-r enclosures??

445

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

446

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

447

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

448

CWRU awarded grant to build battery for smart grid, renewables New design for iron flow battery would enhance energy and economic security  

E-Print Network [OSTI]

technologies ­ two of ARPA-E's goals. The key is a new battery architecture that enables greater energy storage and compressed air systems, which require large water supplies and land with mixed elevations, or access downhill through turbines that produce electricity. Compressed air stations pump air into caverns when

Rollins, Andrew M.

449

Shock compression of precompressed deuterium  

SciTech Connect (OSTI)

Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

2011-07-31T23:59:59.000Z

450

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

451

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

452

Compressive strength of concrete and mortar containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

453

Compressive strength of concrete and mortar containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-04-29T23:59:59.000Z

454

Compressive strength of concrete and mortar containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1998-01-01T23:59:59.000Z

455

Compressive strength of concrete and mortar containing fly ash  

DOE Patents [OSTI]

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1998-12-29T23:59:59.000Z

456

Optimising the Fresh Air Economiser  

E-Print Network [OSTI]

, S., ?Economizers in Air Handling Systems?, CED Engineering Course M01-014, Stony Point New York, 2000. Moser, D., ?Free Cooling: Don?t Let Savings Slip Away?, Portland Energy Conservation Inc., published in Building Operating Management.... New Zealand, Standard NZS 4303:1990, Ventilation for Acceptable Indoor Air Quality, Standards Association of New Zealand, Wellington. Portland Energy Conservation Inc., from Functional Testing Guide on website: (http...

Biship, R.

2013-01-01T23:59:59.000Z

457

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

458

Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)  

SciTech Connect (OSTI)

The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

Not Available

2014-12-01T23:59:59.000Z

459

Pressure Losses in 12”, 15” and 16” Non-Metallic Flexible Ducts with Compression and Sag (RP-1333)  

E-Print Network [OSTI]

622 ©2009 ASHRAE This paper is based on findings resulting from ASHRAE Research Project RP-1333. ABSTRACT A study was conducted to measure air pressure loss in non- metallic flexible ducts and included 12” (305 mm), 14” (356 mm) and 16” (406 mm...) diameter ducts on a flat surface and also positioned over joists on 24” (610 mm) centers. For this study, flexible duct compression configurations were fully stretched and 4%, 15%, 30% and 45% compressed. Measure- ments were performed at each compression...

Culp, C.H.; Cantrill, D.

460

ECG Compression: Fast Block-Sorting Compression John Halloran  

E-Print Network [OSTI]

ECG Compression: Fast Block-Sorting Compression John Halloran Department of Electrical Engineering University of Hawaii at Manoa EE 628 Fall 2008 April 13, 2010 1 Introduction Electrocardiography(ECG. Given ECG data, a patient may be diagnosed with health issues such as a heart attack or improper levels

Noble, William Stafford

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

H.N. Knudsen, P. Wargocki and J. Vondruskova (2006) "Effect of ventilation on perceived quality of air polluted  

E-Print Network [OSTI]

quality of air polluted by building materials ­ a summary of reported data", Proceedings of Healthy Buildings 2006, Vol. 1, 57-62. #12;#12;Effect of ventilation on perceived quality of air polluted

462

Air leakage of Insulated Concrete Form houses  

E-Print Network [OSTI]

Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...

Durschlag, Hannah (Hanna Rebekah)

2012-01-01T23:59:59.000Z

463

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

464

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

465

Air Tightness of US Homes: Model Development  

SciTech Connect (OSTI)

Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

Sherman, Max H.

2006-05-01T23:59:59.000Z

466

Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure  

E-Print Network [OSTI]

control should be the first priority instead of dilution of pollutants by ventilation or by cleaning the air.air quality, could better provide healthful indoor environments, and also reward designers and owners who control indoor pollutantsair quality, could better document healthful indoor environments, and also reward designers and owners who control indoor pollutants

Mendell, Mark

2014-01-01T23:59:59.000Z

467

Data Compression with Prime Numbers  

E-Print Network [OSTI]

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

468

Edge compression manifold apparatus  

DOE Patents [OSTI]

A manifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device for high pressure applications is provided. The fluid connector for coupling at least one fluid conduit to a corresponding port of a substrate that includes: (i) a manifold comprising one or more channels extending therethrough wherein each channel is at least partially threaded, (ii) one or more threaded ferrules each defining a bore extending therethrough with each ferrule supporting a fluid conduit wherein each ferrule is threaded into a channel of the manifold, (iii) a substrate having one or more ports on its upper surface wherein the substrate is positioned below the manifold so that the one or more ports is aligned with the one or more channels of the manifold, and (iv) device to apply an axial compressive force to the substrate to couple the one or more ports of the substrate to a corresponding proximal end of a fluid conduit.

Renzi, Ronald F. (Tracy, CA)

2007-02-27T23:59:59.000Z

469

Second law analysis of premixed compression ignition combustion in a diesel engine using a thermodynamic engine cycle simulation  

E-Print Network [OSTI]

of combustion that have caught attention of the recent researchers are homogeneous charge compression ignition (HCCI) combustion and premixed charge compression ignition (PCI) combustion modes. In HCCI combustion mode, fuel and air are completely mixed prior... inside the cylinder. The control of combustion process is more challenging in case of HCCI combustion mode. In PCI combustion, air and fuel are not completely premixed, but the fuel is injected sufficiently before the desired start of combustion...

Oak, Sushil Shreekant

2008-10-10T23:59:59.000Z

470

Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning  

E-Print Network [OSTI]

Recent work has shown that quantum simulation is a valuable tool for learning empirical models for quantum systems. We build upon these results by showing that a small quantum simulators can be used to characterize and learn control models for larger devices for wide classes of physically realistic Hamiltonians. This leads to a new application for small quantum computers: characterizing and controlling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. Whereas Fisher information analysis shows that current methods which employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data.

Nathan Wiebe; Christopher Granade; David G. Cory

2015-03-30T23:59:59.000Z

471

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network [OSTI]

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

472

Natural Ventilation in Buildings: Measurement in a Wind Tunnel and Numerical Simulation with Large Eddy Simulation  

E-Print Network [OSTI]

save energy compared to mechanical ventilation systems. In building design the prediction save energy consumed by the heating, ventilating, and air- conditioning systems in a building. In a naturally ventilated building, air is driven in and out due to pressure differences produced by wind

Chen, Qingyan "Yan"

473

Compact wavefunctions from compressed imaginary time evolution  

E-Print Network [OSTI]

Simulation of quantum systems promises to deliver physical and chemical predictions for the frontiers of technology. Unfortunately, the exact representation of these systems is plagued by the exponential growth of dimension with the number of particles, or colloquially, the curse of dimensionality. The success of approximation methods has hinged on the relative simplicity of physical systems with respect to the exponentially complex worst case. Exploiting this relative simplicity has required detailed knowledge of the physical system under study. In this work, we introduce a general and efficient black box method for many-body quantum systems that utilizes technology from compressed sensing to find the most compact wavefunction possible without detailed knowledge of the system. It is a Multicomponent Adaptive Greedy Iterative Compression (MAGIC) scheme. No knowledge is assumed in the structure of the problem other than correct particle statistics. This method can be applied to many quantum systems such as spins, qubits, oscillators, or electronic systems. As an application, we use this technique to compute ground state electronic wavefunctions of hydrogen fluoride and recover 98% of the basis set correlation energy or equivalently 99.996% of the total energy with $50$ configurations out of a possible $10^7$. Building from this compactness, we introduce the idea of nuclear union configuration interaction for improving the description of reaction coordinates and use it to study the dissociation of hydrogen fluoride and the helium dimer.

Jarrod R. McClean; Alán Aspuru-Guzik

2014-09-25T23:59:59.000Z

474

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

475

Clearing the air with natural gas engines  

SciTech Connect (OSTI)

This article examines the increased popularity of natural gas vehicles which has spurred engine designers to manipulate fuel-air ratios, compression ratios, ignition timing, and catalytic converters in ways to minimize exhaust pollutants. The topics of the article include reducing pollutants, high-octane engineering, diesel to natural gas, and the two-fuel choice.

O'Connor, L.

1993-10-01T23:59:59.000Z

476

Advances in compressible turbulent mixing  

SciTech Connect (OSTI)

This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

1992-01-01T23:59:59.000Z

477

ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt  

E-Print Network [OSTI]

obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load performance and calculating projected energy savings using four of the five following performance metrics: full-load power (FLP), no-load power (NLP), rated capacity (FLC), fraction full-load power (FP

Kissock, Kelly

478

Wind Integrated Compressed Air Energy Storage in Colorado  

E-Print Network [OSTI]

The past few years have seen a rapid increase in the development of electricity generation from renewable resources, due to many factors including concerns over climate change and the passage of Renewable Portfolio Standards (RPS) in 25 states in the United States. Colorado passed an RPS in 2004 requiring 10 % of electricity to come from renewable resources, with 4 % coming from solar generation, by 2015. That standard will likely

unknown authors

479

Compressed Air System Analysis and Retrofit for Energy Savings  

E-Print Network [OSTI]

several actions including piping retrofits, equipment upgrades, pressure control changes, and compressor retrofits....

Harding, C.; Nutter, D.

2014-01-01T23:59:59.000Z

480

ASE/CAGI Meeting about Compressors and Compressed Air System...  

Broader source: Energy.gov (indexed) [DOE]

& Publications AHRIAdvocate Ex Parte Memo 2.5.15 Meeting U.S. Department of Energy's Motor Challenge Program: A National Strategy for Energy Efficient Industrial Motor-Driven...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Recovering Energy with a Compressed Air System Program  

E-Print Network [OSTI]

but represent 26% of savings opportunity. ? Work that involves removal of instruments, instrument tubing or piping must be leak checked after system is re-energized. ? Equipment, systems and components can wear, so they must be leak checked with some routine...

Nipper, J.

2014-01-01T23:59:59.000Z

482

List of Compressed air Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas)Biofuels Sector JumpVehiclesair

483

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC < MHK Technologies Jump to:Rig <

484

Improving Compressed Air System Performance: A Sourcebook for Industry |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of EnergyDepartment ofPhoto of anDepartment

485

Analyzing Your Compressed Air System | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) AllMarch/April 2015LaboratoryMSEand its

486

Preventive Maintenance Strategies for Compressed Air Systems | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-Committee Meeting425of Energy tip sheet

487

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof Energy Clean CoalDNV

488

Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy On November 5,2012)Department of

489

Eliminate Inappropriate Uses of Compressed Air | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOTElectricityof Energy Studies indicateThis

490

Evaluation of the Compressed Air Challenge Training Program: Executive  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals Chapter|Summary |

491

Evaluation of the Compressed Air Challenge Training Program: Final Report |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals Chapter|Summary

492

Compressed Air System Control Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 Department ofHallam

493

Evaluation of the Compressed Air Challenge Training Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse11 DOE Hydrogen andProgram T O F E N E R G Y D

494

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof EnergyUnited States- Dataset2012) |Fact

495

Guidelines for Selecting a Compressed Air System Service Provider |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysisTweet us!ProceduresCombinedGuidelines for

496

Pre-In-Plant Training Webinar (Compressed Air): Presentation Slides |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers |of ExcellenceStudies of Lean NOx Traps

497

Sandia National Laboratories: percussive drilling with compressed air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobileparallel arc-fault Sandia Research

498

COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis15 CNMSHydraulicLabwith

499

Guidelines for Selecting a Compressed Air System Service Provider  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Source Heat2Guidelines for Selecting Cool RoofsFOR

500

Improving Compressed Air System Performance: A Sourcebook for Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResults | Department|Energy