Sample records for building compressed air

  1. Compressed Air Supply Efficiency 

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    COMPRESSED AIR SUPPLY EFFICENCY Babu Joseph, Ph.D., P.E. Engineer Southern California Edison Irwindale, CA ABSTRACT This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency...

  2. Compressed Air Supply Efficiency

    E-Print Network [OSTI]

    Joseph, B.

    2004-01-01T23:59:59.000Z

    This project, under contract from California Energy Commission, developed the CASE (Compressed Air Supply Efficiency) Index as a stand-alone value for compressor central plant efficiency. This Index captures the overall efficiency of a compressed...

  3. Padding with Compressed Air

    E-Print Network [OSTI]

    Beals, C.

    2004-01-01T23:59:59.000Z

    We commonly find plants using padding to transport liquids or light solids short distances from tankers into storage tanks. Padding can wreck havoc in compressed air systems with limited storage, undersized cleanup equipment (dryers and filters...

  4. Fundamentals of Compressed Air Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  5. Making Compressed Air System Decisions

    E-Print Network [OSTI]

    Porri, R. E.

    . The design of a compressed air system was formerly limited to the selection of an air compressor large enough to deliver sufficient compressed air for the estimated system requirements. As system air requirements grew, additional compressors were added... specification, selection and installation process will follow. BACKGROUND For more than 100 years compressed air has been used throughout industry as a safe and reliable utility. The generation of this utility is performed by an air compressor. The first...

  6. Compressed Air Audits using AIRMaster

    E-Print Network [OSTI]

    Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

    Air compressors are a significant industrial energy user and therefore a prime target for industrial energy audits. The project goal was to develop a software tool, AIRMaster, and supporting methodology for performing compressed air system audits...

  7. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1981-01-01T23:59:59.000Z

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed Air System Optimization

    E-Print Network [OSTI]

    Aegerter, R.

    Several years ago I went to a gas station and noticed that my car's tires were low on air. I saw the gas station had an air compressor, but it cost a quarter to use the compressor. I paid my quarter and used the compressor. I realized...

  9. Chapter 22: Compressed Air Evaluation Protocol

    SciTech Connect (OSTI)

    Benton, N.

    2014-11-01T23:59:59.000Z

    Compressed-air systems are used widely throughout industry for many operations, including pneumatic tools, packaging and automation equipment, conveyors, and other industrial process operations. Compressed-air systems are defined as a group of subsystems composed of air compressors, air treatment equipment, controls, piping, pneumatic tools, pneumatically powered machinery, and process applications using compressed air. A compressed-air system has three primary functional subsystems: supply, distribution, and demand. Air compressors are the primary energy consumers in a compressed-air system and are the primary focus of this protocol. The two compressed-air energy efficiency measures specifically addressed in this protocol are: high-efficiency/variable speed drive (VSD) compressor replacing modulating compressor; compressed-air leak survey and repairs. This protocol provides direction on how to reliably verify savings from these two measures using a consistent approach for each.

  10. Advanced Management of Compressed Air Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This training is designed to help end users as well as industry solution providers learn...

  11. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01T23:59:59.000Z

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  12. A Compressed Air Reduction Program

    E-Print Network [OSTI]

    Hawks, K. D.

    A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

  13. Alternative Refrigerants for Building Air Conditioning

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    The majority of building air conditioning has traditionally been achieved with vapor compression technology using CFC-I I or HCFC-22 as refrigerant fluids. CFC-11 is being successfully replaced by HCFC-123 (retrofit or new equipment) or by HFC- 134a...

  14. Compressed Air Energy Storage Act (Kansas)

    Broader source: Energy.gov [DOE]

    This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

  15. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

  16. Energy Efficiency in Compressed Air Systems 

    E-Print Network [OSTI]

    Hingorani, A.; Pavlov, A.

    2010-01-01T23:59:59.000Z

    of transfer of energy. Typical applications in this category are motive applications, such as driving pneumatic tools and cylinders, operating instruments, pneumatic actuation and other such processes. - Active air, where the compressed air takes..., for ease. 3. MINIMIZING THE COSTS OF USAGE OF COMPRESSED AIR Within the factory, similar rules as for distribution would apply. Older factories must have their piping thoroughly checked for leakage in the pipelines. Tools such as ultrasonic leak...

  17. Compressible air cushioning in liquid-solid impacts Peter D. Hicks

    E-Print Network [OSTI]

    Purvis, Richard

    Compressible air cushioning in liquid-solid impacts Peter D. Hicks Department of Mechanical of Mathematics, University of East Anglia, Norwich, NR4 7TJ, UK. r.purvis@uea.ac.uk Abstract--Air cushioning the influence of air compressibility. Building on earlier incompress- ible analyses, a local asymptotic model

  18. Fact Sheet: Isothermal Compressed Air Energy Storage (October...

    Broader source: Energy.gov (indexed) [DOE]

    SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air...

  19. Evaluation of the Compressed Air Challenge Training Program:...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Evaluation of the Compressed Air Challenge Training Program: Executive Summary This is the executive summary of a report on an evaluation of the Compressed Air...

  20. Evaluation of the Compressed Air Challenge Training Program:...

    Broader source: Energy.gov (indexed) [DOE]

    Final Report Evaluation of the Compressed Air Challenge Training Program: Final Report This is the final report on an evaluation of the Compressed Air Challenge (CAC) training...

  1. Compressed Air Load Reduction Approaches and Innovations

    E-Print Network [OSTI]

    D'Antonio, M.; Epstein, G.; Moray, S.; Schmidt, C.

    2005-01-01T23:59:59.000Z

    are assessed. It is a common practice in facilities to simply add compressor capacity when faced with supply pressure or volume deficiencies, increasing the energy consumption associated with compressed air systems in industry. Additionally, in recent years...

  2. Exergy Analysis of Industrial Air Compression

    E-Print Network [OSTI]

    Bader, W. T.; Kissock, J. K.

    every industrial plant as a source of exergy for tools, actuators, and a myriad of manufacturing processes. For this analysis, a typical scenario is considered with a compressor installed indoors. Conditions for the indoor surroundings... are temperature T I and pressure Ph while the outdoor conditions, the environment, are To and Po. The compressor system is defined as the compressor, dryer (aftercooler) and compressed air distribution system (piping). We assume that the compressed air exits...

  3. Compressed Air 101: Getting Compressed Air to Work

    E-Print Network [OSTI]

    Burke, J. J.; Bessey, E. G.

    "Air compressors are a significant industrial energy user. Based on a survey (conducted by Oregon State University and the Bonneville Power Administration) of energy audit reports from 125 plants, air compressors account for roughly 10% of total...

  4. Energy Efficiency in Compressed Air Systems

    E-Print Network [OSTI]

    Hingorani, A.; Pavlov, A.

    2010-01-01T23:59:59.000Z

    Energy use in compressed air systems accounts for typically 10% of the total industrial electricity consumption. It also accounts for close to 99% of the CO2 footprint of an air compressor and approximately 80% of the life cycle costs of a...

  5. Compressed Air Systems Audits - Why? And How?

    E-Print Network [OSTI]

    Kemp, H. L.

    2004-01-01T23:59:59.000Z

    . Secondly, join us in the definition of compressed air as a system, the totality of which is comprised of the Supply Side and the Demand Side. The Supply Side is the compressors and their controls, receivers (primary storage tanks), aftercoolers, filters... and dryers, and ends at the Compressor Room door. The Demand side is all of the distribution piping system, and all of the end uses of the compressed air, including leaks The function of the audit (be it walk-through, assessment or full audit...

  6. Understanding the Basics of Compressed Air Systems

    E-Print Network [OSTI]

    Herron, D. J.

    compressed air loss to 5% of total compressed air generated. POTENTIAL SAVINGS CALCULATION Calculation to determine potential savings: % wasted hp x connected hp x .746 (kWhlM1p) x S/kWh x .90(system efficiency 8000 (operating hours/yr) $/yr...(potential savings) Example: (10 (wasted hpl x 750 hp x .746 x $.05 x 8000 = S24,867/yr .90 Calculation to determine full load cost: bhp x .746 x S/kWh x opt:rating hours motor eff. 3M Company St. Paul, MN Example: (500 cfm, 125 bhp, S.05/kWh, 8000...

  7. Compressed Air Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space DataEnergyCompressed Air Systems Compressed Air

  8. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

  9. Advanced Controls for Industrial Compressed Air Systems

    E-Print Network [OSTI]

    Vold, P.; Gabel, S.; Carmichael, L.; Curtner, K.; Cirillo, N. C. Jr.

    at a Goulds Pumps manufacturing plant in Seneca Falls, New York, and is currently undergoing field testing. The compressed air system will optimize the energy efficiency of the 7 compressor system (1,850hp) at Goulds, while reducing system pressure...

  10. Compressed air | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006)air Jump to:

  11. Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge

    E-Print Network [OSTI]

    Anderson, K. J.; Annen, B.; Scott, S.

    year in compressed air energy costs. Their system included three older oil-flooded screw compressors two 25-horsepower (HP) and one 75 -HP. Although 100-HP ofcompressor was running continuously, it was having trouble providing enough air... such as improperly installed or leaking distribution lines, outdated or inadequate controls, and excess compressor capacity. But efficiency improvements and speed controls could save over [7%. In the Pacific Northwest (PNW) compressed air systems consumed 4...

  12. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    compressed air energy storage technology by the hydraulicscale electric energy storage technologies. Compressed air

  13. Fact Sheet: Isothermal Compressed Air Energy Storage (October...

    Broader source: Energy.gov (indexed) [DOE]

    SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. The system captures the heat from compression in water and stores the captured heat until it...

  14. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...

  15. Minimize Compressed Air Leaks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriority DataPART 970MidwestChallengeCompressed Air

  16. Techno-economic Performance Evaluation of Compressed Air

    E-Print Network [OSTI]

    PNNL-22235 Techno-economic Performance Evaluation of Compressed Air Energy Storage in the Pacific of Compressed Air Energy Storage in the Pacific Northwest BP McGrail JE Cabe CL Davidson FS Knudsen DH Bacon MD air energy storage (CAES) in the unique geologic setting of inland Washington and Oregon. The basic

  17. University of Arizona Compressed Air Energy Storage

    SciTech Connect (OSTI)

    Simmons, Joseph; Muralidharan, Krishna

    2012-12-31T23:59:59.000Z

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  18. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-13T23:59:59.000Z

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  19. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air...

  20. 241-U-701 new compressor building and instrument air piping analyses

    SciTech Connect (OSTI)

    Huang, F.H.

    1994-08-25T23:59:59.000Z

    Building anchorage analysis is performed to qualify the design of the new compressor building foundation given in the ECN ``241-U-701 New Compressor Building.`` Recommendations for some changes in the ECN are made accordingly. Calculations show that the 6-in.-slab is capable of supporting the pipe supports, and that the building foundation, air compressor and dryer anchorage, and electric rack are adequate structurally. Analysis also shows that the instrument air piping and pipe supports for the compressed air system meet the applicable code requirements and are acceptable. The building is for the U-Farm instrument air systems.

  1. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler County’s 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

  2. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

  3. The Many Faces of a Compressed Air Audit

    E-Print Network [OSTI]

    Kemp, H. L.

    2006-01-01T23:59:59.000Z

    with independent compressed air consultant organizations. Energy Audits Supplied by DOE-Sponsored University Students University students led by their instructors as part of their training perform these studies. Often the reports are accurate about...Air Power USA, Inc. PO Box 292 Pickerington, OH 43147 740 862-4112 740 862-8464 (Fax) www.airpowerusainc.com THE MANY FACES OF A COMPRESSED AIR AUDIT Industrial Energy Technology Conference May 9-12, 2006 New Orleans, LA Today...

  4. A Decision-Based Analysis of Compressed Air Usage Patterns in Automotive Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhang, Teresa; Rangarajan, Arvind; Dornfeld, David; Ziemba, Bill; Whitbeck, Rod

    2006-01-01T23:59:59.000Z

    Air Usage Patterns in Automotive Manufacturing Chris Y. Yuanper vehicle built from automotive manufacturing facilities,2004). Compressed Air in Automotive Manufacturing Compressed

  5. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  6. Seneca Compressed Air Energy Storage (CAES) Project

    SciTech Connect (OSTI)

    None

    2012-11-30T23:59:59.000Z

    Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

  7. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    system pressure problem because VSD compressors are able toproblems, the enterprise should first consider whether the existing array of compressorsproblems When enterprises focus their attention on their compressed air system, it is mainly on the compressors.

  8. Pre-In-Plant Training Webinar (Compressed Air)

    Broader source: Energy.gov [DOE]

    This pre-In-Plant training webinar for the Better Plants Program covers the basics of finding energy savings in Compressed Air systems and introduces the AIRMaster+ software tool.

  9. Building Air Quality Alliance Program fro Building Management

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Indoor air quality (IAQ) has emerged as a major concern for building owners, managers, engineers and tenants. As the public recognizes the importance of healthy, comfortable. and productive indoor environments, their awareness and demand for good...

  10. Compressed Air System Analysis and Retrofit for Energy Savings 

    E-Print Network [OSTI]

    Harding, C.; Nutter, D.

    2014-01-01T23:59:59.000Z

    . Therefore, high quality compressed air is a key component of that objective. The compressed air used in the manufacturing process at this facility is held to ISO (International Organization for Standardization) class 2 air quality standards.... The compressor room contained two wet storage tanks, with a total capacity of 1,800 gallons. A heated desiccant dryer with associated filters was also located in the compressor room. Dry air was sent into the plant to a 2,000 gallon dry storage tank, which...

  11. Efficiency of compressed-air systems. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    The program undertaken by this contract is intended to quantify the current state of knowledge in American industry concerning the energy efficient design and operation of industrial compressed air systems and system components. Since there is no standard reference for designers and operators of compressed air systems which provides guidelines for maximizing the energy efficiency of these systems, a major product of this contract was the preparation of a guidebook for this purpose.

  12. Compressed Air Audits: A Holistic Approach -Addressing the Air System as a Whole 

    E-Print Network [OSTI]

    Shaver, D.

    2011-01-01T23:59:59.000Z

    is not the paramount issue. Independent auditors should have no obvious or hidden agenda. CAT compressed air audit services are in essence, holistic. The analysis of your facility compressed air and gases systems is all-inclusive and consists of an engineered...

  13. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

    1980-01-01T23:59:59.000Z

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  14. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air...

    Broader source: Energy.gov (indexed) [DOE]

    52: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California EA-1752: Pacific Gas & Electric...

  15. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings 

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  16. Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings

    E-Print Network [OSTI]

    Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

    2010-01-01T23:59:59.000Z

    The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass...

  17. Compressed Air Audits: A Holistic Approach -Addressing the Air System as a Whole

    E-Print Network [OSTI]

    Shaver, D.

    2011-01-01T23:59:59.000Z

    energy savings. The quality and comprehensiveness of manufacturing facilities, and therefore audits, vary widely and it is important to consider experience. Compressed Air Technologies has audited nearly 200 manufacturing facilities since our inception...

  18. ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt

    E-Print Network [OSTI]

    Kissock, Kelly

    ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt Project Engineer Energy Industrial Assessment Center Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT energy savings must be calculated in order to justify the cost of implementing the savings opportunity

  19. Estimating Energy Savings in Compressed Air Systems

    E-Print Network [OSTI]

    Schmidt, C.; Kissock, J. K.

    2004-01-01T23:59:59.000Z

    are frequently overestimated because the methods used to estimate savings neglect to consider important factors such as compressor control and type, storage, and multiple compressor operation. In this paper, a methodology is presented for modeling air... compressor performance and calculating projected energy savings from easily obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load power or average fraction rated capacity. The methodology...

  20. Monitoring System Used to Optimize Compressed Air System Efficiency, Cut Costs

    E-Print Network [OSTI]

    Holmes, W. A.

    feeders, and major equipment and systems including compressed air. For the compressed air system, monitored data included compressor amps, electrical demand and consumption, pressure and airflow. The resulting UtiliTRACK® reports and graphs showed a...

  1. FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

    Broader source: Energy.gov (indexed) [DOE]

    FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System Energy-Reduction Goals with a Three-Phased Strategy FUJIFILM Hunt Chemicals U.S.A. Achieves Compressed Air System...

  2. Beyond Leaks: Demand-side Strategies for Improving Compressed Air Efficiency

    E-Print Network [OSTI]

    Howe, B.; Scales, B.

    Beyond Leaks: Demand-side Strategies for Bill Howe, PE Director, Corporate Energy Services E Source, Inc. Boulder, Colorado SUMMARY Staggering amounts of compressed air are wasted or misapplied in otherwise well run manufacturing...-maintained plants lose about 10 percent of compressed air to leaks, while many more lose over 50 percent. In addition to leaks, wasteful application of compressed air can eat up another 5 to 40 percent of compressed air volume-even in otherwise well...

  3. Compressed Air Best Practices Tools Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow Workshop Report January 17-18,51429Operations

  4. Compressed Air Storage Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow Workshop Report January

  5. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    for Building Heating, Ventilation and Air-Conditioningfor Building Heating, Ventilation and Air-Conditioningfor building heating, ventilation and air con- ditioning

  6. An Integrated Air Handling Unit System for Large Commercial Buildings

    E-Print Network [OSTI]

    Song, L.; Liu, M.

    2001-01-01T23:59:59.000Z

    This paper presents an integrated air handling unit system (OAHU) for large commercial buildings. The system introduces outside air into the interior section and circulates the return air to the exterior section. Detailed analytical models...

  7. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect (OSTI)

    Otis, C.; Maxwell, S.

    2012-06-01T23:59:59.000Z

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  8. Air Barriers for Residential and Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof EnergyAhorreDepartmentAir

  9. Typical Problems of AHU and Air Movement in Buildings

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    occupied zones #0;?#0;?#0;?#0;? Wrong Air Handling Process and ControlWrong Air Handling Process and Control #0;?#0;?#0;?#0;? TP4: Dislike fresh air?TP4: Dislike fresh air? #0;?#0;?#0;?#0;? TP5: Reheat of VAVBOX at partial load time in summerTP5: Reheat... of VAVBOX at partial load time in summer #0;?#0;?#0;?#0;? Unexpected Air Movement in BuildingsUnexpected Air Movement in Buildings #0;?#0;?#0;?#0;? TP6: Chimney effect leading to fresh air intake in highTP6: Chimney effect leading to fresh air intake in high...

  10. Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains

    E-Print Network [OSTI]

    Fisk, W.J.

    2011-01-01T23:59:59.000Z

    fabricators of heating, ventilation, and air conditioningof Building Heating, Ventilation, Air Conditioning, and

  11. EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS: FINAL REPORT

    E-Print Network [OSTI]

    Dimmick, R.L.

    2013-01-01T23:59:59.000Z

    CONSERVATION r1EASURES ON AIR HYGIENE IN PUBLIC BUILDINGSCONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS:CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS:

  12. Building Efficiency and Indoor Air Quality - You Can Have Both

    E-Print Network [OSTI]

    Kettler, G. J.

    1998-01-01T23:59:59.000Z

    Providing ventilation for acceptable indoor air quality per ASHRAE Standard 62-1989 does not require large increases in utility costs. Building efficiency does not have to be sacrificed for a healthy building. The ASHRAE 62- 1989 requirement...

  13. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  14. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    During building cooling the chillers supply 42 °P water towith 42°P supply air always reduced cooling and totalpart-load) cooling with cold air supply. In most California

  15. Attic Air Sealing Guide - Building America Top Innovation | Department...

    Energy Savers [EERE]

    United States. Read the Top Innovation profile on the Guide to Attic Air Sealing. Find case studies of Building America projects across the country that utilize effective attic...

  16. Air movement preferences observed in office buildings

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Movement – Good or Bad? Indoor Air 14: 40-45. Toftum, J (Quality Survey. Indoor Air 14 (8): 65–74. Internationalon the Perception of Indoor Air Quality during Immediate and

  17. California Air Resources Board's "California Green Building Strategy"

    E-Print Network [OSTI]

    California Air Resources Board's "California Green Building Strategy" Collectively, energy use. Significant GHG emission reductions can be achieved through the design and construction of new green buildings $56 billion in electricity and natural gas costs. Green buildings provide a cost-effective strategy

  18. Abstract--For a Compressed Air Energy Storage (CAES) approach to be viable, the air compressor/expander must be

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- For a Compressed Air Energy Storage (CAES) approach to be viable, the air compressor of the storage energy conversion, it is critical that it is efficient and sufficiently powerful-off between efficiency and power. Most attempts to improve the efficiency or power of the air compressor

  19. Iterative Optimal and Adaptive Control of a Near Isothermal Liquid Piston Air Compressor in a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Gas compression and expansion has many applications in pneumatic and hydraulic systems, including in the Com- pressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been

  20. Improving Energy Efficiency of Compressed Air System Based on System Audit

    E-Print Network [OSTI]

    Shanghai, Hongbo Qin; McKane, Aimee

    2008-01-01T23:59:59.000Z

    plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

  1. Beyond Leaks: Demand-side Strategies for Improving Compressed Air Efficiency 

    E-Print Network [OSTI]

    Howe, B.; Scales, B.

    1997-01-01T23:59:59.000Z

    Staggering amounts of compressed air are wasted or misapplied in otherwise well run manufacturing facilities, often adding thousands of dollars in extra operating cost per year. The process of eliminating this expensive waste requires a thorough...

  2. Total Building Air Management: When Dehumidification Counts

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    , total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform...

  3. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27T23:59:59.000Z

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  4. BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks.

    E-Print Network [OSTI]

    BuildSense Compressed natural gas (CNG) bi-fuel conversions for two Ford F-series pickup trucks $141,279 $35,320 $176,599 City of Charlotte Solid Waste Services Compressed natural gas ( CNG) up fits

  5. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect (OSTI)

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01T23:59:59.000Z

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  6. Natural air motion in passive buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.

    1985-01-01T23:59:59.000Z

    The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few experimental results are presented. Observations of stratification are discussed, similitude experiments are described, and the beginnings of a complete-system mathematical model are presented.

  7. DRAFT: NONLINEAR CONTROLLER DESIGN WITH BANDWIDTH CONSIDERATION FOR A NOVEL COMPRESSED AIR ENERGY STORAGE SYSTEM

    E-Print Network [OSTI]

    Li, Perry Y.

    are the pump/motor displacements inside the hydraulic transformer and the liquid piston air compressor regulation and gen- erator power tracking for a Compressed Air Energy Storage (CAES) system, a nonlinear/expander. While the pump/motor inside the liquid piston has a low band- width, the other pump/motor inside

  8. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect (OSTI)

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01T23:59:59.000Z

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  9. Investment-Grade Compressed Air System Audit, Analysis, and Upgrade in a Pulp and Paper Mill

    E-Print Network [OSTI]

    Parekh, P. S.

    , West Tacoma Division, located in Washington State, had production capability of 540 tons per day of recycle newsprint manufactured from TMP and recycled paper. Over the years, as mill capacity increased, various sizes and types of air compressor... units were added at different locations to meet the increased air demands. As usual, the compressed air utility was expanded on as-needed basis, but without optimizing electrical energy consumption of various compressor units that were partly loaded...

  10. Saving Energy in Industrial Compressed Air Systems: Issues and Obstacles in DSM Program Design

    E-Print Network [OSTI]

    Trojanowski, D.; Parfomak, P.

    contained compressed air systems.(I) Air compressors are generally driven by electric motors, often in large sizes and often operating continuously throughout the day. As a result, compressors can account for a substantial fraction of the electricity... consumption and peak demand in a given facility. A study by North Carolina A&T University found that air compressors accounted for as much as 49 % of base energy consumption, and up to 58% of peak electrical demand, in the facilities they audited.(2...

  11. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

  12. Computer simulations and experimental measurements of air distributions in buildings: past, present, and future

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Computer simulations and experimental measurements of air distributions in buildings: past to perform computer simulations to calculate air distribution in buildings. The most advanced computer models, sustainable, and safe building, it is important to know the distributions of air velocity, air temperature

  13. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect (OSTI)

    Ward, Richard C [ORNL; Sjoreen, Andrea L [ORNL; Eckerman, Keith F [ORNL

    2010-06-01T23:59:59.000Z

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7 Radiation dose was calculated assuming complete release of the building inventory as information was lacking regarding the portion of the building inventory expected to be released. Thus the results are derived using an extremely conservative release as documented in the Preliminary Hazard Screening report.7 To more closely approximate the result of a release, one must estimate the fraction of the total inventory released and multiply the results described above by that fraction. An example of how this calculation is accomplished is provided. Should an actual uncontrolled release occur, the results of this modeling effort could only be used to establish a rough order-of-magnitude for the event.

  14. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

  15. Improving Compressed Air System Efficiency- Know What You Really Need

    E-Print Network [OSTI]

    Terrell, R. E.

    ($17,000/year saved) by reducing air use without reducing production. Another, by monitoring air production and energy requirements of the system, selected a properly sized 75 hp compressor to replace a worn-out 250 hp compressor and paid for the new...

  16. Air Conditioner User Behavior in a Master-Metered Apartment Building

    E-Print Network [OSTI]

    Kempton, W.; Feuermann, D.; McGarity, A. E.

    1987-01-01T23:59:59.000Z

    Air conditioner operation was studied in order to understand how energy consumption and peak power are determined by user behavior, equipment operation and building characteristics. In a multi-family building, thirteen room air conditioners were...

  17. Innovative Systems for Solar Air Conditioning of Buildings 

    E-Print Network [OSTI]

    Kessling, W.; Peltzer, M.

    2004-01-01T23:59:59.000Z

    kessling@transsolar.com Dipl.-Ing. Matthias PELTZER Technical Director L-DCS Technology GmbH Muenchener Str. 101, 85737 Ismaning b. Munich matthias.peltzer@l-dcs.com ABSTRACT Solar air conditioning is an attractive technology to achieve comfortable room... states (4). The room return air (5) is used in a latent heat recovery (6) (psychometric process see Figure 4). To illuminate the excellent system performance a typical cooling load profile for a standard office build- ing in the hot and humid climate...

  18. Activation of building air in a Tokamak Engineering Test Facility

    SciTech Connect (OSTI)

    Leonard, B.R. Jr.; Perry, R.T.

    1980-09-01T23:59:59.000Z

    The production of radionuclides by neutron reactions in the building air of a conceptual Tokamak Engineering Test Facility has been calculated. The short-lived radionuclides /sup 13/N, /sup 16/N and /sup 41/Ar are all found to greatly exceed their maximum permissable concentration values. Longer-lived radionuclides /sup 3/H, /sup 14/C and /sup 39/Ar are also found to be produced in significant concentrations. The present results are compared with values calculated for three other fusion devices; TFTR, INS, and FMIT. These comparisons show that the ETF can be a prolific producer of activated air.

  19. Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings

    E-Print Network [OSTI]

    Gugercin, Serkan

    Model Reduction for Indoor-Air Behavior in Control Design for Energy-Efficient Buildings Jeff models for the indoor-air environment in control design for energy efficient buildings. In one method by a desire to incorporate models of the indoor-air environment in the design of energy efficient buildings

  20. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems Michael Wetter available Modelica library for building heating, ventilation and air conditioning systems. The library development is focused on the develop- ment of models for building heating, ventilation and air

  1. Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines q

    E-Print Network [OSTI]

    Li, Perry Y.

    Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind compressed air energy storage. Maximizes energy production, levels load, downsizes electrical parts, meets Energy Storage (CAES) Load leveling Hydraulics Pneumatics Bandwidth limitation a b s t r a c t This paper

  2. Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to

    E-Print Network [OSTI]

    Li, Perry Y.

    Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures instead of supply. Energy is stored in a high pressure dual chamber liquid-compressed air storage vessel a challenge. An energy storage system can provide steady and predictable power by storing excess energy

  3. COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES

    E-Print Network [OSTI]

    Deymier, Pierre

    COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique. Preliminary results clearly establish that the prototype holds enormous promise as energy storage systems production, is critically dependent on the availability of cost-effective, energy- storage technologies

  4. Electric power generating plant having direct coupled steam and compressed air cycles

    DOE Patents [OSTI]

    Drost, Monte K. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  5. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOE Patents [OSTI]

    Drost, M.K.

    1981-01-07T23:59:59.000Z

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  6. Thermodynamics -2 An industrial plant produces a waste stream of hot compressed air

    E-Print Network [OSTI]

    Virginia Tech

    Thermodynamics - 2 An industrial plant produces a waste stream of hot compressed air: Pressure P, produce the maximum work predicted in (b). Show all turbines, heat exchangers, heat engines, etc. Also show all mass, work, and heat transfers within the system and between the system and the environment

  7. A study on the air permeability as affected by compression of three French soils

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and gas transports and thus affects the root and shoot growth. It changes also soil nitrogen and carbon management on a local scale and for environmental protection measures on a larger scale. The evaluation1 A study on the air permeability as affected by compression of three French soils Anh Minh Tang 1

  8. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    warmer room air with the cold supply air whenever the supplyroom air diffusion with cold supply air temperatures under

  9. How to Substantially Reduce the Biggest Energy Wasters in Compressed Air Systems

    E-Print Network [OSTI]

    Kemp, H. L.

    2005-01-01T23:59:59.000Z

    in the plant-located other than the compressor room. The real question is: WHERE IN THE WORLD IS ALL THE AIR GOING? AND WHY? What can we do differently? And for less kW and dollars? Most plant mangers are surprised that compressed air represents up... THE AIR GOING? AND WHY? Every application should be challenged LEAKS On a national average, 25% of the loaded and running horsepower is dedicated to support leaks YES 25%!! If your plant is running 400 HP worth of compressors - then 100 HP...

  10. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOE Patents [OSTI]

    Clarke, John M. (Chillicothe, IL)

    2003-08-05T23:59:59.000Z

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  11. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    SciTech Connect (OSTI)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01T23:59:59.000Z

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  12. Compressed Air System Control Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow Workshop Report JanuarySystem Control

  13. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01T23:59:59.000Z

    to the goal of building energy efficiency into air qualityfacing it. Building energy efficiency represents a cost-Focusing on building energy efficiency is an appropriate

  14. Natural air motion and stratification in passive buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

    1984-01-01T23:59:59.000Z

    Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

  15. Cold air distribution in office buildings: technology assessment for califonia

    E-Print Network [OSTI]

    Bauman, Fred; Borgers, T.; LaBerge, P.; Gadgil, A.

    1993-01-01T23:59:59.000Z

    room air with the cold supply air whenever the supplyroomair diffusion with cold supply air temperatures space

  16. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect (OSTI)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16T23:59:59.000Z

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  17. A method of building an aggregated indicator of air-pollution impacts

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A method of building an aggregated indicator of air-pollution impacts Thierry GOGER, Robert JOUMARD intend to build a global environmental impact indicator of air pollution to assess transport-generated air pollution, while simultaneously conserving the value of the environmental impact of each type

  18. Modeling VOC sorption of building materials and its impact on indoor air quality

    E-Print Network [OSTI]

    Zhang, Jinsong, 1975-

    2001-01-01T23:59:59.000Z

    Sorption of volatile organic compounds (VOCs) by building materials can have significant effect on the indoor VOC concentration levels and indoor air quality in buildings. The objective of this study was to investigate ...

  19. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy Efficient Buildings Craig D.Quality ~leasurements in Energy Efficient Buildings Craig D.Gregory W. Traynor Energy Efficient Buildings Program Energy

  20. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

  1. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    DOE Patents [OSTI]

    Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

    2012-03-06T23:59:59.000Z

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  2. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    Field Evaluation of Cold Air Distribution Systems. EPRIand J.S. Elleson. 1988. Cold Air Distribution Design Guide.Field Evaluation of a Cold Air Distribution System. EPRI

  3. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Survey, or CBECS (EIA, 2003), to compare the types of buildings in our commercial building leakage database

  4. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit theInnovation PortalCompositional

  5. EA-1752: Pacific Gas & Electric Company (PG&E), Compressed Air Energy Storage (CAES) Compression Testing Phase Project, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    DOE is preparing this EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

  6. Energy and air quality implications of passive stack ventilation in residential buildings

    E-Print Network [OSTI]

    Energy and air quality implications of passive stack ventilation in residential buildings Laboratory is an equal opportunity employer. #12;Energy and air quality implications of passive stack in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    E-Print Network [OSTI]

    Sidheswaran, Meera

    2010-01-01T23:59:59.000Z

    VOCs substitute for ventilation in commercial buildings? ."Gorfain J (2008). Analysis of ventilation data from the U.S.Commercial Building Ventilation Energy Meera Sidheswaran,

  8. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    Cold Air Distribution Systems. EPRI Report EM-5447, ElectricAir Distribution Design Guide. EPRI Report EM-5730, ElectricAir Distribution System. EPRI Report CU-6690, Vol. 1 and 2,

  9. Thermo-fluidal behavior of the air in a cavern for the CAES-G/T[Compressed Air Energy Storage Gas Turbine

    SciTech Connect (OSTI)

    Tada, Shigeru; Yoshida, Hideo; Echigo, Ryozo; Oishi, Yasushi

    1999-07-01T23:59:59.000Z

    In this paper, a numerical analysis was performed to gain the detailed features of the thermo-fluidal behavior of the air inside the cavern for the compressed air storage gas turbine (CAES-G/T). The CAES-G/T, a peak shave power plant is now on the installation in Japan, where energy is stored in off peak period by compressed air in an underground cavern at pressure up to 80 atm abs. In the present work, an analytical model based on the two-dimensional laminar flow on the cross-section of the circular cavern was developed to quantify the effect of the transient process occurring in the cavern and wall during injection, storage and release of compressed air in the experimental circular cavern. the air was introduced until the required pressure inside the cavern is reached, then it was released outside after the storage period. It was found that the stratified temperature distribution was maintained in the cavern during compression and expansion periods. The wall temperature varied together with the variation of the air temperature with time, leading to the heat storage in the wall.

  10. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect (OSTI)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01T23:59:59.000Z

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  11. Proceedings: Indoor Air 2005 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    indoor sources such as photocopiers, laser printers or air purifiers, outdoor ozone is the main source generated using pure oxygen (Air Liquide, 99.999 % O2) through an UV light generator (Pen Ray, model SOG 1Proceedings: Indoor Air 2005 2118 REACTIONS BETWEEN OZONE AND BUILDING PRODUCTS: IMPACT ON PRIMARY

  12. INDOOR AIR QUALITY IN ENERGY-EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, Craig D.

    2011-01-01T23:59:59.000Z

    new buildings incorporating energy- efficient designs, Theenergy-efficient residential, studied as possible models design.

  13. Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

    E-Print Network [OSTI]

    1968-01-01T23:59:59.000Z

    Proposed Adjudication of the Contract for the Heating, Ventilating and Air Conditioning Installations for the ISR Buildings

  14. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  15. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01T23:59:59.000Z

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

  16. INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01T23:59:59.000Z

    incorporating energy efficient designs. Indoor air qualityincorporating energy efficient designs. In the future, theenergy efficient ventilation standards and ventilation designs

  17. Compressed air energy storage (CAES) environmental control concerns and program plan

    SciTech Connect (OSTI)

    Beckwith, M.A.; Boehm, D.W.

    1980-06-01T23:59:59.000Z

    This report assesses the required environmental research and recommends a program plan to assist DOD's Environmental Control Technology Division (ECT) in performing its mission of ensuring that the procedures, processes, systems, and strategies necessary to minimize any adverse environmental impacts of compressed air energy storage (CAES) are developed in a timely manner so as not to delay implementation of the technology. To do so, CAES technology and the expected major environmental concerns of the technology are described. Second, ongoing or planned research in related programs and the applicability of results from these programs to CAES environmental research are discussed. Third, the additional research and development required to provide the necessary environmental data base and resolve concerns in CAES are outlined. Finally, a program plan to carry out this research and development effort is presented.

  18. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency 

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01T23:59:59.000Z

    The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics...

  19. Building America Technology Solutions for New and Existing Homes: Air Leakage and Air Transfer Between Garage and Living Space

    Broader source: Energy.gov [DOE]

    In this project, Building Science Corporation worked with production home builder K. Hovnanian to conduct testing at a single-family home in Waldorf, Maryland, constructed in accordance with the 2009 International Residential Code. The team used automated fan pressurization and pressure monitoring techniques to conduct a series of 25 tests to measure the garage and house air leakage and pressure relationships and the garage-to-house air leakage.

  20. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Energy Storage System Mohsen Saadat, Farzad A. Shirazi, Perry Y. Li Abstract-- A high-level supervisory controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine the effect of storage system sizing on the maximum revenue. I. INTRODUCTION Large-scale cost effective energy

  1. Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit

    SciTech Connect (OSTI)

    Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2010-12-15T23:59:59.000Z

    Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

  2. Outside Air Ventilation Controller - Building America Top Innovation...

    Energy Savers [EERE]

    about this Top Innovation. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that are implementing outside...

  3. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    Building Environment and Thermal Envelope Council (BETEC)of Thermal Performance of the Exterior Envelopes ofof the Thermal Performance of the Exterior Envelopes of

  4. Indoor Air Quality Factors in Designing a Healthy Building John D. Spengler

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    , building materials and systems, ventilation models, design tools Shortened title: IAQ in Designing and regulations, rapid introduction of new building materials and commercial products, as well as the prevailing indoor air quality (IAQ) is an important determinant of healthy design, it is not the sole determinant

  5. Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    11 Heat Transfer in Buildings: Application to Solar Air Collector and Trombe Wall Design H. Boyer applications are finally discussed. One concerns the modeling of a flat plate air collector and the second focuses on the modeling of Trombe solar walls. In each case, detailed modeling of heat transfer allows

  6. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15T23:59:59.000Z

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

  7. Simulation- Assisted Audit of an Air Conditioned Office Building

    E-Print Network [OSTI]

    Bertagnolio, S.; Lebrun, J.; Hannay, J.; Silva, C. A.

    , an equation-based building-HVAC simulation tool is used to assist the audit. Fuel and electricity consumption are then interpreted and significant energy saving opportunities are identified....

  8. Study of building material emissions and indoor air quality

    E-Print Network [OSTI]

    Yang, Xudong, 1966-

    1999-01-01T23:59:59.000Z

    Building materials and furnishings emit a wide variety of indoor pollutants, such as volatile organic compounds (VOCs). At present, no accurate models are available to characterize material emissions and sorption under ...

  9. Preconditioning Outside Air: Cooling Loads from Building Ventilation

    E-Print Network [OSTI]

    Kosar, D.

    1998-01-01T23:59:59.000Z

    HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation...

  10. Innovative Systems for Solar Air Conditioning of Buildings

    E-Print Network [OSTI]

    Kessling, W.; Peltzer, M.

    2004-01-01T23:59:59.000Z

    for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance...

  11. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    E-Print Network [OSTI]

    Price, P.N.

    2011-01-01T23:59:59.000Z

    pathways other than a ventilation system. The term C in thepathways other than a ventilation system. Air flow acrossInfiltration and Ventilation Systems in High-Rise Apartment

  12. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01T23:59:59.000Z

    that represented an energy-efficient design in the currentnew products and energy-efficient designs for systems usingenergy use. However, with the fairly efficient cold air system designs

  13. OPTIMAL CONTROL EXPERIMENTATION OF COMPRESSION TRAJECTORIES FOR A LIQUID PISTON AIR COMPRESSOR

    E-Print Network [OSTI]

    Li, Perry Y.

    efficiency for a given compression time and compression ratio. The main part of the heat transfer model profile for a general heat transfer model. While the results show a good improvement both in the lumped

  14. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    SciTech Connect (OSTI)

    Hobson, M. J.

    1981-11-01T23:59:59.000Z

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  15. Phase A: Initial Development of an Advanced Diagnostic Procedure for Air-Side Retrofits in Commercial Buildings

    E-Print Network [OSTI]

    Reddy, T. A.; Kissock, J. K.; Katipamula, S.; Claridge, D. E.

    1994-01-01T23:59:59.000Z

    The objective of this research is to develop a diagnostic approach that involves analyzing monitored whole-building cooling and heating energy use in large commercial buildings in order to determine the effectiveness of air-side energy retrofits...

  16. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01T23:59:59.000Z

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  18. Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin

    E-Print Network [OSTI]

    Zhao, T.; Zhang, J.; Li, Y.

    2006-01-01T23:59:59.000Z

    This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

  19. Air Barriers for Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NM - Building Americaof

  20. Energy Conservation of Air Conditioning Systems in Large Public Buildings

    E-Print Network [OSTI]

    Liu, P.; Li, D.

    2006-01-01T23:59:59.000Z

    cold seasons, the closed middle air layer absorbs the solar energy, and becomes the buffer layer of space between the inside and outside because of the glasshouse effect. In this case, the indoor heat loss can be reduced. While during the hot... and natural climatic microenvironment for the people indoor. Considering the energy conservation and the ecological environmental protection, this system not only satisfies the aesthetic need of the architecture, but also is the need of developing...

  1. Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency

    E-Print Network [OSTI]

    Zhu, H.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency Huawei Zhu Zhejiang Urban and Rural Planning Design Institute... conditioning system has led to extensive criticism. 2. THE CHARACTERISTICS OF THE VARIABLE REFRIGERANT VOLUME AIR CONDITIONING SYSTEM AND ITS PRESENT APPLICATION ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-3 2...

  2. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  3. Building Pressure Control in VAV System with Relief Air Fan

    E-Print Network [OSTI]

    Pang, X.; Liu, M.; Zheng, B.

    2005-01-01T23:59:59.000Z

    , recently, Wang and Liu developed a motor power based fan airflow station., which determines the fan airflow using the measured fan motor power, the fan speed or control system command to VFD, and the in-situ fan motor power curve. Since the fan power... power can be obtained directly from VFD [5]. The motor power based fan airflow station method can be applied to the fan-tracking to perform a better building pressurization. The theory of the motor power based fan airflow station can be referred...

  4. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect (OSTI)

    Wallingford, K.M.

    1987-01-01T23:59:59.000Z

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  5. Air Barriers for Residential and Commercial Buildings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISO 50001EnergyNewsletterAdvocateInnovations inEnergy Air

  6. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  7. Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical...

  8. Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

    2010-04-12T23:59:59.000Z

    This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

  9. Building compressed sensing systems : sensors and analog-to-information converters

    E-Print Network [OSTI]

    Salehi-Abari, Omid

    2012-01-01T23:59:59.000Z

    Compressed sensing (CS) is a promising method for recovering sparse signals from fewer measurements than ordinarily used in the Shannon's sampling theorem [14]. Introducing the CS theory has sparked interest in designing ...

  10. Hot Air Stratification of Ceiling Air Supply in a Large Space Building

    E-Print Network [OSTI]

    Wang, H.; Wang, Z.; Liu, C.

    2006-01-01T23:59:59.000Z

    The effects of different states of air supply and airflow patterns on temperature gradient distribution are calculated and analyzed with the help of FFSV3.0 software, using the LB models and LES and RANS methods. An experimental study with upper...

  11. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect (OSTI)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31T23:59:59.000Z

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  12. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.

    2007-08-01T23:59:59.000Z

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  13. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect (OSTI)

    Fisk, William J.

    2006-05-01T23:59:59.000Z

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  14. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    SciTech Connect (OSTI)

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark Andrew

    2013-03-01T23:59:59.000Z

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  15. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  16. Building a Business Case for Compressed Natural Gas in Fleet Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,Envelope SHARE BuildingBuildingBuilding UPF

  17. Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction

    E-Print Network [OSTI]

    Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

    2010-01-01T23:59:59.000Z

    This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 k...

  18. Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building

    E-Print Network [OSTI]

    Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

    2006-01-01T23:59:59.000Z

    Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes...

  19. air vehicle systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and reliable compressed air system... of compressed air requirements and selection of the compressor and purification equipment are only the first two steps in the compressed air...

  20. Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator

    E-Print Network [OSTI]

    Maiya, M. P.; Ravi, J.; Tiwari, S.

    2010-01-01T23:59:59.000Z

    Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature...

  1. Fault detection methods for vapor-compression air conditioners using electrical measurements

    E-Print Network [OSTI]

    Laughman, Christopher Reed.

    2008-01-01T23:59:59.000Z

    (cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

  2. Utilization of CO2 as cushion gas for porous media compressed air energy storage

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2014-01-01T23:59:59.000Z

    Mohmeyer K-U and Scharf R, Huntorf CAES: More than 20 yearsare two cavern CAES systems (Huntorf, Germany; and McIntosh,of the two-cavern Huntorf air injection and production

  3. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

  4. Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel

    E-Print Network [OSTI]

    Diamond, Richard

    energy efficiency in public housing as part of a utility's Demand Side Management (DSM) Program of the supply ventilation register for each corridor. The building is exposed on all sides to the windAir Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C

  5. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  6. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect (OSTI)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01T23:59:59.000Z

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  7. The Compressed Air Challenge Training Program is a cutting-edge, national program designed to help you find cost-effective

    E-Print Network [OSTI]

    Lin, Zhiqun

    -of-use pressure requirements » Investigating and addressing high-volume, intermittent applications » Taking stock applications · Taking stock of what you have · Compressed air system maintenance · Day 1 summary and evaluation · Taking measurements · What is happening here? Part 1 · Developing a system profile · What is happening

  8. EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York

    Broader source: Energy.gov [DOE]

    DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

  9. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 9. Design approaches: CAES. Appendix B. Champagne effect. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    This appendix documents the work performed during the study to investigate the significance of the release of dissolved air from the water in the water shaft during air compression on the design and operation of a hydraulically compensated CAES plant. This air release phenomena has been named the Champagne Effect. Included is a description of the work performed by Dr. Mollendorf to investigate the rate of diffusion of air into water, the rate of the subsequent release of air from the water during passage up the water shaft, and an evaluation of the resulting behavior of the air bubbles in the shaft. Also included is a discussion of the dynamic modeling performed by Rowe and Associates under a separate contract to DOE. This simulation was based upon a two-fluid model of the PEPCo system and includes an analysis of potential modifications to the design that might further mitigate any operation problems.

  10. Zuo, W. and Chen, Q. 2010 "Simulations of air distribution in buildings by FFD on GPU," HVAC&R Research, 16(6): 785-798.

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    Zuo, W. and Chen, Q. 2010 "Simulations of air distribution in buildings by FFD on GPU," HVAC&R Research, 16(6): 785-798. SIMULATIONS OF AIR DISTRIBUTIONS IN BUILDINGS BY FFD ON GPU Wangda Zuo, Ph to perform real-time simulation for a moderate size building with 107 grids and t = 0.1s using the FFD

  11. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  12. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

    2013-01-23T23:59:59.000Z

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle dispersion. The results of these simulations suggest the air blender should be included in the stack system to ensure qualification of the stack.

  13. The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings

    E-Print Network [OSTI]

    Xiang, C.; Xie, G.

    2006-01-01T23:59:59.000Z

    In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings...

  14. Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    Proposal for the award of a contract for the design, supply, installation and commissioning of an HVAC (Heating, Ventilation and Air Conditioning) system for Building 3862

  15. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings

    E-Print Network [OSTI]

    Hoyt, Tyler; Arens, Edward; Zhang, Hui

    2014-01-01T23:59:59.000Z

    Refrigerating, and Air Conditioning Engineers (ASHRAE);Refrigerating and Air Conditioning Engineers (ASHRAE); 2012.Refrigerating and Air-Conditioning Engineers (ASHRAE); [5

  16. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    occupants. The heating, ventilation and air conditioning (third of the heating, ventilation, and air conditioning (see Fig. 1) Heating ventilation and air conditioning (HVAC)

  17. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  18. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01T23:59:59.000Z

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  19. Analysis of integrating compressed air energy storage concepts with coal gasification/combined-cycle systems for continuous power production

    SciTech Connect (OSTI)

    Nakhamkin, M.; Patel, M.; Andersson, L. (Energy Storage and Power Consultants, Inc., Mountainside, NJ (United States))

    1992-12-01T23:59:59.000Z

    A previous study sponsored by EPRI concluded that integrating a compressed-air energy storage (CAES) plant with a coal-gasification system (CGS) can reduce the required capacity and cost of the expensive gasification system. The results showed that when compared at an equal plant capacity, the capital cost of the CGS portion of the integrated CAES/CGS plant can be reduced by as much as 30% relative to the same portion of an integrated gasification combined cycle (IGCC) plant. Furthermore, the capital cost of the CAES/CGS.plant, configured as a peaking unit, was found to be slightly lower than that of the base-load IGCC plant. However, the overall economics of the CAES/CGS plant were adversely affected by the low capacity factor of the peak-load service, and ultimately, were found to be less attractive than the IGCC plant. The main objective of this study was to develop and analyze integrated CAES/CGS power plant concepts which provide for continuous (around-the-clock) operation of both the CAES reheat turboexpander train and the CGS facility. The developed concepts also provide utility-load management functions by driving the CAES compressor trains with off-peak electricity supplied through the grid. EPRI contracted with Energy Storage Power Consultants, Inc. (ESPC) to develop conceptual designs, optimized performance characteristics, and preliminary cost data for these CAES/CGS concepts, and to provide a technical and cost comparison to the IGCC plant. The CAES/CGS concepts developed by ESPC for the current study contrast from those of Reference 1.

  20. EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS: FINAL REPORT

    E-Print Network [OSTI]

    Dimmick, R.L.

    2013-01-01T23:59:59.000Z

    STUDIES OF EFFECTS OF ENERGY CONSERVATION r1EASURES ON AIR41 T EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE80-2 EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE

  1. Operation of Energy-Efficient Air-Conditioned Buildings: An Overview

    E-Print Network [OSTI]

    Khalil, E. E.

    2010-01-01T23:59:59.000Z

    To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air...

  2. Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    Broader source: Energy.gov [DOE]

    In this project, the Consortium for Advanced Residential Buildings team sought to create a well-documented design and implementation strategy for air sealing in low-rise multifamily buildings that would assist in compliance with new building infiltration requirements of the 2012 IECC.

  3. Air quality and thermal comfort in office buildings: Results of a large indoor environmental quality survey

    E-Print Network [OSTI]

    Huizenga, C; Abbaszadeh, S.; Zagreus, Leah; Arens, Edward A

    2006-01-01T23:59:59.000Z

    based Indoor Environmental Quality Survey. Indoor Air 2004;L. Zagreus. 2005. Acoustic Quality in Office Workstations asare you with the air quality in your workspace? very

  4. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers rebates to encourage the installation of efficient compressors. Rebates amounts are dependent on the type of equipment. There is no set limit on the amount of rebates that...

  5. air heaters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meteorological fields Aerosol Emissions; Northern Hemispheric 152 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

  6. Near Isothermal Compressed Air Energy Storage Approach For Off-Shore Wind Energy using an Open Accumulator

    E-Print Network [OSTI]

    Li, Perry Y.

    turbines are under-utilized: typical capacity factor compression/expansion · Efficient operation · Hybrid hydraulic-pneumatic operation · Rapidly rample, capable · Sea/ocean as heat sink/source Hydraulic transformer: · Efficient, power dense

  7. Analysis of Cold Air Distribution System in an Office Building by the Numerical Simulation Method

    E-Print Network [OSTI]

    Jian, Y.; Li, D.; Xu, H.; Ma, X.

    2006-01-01T23:59:59.000Z

    Numerical simulation is carried out in this paper to calculate indoor air patterns, which include angles of inlet direction and induced ratios in a typical official room. According to the simulation results, the indoor air distribution and indoor...

  8. Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings

    E-Print Network [OSTI]

    Abernethy, D.

    of evaroration, ventilation and air circulation. These systems are rroviding low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly rlants with little or no internal 10iids. . The eva[lorative roof cooling...

  9. Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three

    E-Print Network [OSTI]

    Wiser, D.

    2011-01-01T23:59:59.000Z

    in the most efficient way possible. However, maintaining optimum indoor air quality often seems to be in conflict with minimizing operating and energy costs. Conventional wisdom says the best IAQ strategy involves increasing ventilation rates. But outdoor air...

  10. Operation of Energy-Efficient Air-Conditioned Buildings: An Overview 

    E-Print Network [OSTI]

    Khalil, E. E.

    2010-01-01T23:59:59.000Z

    To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside ...

  11. Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

    2013-09-01T23:59:59.000Z

    Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

  12. SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-

    E-Print Network [OSTI]

    Boyer, Edmond

    AND AN AIR- SOURCE HEAT PUMP B. Filliard1 ; A. Guiavarch1 ; M. Jabbour1 . 1: MINES ParisTech ­ CEP ­ Centre simultaneously equipped with air-source heat pumps and photovoltaic collectors is constantly increasing of the heat pump is installed in the attic just beneath the PV collector, which preheats the incoming air

  13. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    current and future energy storage technologies for electriccompressed air energy storage technology by the hydraulicgridflexenergy.com/energy-storage- technologies/, accessed

  14. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect (OSTI)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31T23:59:59.000Z

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  15. Quality site seasonal report: Army Air Force Exchange Service Headquarters Building, SFBP 1343, August 1984 through May 1985

    SciTech Connect (OSTI)

    Pollock, E.O. Jr.

    1987-10-15T23:59:59.000Z

    The active solar Domestic Hot Water (DHW) system at the HQ Army-Air Force Exchange Service (AAFES) Building was designed and constructed as part of the Solar in Federal Buildings Programs (SFBP). This retrofitted system is one of eight of the systems in the SFBP selected for quality monitoring. The purpose of this monitoring effort is to document the performance of quality state-of-the-art solar systems in large federal building applications. The six-story HQ AAFES Building houses a cafeteria, officer's mess and club and office space for 2400 employees. The siphon-return drainback system uses 1147 ft/sup 2/ of Aircraftsman flat-plate collectors to collect solar energy which is used to preheat domestic hot water. Solar energy is stored in a 1329-gallon tank and transferred to the hot water load through a heat exchanger located in the 356-gallon DHW preheat tank. Auxiliary energy is supplied by two gas fired boilers which boost the temperature to 130/sup 0/F before it is distributed to the load. Highlights of the performance of the HQ AAFES Building solar system during the monitoring period from August 1984 through May 1985 are presented in this report.

  16. Building Envelope Air Leakage Failure in Small Commercial Buildings Related to the Use of Suspended Tile Ceilings

    E-Print Network [OSTI]

    Withers, C. R.; Cummings, J. B.

    2000-01-01T23:59:59.000Z

    , there is the likelihood that loose fitting tiles may be pushed open at higher test pressures. This indicates that the airtightness may change depending on the pressure differential that occurs across the ceiling. A typical 4 square foot ceiling tile weighs only 4... foot by 2 foot air distribution registers (representing 2.3% of ceiling area) were sealed off during the test to eliminate duct pathways and leaks from being measured. While the room was depressurized, the wall electric outlets were checked to see...

  17. The Effect of Turbulent Mixing on Compression Ignition of a Lean Hydrogen/Air Mixture Jacqueline H. Chen1

    E-Print Network [OSTI]

    Im, Hong G.

    automotive engines known as homogeneous charge compression ignition combustion (HCCI). By operating under overall fuel-lean conditions, and hence, at lower temperatures, HCCI can potentially achieve high engine, the primary mode of combustion in this regime is thought to occur by volumetric autoignition. Therefore, HCCI

  18. air-conditioned office buildings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Adsorption versus absorptionAssessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration Amir Sharafian,...

  19. Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains

    E-Print Network [OSTI]

    Fisk, W.J.

    2011-01-01T23:59:59.000Z

    decreases between cooling coils and supply registers andoutlet of the cooling coils and the supply registers causeddecreased the cooling capacity of the supply air exiting

  20. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    SciTech Connect (OSTI)

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22T23:59:59.000Z

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  1. Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid

    E-Print Network [OSTI]

    Arnas, O. A.; McQueen, T. M.

    1984-01-01T23:59:59.000Z

    The combination of several concepts of new energy technologies may make it possible to reduce the energy needs for thermal comfort, especially cooling and dehumidification, in small sized, single-story commercial buildings. The potentials...

  2. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    E-Print Network [OSTI]

    Kim, H.-M.

    2012-01-01T23:59:59.000Z

    Calculated time integrated energy balance term in the 5 thCalculated time integrated energy balance term in the 5 thof air tightness and energy balance Hyung-Mok Kim 1 , Jonny

  3. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Gardner, William Payton

    2013-06-01T23:59:59.000Z

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

  4. Air temperature thresholds for indoor comfort and perceived air quality

    E-Print Network [OSTI]

    Zhang, Hui; Edward, Arens; Pasut, Wilmer

    2012-01-01T23:59:59.000Z

    in the Netherlands, Indoor Air 2, 127 – 136. BuildingPaliaga, G. (2009) Moving air for comfort. ASHRAE Journal,ventilation system on perceived air quality, Indoor Air

  5. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    SciTech Connect (OSTI)

    Karagiozis, A.N.

    2007-05-15T23:59:59.000Z

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  6. BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, Elton J.

    2011-01-01T23:59:59.000Z

    ventilation rates established by various state and localVentilation requirements are currently set by state and localventilation rates are specified in the various building codes adopted by state and local

  7. Building Aautomation system embedded air-handling unit performance degradation detector

    E-Print Network [OSTI]

    Song, L.; Wang, G.

    2014-01-01T23:59:59.000Z

    , September 14-17, 2014 Building Energy Efficiency Laboratory @ OU 23 Acknowledgements Dr. Gang Wang University of Miami Dr. Mike Brambley PNNL Funding agencies: 1. PNNL (2011): Summer research. 2. ASHRAE (2011-2013): Developing standard procedures...

  8. Best Practice For the Location of Air and Thermal Boundaries in Small Commercial Buildings

    E-Print Network [OSTI]

    Cummings, J. B.; Withers, C. R.

    2000-01-01T23:59:59.000Z

    to problems with radon entry, sewer gas entry, and backdrafting and other problems related to combustion appliances. In some buildings, depressurization may become sufficiently extreme so that it is difficult to open exterior doors and combustion...

  9. Gas -Fueled Engine-Driven Air Conditioning Systems for Commercial Buildings

    E-Print Network [OSTI]

    Lindsay, B. B.

    1987-01-01T23:59:59.000Z

    In 1985, the Gas Research Institute (GRI) initiated a program with Tecogen, Inc., to develop a nominal 150-ton gas-fueled engine-driven water chiller for commercial buildings. The packaged system has been designed, fabricated, and operated...

  10. Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model

    E-Print Network [OSTI]

    Walker, Christine E. (Christine Elaine)

    2006-01-01T23:59:59.000Z

    Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

  11. Modeling of Heat Transfer in Rooms in the Modelica Buildings Library

    E-Print Network [OSTI]

    Wetter, Michael

    2013-01-01T23:59:59.000Z

    for building heating, ventilation and air-conditioningfor Building Heating, Ventilation and Air- Conditioning

  12. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    Austria, September 2006. Modelica As- sociation and Arsenalsystems. The ?exibility of Modelica has been T room in [° C]lss. AirConditioning - a Modelica li- o brary for dynamic

  13. air-conditioned domestic buildings: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer, the outer layer and the air layer between them. To make the best of the solar energy, the low emissivity glass, which can reduce the harmful effect to the surroundings by...

  14. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    a model with prescribed heat input into the medium, i.e. ,heat and towers. The air inlet temperature is obtained from an inputan input signal. There is also a constant effectiveness heat

  15. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 5: site selection. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    This volume documents a six-step site selection process undertaken to identify and subsequently rank potential sites suitable for either an underground pumped hydroelectric (UPH) facility, or a water-compensated hard-rock cavern compressed air energy storage (CAES) facility. The region of study was confined to the service area of the Potomac Electric Power Company (PEPCO) and contiguous areas. Overriding considerations related to geology, environmental impact and transmission-line routing were studies within the context of minimizing plant costs. The selection process led to the identification of several sites suitable for the development of either a CAES or an UPH facility. Design development and site exploration at the selected site are described in other volumes of the final report.

  16. Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

  17. Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294)! Principal Investigators: Perry Li1,a, Terry Simon1,b, James Van de Ven1,c, Eric Loth2,d, Steve Crane3,e!

    E-Print Network [OSTI]

    Li, Perry Y.

    Novel Compressed Air Approach to Off-Shore Wind Energy Storage (NSF Grant #: EFRI-1038294@lightsailenergy.com! Options for Energy Storage Compatible with Wind Turbines:! Objective! Our objective is to create a cost effective local energy storage system for offshore wind turbines using an "open accumulator" high pressure

  18. Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

  19. Modeling the exit velocity of a compressed air cannon Z. J. Rohrbach, T. R. Buresh, and M. J. Madsen

    E-Print Network [OSTI]

    Madsen, Martin John

    whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that nei- ther process, launched from a cannon with initial gas pressure P0. We model the cannon as a reservoir of volume V0

  20. Study of the Outside Air Enthalpy Effects in the Screening of Metered Building Energy Data

    E-Print Network [OSTI]

    Ji, J.; Baltazar, J. C.; Claridge, D.

    and humid climate would be better performed by using hOA. Study cases are also presented to illustrate the difference between application of hOA and TOA in energy use data analysis for buildings with different functions. The statistics study shows...

  1. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    E-Print Network [OSTI]

    , or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ

  2. Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    and energy conservation in buildings," HVAC&R Research, 14(3), 359-372. A Dual Airflow Window for Indoor Air with exhausted indoor air. The energy needed to condition outdoor air is reduced because of the counterflow heat, the dual airflow window has a great potential for conserving energy and improving indoor air quality

  3. Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems

    E-Print Network [OSTI]

    Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

    1994-01-01T23:59:59.000Z

    , building energy consumption can be further reduced even after these traditional O&M measures are applied. This involves optimal adjusting of cold deck and hot deck settings according to the ambient temperature and organizing cold deck settings properly... where more than one cold deck is present (Extended O&M Measures). The cold deck and hot deck settings can be adjusted continuously by the Energy Management and Control Systems without additional investment. The optimized cold deck settings can...

  4. Thermal and air quality acceptability in buildings that reduce energy by reducing minimun airflow from overhead diffusers

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    for rating the performance of air outlets and inlets. ANSI/comfort with a variable air volume (VAV) system. InternalGuidelines: Advanced Variable Air Volume (VAV) Systems.

  5. Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype

    SciTech Connect (OSTI)

    Kozubal, E.; Woods, J.; Judkoff, R.

    2012-04-01T23:59:59.000Z

    This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

  6. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1998-06-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

  7. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    SciTech Connect (OSTI)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16T23:59:59.000Z

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

  8. Buildings Interoperability Landscape ? DRAFT

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Heating, Refrigerating, and Air-Conditioning Engineers BACS building automation and control system BCHP building-cooling-heating-power BPM Business Process Modeling BTO...

  9. Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions

    SciTech Connect (OSTI)

    Ju, Yiguang; Sun, Wenting; Burke, M. P.; Gou, Xiaolong; Chen, Zheng

    2011-01-01T23:59:59.000Z

    The flame regimes of ignition and flame propagation as well as transitions between different flame regimes of n-heptane-air mixtures in a one-dimensional, cylindrical, spark assisted homogeneously charged compression ignition (HCCI) reactor are numerically modeled using a multi-timescale method with reduced kinetic mechanism. It is found that the initial mixture temperature and pressure have a dramatic impact on flame dynamics. Depending on the initial temperature gradient, there exist at least six different combustion regimes, an initial single flame front propagation regime, a coupled low temperature and high temperature double-flame regime, a decoupled low temperature and high temperature double-flame regime, a low temperature ignition regime, a single high temperature flame regime, and a hot ignition regime. The results show that the low temperature and high temperature flames have distinct kinetic and transport properties as well as flame speeds, and are strongly influenced by the low temperature chemistry. The pressure and heat release rates are affected by the appearance of different flame regimes and the transitions between them. Furthermore, it is found that the critical temperature gradient for ignition and acoustic wave coupling becomes singular at the negative temperature coefficient (NTC) region. The results show that both the NTC effect and the acoustic wave propagation in a closed reactor have a dramatic impact on the ignition front and acoustic interaction.

  10. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

    2012-01-01T23:59:59.000Z

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  11. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-05-01T23:59:59.000Z

    Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

  12. Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 4. System planning studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01T23:59:59.000Z

    Potomac Electric Power Company and Acres American Incorporated have been performing a three year DOE/EPRI/PEPCO sponsored program for preliminary design of water compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) power plants. This report presents both the costs of the CAES and UPH plant designs which were developed, and the results of economic evaluations performed for the PEPCO system. The PEPCO system planning analysis was performed in parallel stages with plant design development. Analyses performed early in the project indicated a requirement for 1000 MW/10,000 MWH of energy storage on a daily operating schedule, with economic installation in two segments of 500 MW in 1990 and 1997. The analysis was updated eighteen months later near the end of the project to reflect the impact of new growth projections and revised plant costs. The revised results indicated economic installations for either UPH or CAES of approximately 675 MW/6750 MWH on a daily cycle, installed in blocks of approximately 225 MW in 1990, 1993 and 1995. Significant savings in revenue requirements and oil fuel over the combustion turbine alternative were identified for both CAES and UPH.

  13. Rotary Vapor Compression Cycle Technology: A Pathway to Ultra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Technology: A Pathway to Ultra-Efficient Air Conditioning, Heating and Refrigeration Rotary Vapor Compression Cycle Technology: A Pathway to Ultra-Efficient Air...

  14. Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    buildings and heating, ventilation and air- conditioning (building type, heating, ventilation and air-conditioning (

  15. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  16. System and method for pre-cooling of buildings

    DOE Patents [OSTI]

    Springer, David A.; Rainer, Leo I.

    2011-08-09T23:59:59.000Z

    A method for nighttime pre-cooling of a building comprising inputting one or more user settings, lowering the indoor temperature reading of the building during nighttime by operating an outside air ventilation system followed, if necessary, by a vapor compression cooling system. The method provides for nighttime pre-cooling of a building that maintains indoor temperatures within a comfort range based on the user input settings, calculated operational settings, and predictions of indoor and outdoor temperature trends for a future period of time such as the next day.

  17. New Air and Water-Resistive Barrier Technologies for Commercial...

    Energy Savers [EERE]

    New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive Barrier Technologies for Commercial Buildings New Air and Water-Resistive...

  18. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect (OSTI)

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27T23:59:59.000Z

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The plants used in the rooftop greenhouse and on the floors were made up of a number of species selected for the following functions: daytime metabolic carbon dioxide (CO{sub 2}) absorption, nighttime metabolic CO{sub 2} absorption, and volatile organic compound (VOC) and inorganic gas absorption/removal for air cleaning. The building contains a reported 910 indoor plants. Daytime metabolic species reported by the PBC include Areca Palm, Oxycardium, Rubber Plant, and Ficus alii totaling 188 plants (21%). The single nighttime metabolic species is the Sansevieria with a total of 28 plants (3%). The 'air cleaning' plant species reported by the PBC include the Money Plant, Aglaonema, Dracaena Warneckii, Bamboo Palm, and Raphis Palm with a total of 694 plants (76%). The plants in the greenhouse (Areca Palm, Rubber Plant, Ficus alii, Bamboo Palm, and Raphis Palm) numbering 161 (18%) of those in the building are grown hydroponically, with the room air blown by fan across the plant root zones. The plants on the building floors are grown in pots and are located on floors 1-6. We conducted a one-day monitoring session in the PBC on January 1, 2010. The date of the study was based on availability of the measurement equipment that the researchers had shipped from Lawrence Berkeley National Lab in the U.S.A. The study date was not optimal because a large proportion of the regular building occupants were not present being New Year's Day. An estimated 40 people were present in the building all day during January 1. This being said, the building systems were in normal operations, including the air handlers and other HVAC components. The study was focused primarily on measurements in the Greenhouse and 3rd and 5th floor environments as well as rooftop outdoors. Measurements included a set of volatile organic compounds (VOCs) and aldehydes, with a more limited set of observations of indoor and outdoor particulate and carbon dioxide concentrations. Continuous measurements of Temperature (T) and relative humidity (RH) were made selected indoor and outdoor locations.

  19. Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage

    E-Print Network [OSTI]

    Wang, S.; Xu, X.; Ma, Z.

    2006-01-01T23:59:59.000Z

    . These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess...

  20. air drilling system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced gas engine... Lindsay, B. B.; Koplow, M. D. 1988-01-01 40 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

  1. air coil system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced gas engine... Lindsay, B. B.; Koplow, M. D. 1988-01-01 40 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

  2. alam sampel air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 101 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge Texas A&M...

  3. air bag system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an advanced gas engine... Lindsay, B. B.; Koplow, M. D. 1988-01-01 46 Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge...

  4. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13T23:59:59.000Z

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  5. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

  6. Compression embedding

    SciTech Connect (OSTI)

    Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Bradley, Jonathan N. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%.

  7. Compression embedding

    DOE Patents [OSTI]

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07T23:59:59.000Z

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  8. Compression embedding

    DOE Patents [OSTI]

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-03-10T23:59:59.000Z

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique is disclosed. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method. 11 figs.

  9. Compression embedding

    DOE Patents [OSTI]

    Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Bradley, Jonathan N. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    A method of embedding auxiliary information into the digital representation of host data created by a lossy compression technique. The method applies to data compressed with lossy algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as integer indices having redundancy and uncertainty in value by one unit. Indices which are adjacent in value are manipulated to encode auxiliary data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. Lossy compression methods use loss-less compressions known also as entropy coding, to reduce to the final size the intermediate representation as indices. The efficiency of the compression entropy coding, known also as entropy coding is increased by manipulating the indices at the intermediate stage in the manner taught by the method.

  10. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect (OSTI)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01T23:59:59.000Z

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated with increased headache (OR=1.6). Fair or poor condition of duct liner was associated with increased upper respiratory symptoms (OR=1.4). Most of the many potential risk factors assessed here had not been investigated previously, and associations found with single symptoms may have been by chance, including several associations that were the reverse of expected. Risk factors newly identified in these analyses that deserve attention include outdoor air intakes less than 60 m above the ground, lack of operable windows, poorly maintained humidification systems, and lack of scheduled inspection for HVAC systems. Infrequent cleaning of cooling coils and drain pans were associated with increases in several symptoms in these as well as prior analyses of BASE data. Replication of these findings is needed, using more objective measurements of both exposure and health response. Confirmation of the specific HVAC factors responsible for increased symptoms in buildings, and development of prevention strategies could have major public health and economic benefits worldwide.

  11. Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage 

    E-Print Network [OSTI]

    Wang, S.; Xu, X.; Ma, Z.

    2006-01-01T23:59:59.000Z

    -rising commercial office building in construction is presented. Alternative control strategies are proposed to improve the energy efficiency based on the current measurements of the original design as well as additional metering instruments as requested...

  12. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J. (Columbia, MD); Tiller, Dale B. (Lincoln, NE); Wienhold, Paul D. (Baltimore, MD); Hildebrand, Richard J. (Edgemere, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  13. The politics of consensus-building : case study of diesel vehicles and urban air pollution in South Korea

    E-Print Network [OSTI]

    Kim, Dong-Young, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Look at the three efforts to resolve public disputes over diesel passenger cars and urban air quality management in South Korea. this dissertation explores the main obstacles in nascent democracies to meeting the necessary ...

  14. Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar

    Broader source: Energy.gov [DOE]

    This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

  15. Combustion Safety for Appliances Using Indoor Air (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion ProductsCombustion Safety for Appliances Using

  16. Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha

    E-Print Network [OSTI]

    Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

    2006-01-01T23:59:59.000Z

    of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source...

  17. Healthy buildings

    SciTech Connect (OSTI)

    Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

    1991-01-01T23:59:59.000Z

    This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

  18. A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system

    E-Print Network [OSTI]

    Yu, Jong Keun

    2010-01-01T23:59:59.000Z

    electricity demand responses in a building. The remedieselectricity demand responses for a building. An alternativedemand response (DR), is widely suggested for building HVAC

  19. The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing

    E-Print Network [OSTI]

    Sheng, G.; Xie, G.

    2006-01-01T23:59:59.000Z

    -conditioning has many merits such as clean, safety, high COP, longevity of service, low price and maintenance easily. But it also has weak aspects, for example, its power consumption is higher, which has became the main hidden trouble of electric network..., stability of running, service life, maintenance, price, and so on. There are 3 kinds of common water chilling units, which are the centrifugal compressor chiller? the ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency...

  20. air emissions control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the ground surface and the ambient air. This situation creates areas called urban heat 18 Advanced Controls for Industrial Compressed Air Systems Texas A&M University -...

  1. Sandia National Laboratories: percussive drilling with compressed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    percussive drilling with compressed air Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News &...

  2. Impact of Independently Controlling Ventilation Rate per Person and Ventilation Rate per Floor Area on Perceived Air Quality, Sick Building Symptoms and Decision Making

    E-Print Network [OSTI]

    Maddalena, Randy

    2014-01-01T23:59:59.000Z

    REFRIGERATING AND AIR CONDITIONING ENGINEERS, 103, 244-255.Heating, Refrigerating, and Air Conditioning Engineers, Inc.REFRIGERATING AND AIR CONDITIONING ENGINEERS, 113(2), 466.

  3. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    SciTech Connect (OSTI)

    Logue, J. M.; Turner, W. J.N.; Walker, I. S.; Singer, B. C.

    2015-01-01T23:59:59.000Z

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  4. Radioactive air emissions notice of construction for phase 2 Spent Nuclear Fuel Canister Storage Building -- Project W-379

    SciTech Connect (OSTI)

    Kamberg, L.D.

    1998-06-17T23:59:59.000Z

    The purpose of this Notice of Construction (NOC) is to provide a rewritten NOC for obtaining regulatory approval for changes to the previous Canister Storage Building (CSB) NOCs (WDOH, 1996 and EPA, 1996) as were approved by the Washington State Department of Health (WDOH, 1996a) and US Environmental Protection Agency (EPA, 1996a). These changes are because of a revised sealing configuration of the multi-canister overpacks (MCOS) that are used to store the SNF. A flow schematic of the SNF Project is provided in Figure 1-1. A separate notification of startup will be provided apart from this NOC.

  5. Best compression: Reciprocating or rotary?

    SciTech Connect (OSTI)

    Cahill, C.

    1997-07-01T23:59:59.000Z

    A compressor is a device used to increase the pressure of a compressible fluid. The inlet pressure can vary from a deep vacuum to a high positive pressure. The discharge pressure can range from subatmospheric levels to tens of thousands of pounds per square inch. Compressors come in numerous forms, but for oilfield applications there are two primary types, reciprocating and rotary. Both reciprocating and rotary compressors are grouped in the intermittent mode of compression. Intermittent is cyclic in nature, in that a specific quantity of gas is ingested by the compressor, acted upon and discharged before the cycle is repeated. Reciprocating compression is the most common form of compression used for oilfield applications. Rotary screw compressors have a long history but are relative newcomers to oilfield applications. The rotary screw compressor-technically a helical rotor compressor-dates back to 1878. That was when the first rotary screw was manufactured for the purpose of compressing air. Today thousands of rotary screw compression packages are being used throughout the world to compress natural gas.

  6. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  7. Co-simulation of innovative integrated HVAC systems in buildings

    E-Print Network [OSTI]

    Trcka, Marija

    2010-01-01T23:59:59.000Z

    Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

  8. Revealing Occupancy Diversity Factors in Buildings Using Sensor Data

    E-Print Network [OSTI]

    Bouffaron, Pierrick

    2014-01-01T23:59:59.000Z

    for building VAV air-conditioning systems. Energy andRefrigerating and Air-Conditioning Engineers, Inc; 2004.Ventilation, and Air Conditioning) systems represent the

  9. Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems

    SciTech Connect (OSTI)

    Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

  10. Arnold Schwarzenegger INDOOR-OUTDOOR AIR LEAKAGE

    E-Print Network [OSTI]

    ;#12;Indoor-Outdoor Air Leakage in Apartments and Commercial Buildings Appendix A Air Infiltration Model for Large Buildings Appendix B Analysis of Commercial Building Data Appendix C Commercial Building Data contains data and discussion of the leakage parameter in commercial buildings. The leakage parameter

  11. Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners

    E-Print Network [OSTI]

    Shah, Nihar

    2014-01-01T23:59:59.000Z

    HETAC, “High Efficiency Thermal Air Conditioning”, http://Refrigeration and Air Conditioning Industry Association,variable air volume air conditioning system for buildings”,

  12. An energy standard for residential buildings in south China

    E-Print Network [OSTI]

    Huang, Yu Joe; Lang, Siwei; Hogan, John; Lin, Haiyan

    2003-01-01T23:59:59.000Z

    Code for Residential Buildings”, Third International Conference on Indoor Air Quality, Ventilation and Energy Conservation

  13. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1997-02-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

  14. Reducing Air Compressor Work by Using Inlet Air Cooling and Dehumidification 

    E-Print Network [OSTI]

    Hardy, Mark James

    2011-02-22T23:59:59.000Z

    are sensitive to ambient conditions, as evidenced by the fact that compressing cooler and drier air decreases the amount of work required to compress the air. A thermodynamic model of an air compressor system was developed and several cases were run by using...

  15. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    Air-conditioning Engineers Emmerich, S.J. and J. Crum. 2005.conditioned buildings (Emmerich and Crum, 2005), and fewer

  16. Occupant satisfaction in mixed-mode buildings

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2009-01-01T23:59:59.000Z

    Air-conditioning Engineers Emmerich, S.J. and J. Crum. 2005.conditioned buildings (Emmerich and Crum, 2005), and fewer

  17. MAD-AIR

    E-Print Network [OSTI]

    Tooley, J. J.; Moyer, N. A.

    1989-01-01T23:59:59.000Z

    with stress- related illness rather than the anwr that spells RELIEF. Air flow in, through ad arourd a house is an important concern in the building we call haw. !lb enhance air flow and change the various corditions or properties of the air, a variety...

  18. Building Operator Certification

    E-Print Network [OSTI]

    Lilley, D.

    2013-01-01T23:59:59.000Z

    Building Operator Certification Energy Efficiency through Operator Training CATEE December 18, 2013 – San Antonio, TX Dennis Lilley, CEM, PMP ESL-KT-13-12-49 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Building Operator Certification Energy Efficiency through Operator Training What is Building Operator Certification? Industry-recognized credential in energy efficient building operation practices Created with 100 industry experts Launched in 1996 9...

  19. Power Characteristics of Industrial Air Compressors

    E-Print Network [OSTI]

    Schmidt, C.; Kissock, K.

    The power draw characteristics of air compressors are primarily determined by the type of compressor control and the relationship between the compressor's output capacity and the compressed air demand in the plant. In this paper, we review the most...

  20. A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency 

    E-Print Network [OSTI]

    Zahlan, J.; Avci, M.; Asfour, S.

    2014-01-01T23:59:59.000Z

    determines the ideal air compressor horsepower required to meet the facility air demand at the required pressure. Air pressure drops are incorporated using a compressed air pipeline pressure drop table, while air leaks are calculated throughout the system...

  1. Energy Savings in Industrial Buildings 

    E-Print Network [OSTI]

    Zhou, A.; Tutterow, V.; Harris, J.

    2009-01-01T23:59:59.000Z

    , and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings – heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due...

  2. Building Retrofits for Increased Protection Against Airborne

    E-Print Network [OSTI]

    shutdown and purge cycles, and automated heating, ventilating and air-conditioning (HVAC) operational degrees of applicability to particular buildings and ventilation systems. This document presents ventilation system recommissioning, building envelope airtightening, building pressurization, relocation

  3. Occupant satisfaction in mixed-mode buildings.

    E-Print Network [OSTI]

    Brager, Gail; Baker, Lindsay

    2008-01-01T23:59:59.000Z

    to incorporate other green building features (75% were LEED-Design, and is a green building rating system developed bythe U.S. Green Building Council. From Proceedings, Air

  4. Extension of the high load limit in the Homogeneous Charge Compression Ignition engine

    E-Print Network [OSTI]

    Scaringe, Robert J. (Robert Joseph)

    2009-01-01T23:59:59.000Z

    The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

  5. Use of First Law Energy Balance as a Screening Tool for Building Energy Use Data: Experiences on the Inclusion of Outside Air Enthalpy Variable

    E-Print Network [OSTI]

    Masuda, H.; Ji, J.; Baltazar, J. C.; Claridge, D. E.

    Quality controlled energy-use data is the foundation of energy performance evaluation for a building. The “Energy Balance Load” (EBL), a parameter derived from the first law of thermodynamics based on a whole-building energy analysis, has been...

  6. inAir: Sharing Indoor Air Quality Measurements and Visualizations

    E-Print Network [OSTI]

    Mankoff, Jennifer

    evidence has indicated that indoor air pollution within homes and other buildings can be worse than the outdoor air pollution in even the largest and most industrialized cities. For example, the California Air Resources Board estimates that indoor air pollutant levels are 25-62% greater than outside levels [4

  7. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2004-09-01T23:59:59.000Z

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  8. Compressed Gas Safety for Experimental Fusion Facilities

    SciTech Connect (OSTI)

    Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

    2005-05-15T23:59:59.000Z

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard associated with compressed gas cylinders and methods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  9. Commercial & Institutional Green Building Performance

    E-Print Network [OSTI]

    Harrison, S.; Mundell,C.; Meline, K.; Kraatz,J.

    2014-01-01T23:59:59.000Z

    Buildings Voluntary Green Building Programs: • LEED www.usgbc.org • Living Building Challenge living-future.org/lbc • Green Globes www.greenglobes.com • WELL Buildings wellbuildinginstitute.com • ENERGY STAR energystar.gov ESL-KT-14...The North Central Branch Texas Public Works Association Commercial & Institutional Green Building Performance 11.19.2014 ESL-KT-14-11-26 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Q&A Your Presenters: Chris...

  10. Engineering Building a better

    E-Print Network [OSTI]

    Barthelat, Francois

    and modern buildings laid out around an oasis of green space. Much like the multicultural population restoration, waste reduction, climate change impact mitigation and air pollution abatement. + 5 COURSESCivil Engineering future Building a better #12;McGill University Montreal, with a population

  11. ENERGY EFFICIENT BUILDINGS PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Sonderegger, R. C.

    2011-01-01T23:59:59.000Z

    Quality Measurements in Energy- Efficient Buildings; April,air are built into energy-efficient buildings, 2 Burnersuse to design new energy efficient buildings and to analyze

  12. Training: Compressed Air Systems | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactiveI DisposalFiveTrainingEnergyTraining:

  13. A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system

    E-Print Network [OSTI]

    Yu, Jong Keun

    2010-01-01T23:59:59.000Z

    climates, annual electricity consumption of UFAD is alwaysso the cooling electricity consumption has become importantsummers, the electricity consumption for air conditioning

  14. Fuel effects in homogeneous charge compression ignition (HCCI) engines

    E-Print Network [OSTI]

    Angelos, John P. (John Phillip)

    2009-01-01T23:59:59.000Z

    Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

  15. Applications of AirMaster+ in Real Industrial Facilities

    E-Print Network [OSTI]

    Moray, S.; D'Antonio, M.; Patil, Y.; MacDougall, A.

    2005-01-01T23:59:59.000Z

    or power data for each compressor and various day types can be input for analysis. Logged energy data can be input into the software to calculate airflow, or logged airflow can be used to calculate energy usage. Compressed air systems inherently have... poor overall efficiencies. Given this characteristic, it is important to match the supply of compressed air to the demand requirements in any given system. A compressed air system is comprised of the supply side (compressors, dryers, filters, drains...

  16. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... understand how this reset scheme responds to building load change, thus resulting in supply air temperature reset, it is helpful to explain the role of thermostat. In the following section, we explain the way how the thermostat works, the type...

  17. air conditioning engineers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

  18. air conditioning engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

  19. air-fuel ratio: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

  20. air kerma rate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price... Herron, D. J. 414...

  1. air kerma rates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compressed air with pressure regulators to purge control cabinets. Finally, a review of compressor technologies with typical cfm, pressure ranges, and price... Herron, D. J. 414...

  2. air vehicle analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    set point of compressed air outlet... Technology Conference, Houston, TX, April 5-6, 2000 pressure regulators, controls, etc.), compressor (centrifugal or positive displacement),...

  3. air velocity effects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transfer velocities. A moving tropical cyclone is an intense source of surface wind stress Chu, Peter C. 4 The exit velocity of a compressed air cannon CERN Preprints...

  4. HEDCO Education Building Eugene, Oregon

    E-Print Network [OSTI]

    Oregon, University of

    a dedicated heat recovery unit which operates on 100% outside air. #12;| ASHRAE Level One Energy Audit4 Air central plant. Chilled water enters the building through the steam tunnel in the basement and feeds is provided by two mini-split air conditioning units. These two units do not run often because the garage

  5. Determining the Right Air Quality for Your Compressed Air System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| DepartmentStatementDepartment ofVisitsDeterminations and Coverageandthe

  6. Sequential Compressed Sensing

    E-Print Network [OSTI]

    Malioutov, Dmitry M.

    Compressed sensing allows perfect recovery of sparse signals (or signals sparse in some basis) using only a small number of random measurements. Existing results in compressed sensing literature have focused on characterizing ...

  7. Indoor Air Quality in 24 California Residences Designed as High Performance Green Homes

    E-Print Network [OSTI]

    Less, Brennan

    2012-01-01T23:59:59.000Z

    buildings to climate change, concerns over the detrimental air quality impacts of high performance green

  8. Consider Compressed Combustion

    E-Print Network [OSTI]

    Crowther, R. H.

    1982-01-01T23:59:59.000Z

    sharing systems employing gas turbines. Incentives for compressed combustion have been explored and are presented in this discussion....

  9. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, Ramkrishna G. (San Antonio, TX)

    1986-01-01T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  10. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, R.G.

    1984-08-31T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  11. Compressed gas manifold

    DOE Patents [OSTI]

    Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)

    2001-01-01T23:59:59.000Z

    A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.

  12. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOE Patents [OSTI]

    Flowers, Daniel L. (San Leandro, CA)

    2005-08-02T23:59:59.000Z

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  13. Model-based benchmarking with application to laboratory buildings

    E-Print Network [OSTI]

    Federspiel, Clifford Ph.D.; Zhang, Qiang; Arens, Edward Ph.D

    2002-01-01T23:59:59.000Z

    hydraulic elevators more than buildings with counterweighted elevators. Efficient air distribution VAV laboratories will use considerably less energy

  14. Hydrogen Delivery Liquefaction and Compression

    Broader source: Energy.gov [DOE]

    Hydrogen Delivery Liquefaction and Compression - Overview of commercial hydrogen liquefaction and compression and opportunities to improve efficiencies and reduce cost.

  15. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL

    2015-01-01T23:59:59.000Z

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  16. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01T23:59:59.000Z

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  17. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    E-Print Network [OSTI]

    Sherman, Max H.

    2010-01-01T23:59:59.000Z

    local mean ages of air in buildings for characterizing ventilationof local exhaust increases average whole-house ventilation

  18. air cleaning filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    positioning of portable air cleaning devices in multizone residential buildings Energy Storage, Conversion and Utilization Websites Summary: including ion generators,...

  19. air hepa filters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    positioning of portable air cleaning devices in multizone residential buildings Energy Storage, Conversion and Utilization Websites Summary: including ion generators,...

  20. RADON DAUGHTER EXPOSURES IN ENERGY EFFICIENT BUILDINGS

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,DAUGHTER EXPOSURES IN ENERGY-EFFICIENT BUILDINGS A.V. Nero,vs. VENTILATION IN ENERGY EFFICIENT HOUSES Air change rate(

  1. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

  2. A New Compressive Imaging Camera Architecture using Optical-Domain Compression

    E-Print Network [OSTI]

    for processing, to a "computa- tional signal processing" (CSP) paradigm, where analog signals are converted nonlinear techniques. 1.1. Compressive sensing CSP builds upon a core tenet of signal processing a decorrelating transform to compact a correlated signal's energy into just a few essential coefficients.1

  3. A. Buonomano, M. Sherman, USA: Analysis of residential hybrid ventilation performance in U.S. climates 1 Intern. Symposium on Building and Ductwork Air tightness

    E-Print Network [OSTI]

    passive ventilation systems to meet ASHRAE 62.2 requirements as a step in the process for optimizing hybrid ventilation systems. A brief review of the literature with reference to the passive and hybrid ventilation systems in residential building is presented. The review focuses on key aspects of ventilation

  4. Apply: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT)- 2015 Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Closed Application Deadline: January 12, 2015 This Building Energy Efficiency Frontiers and Innovations Technologies (BENEFIT) 2015 FOA contributes to advancement in two core technological areas: non-vapor compression HVAC technologies and advanced vapor compression HVAC technologies.

  5. Compressed Air Storage Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #9 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing you a prosperousLake9 *

  6. Compressed Air System Control Strategies; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #7 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3,Bringing you a prosperousLake9 *7

  7. Minimize Compressed Air Leaks; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #3 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,Official FileEnergy Midsize9 Suggested Actions â–  â– 63 *

  8. Analyzing Your Compressed Air System; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #4 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceof Energy4 * August 2004 Industrial

  9. FORESTRY BUILDING: BUILDING EMERGENCY PLAN

    E-Print Network [OSTI]

    FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

  10. BUILDING NAME HEYDON-LAURENCE BUILDING

    E-Print Network [OSTI]

    Viglas, Anastasios

    BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

  11. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space - Waldorf, Maryland (Fact Sheet), Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs BatteriesWashingtonOFFICEHomes:Air Leakage

  12. LAPPED TRANSFORMS COMPRESSION

    E-Print Network [OSTI]

    de Queiroz, Ricardo L.

    Chapter 6 LAPPED TRANSFORMS FOR IMAGE COMPRESSION Ricardo L. de Queiroz Digital Imaging Technology aspects of lapped transforms and their applications to image compression. It is a subject that has been extensively studied mainly because lapped transforms are closely related to filter banks, wavelets, and time

  13. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  14. Optimized Node Selection for Compressive Sleeping Wireless Sensor Networks

    E-Print Network [OSTI]

    Chen, Wei; Wassell, Ian J.

    2015-02-05T23:59:59.000Z

    1Optimized Node Selection for Compressive Sleeping Wireless Sensor Networks Wei Chen, Member, IEEE, and Ian J. Wassell Abstract—In this paper, we propose an active node selection framework for compressive sleeping wireless sensor networks (WSNs... development oftechnologies in sensing, computing and communication has made it possible to employ wireless sensor networks (WSNs) to continuously monitor physical phenomena in a variety of applications, for example air quality monitoring, wildlife tracking...

  15. Variable valve timing in a homogenous charge compression ignition engine

    DOE Patents [OSTI]

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03T23:59:59.000Z

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  16. Compression molding of aerogel microspheres

    DOE Patents [OSTI]

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24T23:59:59.000Z

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  17. Compression molding of aerogel microspheres

    DOE Patents [OSTI]

    Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

    1998-03-24T23:59:59.000Z

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  18. Around Buildings

    E-Print Network [OSTI]

    Treib, Marc

    1987-01-01T23:59:59.000Z

    Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

  19. BUILDING INSPECTION Building, Infrastructure, Transportation

    E-Print Network [OSTI]

    BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

  20. Modeling Compressed Turbulence

    SciTech Connect (OSTI)

    Israel, Daniel M. [Los Alamos National Laboratory

    2012-07-13T23:59:59.000Z

    From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

  1. Conserve Energy by Optimizing Air Compressor System

    E-Print Network [OSTI]

    Williams, V. A.

    is the compressed air plant(s), cating air compressors with one 60-hp and one 30-hp which many times include compressors, ancillary screw compressor; (2) the repiping of the existing equipment, and/or an operating sequence that is screw compressors cooling water...

  2. Air Force Renewable Energy Programs

    Broader source: Energy.gov (indexed) [DOE]

    in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics Air Force Energy Use Air Force Facility Energy Center Current RE...

  3. Research and Application of RCF Technology in Public Building

    E-Print Network [OSTI]

    Yan, J.; Pan, D.

    2014-01-01T23:59:59.000Z

    , China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings 7. REFERENCES ASHRAE, 2013, “2013 Handbook-Fundamental, Thermal Comfort”, American Society of Heating, refrigeration and Air-Conditioning Engineers, Inc...Radiant Ceiling plus Fresh Air Research and Application of RCF Technology in Public Buildings ???????????? AirStar Air Conditioning Technology Group (HK) Ltd ?????????? AirStar Environment Technology Group Ltd ?????????????? YanTong Zhu...

  4. air-fuel ratio control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each...

  5. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  6. ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASHRAE Standard 62.2. Ventilation and Acceptable Indoor Air Quality in Low- Rise Residential Buildings - Building America Top Innovation ASHRAE Standard 62.2. Ventilation and...

  7. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOE Patents [OSTI]

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30T23:59:59.000Z

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  8. Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison

    E-Print Network [OSTI]

    Uhrhan, S.; Gerber, A.

    2012-01-01T23:59:59.000Z

    A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration...

  9. Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution

    E-Print Network [OSTI]

    performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

  10. Effects of operating conditions, compression ratio, and gasoline reformate on SI engine knock limits

    E-Print Network [OSTI]

    Gerty, Michael D

    2005-01-01T23:59:59.000Z

    A set of experiments was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each condition the effect of spark ...

  11. MODELING AND TRAJECTORY OPTIMIZATION OF WATER SPRAY COOLING IN A LIQUID PISTON AIR COMPRESSOR

    E-Print Network [OSTI]

    Li, Perry Y.

    and expansion has many applications in pneumatic and hydraulic systems, including in the Compressed Air Energy Storage (CAES) system for offshore wind turbine that has recently been proposed in [1,2]. Since the air

  12. Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices 

    E-Print Network [OSTI]

    Elsamni, O. A.; Sahmarani, K.J.; Obied, F. K.

    2010-01-01T23:59:59.000Z

    A simple prototype air conditioning unit driven entirely by solar energy is proposed aiming at replacing the conventional vapor compression air conditioning systems which are reasonable for the global warming. The proposed model is supposed...

  13. Proposal for an Adsorption Solar-Driven Air-Conditioning Unit for Public Offices

    E-Print Network [OSTI]

    Elsamni, O. A.; Sahmarani, K.J.; Obied, F. K.

    2010-01-01T23:59:59.000Z

    A simple prototype air conditioning unit driven entirely by solar energy is proposed aiming at replacing the conventional vapor compression air conditioning systems which are reasonable for the global warming. The proposed model is supposed...

  14. CFD Simulation and Measurement Validation of Air Distribution at the Hunan International Exhibition Center

    E-Print Network [OSTI]

    Deng, T.; Zhang, Q.; Zhang, G.; Yuan, H.

    2006-01-01T23:59:59.000Z

    The Hunan International Exhibition Center (HIEC) is a large space building. A stratified air-conditioning system on the second floor of the building has been adopted. Due to some problems with the air supply jet diffuser, CFD simulations were...

  15. Room Temperature Control During Season Switchover with Single Duct Variable Air Volume System Without Reheat 

    E-Print Network [OSTI]

    Liu, C.; Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H.

    2003-01-01T23:59:59.000Z

    The Langford “A” building houses the College of Architecture on TAMU campus. There are ten singleduct variable air volume (VAV) air-handling units (AHUs) without reheat serving the building. The local pneumatic thermostats modulate the dampers...

  16. CFD Simulation and Measurement Validation of Air Distribution at the Hunan International Exhibition Center 

    E-Print Network [OSTI]

    Deng, T.; Zhang, Q.; Zhang, G.; Yuan, H.

    2006-01-01T23:59:59.000Z

    The Hunan International Exhibition Center (HIEC) is a large space building. A stratified air-conditioning system on the second floor of the building has been adopted. Due to some problems with the air supply jet diffuser, CFD simulations were...

  17. Influence of Air Conditioner Operation on Electricity Use and Peak Demand

    E-Print Network [OSTI]

    McGarity, A. E.; Feuermann, D.; Kempton, W.; Norford, L. K.

    1987-01-01T23:59:59.000Z

    Electricity demand due to occupant controlled room air conditioners in a large mater-metered apartment building is analyzed. Hourly data on the electric demand of the building and of individual air conditioners are used in analyses of annual...

  18. Natural ventilation possibilities for buildings in the United States

    E-Print Network [OSTI]

    Dean, Brian N. (Brian Nathan), 1974-

    2001-01-01T23:59:59.000Z

    In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

  19. Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint

    SciTech Connect (OSTI)

    Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

    2010-08-01T23:59:59.000Z

    Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

  20. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31T23:59:59.000Z

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  1. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  2. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15T23:59:59.000Z

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  3. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect (OSTI)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31T23:59:59.000Z

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

  4. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  5. Building America Residential Buildings Energy Efficiency Meeting...

    Energy Savers [EERE]

    Building America Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link...

  6. Quantitative relationship of sick building syndrome symptoms with ventilation rates

    E-Print Network [OSTI]

    Fisk, William J.

    2009-01-01T23:59:59.000Z

    P. Miettinen (1995). "Ventilation rate in office buildings2005). Outdoor air ventilation and work- related symptoms inand Q. H. Lei (2006). "Ventilation and performance in office

  7. University of Leeds Sustainable buildings design, construction and refurbishment

    E-Print Network [OSTI]

    Haase, Markus

    -being of the local area Provide usable buildings designed to facilitate sustainable behaviour Sustainable design. #12; Use of natural ventilation, rather than mechanical ventilation or air conditioning, reduces

  8. Building America Whole-House Solutions for Existing Homes: Passive...

    Energy Savers [EERE]

    Transfer, Fresno, California (Fact Sheet) In this project, IBACOS, a U.S. Department of Energy Building America team, assessed a strategy for providing conditioned air to...

  9. Advanced Technologies and Practices - Building America Top Innovations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in specific technologies and construction practices that improve the building envelope; heating, ventilation, and air conditioning (HVAC); water heating components; and indoor...

  10. Building America Whole-House Solutions for New Homes: Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York Building America Whole-House Solutions for New Homes: Challenges of Achieving 2012 IECC...

  11. Worldwide Status of Energy Standards for Buildings - Appendices

    E-Print Network [OSTI]

    Janda, K.B.

    2008-01-01T23:59:59.000Z

    Other: Thermal properties of envelope; air-tightness; energyof Overall Thermal Transfer Value to Building Envelope Hongenvelope provisions: Roof Wall system Fenestration system Infiltration Other: Thermal

  12. DOE Announces Webinars on Better Buildings Challenge Education...

    Energy Savers [EERE]

    typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars August 7: Live Webinar on Better Buildings...

  13. DOE Announces Webinars on the Better Buildings Case Competition...

    Energy Savers [EERE]

    typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts. Upcoming Webinars July 3: Live Webinar on Better Buildings...

  14. Building America Whole-House Solutions for New Homes: Evluating...

    Energy Savers [EERE]

    Fans - Pittsburgh, Pennsylvania More Documents & Publications Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

  15. DOE Announces Webinars on Building Energy Optimization Tool Training...

    Broader source: Energy.gov (indexed) [DOE]

    previously aired videos, slides, and transcripts. May 15: Live Webinar on Building Energy Optimization Tool Training Webinar Sponsor: DOE Zero Energy Ready Home The Energy...

  16. Helping build a better future: Energy Star Buildings{trademark} and Green Lights{trademark} 1997 year in review

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Table of contents: building strong business strategies; plugging into energy efficiency; adding up the savings; cleaning the air; energy star buildings and green lights partners and allies of the year; upgrading america: energy-efficient lighting and buildings projects; participants who have completed green lights in 1997; benefiting all business; raising energy awareness; working together to save; and building a stronger future.

  17. Commissioning to avoid indoor air quality problems

    SciTech Connect (OSTI)

    Sterling, E.M.; Collett, C.W. (Theodore D. Sterling and Associates, Ltd., Vancouver, British Columbia (Canada)); Turner, S. (Healthy Buildings International Inc., Fairfax, VA (United States)); Downing, C.C. (Environmental Science and Technology Lab., Georgia Technology Research Inst., Atlanta, GA (United States))

    1992-10-01T23:59:59.000Z

    This paper reports on indoor air quality (IAQ) which has become a pervasive problem plaguing the building industry worldwide. Poor IAQ in commercial and office buildings is primarily related to new building technology, new materials and equipment and energy management operating systems. Occupants of buildings with air quality problems suffer from a common series of symptoms. As early as 1982, ASHRAE, realizing the significance of the problem, produced an IAQ position statement that identified strategies for solving IAQ problems. Many of those strategies have now been implemented, including Standard 62-1989, Ventilation for Acceptable Air Quality; Standard 90.1, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings; the 100 series of energy standards; and Guideline 1, Guideline for Commissioning of HVAC Systems.

  18. air infiltration rates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the wire with a maximum rate of rise ... Jadidian, Jouya 212 Estimating Energy Savings in Compressed Air Systems Texas A&M University - TxSpace Summary: -load power...

  19. POWER CHARACTERISTICS OF INDUSTRIAL AIR COMPRESSORS Chris Schmidt

    E-Print Network [OSTI]

    Kissock, Kelly

    and with different loads are discussed as case studies. The case studies illustrate how to identify the type, and compressed air leaks from the power signatures. Average operating efficiencies for the case studies

  20. air system analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined in extensive numerical ... Swan, William M. 1979-01-01 5 Compressed Air System Analysis and Retrofit for Energy Savings Texas A&M University - TxSpace Summary: This case...

  1. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27T23:59:59.000Z

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  2. A Guide to Building Commissioning

    SciTech Connect (OSTI)

    Baechler, Michael C.

    2011-09-01T23:59:59.000Z

    Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

  3. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California: Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    E-Print Network [OSTI]

    Mendell, Mark

    2014-01-01T23:59:59.000Z

    EUI) predicted with building energy models created using theusing EPA model ? Health benefits of reduced energy usage (

  4. Compressive Rendering of Multidimensional Scenes

    E-Print Network [OSTI]

    Sen, Pradeep

    Compressive Rendering of Multidimensional Scenes Pradeep Sen, Soheil Darabi, and Lei Xiao Advanced of using compressed sensing to reconstruct the 2D images produced by a rendering system, a process we called compressive rendering. In this work, we present the natural extension of this idea

  5. Advanced Variable Speed Air-Source Integrated Heat Pump 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump 2013 Peer Review Advanced Variable Speed Air-Source Integrated Heat Pump 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program...

  6. anthropometry air displacement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system. Open Access Theses and Dissertations Summary: ??As...

  7. air exchange effectiveness: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - TxSpace Summary: not same as Qactual because of the interaction of heat conduction, solar radiation, and air infiltration in the building components Liu and Guidelines for...

  8. Efficiency Considerations of Diesel Premixed Charge Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Efficiency Considerations of Diesel Premixed Charge Compression Ignition Combustion Poster...

  9. Hydrogen Compression, Storage, and Dispensing Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

  10. Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG)

    E-Print Network [OSTI]

    need heavier trucks and vans to haul equipment, on the other hand, and they could be assigned either1 5/2014 Alternative Fuel Tool Kit Case Study on Compressed Natural Gas (CNG): Build adopted natural gas in 2011 because of the fuel's environmental and cost benefits. BuildSense's customers

  11. Zero Carryover Liquid-Desiccant Air Conditioner for Solar Applications: Preprint

    SciTech Connect (OSTI)

    Lowenstein, A.; Slayzak, S.; Kozubal, E.

    2006-07-01T23:59:59.000Z

    A novel liquid-desiccant air conditioner that dries and cools building supply air will transform the use of direct-contact liquid-desiccant systems in HVAC applications, improving comfort, air quality, and providing energy-efficient humidity control.

  12. Continuous Control in Buildings with Bond Graphs

    E-Print Network [OSTI]

    Zeiler, W.

    2011-01-01T23:59:59.000Z

    and reductions in room air mixing, International conference on Environmental Ergonomics August 2-7. Zhang H., Arens E., Huizinga C., Han T., 2010, Thermal sensations and comfort models for non- uniform and transient environments, Building and Environment...

  13. Alternative Refrigerants for Building Air Conditioning 

    E-Print Network [OSTI]

    Bivens, D. B.

    1996-01-01T23:59:59.000Z

    , and HFC-245ca. HCFC-22 is also scheduled for phase-out, and three alternatives for HCFC-22 have been identified: HFC-134a, a near-azeotropic mixture of R32/Rl25, and a zeotropic mixture of R32/R125/R134a. Performance test results, future potential energy...

  14. Total Building Air Management: When Dehumidification Counts 

    E-Print Network [OSTI]

    Chilton, R. L.; White, C. L.

    1996-01-01T23:59:59.000Z

    to heat rejection to contain the size of the ground loop. In areas where seasonal heating is required, but cooling remains the dominant load, a hybrid heat rejection system can be specified. A hybrid system consists of a ground loop sized for total...

  15. Compression Aware Physical Database Design

    E-Print Network [OSTI]

    Kimura, Hideaki; Syamala, Manoj

    2011-01-01T23:59:59.000Z

    Modern RDBMSs support the ability to compress data using methods such as null suppression and dictionary encoding. Data compression offers the promise of significantly reducing storage requirements and improving I/O performance for decision support queries. However, compression can also slow down update and query performance due to the CPU costs of compression and decompression. In this paper, we study how data compression affects choice of appropriate physical database design, such as indexes, for a given workload. We observe that approaches that decouple the decision of whether or not to choose an index from whether or not to compress the index can result in poor solutions. Thus, we focus on the novel problem of integrating compression into physical database design in a scalable manner. We have implemented our techniques by modifying Microsoft SQL Server and the Database Engine Tuning Advisor (DTA) physical design tool. Our techniques are general and are potentially applicable to DBMSs that support other co...

  16. Optimising the Fresh Air Economiser

    E-Print Network [OSTI]

    Biship, R.

    2013-01-01T23:59:59.000Z

    , S., ?Economizers in Air Handling Systems?, CED Engineering Course M01-014, Stony Point New York, 2000. Moser, D., ?Free Cooling: Don?t Let Savings Slip Away?, Portland Energy Conservation Inc., published in Building Operating Management.... New Zealand, Standard NZS 4303:1990, Ventilation for Acceptable Indoor Air Quality, Standards Association of New Zealand, Wellington. Portland Energy Conservation Inc., from Functional Testing Guide on website: (http...

  17. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

  18. New Regenerative Cycle for Vapor Compression Refrigeration

    SciTech Connect (OSTI)

    Mark J. Bergander

    2005-08-29T23:59:59.000Z

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

  19. Residential Air-Source Heat Pump Program

    Broader source: Energy.gov [DOE]

    Massachusetts offers rebates of up to $3,750 for the installation of high-efficiency, cold-climate air-source heat pumps (ASHPs) in residential buildings of one to four units. Heat pumps must be ...

  20. Air leakage of Insulated Concrete Form houses

    E-Print Network [OSTI]

    Durschlag, Hannah (Hanna Rebekah)

    2012-01-01T23:59:59.000Z

    Air leakage has been shown to increase building energy use due to additional heating and cooling loads. Although many construction types have been examined for leakage, an exploration of a large number of Insulated Concrete ...

  1. Hysteresis effects in hybrid building ventilation

    E-Print Network [OSTI]

    Flynn, Morris R.

    = Heating, ventilation & air conditioning Buildings and energy consumption #12;· Notwithstanding this energy-breeze, displacement ventilation dissipate internal heat gains e.g. from kitchen stove · Wintertime: Spaces filledHysteresis effects in hybrid building ventilation Morris R. Flynn Dept. of Mechanical & Aerospace

  2. Healthy Zero Energy Buildings ENVIRONMENTAL AREA RESEARCH

    E-Print Network [OSTI]

    from buildings. Ventilation, however, comes with a significant energy cost. Currently, heating, with roughly onethird of this energy used to heat and cool ventilation air. As buildings strive to become.energy.ca.gov/research/ environmental March 2011 The Issue Previous studies have associated low ventilation rates with reduced worker

  3. Air Tightness of US Homes: Model Development

    SciTech Connect (OSTI)

    Sherman, Max H.

    2006-05-01T23:59:59.000Z

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  4. Better Buildings

    E-Print Network [OSTI]

    Neukomm, M.

    2012-01-01T23:59:59.000Z

    efficiency as top priority energy resource Revolutionary change in market Robust energy efficiency industry Prime the market for new technology Better Buildings Challenge Goals Make commercial & industrial buildings 20% more efficient by 2020... opportunities for energy efficiency 2 Great opportunities in the residential, commercial and industrial sectors 20% + savings is average Other benefits: Jobs, Environment, Competitiveness But persistent barriers exist?? ?Energy efficiency...

  5. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Project objectives: Construct a ground sourced heat pump, heating, ventilation, and air conditioning system for the new Oakland University Human Health Sciences Building utilizing variable refrigerant flow (VRF) heat pumps. A pair of dedicated outdoor air supply units will utilize a thermally regenerated desiccant dehumidification section. A large solar thermal system along with a natural gas backup boiler will provide the thermal regeneration energy.

  6. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1997-01-01T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  7. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  8. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

    1998-01-01T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  9. Compressive strength of concrete and mortar containing fly ash

    DOE Patents [OSTI]

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29T23:59:59.000Z

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  10. Shock compression of precompressed deuterium

    SciTech Connect (OSTI)

    Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

    2011-07-31T23:59:59.000Z

    Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

  11. Building America Webinar: Ventilation in Multifamily Buildings...

    Energy Savers [EERE]

    Ventilation in Multifamily Buildings Building America Webinar: Ventilation in Multifamily Buildings This webinar was presented by research team Consortium for Advanced Residential...

  12. Building America Expert Meeting: Transforming Existing Buildings...

    Energy Savers [EERE]

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  13. Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01T23:59:59.000Z

    The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

  14. air sparging optimization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air sparging optimization First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Compressed Air System...

  15. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect (OSTI)

    Kozubal, E.

    2013-02-01T23:59:59.000Z

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  16. Underbalanced drilling with air offers many pluses

    SciTech Connect (OSTI)

    Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

    1995-06-26T23:59:59.000Z

    A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

  17. Stirling Air Conditioner for Compact Cooling

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry to make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.

  18. Diagnosis of Effectiveness of HVAC System and Energy Performance of Osaka-Gas Building through Retro-Commissioning Part 1 Outline of HVAC Systems and Diagnosis of Energy Efficiency of Air Systems

    E-Print Network [OSTI]

    Hatanaka,T.; Aoki,K; Matsuda, N.; Yamaha,M.; Tanaka,H.; Nakahara,N.

    2014-01-01T23:59:59.000Z

    volumes in the AC-22 system at 11:00 on January 17, 2014 Based on Fig. 6.4, the cold air/warm air ratio in the cooling/heating areas is as follows: Cooling supply area: QH = 0.22QC Heating supply area: QC = 0.10QH 11?00 17?00 INV Output % Power...

  19. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question ŤHow do we first do no harm with high-r enclosures??

  20. Building debris

    E-Print Network [OSTI]

    Dahmen, Joseph (Joseph F. D.)

    2006-01-01T23:59:59.000Z

    This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

  1. Building Stones

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

  2. Healthy buildings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

  3. Archive Reference Buildings by Building Type: Supermarket

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  4. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  5. Building a Business Case for Compressed Natural Gas in Fleet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG...

  6. Search the Blog: Top 10 Green Building Trends for 2010

    E-Print Network [OSTI]

    Calculation 9. Net Zero Buildings 10. Energy-Efficient/Sustainable Building Education Let's discuss a few additional square footage into ammenities and details that give the home a richer feel. Net zero buildings, electrical outlets, lack of insulation, etc.). On top of supreme air sealing and insulating, net zero homes

  7. Building Simulation Modelers Are we big data ready?

    E-Print Network [OSTI]

    Tennessee, University of

    · Plugs · Lights · Range · Washer · Radiated heat · Dryer · Refrigerator · Dishwasher · Heat pump air flow buildings during the development process. Fleet of Residential `Test Buildings' Two Light Commercial `Test Buildings' #12;7 Real demonstration facilities Residential homes 2800 ft2 residence 269 sensors @ 15-minutes

  8. TO: Deans, Directors and Building Coordinators FROM: Dennis Kamite

    E-Print Network [OSTI]

    Dong, Yingfei

    SUBJECT: Power Outages Scheduled on August 20, 2011 Electrical power outages are scheduled on August 20 Building University Health Services Watanabe Hall Due to the power outages central air conditioning systems Science Building POST Building University Health Center Watanabe Hall These outages are necessary

  9. Streaming Compression of Hexahedral Meshes

    SciTech Connect (OSTI)

    Isenburg, M; Courbet, C

    2010-02-03T23:59:59.000Z

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  10. Application specific compression : final report.

    SciTech Connect (OSTI)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01T23:59:59.000Z

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  11. Data Compression with Prime Numbers

    E-Print Network [OSTI]

    Gordon Chalmers

    2005-11-16T23:59:59.000Z

    A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

  12. Compressing bitmap indexes for faster search operations

    E-Print Network [OSTI]

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-01-01T23:59:59.000Z

    study the effects of compression on bitmap indexes. The mainvalues. With- out compression, the bitmap index size wouldBBC WAH compression ratio (b) STAR bitmap indexes Figure 6.

  13. Sensitivity of Forced Air Distribution System Efficiency to Climate, Duct Location, Air Leakage and Insulation

    E-Print Network [OSTI]

    , Air Leakage and Insulation Iain S. Walker Energy Performance of Buildings Group Indoor Environment ................................................................................................................................................ 4 Duct Insulation, Location and Leakage Examples............................................................... 4 Figure 2. Sheet metal ducts in a basement insulated with asbestos

  14. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, Raymond E. (Oviedo, FL); Little, David A. (Oviedo, FL)

    1998-01-01T23:59:59.000Z

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant.

  15. Turbine inter-disk cavity cooling air compressor

    DOE Patents [OSTI]

    Chupp, R.E.; Little, D.A.

    1998-01-06T23:59:59.000Z

    The inter-disk cavity between turbine rotor disks is used to pressurize cooling air. A plurality of ridges extend radially outwardly over the face of the rotor disks. When the rotor disks are rotated, the ridges cause the inter-disk cavity to compress air coolant flowing through the inter-disk cavity en route to the rotor blades. The ridges eliminate the need for an external compressor to pressurize the air coolant. 5 figs.

  16. Quantum Bootstrapping via Compressed Quantum Hamiltonian Learning

    E-Print Network [OSTI]

    Nathan Wiebe; Christopher Granade; David G. Cory

    2015-03-30T23:59:59.000Z

    Recent work has shown that quantum simulation is a valuable tool for learning empirical models for quantum systems. We build upon these results by showing that a small quantum simulators can be used to characterize and learn control models for larger devices for wide classes of physically realistic Hamiltonians. This leads to a new application for small quantum computers: characterizing and controlling larger quantum computers. Our protocol achieves this by using Bayesian inference in concert with Lieb-Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. Whereas Fisher information analysis shows that current methods which employ short-time evolution are suboptimal, interactive quantum learning allows us to overcome this limitation. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8-qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data.

  17. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L. (Idaho Falls, ID)

    1981-01-01T23:59:59.000Z

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  18. Recovering Energy with a Compressed Air System Program

    E-Print Network [OSTI]

    Nipper, J.

    2014-01-01T23:59:59.000Z

    but represent 26% of savings opportunity. ? Work that involves removal of instruments, instrument tubing or piping must be leak checked after system is re-energized. ? Equipment, systems and components can wear, so they must be leak checked with some routine...

  19. Energy efficiency improvements in Chinese compressed air systems

    E-Print Network [OSTI]

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

    2008-01-01T23:59:59.000Z

    electricity use in an industrial facility or enterprise. With the increasing energy shortage and global warming

  20. ASE/CAGI Meeting about Compressors and Compressed Air System...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications AHRIAdvocate Ex Parte Memo 2.5.15 Meeting U.S. Department of Energy's Motor Challenge Program: A National Strategy for Energy Efficient Industrial Motor-Driven...

  1. Compressed Air System Analysis and Retrofit for Energy Savings

    E-Print Network [OSTI]

    Harding, C.; Nutter, D.

    2014-01-01T23:59:59.000Z

    several actions including piping retrofits, equipment upgrades, pressure control changes, and compressor retrofits....

  2. Improving Compressed Air System Efficiency- Know What You Really Need 

    E-Print Network [OSTI]

    Terrell, R. E.

    1998-01-01T23:59:59.000Z

    in two canning facilities which were using open tube blow-offs to blow green beans offthe top of open tin cans so that the lid could be applied and the can sent to the steamer. In one case a 75 hp compressor was replaced by a 20 hp compressor, saving...

  3. Eliminate Inappropriate Uses of Compressed Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6:Energy|Electrifyingof Energy

  4. Adiabatic compressed air energy storage in hard rock

    SciTech Connect (OSTI)

    Driggs, C.L.

    1980-10-01T23:59:59.000Z

    Findings are discussed of a conceptual design study performed during 1980 which examined pure adiabatic CAES cycles operating in the temperature range of 700 to 900/sup 0/F. The project involved an investigation of the technical and economic feasibility of using commercially available technology to construct a plant based on the PEPCO study site and plant design requirements. The project is now complete.

  5. Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities |List of projects,| Department

  6. Improving Compressed Air System Performance: A Sourcebook for Industry |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of Energy Implementing AgreementSmartPhoto

  7. Fact Sheet: Isothermal Compressed Air Energy Storage (August 2013) |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY Fact Sheet:2012) ||

  8. Evaluation of the Compressed Air Challenge Training Program: Executive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19 Evaluation1-01StorageSummary |

  9. Evaluation of the Compressed Air Challenge Training Program: Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department19 Evaluation1-01StorageSummary

  10. Preventive Maintenance Strategies for Compressed Air Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon2015DepartmentPolicy Statement |of

  11. List of Compressed air Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,LakefrontLighthouse SolarIListsource History View New

  12. MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHK ProjectsFlagshipNAREC < MHKOCGenTurbine.jpgRig

  13. Guidelines for Selecting a Compressed Air System Service Provider |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof| Department ofEnergyDepartment

  14. Pre-In-Plant Training Webinar (Compressed Air): Presentation Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60PowersubsidiaryDepartment of Energy

  15. Assessment of the Market for Compressed Air Efficiency Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August ContractDepartmentP r e p

  16. Analyzing Your Compressed Air System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1 Table ofDeployment of

  17. Assessment of the Market for Compressed Air Efficiency Services |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and|Department

  18. Evaluation of the Compressed Air Challenge Training Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoalsEvaluation11of EnergyProgram T O

  19. Analyzing Your Compressed Air System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformanceof Energy

  20. Guidelines for Selecting a Compressed Air System Service Provider

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration0-1 March 2013EnergyFOR SELECTING A

  1. COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience,Institute forPrinceton Plasma

  2. Compressed Air Energy Storage (CAES) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Open Energy Information Goff

  3. Improving Compressed Air System Performance: A Sourcebook for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam Casting ProcessEnergy

  4. Efficient Joins with Compressed Bitmap Indexes

    E-Print Network [OSTI]

    Madduri, Kamesh

    2010-01-01T23:59:59.000Z

    compression is extremely e?cient for compressing bitmap indexescompression: There are however various approaches to extend the e?ectiveness of bitmap indexes

  5. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  6. Compact wavefunctions from compressed imaginary time evolution

    E-Print Network [OSTI]

    Jarrod R. McClean; Alán Aspuru-Guzik

    2014-09-25T23:59:59.000Z

    Simulation of quantum systems promises to deliver physical and chemical predictions for the frontiers of technology. Unfortunately, the exact representation of these systems is plagued by the exponential growth of dimension with the number of particles, or colloquially, the curse of dimensionality. The success of approximation methods has hinged on the relative simplicity of physical systems with respect to the exponentially complex worst case. Exploiting this relative simplicity has required detailed knowledge of the physical system under study. In this work, we introduce a general and efficient black box method for many-body quantum systems that utilizes technology from compressed sensing to find the most compact wavefunction possible without detailed knowledge of the system. It is a Multicomponent Adaptive Greedy Iterative Compression (MAGIC) scheme. No knowledge is assumed in the structure of the problem other than correct particle statistics. This method can be applied to many quantum systems such as spins, qubits, oscillators, or electronic systems. As an application, we use this technique to compute ground state electronic wavefunctions of hydrogen fluoride and recover 98% of the basis set correlation energy or equivalently 99.996% of the total energy with $50$ configurations out of a possible $10^7$. Building from this compactness, we introduce the idea of nuclear union configuration interaction for improving the description of reaction coordinates and use it to study the dissociation of hydrogen fluoride and the helium dimer.

  7. Indoor air quality in French dwellings Sverine Kirchner1,*

    E-Print Network [OSTI]

    Boyer, Edmond

    on Indoor Air Quality (OQAI) aims at collecting data on population exposure to indoor pollutants in various INTRODUCTION Our lack of understanding of the health risks related to air pollutants exposure in buildingsIndoor air quality in French dwellings Séverine Kirchner1,* , Mickael Derbez1 , Cédric Duboudin2

  8. Air temperature regulation by urban trees and green infrastructure

    E-Print Network [OSTI]

    Air temperature regulation by urban trees and green infrastructure Kieron Doick and Tony Hutchings to a UHI include the thermal properties, height and spacing of buildings, the production of waste heat, air years. An estimated 8­11 extra deaths occur each day for each degree increase in air temperature during

  9. Advances in compressible turbulent mixing

    SciTech Connect (OSTI)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01T23:59:59.000Z

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  10. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  11. Building Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment of Energy Building Energy-EfficientBuilding

  12. Modern Compressed Air Piping Selection and Design Can Have a Great Impact on Your Compressed Air Energy Dollars

    E-Print Network [OSTI]

    Van Ormer, H.

    2005-01-01T23:59:59.000Z

    on the pressure losses and piping performance. Case studies are used to show how conventional piping design and sizing keep “extra compressors on line” - preclude proper control operation - waste energy - shorten filter life - and have a negative impact on dryer...

  13. Determine the Cost of Compressed Air for Your Plant; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #1 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal * August 2004 Industrial

  14. Preventive Maintenance Strategies for Compressed Air Systems;Industrial Technologies Program (ITP) Compressed Air Tip Sheet #6 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation: Hubs+Department ofDepartmentPressure 23,6 *

  15. Eliminate Inappropriate Uses of Compressed Air; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #2 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department of Energy ElectronicExcessive In-Plantof2

  16. Berkeley Lab to Help Build Straw Bale Building

    SciTech Connect (OSTI)

    Worsham, S.A.; Van Mechelen, G.

    1998-12-01T23:59:59.000Z

    The Shorebird Environmental Learning Center (SELC) is a new straw bale building that will showcase current and future technologies and techniques that will reduce the environmental impacts of building construction and operations. The building will also serve as a living laboratory to test systems and monitor their performance. The project will be the model for a building process that stops using our precious resources and reduces waste pollution. The rice straw that will be used for the bale construction is generally waste material that is typically burned--millions of tons of it a year--especially in California's San Joaquin Valley. Buildings have significant impacts on the overall environment. Building operations, including lighting, heating, and cooling, consume about 30% of the energy used in the United States. Building construction and the processes into making building materials consume an additional 8% of total energy. Construction also accounts for 39% of wood consumed in the U S, while 25% of solid waste volume is construction and demolition (C &D) debris. The SELC will incorporate a variety of materials and techniques that will address these and other issues, while providing a model of environmentally considered design for Bay Area residents and builders. Environmental considerations include energy use in construction and operations, selection of materials, waste minimization, and indoor air quality. We have developed five major environmental goals for this project: (1) Minimize energy use in construction and operations; (2) Employ material sources that are renewable, salvaged, recycled, and/or recyclable; (3) Increase building lifespan with durable materials and designs that permit flexibility and modification with minimal demolition; (4) Reduce and strive to eliminate construction debris; and (5) Avoid products that create toxic pollutants and make a healthy indoor environment.

  17. Comparison of Dynamic Data Analysis Methods for Thermal Property Measurement of a Building Wall

    E-Print Network [OSTI]

    Huang, K.; Gong, Y.

    2006-01-01T23:59:59.000Z

    Energy usage in heating and air-conditioning a building is influenced by several factors. Among them is the building wall, whose production is affected by the planning, design and construction process. This process causes a certain deviation...

  18. Overview of PIER-Funded Existing Building Commissioning and Diagnostics Research

    E-Print Network [OSTI]

    Jenkins, N.; Brook, M.

    2003-01-01T23:59:59.000Z

    ), Pacific Gas and Electric ? Whole Building Diagnostician (WBD) outdoor air economizer module and whole building energy module, Pacific Northwest National Laboratory ? Performance And Continuous Recommissioning Analysis Tool (PACRAT), Facility...

  19. Accounting for the Occupancy Variable in Inverse Building Energy Baselining Models

    E-Print Network [OSTI]

    Claridge, D. E.

    2001-01-01T23:59:59.000Z

    .1-1989, Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings. American Society of Heating, Refrigerating and Air-conditioning Engineers. Atlanta, Georgia. Bronson, D., 1992, ?Calibrated Computer Simulations for the Analysis of Retrofit...

  20. Application and Design of Residential Building Energy Saving in Cold Climates

    E-Print Network [OSTI]

    Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

    2006-01-01T23:59:59.000Z

    combines indoor microclimates in order to decrease the building life cycle energy consumption. The air wall technology is studied for adoption of cold climate features. The research results through a National Demonstration Building Project (NDBP) show...