Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

List of Compressed air Incentives | Open Energy Information  

Open Energy Info (EERE)

Energy Efficiency Incentive Program (Texas) Local Grant Program Texas Commercial Ceiling Fan Central Air conditioners Chillers Comprehensive MeasuresWhole Building Compressed air...

2

Compressed Air System Maintenance Guide  

Science Conference Proceedings (OSTI)

The "Compressed Air System Maintenance Guide" provides fossil plant personnel with information on the operation and maintenance of the compressed air system. The contents of this guide will assist personnel in improving performance of the compressed air system, reducing maintenance costs, and increasing air system reliability.

2002-11-27T23:59:59.000Z

3

Compressed Air 101: Getting Compressed Air to Work  

E-Print Network (OSTI)

"Air compressors are a significant industrial energy user. Based on a survey (conducted by Oregon State University and the Bonneville Power Administration) of energy audit reports from 125 plants, air compressors account for roughly 10% of total plant energy use. Furthermore, air compression is inefficient with up to 95% of compressor power dissipated as heat. Thus even minor improvements in system operation, control strategies, and efficiency can yield large energy savings and significant non-energy or productivity benefits from reliable compressed air. Compressed air is often called the ""fourth utility"" in industrial facilities after electricity, natural gas, and water. It provides motive power for machinery, cooling, materials handling, and hand tools. It is a safe, flexible, and powerful resource, but one that is seldom run for low operating costs or best productivity. Learning the basics of compressed air systems represents the beginning of both reducing energy costs and enjoying the productive benefits of reliable compressed air. Compressed air management systems, including a system approach to managing demand, stabilizing pressure, reducing leaks and compressor controls, can allow the industrial end user to save 20% - 50% of their air compressor electricity usage. The monitoring capabilities of compressed air management systems provide a useful tool through power, pressure and flow trending to maintain both the energy savings and increased system reliability. More efficiently managed compressed air systems are less costly to maintain and have less impact on the environment. The most important issues of industrial compressed air in relation to energy efficiency and management are: 1. Compressed air is an essential industrial utility; 2. Compressing air is a fundamentally inefficient energy transformation process; 3. Optimal operation of compressed air systems in industrial plants is seldom a priority and adequate management infonnation is rare, resulting in negative impacts on production and even less efficiency."

Burke, J. J.; Bessey, E. G.

2003-05-01T23:59:59.000Z

4

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

5

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

6

220-MW compressed air storage  

Science Conference Proceedings (OSTI)

SOYLAND Power Cooperative, Inc., a Decatur, Illinois based co-op, could get reasonably priced baseload power from neighboring utilities, had a plant of its own planned for the near future as well as a share in another, but peaking power, generated by oil and gas, to meet surges in demand, was very costly. The co-op's solution, first in the U.S., is a 220-megawatt compressed air energy storage system (CAES), which the electric utility industry is watching with great interest. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal or nuclear power plants runs a combination motor-generator in motor mode which, in turn, operates a compressor. The compressed air is cooled and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet (about 610 m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

7

Solar Buildings: Transpired Air Collectors  

DOE Green Energy (OSTI)

Transpired air collectors preheat building ventilation air by using the building's ventilation fan to draw fresh air through the system. The intake air is heated as it passes through the perforated absorber plate and up the plenum between the absorber and the south wall of the building. Reduced heating costs will pay for the systems in 3--12 years.

NONE

1998-11-24T23:59:59.000Z

8

Industrial Compressed Air System Energy Efficiency Guidebook.  

DOE Green Energy (OSTI)

Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

United States. Bonneville Power Administration.

1993-12-01T23:59:59.000Z

9

Compressed Air Audits using AIRMaster  

E-Print Network (OSTI)

Air compressors are a significant industrial energy user and therefore a prime target for industrial energy audits. The project goal was to develop a software tool, AIRMaster, and supporting methodology for performing compressed air system audits. Seven field audits were conducted to refine the software and methodology as well as assess the savings potential of six common Operation and Maintenance measures. Audit results yielded significant savings with short payback periods. Total estimated savings for the project were 4,056,000 kWh or 49.2% of annual compressor energy for a cost savings of $152,000. Total implementation costs were $94,700 for a project payback period of 0.6 years. Capital benefits of delaying or avoiding the cost of a new compressor might double the energy benefits if a new compressor is being considered. The methodology proved to be a simple and effective audit tool.

Wheeler, G. M.; McGill, R. D.; Bessey, E. G.; Vischer, K.

1997-04-01T23:59:59.000Z

10

Compressed Air Energy Storage Act (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out regulations for the local authorities related to site selection, design, operation and monitoring for underground storage of compressed air.

11

Advanced Manufacturing Office: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

training and other resources Training Calendar Events Calendar Tools Tools to Assess Your Energy System AIRMaster+ Tool Scorecards and Simple Calculators Compressed Air Scorecard...

12

Seneca Compressed Air Energy Storage (CAES) Project  

DOE Green Energy (OSTI)

This document provides specifications for the process air compressor for a compressed air storage project, requests a budgetary quote, and provides supporting information, including compressor data, site specific data, water analysis, and Seneca CAES value drivers.

None

2012-11-30T23:59:59.000Z

13

Energy Efficiency in Compressed Air Systems  

E-Print Network (OSTI)

Energy use in compressed air systems accounts for typically 10% of the total industrial electricity consumption. It also accounts for close to 99% of the CO2 footprint of an air compressor and approximately 80% of the life cycle costs of a compressor, over its lifetime. Considering these facts, it is sometimes surprising to see the lack of attention to compressed air systems in industry. This paper attempts to create awareness as to how a great deal of energy can be saved through a conscious process of selection and use of compressed air systems, bringing substantial benefits in economics and the environment. It also attempts to highlight the relative importance of energy savings over the costs of investments made in energy saving features and processes.

Hingorani, A.; Pavlov, A.

2010-01-01T23:59:59.000Z

14

Sacramento Municipal Utility District (SMUD) Compressed Air Energy Storage Plant  

Science Conference Proceedings (OSTI)

This report provides a scoping and conceptual engineering analysis of the compressed air energy storage (CAES) technology and how it can be deployed within the Sacramento Municipal Utility District (SMUD) services territory, with specific focus on the use of one or more Solano County, California, depleted gas reservoirs, which are underneath the SMUD Solano Wind Farm near the city of Rio Vista, California. Results are presented on the geologic opportunities for building a CAES plant that uses sites near ...

2012-03-26T23:59:59.000Z

15

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific...

16

Compressed Air Storage for Electric Power Generation  

Science Conference Proceedings (OSTI)

This Technical Report focuses on the use of underground storage of natural gas as a means of leveling the load between supply and demand. The book presents a view of the way compressed air storage can reduce costs when constructing new facilities for generating peak load electricity. The primary emphasis given concerns underground storage of air in underground porous media, the vehicle utilized on a large scale for over 25 years by the natural gas industry.

1990-06-01T23:59:59.000Z

17

Compressed Air Energy Storage Demonstration Newsletter  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) Demonstration Project includes the phased planning, engineering design, construction, demonstration, and performance monitoring of two CAES plants. One plant will be a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage, and the other will be a system rated at 15 MWs for 2 hours with above-ground air vessel/piping. This is a critical technology demonstration project that is necessary to enable higher penetration of ...

2011-04-21T23:59:59.000Z

18

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

50 compressed air system energy audits completed by Shanghai50 compressed air system energy audits completed by Shanghaiof compressed air energy audits conducted by the Shanghai

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

19

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network (OSTI)

air system assessments and energy audits based on a systemaudit. These compressed air system assessments may be conducted by compressor manufacturers/distributors or energy

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

20

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Design upgrade for 2.670 compressed air robot  

E-Print Network (OSTI)

2.670 is an introductory Mechanical Engineering course that introduces students to the fundamentals of machine tool and computer tool use through the fabrication of a robot that is powered by compressed air. The compressed ...

James, Jeremy P., S.B. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

22

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grants purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

23

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

24

ESS 2012 Peer Review - Modular Undersea Compressed Air Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar.energy.govsunshotcsp.html ENERGY STORAGE SYSTEMS: Sept. 27, 2012 Modular Undersea Compressed Air Energy Storage (UCAES) System Bill Caruso www.BraytonEnergy.com Brayton...

25

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

26

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler Countys 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

None

2012-11-30T23:59:59.000Z

27

Compressed Air Storage with Humidification: An Economic Evaluation  

Science Conference Proceedings (OSTI)

Compressed Air Storage with Humidification (CASH) plants utilize air saturation to greatly improve the energy ratio. This EPRI study examines whether the CASH Power Plant can provide electric power at the lowest cost for cycling operation.

1999-03-08T23:59:59.000Z

28

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

29

Air Barriers for Residential and Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

30

Air Barriers for Residential and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Barriers for Residential and Air Barriers for Residential and Commercial Buildings Diana Hun, PhD Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov Problem Statement & Project Focus - Air leakage is a significant contributor to HVAC loads - ~50% in residential buildings (Sherman and Matson 1997) - ~33% of heating loads in office buildings (Emmerich et al. 2005) - Airtightness of buildings listed in BTO prioritization tool

31

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

32

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

33

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

Williams, Compressed air energy storage: Theory, resources,for the compressed air energy storage technology by thefor compressed air energy storage power generation, Japan

Rutqvist, J.

2013-01-01T23:59:59.000Z

34

BEETIT: Building Cooling and Air Conditioning  

Science Conference Proceedings (OSTI)

BEETIT Project: The 14 projects that comprise ARPA-Es BEETIT Project, short for Building Energy Efficiency Through Innovative Thermodevices, are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

None

2010-09-01T23:59:59.000Z

35

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEGs service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York States Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEGs engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

36

Acceptance Test Report for 241-U compressed air system  

SciTech Connect

This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

Freeman, R.D.

1994-10-20T23:59:59.000Z

37

ESS 2012 Peer Review - Isothermal Compressed Air Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials or chemicals Proven mechanical systems using steel, water, and air SustainX Heat Transfer Technology (CompressionExpansion) 0 20 40 60 80 100 120 Lead Acid Lithium...

38

Air ejector augmented compressed air energy storage system  

DOE Patents (OSTI)

Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1980-01-01T23:59:59.000Z

39

Compressed Air Energy Storage (CAES) Demonstration Newsletter, April 2013  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping.This is a critical technology demonstration project, necessary to ...

2013-04-25T23:59:59.000Z

40

Compressed Air Energy Storage Demonstration Newsletter, October 2013  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping.This is a critical technology demonstration project, necessary to ...

2013-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Compressed Air Energy Storage (CAES) Demonstration Newsletter, July 2013  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping.This is a critical technology demonstration project, necessary to ...

2013-07-29T23:59:59.000Z

42

Building Energy Code Resource Guide: Air Leakage Guide | Building Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage Guide Air Leakage Guide The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The 2012 International Energy Conservation Code (IECC) sets the bar for energy efficiency, and air sealing requirements are one of the key provisions. This guide is a resource for understanding the air leakage requirements in the 2012 IECC and suggestions on how these measures can be met. It also provides information from Building America's Air Sealing Guide, best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code requirements are referenced throughout the guide. Publication Date: Friday, September 30, 2011 BECP_Buidling Energy Code Resource Guide Air Leakage

43

Economic and technical feasibility study of compressed air storage  

DOE Green Energy (OSTI)

The results of a study of the economic and technical feasibility of compressed air energy storage (CAES) are presented. The study, which concentrated primarily on the application of underground air storage with combustion turbines, consisted of two phases. In the first phase a general assessment of the technical alternatives, economic characteristics and the institutional constraints associated with underground storage of compressed air for utility peaking application was carried out. The goal of this assessment was to identify potential barrier problems and to define the incentive for the implementation of compressed air storage. In the second phase, the general conclusions of the assessment were tested by carrying out the conceptual design of a CAES plant at two specific sites, and a program of further work indicated by the assessment study was formulated. The conceptual design of a CAES plant employing storage in an aquifer and that of a plant employing storage in a conventionally excavated cavern employing a water leg to maintain constant pressure are shown. Recommendations for further work, as well as directions of future turbo-machinery development, are made. It is concluded that compressed air storage is technically feasible for off-peak energy storage, and, depending on site conditions, CAES plants may be favored over simple cycle turbine plants to meet peak demands. (LCL)

Not Available

1976-03-01T23:59:59.000Z

44

Total Building Air Management: When Dehumidification Counts  

E-Print Network (OSTI)

Industry trends toward stringent indoor air quality codes, spearheaded by ASHRAE 62-89: Ventilation for Acceptable Indoor Air Quality, present four challenges to the building industry in hot and humid climates: 1. Infusion of large quantities of make-up air to code based on zone requirements 2. Maintenance of tight wet bulb and dry bulb temperature tolerances within zones based on use 3. Energy management and cost containment 4. Control of mold and mildew and the damage they cause Historically, total air management of sensible and latent heat, filtration and zone pressure was brought about through the implementation of non-integrated, composite systems. Composite systems typically are built up of multi-vendor equipment each of which perform specific, independent functions in the total control of the indoor air environment. Composite systems have a high up-front cost, are difficult to maintain and are costly to operate. Today, emerging technologies allow the implementation of fully integrated system for total building air management. These systems provide a single-vendor solution that is cost effective to purchase, maintain and operate. Operating saving of 23% and ROIs of 2.3 years have been shown. Equipment specification is no longer based primarily on total building load. Maximum benefits of these dynamic systems are realized when systems are designed with a total operating strategy in mind. This strategy takes into consideration every factor of building air management including: 1. Control of sensible heat 2. Balance management of heat rejection 3. Latent heat management 4. Control of process hot water 5. Indoor air quality management 6. Containment of energy consumption 7. Load shedding

Chilton, R. L.; White, C. L.

1996-01-01T23:59:59.000Z

45

Building Technologies Office: Energy-Efficient Window Air Conditioner  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-Efficient Window Energy-Efficient Window Air Conditioner Ratings Research Project to someone by E-mail Share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Facebook Tweet about Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Twitter Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Google Bookmark Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Delicious Rank Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on Digg Find More places to share Building Technologies Office: Energy-Efficient Window Air Conditioner Ratings Research Project on

46

Environmental concerns related to compressed air energy storage  

DOE Green Energy (OSTI)

The report describes the technologies of compressed air energy storage and some of the environmental concerns associated with siting, construction, operation and decommissioning of such a system. Also described is an ongoing research program, the goal of which is to evaluate methods to control the effects of these environmental factors.

Stottlemyre, J. A.; Craig, R. A.; Loscutoff, W. V.; Boehm, D. W.; Chang, G. C.

1978-01-01T23:59:59.000Z

47

Energy Saving Technology of Thermal Regenerative Compressed Air Dryer by Regenerates Adsorbent with Residual Heat  

Science Conference Proceedings (OSTI)

According to the characteristic of the compressed air dryer located at the same place with the air compressor, for the large capacity thermal regenerative compressed air dryer that the absorbent is regenerated by an electric heater, this thesis puts ... Keywords: Compressed air dryer, Regeneration, Heater, Residual heat, Energy saving

Zhang Mingzhu; Zhou Zhili; Li Hongtao; Zhang Yongbo

2009-10-01T23:59:59.000Z

48

Compressed Air Audits: A Holistic Approach -Addressing the Air System as a Whole  

E-Print Network (OSTI)

First, consider the Independent Auditor. Plant management should consider using an independent auditor without ties to equipment sales who has experience with a variety of manufacturing facilities and can provide strong references documenting proven energy savings. The quality and comprehensiveness of manufacturing facilities, and therefore audits, vary widely and it is important to consider experience. Compressed Air Technologies has audited nearly 200 manufacturing facilities since our inception in 1996. Compressed Air Technologies is the preferred air energy services provider for Georgia Pacific Corporation, INVISTA Chemicals and a primary energy partner with KRAFT Foods, among others. Compressed Air Technologies has no OEM affiliation of any kind and will provide recommendations that are system-neutral and commercially impartial. Compressed Air Technologies (CAT) is an international energy reduction and system optimization services corporation. CAT is a totally independent business structure with no ties or affiliations with any air compressor manufacturers -we are free of OEM restrictions. Our strict adherence to an independent approach related to compressed air and gas system assessments allows for unbiased commentary and recommendations, regardless of the brand or equipment type currently utilized in your plant. The majority of our competitors have either 1) equipment to sell and/or,2) existing equipment on the site to protect. In both situations, the interests of the client is not the paramount issue. Independent auditors should have no obvious or hidden agenda. CAT compressed air audit services are in essence, holistic. The analysis of your facility compressed air and gases systems is all-inclusive and consists of an engineered assessment beginning at the air compressor equipment area inside your facility and finishing at point-of-use consumption points. CAT engineers utilize a variety of instruments to collect data from all critical, relevant areas of the compressed air and gas systems. From air compressor blow off loss to the cost of the always present distribution/ piping system leaks, each individual loss or inefficiency is measured, analyzed, quantified and catalogued. CAT engineers then compile all of the collected data to create a total current profile report of your facility operations including an assigned cost to each discovered inefficiency. A typical audit results in identification of 25 to 60 percent or more in total system operational waste, which includes energy costs, maintenance costs, and all matters related to operating your compressed gas systems. It is not unusual to discover half of what you pay for compressed air operations is wasted due to inefficient utilization and operation of this important utility.

Shaver, D.

2011-01-01T23:59:59.000Z

49

Compressed Air Energy Storage Demonstration Newsletter, July 2011  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping. This is a critical technology demonstration project, necessary to enable higher penet...

2011-07-31T23:59:59.000Z

50

Compressed Air Energy Storage Demonstration Newsletter, October 2011  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping. This is a critical technology demonstration project, necessary to enable higher penet...

2011-10-24T23:59:59.000Z

51

Compressed Air Energy Storage Demonstration Newsletter, January 2012  

Science Conference Proceedings (OSTI)

The Compressed Air Energy Storage (CAES) demonstration project includes the phased planning, engineering design, construction, demonstration and performance monitoring of two CAES plants. These plants are envisioned to be the following: 1) a system rated at 300 MWs for up to 10 hours with a below-ground reservoir for bulk energy air storage and 2) a system rated at 15 MWs for 2 hours with above-ground air vessel/piping. This is a critical technology demonstration project, necessary to enable higher penet...

2012-01-30T23:59:59.000Z

52

Building a Common Understanding: Clean Air Act and Upcoming Carbon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar Building a Common Understanding: Clean Air Act and Upcoming Carbon...

53

ASE/CAGI Meeting about Compressors and Compressed Air System Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

On April 25, 2013, several representatives of energy efficiency advocacy organizations met with staff and members of the Compressed Air and Gas Institute (CAGI) along with some compressed air...

54

History of First U.S. Compressed-Air Energy Storage (CAES) Plant (110 MW 26h): Volume 2: Construction  

Science Conference Proceedings (OSTI)

This report, Volume 2 in a series, documents the construction of the first U.S. compressed-air energy storage (CAES) plant from August 1988 to May 1991. By providing valuable information on construction and cost schedules for Alabama Electric Cooperative's (AEC) plant, this report will help utilities evaluate and build CAES plants.

1994-05-07T23:59:59.000Z

55

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

-storage materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed airCOMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique, USA ABSTRACT In this work, a low-cost, low-volume, low-maintenance, small-scale compressed-air energy

Deymier, Pierre

56

Environmental and regulatory aspects of compressed-air energy storage  

DOE Green Energy (OSTI)

The effects of fuel regulations, environmental protection laws, the National Environmental Policy Act, underground injection regulations, and state regulations on the development of compressed air storage systems and power plants are discussed. It is concluded that environmental regulatory concerns of conventional energy technologies are often different from those associated with new technologies such as compressed air energy storage (CAES). Confusion and uncertainty often results when the current environmental regulatory system is applied to new technologies. Evolution of the regulatory system must accompany and rapidly accommodate technological development if the benefits of such development are to be fully realized in a timely manner. Those responsible for technological development in the energy field must be aware of these disparities and conduct their efforts accordingly.

Beckwith, M.A.; Mathur, J.

1981-01-01T23:59:59.000Z

57

Compressed Air Energy Storage To Support Wind Integration  

Science Conference Proceedings (OSTI)

Wind generators produce much of their energy during off-peak time periods and their output has high power fluctuations which cause different types of unit commitment and dispatch problems. Compressed Air Energy Storage (CAES) plants with large amounts of bulk energy storage capability can shift large amounts off-peak energy from wind generators to more price advantageous on-peak time periods; and, CAES can smooth out the power fluctuations from wind generators so that grid operators can resolve ramping a...

2008-12-23T23:59:59.000Z

58

CLASSIFICATION OF THE MGR SITE COMPRESSED AIR SYSTEM  

SciTech Connect

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site compressed air system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

J.A. Ziegler

1999-08-31T23:59:59.000Z

59

Compressed Air Energy Storage State-of-Science  

Science Conference Proceedings (OSTI)

Reliable and cost-effective bulk energy storage (BES) will become an important part of the electricity grid. In the form of compressed air energy storage (CAES), BES is a cost-effective option for applications requiring hundreds of megawatt-hours of energy storage. Experience in Alabama and Germany has shown that an optimized CAES plant design can further improve plant capital costs, economics, and performance. Advanced CAES technologies can defer expensive upgrades and capital purchases for transmission...

2009-10-27T23:59:59.000Z

60

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger  

NLE Websites -- All DOE Office Websites (Extended Search)

Radial Air Bearing Radial Air Bearing Heat Exchanger Research Project to someone by E-mail Share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Facebook Tweet about Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Twitter Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Google Bookmark Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Delicious Rank Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on Digg Find More places to share Building Technologies Office: HVAC Radial Air Bearing Heat Exchanger Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

62

Measure Guideline: Air Sealing Attics in Multifamily Buildings  

SciTech Connect

This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

Otis, C.; Maxwell, S.

2012-06-01T23:59:59.000Z

63

Economics of compressed air energy storage employing thermal energy storage  

DOE Green Energy (OSTI)

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

64

Economics of compressed air energy storage employing thermal energy storage  

SciTech Connect

The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

Schulte, S.C.; Reilly, R.W.

1979-11-01T23:59:59.000Z

65

Corrosion of well casings in compressed air energy storage environments  

DOE Green Energy (OSTI)

The goal of this study was to determine corrosive effects of compressed air energy storage (CAES) environments on several well casing materials to aid in material selections. A literature search on corrosion behavior of well casing material in similar environments revealed that corrosion rates of 0.20 to 0.25 mm/y might be expected. This information was employed in designing the laboratory study. Unstressed electrically isolate samples of various carbon steels were autoclaved at varying humidities, temperatures, and exposure durations to simulate anticipated environments in the well bore during CAES operation. All compressed air tests were run at 12.1 MPa. Temperatures varied from 323/sup 0/K to 573/sup 0/K, and humidity varied from 100% to completely dry air. The effects of salts in the humidified air were also studied. Results indicated that typical well casings of carbon steel as used in oil, gas, and water production wells adequately withstand the anticipated CAES reservoir environment. An acceptable corrosion rate arrived at by these laboratory simulations was between 0.0015 and 0.15 mm/y. Corrosion was caused by metal oxidation that formed a protective scale of iron oxide. Higher temperatures, humidity rates, or salinity content of the humid air increased corrosion. Corrosion also increased on a metal coupon in contact with a sandstone sample, possibly due to crevice corrosion. For each of these factors either singularly or collectively, the increased corrosion rates were still acceptable with the maximum measured at 0.15 mm/y. When coupons were reused in an identical test, the corrosion rates increased beyond the anticipated values that had been determined by extrapolation from one-time runs. Fine cracking of the protective scale probably occurred due to thermal variations, resulting in increased corrosion rates and a greater potential for particulates, which could plug the reservoir.

Elmore, R.P.; Stottlemyre, J.A.

1980-10-01T23:59:59.000Z

66

Compressed air energy storage technology program. Annual report for 1980  

DOE Green Energy (OSTI)

All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

Kannberg, L.D.

1981-06-01T23:59:59.000Z

67

Compressed air energy storage technology program. Annual report for 1979  

DOE Green Energy (OSTI)

The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

Loscutoff, W.V.

1980-06-01T23:59:59.000Z

68

Building Technologies Office: Advanced, Variable Speed Air-Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced, Variable Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project to someone by E-mail Share Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Facebook Tweet about Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Twitter Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Google Bookmark Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Delicious Rank Building Technologies Office: Advanced, Variable Speed Air-Source Integrated Heat Pumps Research Project on Digg Find More places to share Building Technologies Office: Advanced,

69

Current Research on Building Energy Systems and Air Cleaning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development Contact Us Department Contacts Media Contacts Current Research on Building Energy Systems and Air Cleaning by Visible-Photocatalytic Oxidation (Visible-PCO)...

70

EFFECTS OF ENERGY CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS: FINAL REPORT  

E-Print Network (OSTI)

CONSERVATION r1EASURES ON AIR HYGIENE IN PUBLIC BUILDINGSConservation Measures on Air Hygiene in Public Buildings",CONSERVATION MEASURES ON AIR HYGIENE IN PUBLIC BUILDINGS:

Dimmick, R.L.

2013-01-01T23:59:59.000Z

71

Energy Tips: Determine the Cost of Compressed Air for Your Plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

Senior care resources Small business resources State and local government resources Energy Tips: Determine the Cost of Compressed Air for Your Plant energy tips cover page This...

72

Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems  

Science Conference Proceedings (OSTI)

In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

2006-04-01T23:59:59.000Z

73

California Air Resources Board's "California Green Building Strategy"  

E-Print Network (OSTI)

California Air Resources Board's "California Green Building Strategy" Collectively, energy use and related activities by buildings is the second largest source of California's greenhouse gas (GHG) emissions. Almost one-quarter of California's greenhouse gas emissions can be attributed to buildings

74

BUILDING VENTILATION AND INDOOR AIR QUALITY  

E-Print Network (OSTI)

foam insulation, and radon from building gas context of withbuilding envelope to reduce exfiltration and infiltration, improving insulation,

Hollowell, C.D.

2012-01-01T23:59:59.000Z

75

Improving Glass Walls Thermal Resistance In Air-Conditioned Buildings  

E-Print Network (OSTI)

The solar radiation through an air conditioned building depends on what is called the building envelope. Building envelope consists of the surfaces that separate the inside from the building outdoors. Area, direction, and specifications of glass walls; as one of envelope surfaces; has an important impact on solar radiation. Design and construction of glass walls have significant effects on building comfort and energy consumption. This paper describes methods of improving glass walls thermal resistance in air conditioned buildings. Effect of glass wall radiation temperature on the indoor temperature distribution of building rooms is also investigated. Heat gain through various types of glass is discussed. Optimization and testing of these types are carried out theoretically and experimentally as well. A series of experiments on different types of glass with special strips is performed.

Galal, T.; Kulaib, A. M.; Alajmi, R.; Al-Ansary. A; Abuzaid, M.

2010-01-01T23:59:59.000Z

76

Analysis of advanced compressed air energy storage concepts. [Adiabatic concept  

DOE Green Energy (OSTI)

An analysis is presented of a class of Advanced Compressed Air Energy Storage (CAES) concepts, which are designed to minimize or eliminate the dependence on oil for firing the turbines. The analysis is based on a ''Hybrid'' CAES system that incorporates thermal storage and varying turbine inlet conditions. The extreme case of the hybrid is the adiabatic CAES concept where the sole source of energy to the cycle is the electrical power input to the compressors. The thermodynamic characteristics of these cycles are studied parametrically. In addition, the economics of the hybrid cycle, including the adiabatic cycle, are studied parametrically for the case where thermal storage in an aquifer is used. The results of the analysis conclude that the adiabatic CAES concept is technically feasible and that the storage efficiency would be comparable to or better than pumped hydro. However, the economic analysis concludes that heat storage in an aquifer is of questionable economic value since a recuperator can accomplish much the same effects at lower cost. The adiabatic concept using heat storage in an aquifer does not appear economic for foreseeable conditions.

Kreid, D.

1977-10-01T23:59:59.000Z

77

Indoor-outdoor air leakage of apartments and commercial buildings.  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor-outdoor air leakage of apartments and commercial buildings. Indoor-outdoor air leakage of apartments and commercial buildings. Title Indoor-outdoor air leakage of apartments and commercial buildings. Publication Type Report Year of Publication 2006 Authors Price, Phillip N., Arman Shehabi, Wanyu R. Chan, and Ashok J. Gadgil Publisher Lawrence Berkeley National Laboratory Abstract We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

78

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

E-Print Network (OSTI)

caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment

Rutqvist, J.

2013-01-01T23:59:59.000Z

79

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Building Air Quality & Ventilation Models: Review - Evaluation - Proposals Speaker(s): James Axley Date: March 12, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Developments in mathematical models for building air quality and ventilation analysis have changed the way we idealize buildings for purposes of analysis, the way we form system equations to effect the analysis, and the way we solve these equations to realize the analysis. While much has been achieved more is possible. This presentation will review the current state of the art - the building idealizations used, the system equations formed, and the solution methods applied - critically evaluate the completeness, complexity and utility of the most advanced models, and present proposals for future development

80

Field Validation of ICF Residential Building Air-Tightness  

SciTech Connect

Recent advances in home construction methods have made considerable progress in addressing energy savings issues. Certain methods are potentially capable of tightening the building envelope, consequently reducing air leakage and minimizing heating and air conditioning related energy losses. Insulated concrete form (ICF) is an economically viable alternative to traditional woodframe construction. Two homes, one of wood-frame, the other of ICF construction, were studied. Standard air leakage testing procedures were used to compare air tightness characteristics achieved by the two construction types. The ICF home showed consistently lower values for air leakage in these tests. The buildings otherwise provided similar data during testing, suggesting that the difference in values is due to greater airtight integrity of the ICF construction method. Testing on more homes is necessary to be conclusive. However, ICF construction shows promise as a tighter building envelope construction method.

Sacs, I.; Ternes, M.P.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Indoor air quality measurements in energy efficient buildings  

DOE Green Energy (OSTI)

The Energy Efficient Buildings Program of the Lawrence Berkeley Laboratory (LBL) has designed and fabricated a mobile laboratory for research and development studies of ventilation requirements and energy utilization in residential and commercial buildings. The Energy Efficient Buildings (EEB) Mobile Laboratory is used in studies of indoor air quality in buildings before and after energy conservation retrofits and in new buildings incorporating energy efficient designs. Indoor air quality measurements have been conducted in residential buildings and work in progress includes indoor air quality monitoring in schools, hospitals, and energy efficient residential buildings. The monitoring program includes measurement of CO, CO/sub 2/, SO/sub 2/, NO, NO/sub 2/, O/sub 3/, infiltration rate (tracer gas technique), and aerosol size distribution on a continuous basis. Total and respirable-fraction particulate samples are collected on membrane filter media for analysis by x-ray fluorescence (XRFA), photoelectron spectroscopy (ESCA), proton activation analysis (PAA), combustion, and wet-chemistry techniques for the determination of particulate elemental composition (S, N, C, etc.) and ionic species such as SO/sub 4//sup 2 -/, NO/sub 3//sup -/, and NH/sub 4//sup +/. Results of the initial phases of this program indicate that the concentrations of some gaseous and respirable particulate air pollutants in specific indoor environments exceed those levels commonly found in the outdoor urban air environment.

Hollowell, C.D.; Berk, J.V.; Traynor, G.W.

1978-04-01T23:59:59.000Z

82

Building Energy Software Tools Directory: Room Air Conditioner Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Room Air Conditioner Cost Estimator Room Air Conditioner Cost Estimator Screen capture of Room Air Conditioner Cost Estimator The cost estimator compares high-efficiency room air conditioners to standard equipment in terms of life cycle cost. It provides an alternative to complicated building simulation models, while offering more precision than simplified estimating tools that are commonly available. The cost estimator assists decision-making regarding the purchase or replacement of room air conditioning equipment, by estimating a product�s lifetime energy cost savings at various efficiency levels. Screen Shots Keywords air conditioner, life-cycle cost, energy performance, residential buildings, energy savings Validation/Testing Internal reviews at Pacific Northwest National Laboratory.

83

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution Systems |  

NLE Websites -- All DOE Office Websites (Extended Search)

8: Air Distribution 8: Air Distribution Systems Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

84

Energy Conservation of Air Conditioning Systems in Large Public Buildings  

E-Print Network (OSTI)

Analyzing the actuality of the large-scale public buildings' energy consumption, we know that most of them run not only in low efficiency, but also in high energy consumption. According to the characteristics of the building, we should proceed with the heating characteristics of the exterior -protected construction, the set value of the temperature of the air-conditioning, the lectotype of the Central air-conditioning system, the regulation and the modification of the transmission and distribution system, the use of the new energy and the daily management or the method of adjustment and control, and so on , so we can make the air-conditioning system run efficiently. Analyzing and comparing the large-scale public buildings' energy consumption with each other, some pointed improvement measures are proposed further. According to the study and analysis, even though large-scale public buildings consume a great of energy, there exists a huge potential for energy conservation.

Liu, P.; Li, D.

2006-01-01T23:59:59.000Z

85

Building a Common Understanding: Clean Air Act and Upcoming Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building a Common Understanding: Clean Air Act and Upcoming Carbon Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar August 27, 2013 1:00PM EDT Webinar This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power plants. The webinar will be held Tuesday, August 27 from 1:00-2:30 p.m. Eastern Time. Please email walker.jean@epa.gov to register. Background On June 25, 2013, President Obama issued a Presidential Memorandum directing the Environmental Protection Agency (EPA) to work expeditiously to complete carbon pollution standards for the power sector.

86

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

plan, formulate energy efficiency goals and adopt energyGO-102004-1926 [3] Energy Efficiency and Market Potential ofImproving Energy Efficiency of Compressed Air System Based

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

87

Guidelines for Fuel Gas Line Cleaning Using Compressed Air or Nitrogen  

Science Conference Proceedings (OSTI)

This document lays a foundation for helping the industry to better understand common practices, design basis, and issues to consider for performing fuel gas line cleaning using compressed air or nitrogen pneumatic blow processes.

2011-12-14T23:59:59.000Z

88

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy  

SciTech Connect

Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

2010-10-27T23:59:59.000Z

89

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

SciTech Connect

We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

2006-06-01T23:59:59.000Z

90

Cape Light Compact - Commercial, Industrial and Municipal Buildings...  

Open Energy Info (EERE)

Central Air conditioners, Chillers, Compressed air, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting, Lighting Controls...

91

Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation  

SciTech Connect

The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

Alkadi, Nasr E [ORNL; Kissock, Professor Kelly [University of Dayton, Ohio

2011-01-01T23:59:59.000Z

92

Monitoring System Used to Optimize Compressed Air System Efficiency, Cut Costs  

E-Print Network (OSTI)

In 1994, Thomson Consumer Electronics (RCA), an international manufacturer of electronics equipment purchased a UtillTRACK Monitoring System for a plant in Indianapolis, Indiana. The system monitored gas and electric meters, substations, main feeders, and major equipment and systems including compressed air. For the compressed air system, monitored data included compressor amps, electrical demand and consumption, pressure and airflow. The resulting UtiliTRACK reports and graphs showed a significant variation in system efficiency depending upon the demand for air (day of week, time of day, production schedule) and which compressor or compressors were operating. By working with the boiler plant operators and making minor modifications to the existing compressor controls, the operating sequence was modified to maintain high system efficiency under all operating conditions. Monitored data after the changes were made showed a 20% reduction in compressed air system operating costs.

Holmes, W. A.

1998-04-01T23:59:59.000Z

93

Energy efficiency improvements in Chinese compressed air systems  

E-Print Network (OSTI)

Air Systems, Paper #071 Energy efficiency improvements into increase industrial energy efficiency. As a result, morein use. Over time, energy efficiency decreases and the cost

McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.

2008-01-01T23:59:59.000Z

94

Program on Technology Innovation: Materials Selection for Compressed Air Energy Storage System  

Science Conference Proceedings (OSTI)

EPRI is evaluating materials compatibility issues as they relate to aboveground compressed air energy storage (CAES) pipelines. The factors determining materials performance include pressure and thermal cycling; adiabatic cooling as pressurized air is released, causing condensation of water and corrosion; and any gaseous impurities in the air affecting corrosion. This report focuses on evaluation of corrosion behavior and provides a systematic decision-making approach to the selection of appropriate mate...

2009-12-21T23:59:59.000Z

95

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network (OSTI)

HVAC equipment manufacturers, specifiers and end users interacting in the marketplace today are only beginning to address the series of issues promulgated by the increased outside air requirements in ASHRAE Standard 62- 1989, "Ventilation for Acceptable Indoor Air Quality", that has cascaded into building codes over the early to mid 1990's. There has been a twofold to fourfold increase in outside air requirements for many commercial building applications, compared to the 1981 version of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity indoors. Preconditioning is the term applied for taking outside air to the indoor air setpoint (dry bulb temperature and relative humidity). The large humidity loads from outside air can now be readily recognized and quantified at cooling design point conditions using the extreme humidity ratios/dew points presented in the ASHRAE Handbook of Fundamentals Chapter 26 "Climatic Design Information". This paper presents an annual index called the Ventilation Load Index (VLI), recently developed by the Gas Research Institute (GRI) that measures the magnitude of latent (and sensible) loads for preconditioning outside air to indoor space conditions over the come of an entire year. The VLI has units of ton-hrs/scfm of outside air. The loads are generated using new weather data binning software called ~BinMaker, also from GRI, that organizes the 239 city, 8760 hour by hour, TMY2 weather data into user selected bidtables. The VLI provides a simple methodology for accessing the cooling load impact of increased ventilation air volumes and a potential basis for defining a "humid" climate location.

Kosar, D.

1998-01-01T23:59:59.000Z

96

Cold air distribution in office buildings: Technology assessment for California  

DOE Green Energy (OSTI)

This paper presents the results of a study to assess the current state of practice, and energy and operating cost implications of cold air distribution in California, and to identify the key research needs for the continued development of this technology in new commercial buildings in the state. Whole-building energy simulations were made to compare the energy performance of a prototypical office building in three California climates using conventional and cold air distribution, with and without ice storage, to show the impacts of load shifting, energy use, and utility costs for three typical utility rate structures. The merits of economizers and fan-powered mixing boxes were also studied when used in conjunction with cold air delivery. A survey was conducted to assess the perceived strengths and limitations of this technology, perceived barriers to its widespread use, and user experience. The survey was based on interviews with consulting engineers, equipment manufacturers, researchers, utility representatives, and other users of cold air distribution technology. Selected findings from the industry survey are also discussed. Cold air distribution (CoAD) is found to always reduce fan energy use in comparison to conventional 55[degrees]F (13[degrees]C) air distribution systems, when conditioned air is delivered directly to the space (no fan-powered mixing boxes). Total building energy use for ice storage/CoAD systems was always higher than a well-designed conventional system, but significantly lower than a commonly-installed packaged system. When a favorable utility rate structure was applied, the load-shifting benefits of ice storage/CoAD systems produced the lowest annual operating costs of all system-plant configurations studied.

Bauman, F.S.; LaBege, P. (California Univ., Berkeley, CA (United States). Center for Environmental Design Research); Borgers, T. (Humboldt State Univ., Arcata, CA (United States). Dept. of Chemistry); Gadgil, A.J. (Lawrence Berkeley Lab., CA (United States))

1992-06-01T23:59:59.000Z

97

Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open  

Open Energy Info (EERE)

AirCompressors AirCompressors Jump to: navigation, search This is a property of type String. Air compressors Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 1.86549707602 + Sweden Building 05K0005 + 2.04651162791 + Sweden Building 05K0006 + 1.92596566524 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.970107495214 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 1.30894886364 + Sweden Building 05K0012 + 2.01978262942 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

98

Property:Building/SPElectrtyUsePercAirCompressors | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercAirCompressors SPElectrtyUsePercAirCompressors Jump to: navigation, search This is a property of type String. Air compressors Pages using the property "Building/SPElectrtyUsePercAirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.86951260628 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 2.82544508471 + Sweden Building 05K0005 + 3.73005319917 + Sweden Building 05K0006 + 2.94977386199 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 1.71574943377 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 4.75949418837 + Sweden Building 05K0012 + 5.31608494158 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

99

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

Progress in electrical energy storage system: a criticalcurrent and future energy storage technologies for electricwind- diesel-compressed air energy storage system for remote

Kim, H.-M.

2012-01-01T23:59:59.000Z

100

ESS 2012 Peer Review - Compressed Air Energy Storage - Robert Booth, PG&E-BAI  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMPRESSED AIR ENERGY STORAGE IN CALIFORNIA COMPRESSED AIR ENERGY STORAGE IN CALIFORNIA Michael Medeiros, Pacific Gas and Electric Company, San Francisco, CA Robert Booth, Booth & Associates International, San Francisco, CA September 2012 Introduction The purpose of this presentation is to provide an overview of Pacific Gas and Electric Company's (PG&E) initiative in evaluating the technical and economic feasibility of compressed air energy storage (CAES) using porous rock reservoirs in California. PG&E was awarded funding from the U.S. Department of Energy (DOE), the California Energy Commission (CEC), and the California Public Utilities Commission (CPUC) to determine the feasibility of a 300 MW CAES facility utilizing up to 10 hours of storage in a

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.  

E-Print Network (OSTI)

??Various commercial software packages are available for simulating compressed air network operations. However, none of these software packages are able to dynamically prioritise compressor selection (more)

Venter, Johan

2012-01-01T23:59:59.000Z

102

Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

2008-12-01T23:59:59.000Z

103

Report of the Building 9207 air bag test  

Science Conference Proceedings (OSTI)

As part of a major testing program now underway at the Department of Energy`s (DOE) Oak Ridge Y-12 Plant, managed by Martin Marietta Energy Systems, Inc. (MMES), a full-scale air bag test was conducted in Building 9207. The test program, supported and managed by the Center for Natural Phenomena Engineering (CNPE), is intended to determine the stiffness and strength of unreinforced hollow clay tile walls (HCTVS) in order to more accurately analyze and predict the response of buildings containing these type of walls, especially when subjected to seismic and high wind loadings. The air bag test was a very large undertaking that started more than a year before the test was actually performed. Preparation for the test included the following activities: (1) preparation of the wall and the adjacent building areas; (2) design and field fabrication of test supporting structures; (3) procurement of equipment and instrumentation; (4) development of supporting test procedures and checklists; (5) installation of over seventy linear variable differential transformers (LVDTs) and strain gages; (6) development of computer programs for use in the data acquisition systems; (7) extensive review into the existing engineering literature; (8) discussions with researchers with prior experience performing air bag tests; (9) coordination with the building operators; (10) plant safety reviews; and (11) dry runs of the test itself.

Huff, T.E.; Fricke, K.E.; Jones, W.D.

1992-12-01T23:59:59.000Z

104

Building Energy Software Tools Directory: VentAir 62  

NLE Websites -- All DOE Office Websites (Extended Search)

VentAir 62 VentAir 62 VentAir 62 logo. A ventilation airflow calculator that allows easy, accurate compliance with ASHRAE Standard 62-89. The program automates the cumbersome calculations presented by the Standard's Equation 6-1. The Windows-based program helps building designers design multiple-space ventilation systems that meet the requirements of the Standard. This tool analyzes space and system information from the VAV terminal and air handler unit schedules, calculates ventilation airflow requirements (space minimums and system-level required minimum), and provides additional or revised information for the VAV and AHU schedules. Keywords ventilation design, ASHRAE Standard 62 Validation/Testing N/A Expertise Required Knowledge of ASHRAE Standard 62 requirements and ventilation design.

105

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

E-Print Network (OSTI)

caverns for the storage of natural gas, crude oil and compressed air: Geomechanical aspects of construction, operation and abandonment,caverns involved in CAES include stability, air tightness, acceptable surface subsidence, and (later on) an environmentally safe decommissioning and abandonment [

Kim, H.-M.

2012-01-01T23:59:59.000Z

106

Investigations on Vapour Compression Air Conditioner with Direct Contact Desiccant Loop over Condenser and Evaporator  

E-Print Network (OSTI)

Perceived air quality increases when relative humidity is decreased till about 30% in the range of comfort temperature. In the present scenario, humidity is considered as a pollutant. Hence, a controlled environment not only at low temperature but also at low humidity is desired for many applications such as archives, data centers, etc. Either a separate dehumidifier or a precision air conditioning (AC) system needs to be employed for such an application. In fact, the latter forms a reheat AC system which happens to be energy inefficient. In view of this, a vapor compression window air conditioner is investigated with a superimposed liquid desiccant loop harnessing the advantages of both the compression system (high COP) and desiccant system (low humidity). Operation of such a novel system is explained, elucidating the operational feasibility. The results presented consider the characteristics of such a system with respect to changes in the evaporator inlet air temperature and humidity. The change in the specific humidity of air is compared for vapor compression system and the direct contact hybrid system for different values of inlet air temperature.

Maiya, M. P.; Ravi, J.; Tiwari, S.

2010-01-01T23:59:59.000Z

107

Engineering Design Example CompressedCompressed--Air System for a Manufacturing PlantAir System for a Manufacturing Plant  

E-Print Network (OSTI)

to operate C/A tools: Compressor and piping layoutCompressor and piping layout Air supply circumferentially: · Estimate the load [cfm] based on current and future demand. · Size the compressor(s). · Size the pipes so*1.35=1900 cfm. · Centrifugal or reciprocating compressor may be chosen (later). From handbooks: P kk /)1

Kostic, Milivoje M.

108

Electric power generating plant having direct-coupled steam and compressed-air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, M.K.

1981-01-07T23:59:59.000Z

109

Electric power generating plant having direct coupled steam and compressed air cycles  

DOE Patents (OSTI)

An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

Drost, Monte K. (Richland, WA)

1982-01-01T23:59:59.000Z

110

Two stroke homogenous charge compression ignition engine with pulsed air supplier  

DOE Patents (OSTI)

A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

Clarke, John M. (Chillicothe, IL)

2003-08-05T23:59:59.000Z

111

Potential hazards of compressed air energy storage in depleted natural gas reservoirs.  

DOE Green Energy (OSTI)

This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

2011-09-01T23:59:59.000Z

112

On the Contribution of Compressed Air Systems to Energy Efficiency Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Contribution of Compressed Air Systems to Energy Efficiency Targets On the Contribution of Compressed Air Systems to Energy Efficiency Targets - A Function-Based Bottom-Up Approach Speaker(s): Patrick Plötz Date: May 4, 2012 - 2:00pm Location: 90-4133 Seminar Host/Point of Contact: Sanaee Iyama Achieving current EU energy targets as stipulated in the energy service directive and in the energy strategy for 2020 implies substantial efficiency improvements across a variety of industrial end-uses. The achievable saving potential of an end-use depends considerably on the age structure of the existing stock and on the technology definition, i.e. whether a product approach, an extended product approach or a system-approach is used. Within this context, important ErP studies on air compressors are in preparation. In this paper, we address the possible

113

FY 1977 Progress report, Compressed air energy storage advanced systems analysis.  

DOE Green Energy (OSTI)

The goal of the Compressed Air Energy Storage (CAES) Advanced Systems Analysis task is to accelerate the development of new technologies that will reduce the consumption of natural gas and oil. The immediate overall objectives of this program are to: (1) provide a screening cost assessment for thermal energy storage (TES) systems that are suitable for CAES applications; (2) establish the potential fuel savings of hybrid CAES cycles that incorporate TES for recovery of the heat of compression and estimate the economic incentive for using TES in CAES systems; and (3) investigate modified CAES cycles that eliminate the use of gas and oil by the use of alternative fuels.

Kreid, D.K.; McKinnon, M.A.

1978-03-01T23:59:59.000Z

114

ENERGY STAR Building Upgrade Manual Chapter 8: Air Distribution...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings National Building Competition Find Expert Help How can we help you? Build an energy program Improve buildings & plant performance Earn the ENERGY STAR & other...

115

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network (OSTI)

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component of that wide-ranging program focused on industrial compressed air systems as the target for such electric use reductions. What stands out about the compressed air effort is that customer acceptance of the program was very high (8 out of 10 customer sites implemented at least some of the efficiency projects recommended in the program's air system audits) and overall savings levels were more than 3X the original program goal (550 kW vs. 1730 kW). XENERGY, Inc. designed and carried out the program on behalf of PG&E. Key features of the program included working with compressed air system distributors to identify and qualify good customer leads and post-audit technical assistance to help customer implement recommended projects. This paper reviews the project and outlines some of the lessons learned in completing the project."

Skelton, J.

2003-04-01T23:59:59.000Z

116

Pacific Gas and Electric Company's Compressed Air Management Program: A Performance Assessment Approach to Improving Industrial Compressed Air System Operation and Maintenance  

E-Print Network (OSTI)

The Compressed Air Management Program (CAMP) provides Pacific Gas and Electric's (PG&E's) large industrial customers with measurement-based performance assessments of their compressed air systems. Under this program, the customer's system is inspected and both short-term, high resolution, and longer-term measurements are taken of power and pressure. These data are used in developing a system simulation based on the US DOE's AIRMaster+ computer model. Model results and professional judgment are used to identify a cost-effective strategy for improving the system. Recommendations are provided to the customer along with technical support for implementing these recommendations. After improvements are complete, the performance measurements are repeated so that PG&E and its customers can judge the effectiveness of the recommendations. The program uses a standardized toolkit (all off-the-shelf components) along with software developed exclusively for this application, to accomplish the required measurements and efficiently analyze and reduce the data for use in the AIRMaster+ model.

Qualmann, R. L.; Zeller, W.; Baker, M.

2002-04-01T23:59:59.000Z

117

Natural air motion and stratification in passive buildings  

DOE Green Energy (OSTI)

Natural convection is a major mechanism for heat distribution in many passive solar buildings, especially those with sunspaces. To better understand this mechanism, observations of air velocities and temperatures have been made in 13 different houses that encompass a wide variety of one- and two-story geometries. This paper extends previous reports. Results from one house are described in detail, and some generalizations are drawn from the large additional mass of data taken. A simple mathematical model is presented that describes the general nature of airflow and energy flow through an aperture.

Balcomb, J.D.; Jones, G.F.; Yamaguchi, Kenjiro

1984-01-01T23:59:59.000Z

118

Measuring Outdoor Air Intake Rates into Existing Building  

SciTech Connect

Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

2009-04-16T23:59:59.000Z

119

Low-Fuel Compressed Air Energy Storage System Development and Preliminary Evaluation  

Science Conference Proceedings (OSTI)

Compressed air energy storage (CAES) is a valuable solution for mitigating the current challenges of renewable power variability, facilitating future higher renewable penetration levels, enhancing grid reliability and improving the utilization of transmission and existing generation assets. Fuel-based CAES systems are subject to future natural gas price volatility and potential carbon dioxide (CO2) emission charges. Low-Fuel CAES (LFCAES) is a potential near-term technology that captures and stores heat ...

2010-12-17T23:59:59.000Z

120

Technical and economic feasibility analysis of the no-fuel compressed air energy storage concept  

DOE Green Energy (OSTI)

The principal goal of this study was to evaluate the technical and economic feasibility of no-fuel compressed air energy storage (CAES) concepts for utility peaking applications. The analysis uncovered no insurmountable problems to preclude the technical feasibility of the no-fuel CAES concept. The results of the economic analysis are sufficiently unfavorable to conclude that no-fuel CAES technology could not compete with conventional CAES or standard gas turbine peaking facilities for conditions foreseeable at this time.

Kreid, D.K.

1976-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reference Design Description and Cost Evaluation for Compressed Air Energy Storage Systems  

Science Conference Proceedings (OSTI)

Compressed-air energy storage (CAES) is a valuable solution for mitigating the current challenges of renewable-power variability, facilitating higher renewable penetration levels, enhancing grid reliability, and improving the utilization of transmission and generation assets. However, capital costs play a critical role in evaluating the overall CAES value proposition, at least relative to direct-market revenues (energy and ancillary services). Although the first U.S. CAES plant in Alabama was built at co...

2011-12-21T23:59:59.000Z

122

Assessment of Non-Fuel, Advanced Compressed Air Energy Storage Systems to Support High Wind Penetration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the RD&D work at EPRI on adiabatic no-fuel Compressed Air Energy Storage (CAES) for wind integration. Bulk energy storage (BES) has latent value in the electric grid, enhances grid reliability, and is well suited to address wind integration related challenges. Without storage, extensive ramping and spinning reserve backup of thermal generators is required, at associated high costs, poor thermal performance, poor down ramp capability and high emissions. Fu...

2009-11-16T23:59:59.000Z

123

Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings  

E-Print Network (OSTI)

Measured Airflows in a Multifamily Building," AirflowPerformance of Building Envelopes, Components, and Systems,APARTMENTS AND COMMERCIAL BUILDINGS Price, P.N. ; Shehabi,

Price, P.N.

2011-01-01T23:59:59.000Z

124

Evaluation of thermal energy storage materials for advanced compressed air energy storage systems  

DOE Green Energy (OSTI)

Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

1983-03-01T23:59:59.000Z

125

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

2005-08-01T23:59:59.000Z

126

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream  

E-Print Network (OSTI)

jet-compressible-gas-july25.tex 1 Liquid jet in a high Mach number air stream T.Funada, D velocity airstream is studied assuming that the flow of the viscous gas and liquid is irrotational for the perturbations which depend on all the material properties of the incompressible liquid and compressible gas

Joseph, Daniel D.

127

Preliminary stability criteria for compressed air energy storage in porous media reservoirs  

DOE Green Energy (OSTI)

Results from the initial phase of a study to establish subsurface design and operating criteria for a Compressed Air Energy Storage (CAES) facility are summarized. The primary objective was to derive a preliminary set of criteria that would help ensure the long term (30 to 40 year) integrity of CAES reservoirs in porous media, such as aquifers or abandoned natural gas reservoirs. In addition, appropriate research and development tasks were to be defined if the current technology was found to be inadequate. Preliminary stability and design criteria for storage of compressed air in porous media were determined on the basis of a survey of the open literature and the experience of experts in industry and universities. The results were separated into two categories: criteria for low temperature air injection (under 200/sup 0/F) and criteria for high temperature air injection (200 to 650/sup 0/F). Results are presented as maximum and/or minimum bounds for a number of parameters such as porosity, permeability, closure, storage pressure, caprock thickness, delta pressure, and caprock slope. One of the prime conclusions derived from an evaluation of the low temperature concept is that the technology currently exists to handle the potential design and operating problems. Therefore, there appears to be no technical roadblocks to the successful demonstration of the CAES concept, and a pilot project could be constructed in the near future.

Stottlemyre, J.A.

1978-06-01T23:59:59.000Z

128

Potential petrophysical and chemical property alterations in a compressed air energy storage porous rock reservoir  

DOE Green Energy (OSTI)

Successful commercialization of Compressed Air Energy Storage (CAES) systems depends on long-term stability of the underground reservoirs subjected to somewhat unique operating conditions. Specifically, these conditions include elevated and time varying temperatures, effective stresses, and air humidities. To minimize the requirements for premium fuels, it may be desirable to retain the thermal energy of compression. Porous media, e.g., sandstone, may hold promise as elevated temperature reservoirs. In this study, a reservoir composed of clean quartz sandstone and injection air temperatures of 300 to 575/sup 0/K are assumed. Numerical modeling is used to estimate temperature, stress, and humidity conditions within this reference porous media reservoir. A discussion on relative importance to CAES of several potential porous media damage mechanisms is presented. In this context, damage is defined as a reduction in intrinsic permeability (measure of air transport capability), a decrease in effective porosity (measure of storage capability), or an increase in elastic and/or inelastic deformation of the porous material. The potential damage mechanisms presented include: (1) disaggregation, (2) particulate plugging, (3) boundary layer viscosity anomalies, (4) inelastic microstructural consolidation, (5) clay swelling and dispersion, (6) hydrothermal mineral alteration, (7) oxidation reactions, and (8) well casing corrosion. These mechanisms are placed in perspective with respect to anticipated CAES conditions and mechanisms suggested are: (1) of academic interest only, (2) readily identified and controlled via engineering, or (3) potential problem areas requiring additional investigation.

Stottlemyre, J.A.; Erikson, R.L.; Smith, R.P.

1979-10-01T23:59:59.000Z

129

Analytical modeling of a hydraulically-compensated compressed-air energy-storage system  

Science Conference Proceedings (OSTI)

A computer program was developed to calculate the dynamic response of a hydraulically-compensated compressed air energy storage (CAES) system, including the compressor, air pipe, cavern, and hydraulic compensation pipe. The model is theoretically based on the two-fluid model in which the dynamics of each phase are presented by its set of conservation equations for mass and momentum. The conservation equations define the space and time distribution of pressure, void fraction, air saturation, and phase velocities. The phases are coupled by two interface equations. The first defines the rate of generation (or dissolution) of gaseous air in water and can include the effects of supersaturation. The second defines the frictional shear coupling (drag) between the gaseous air and water as they move relative to each other. The relative motion of the air and water is, therefore, calculated and not specified by a slip or drift-velocity correlation. The total CASE system is represented by a nodal arrangement. The conservation equations are written for each nodal volume and are solved numerically. System boundary conditions include the air flow rate, atmospheric pressure at the top of the compensation pipe, and air saturation in the reservoir. Initial conditions are selected for velocity and air saturation. Uniform and constant temperature (60/sup 0/F) is assumed. The analytical model was used to investigate the dynamic response of a proposed system.Investigative calculations considered high and low water levels, and a variety of charging and operating conditions. For all cases investigated, the cavern response to air-charging, was a damped oscillation of pressure and flow. Detailed results are presented. These calculations indicate that the Champagne Effect is unlikely to cause blowout for a properly designed CAES system.

McMonagle, C.A.; Rowe, D.S.

1982-12-01T23:59:59.000Z

130

Porous media experience applicable to field evaluation for compressed air energy storage  

DOE Green Energy (OSTI)

A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

Allen, R.D.; Gutknecht, P.J.

1980-06-01T23:59:59.000Z

131

Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air  

SciTech Connect

A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

Bland, Robert J. (Oviedo, FL); Horazak, Dennis A. (Orlando, FL)

2012-03-06T23:59:59.000Z

132

Energy Efficient Ventilation for Maintaining Indoor Air Quality in Large Buildings  

E-Print Network (OSTI)

this paper was presented at the 3rd International Conference on Cold Climate Heating, Ventilating and Air-conditioning, Sapporo, Japan, November 2000 C. Y. Shaw Rsum Institute for Research in Construction, National Research Council Canada Achieving good indoor air quality in large residential and commercial buildings continues to be a top priority for owners, designers, building managers and occupants alike. Large buildings present a greater challenge in this regard than do smaller buildings and houses. The challenge is greater today because there are many new materials, furnishings, products and processes used in these buildings that are potential sources of air contaminants. There are three strategies for achieving acceptable indoor air quality: ventilation (dilution), source control and air cleaning/filtration. Of the three, the most frequently used strategy, and in most cases the only one available to building operators, is ventilation. Ventilation is the process of supplying outdoor air to an enclosed space and removing stale air from this space. It can control the indoor air quality by both diluting the indoor air with less contaminated outdoor air and removing the indoor contaminants with the exhaust air. Ventilation costs money because the outdoor air needs to be heated in winter and cooled in summer. To conserve energy, care must be taken to maximize the efficiency of the ventilation system. In this regard, a number of factors come into play

C. Y. Shaw; C. Y. Shaw Rsum

2000-01-01T23:59:59.000Z

133

Program on Technology Innovation: Adiabatic Compressed Air Energy Storage Systems for Renewable Energy Integration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the research, development, and demonstration (RD&D) work at the Electric Power Research Institute (EPRI) on adiabatic no-fuel compressed air energy storage (CAES) for wind integration. Bulk energy storage (BES) is necessary to provide grid damping in order to mitigate wind power variability. The objective of adiabatic no-fuel CAES RD&D is to combine the lowest-cost BES option (which is CAES) with carbon-free operation. The research focuses on system desig...

2010-11-08T23:59:59.000Z

134

Thermophysical behavior of St. Peter sandstone: application to compressed air energy storage in an aquifer  

DOE Green Energy (OSTI)

The long-term stability of a sandstone reservoir is of primary importance to the success of compressed air energy storage (CAES) in aquifers. The purpose of this study was to: develop experimental techniques for the operation of the CAES Porous Media Flow Loop (PMFL), an apparatus designed to study the stability of porous media in subsurface geologic environments, conduct experiments in the PMFL designed to determine the effects of temperature, stress, and humidity on the stability of candidate CAES reservoir materials, provide support for the CAES field demonstration project in Pittsfield, Illinois, by characterizing the thermophysical stability of Pittsfield reservoir sandstone under simulated field conditions.

Erikson, R.L.

1983-12-01T23:59:59.000Z

135

Indoor air quality issues related to the acquisition of conservation in commercial buildings  

Science Conference Proceedings (OSTI)

The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

1990-09-01T23:59:59.000Z

136

INDOOR AIR QUALITY MEASUREMENTS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

stone Wallboard Paint Insulation Building Contents Heatingbuilding envelopes to reduce leakage and inf"ltration rates, improving insulation,

Hollowell, C.D.

2011-01-01T23:59:59.000Z

137

Guide to Energy-Efficient Ventilation Methods for Acceptable Levels of Indoor Air Quality Levels in Commercial Buildings  

Science Conference Proceedings (OSTI)

Indoor air quality is important in commercial buildings to maintain employee health, well-being, and productivity and avoid employer liability. The most common method to improve indoor air quality in commercial buildings is to use outside ventilation air for dilution of the inside air. Unfortunately, the conditioning of outdoor ventilation air may result in increased energy use for cooling, dehumidification, and heating; and humid outdoor ventilation air also can degrade indoor air quality. Some commerci...

2007-12-17T23:59:59.000Z

138

Preliminary long-term stability criteria for compressed air energy storage caverns in salt domes  

DOE Green Energy (OSTI)

Air storage caverns, which are an essential and integral component of a CAES plant, should be designed and operated so as to perform satisfactorily over the intended life of the overall facility. It follows that the long-term ''stability'' of air storage caverns must be considered as a primary concern in projecting the satisfactory operation of CAES facilities. As used in the report, ''stability'' of a storage cavern implies the extent to which an acceptable amount of cavern storage volume can be utilized with routine maintenance for a specified time interval, e.g., 35 years. In this context, cavern stability is relative to both planned utilization and time interval of operation. The objective of the study was to review the existing literature and consult knowledgeable workers in the storage industry, and then report state-of-the-art findings relative to long-term stability of compressed air energy storage caverns in salt domes. Further, preliminary cavern stability criteria were to be presented in a form consistent with the amount of information available on cavern performance in salt domes. Another objective of the study was to outline a methodology for determining the long-term stability of site-specific CAES cavern systems in salt domes.

Thoms, R.L.; Martinez, J.D.

1978-08-01T23:59:59.000Z

139

Stability and design criteria studies for compressed air energy storage reservoirs. Progress report, FY 1977.  

DOE Green Energy (OSTI)

Progress made during FY-1977 in establishing design criteria to ensure the successful operation and long-term stability of Compressed Air Energy Storage (CAES) reservoirs in underground porous media, such as aquifers is summarized. The formulation of pertinent criteria is important since the long-term stability of air storage reservoirs is probably the item of greatest risk to the successful demonstration and commercialization of the CAES concept. The study has been divided into four phases: (1) state-of-the-art survey, (2) analytical modeling studies, (3) laboratory studies, and (4) field testing. The first of these phases, the state-of-the-art survey for air storage in porous reservoirs, has been completed on schedule and is reported in Section 2. Sections 3 and 4 are progress reports on Phases 2 and 3. No work has been done on Phase 4. It is planned that the field testing phase of this study will be carried out in conjunction with the Department of Energy/Electric Power Research Institute (DOE/EPRI) CAES Demonstration Program. This phase is not scheduled to begin until FY-1979.

Smith, G.C.; Stottlemyre, J.A.; Wiles, L.E.; Loscutoff, W.V.; Pincus, H.J.

1978-03-01T23:59:59.000Z

140

A compressed-air energy storage (CAES) unit in the U. S  

Science Conference Proceedings (OSTI)

Soyland Power Cooperative, Inc., a Decatur, Illinois-based co-op, could get reasonably priced baseload power from neighboring utilities' coal and nuclear plants, and even had one coal plant of its own planned for the near future, as well as a share in a nuclear plant; but peaking power, generated by costly oil and gas to instantly meet sudden surges in demand, was another story. CAES splits the two basic stages of a conventional gas turbine, making the most of baseload power, while using the least peaking or intermediate fuel. During off-peak periods, inexpensive baseload electricity from coal-fired or nuclear power plants runs a combination motor-generator in a motor mode, which in turn operates a compressor. Air is compressed, cooled, and pumped into an underground storage reservoir hundreds of thousands of cubic yards in volume and about two thousand feet ( about610m) below the surface. There the air remains, at pressures up to about 60 atm (6.1 MPa), until peaking or intermediate power is required. Then, the air is released into a combustor at a controlled rate, heated by oil or gas, and expanded through a turbine. The turbine drives the motor-generator in a generator mode, thereby supplying peaking or intermediate power to the grid.

Lihach, N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design  

DOE Green Energy (OSTI)

A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

142

Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns  

DOE Green Energy (OSTI)

We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be quickly detected using pressure monitoring outside the concrete lining.

Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

2012-02-01T23:59:59.000Z

143

ESS 2012 Peer Review - Modular Undersea Compressed Air Energy Storage (UCAES) System - James Kesseli, Brayton Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

solar.energy.gov/sunshot/csp.html solar.energy.gov/sunshot/csp.html ENERGY STORAGE SYSTEMS: Sept. 27, 2012 Modular Undersea Compressed Air Energy Storage (UCAES) System Bill Caruso www.BraytonEnergy.com Brayton Energy LLC Project Overview UCAES has the potential to offer modular, grid scale storage capability at competitive costs when coupled with high efficiency power conversion systems. The nature of the design minimizes vessel stress and aesthetic impact, while utilizing readily available material and construction techniques. Progress Future Work Further feasibility and cost studies must be conducted by experienced maritime construction contractors. The market for UCAES systems must be explored further by conducting broader case studies of bathymetry, terrain, infrastructure and natural and/or renewable energy resource potential.

144

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

145

Compressed air energy storage (CAES) environmental control concerns and program plan  

DOE Green Energy (OSTI)

This report assesses the required environmental research and recommends a program plan to assist DOD's Environmental Control Technology Division (ECT) in performing its mission of ensuring that the procedures, processes, systems, and strategies necessary to minimize any adverse environmental impacts of compressed air energy storage (CAES) are developed in a timely manner so as not to delay implementation of the technology. To do so, CAES technology and the expected major environmental concerns of the technology are described. Second, ongoing or planned research in related programs and the applicability of results from these programs to CAES environmental research are discussed. Third, the additional research and development required to provide the necessary environmental data base and resolve concerns in CAES are outlined. Finally, a program plan to carry out this research and development effort is presented.

Beckwith, M.A.; Boehm, D.W.

1980-06-01T23:59:59.000Z

146

Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)  

DOE Green Energy (OSTI)

The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

Not Available

1982-01-01T23:59:59.000Z

147

Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage  

DOE Green Energy (OSTI)

Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

Friley, J.R.

1980-01-01T23:59:59.000Z

148

Best Practice For the Location of Air and Thermal Boundaries in Small Commercial Buildings  

E-Print Network (OSTI)

Suspended t-bar ceilings are common in commercial buildings. Research has found that these ceilings are very leaky, and several problems arise from this. If the space above the ceiling is vented to outdoors, the entire building becomes leaky. Furthermore, if the insulation is located at the ceiling rather than the roof, then the ceiling space will be hot (summer), and if the ceiling space is also vented to outdoors, then the ceiling space will be hot and humid. The thermal and humidity conditions of the ceiling space have important implications for space conditioning loads, building ventilation rates, and indoor relative humidity. Conductive gains through ductwork add to loads, and various forms of uncontrolled air flow readily move air between the ceiling space and the occupied space. These factors should be considered during design and construction of commercial buildings. Best practice: locate the air and thermal boundaries of the building at the roof deck. This approach has many benefits.

Cummings, J. B.; Withers, C. R.

2000-01-01T23:59:59.000Z

149

Effects of radiation and compression on propagating spherical flames of methane/air mixtures near the lean flammability limit  

SciTech Connect

Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation. (author)

Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

2010-12-15T23:59:59.000Z

150

EA-1752: Smart Grid, Pacific Gas & Electric, Advanced Compressed Air Energy Storage in Porous Rock Formation, San Francisco, California  

Energy.gov (U.S. Department of Energy (DOE))

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California.

151

Abstract--A novel compressed air energy storage system for wind turbine is proposed. It captures excess power prior to  

E-Print Network (OSTI)

Abstract-- A novel compressed air energy storage system for wind turbine is proposed. It captures of simulation case studies demonstrate the operation of the system. I. INTRODUCTION enewable energy such as wind and solar energy are clean and available as long as the wind blows or sun shines. Two main disadvantages

Li, Perry Y.

152

Innovative Systems for Solar Air Conditioning of Buildings  

E-Print Network (OSTI)

Solar air conditioning is an attractive technology to achieve comfortable room conditions, especially in hot and sunny climates. In particular air conditioning systems based on sorption technologies offer several advantages as they can be designed for a high efficient utilization of solar thermal energy. To show the today's and near future potential innovative solar cooling and air conditioning systems are discussed which are well adapted to the utilization of solar energy. The system performance of each air conditioning system is evaluated under Abu Dhabi design conditions.

Kessling, W.; Peltzer, M.

2004-01-01T23:59:59.000Z

153

Impact of the Variable Refrigerant Volume Air Conditioning System on Building Energy Efficiency  

E-Print Network (OSTI)

The application of the variable refrigerant volume multi-zone air conditioning systems has met with mixed results since the publication of the Design Standard for Energy Efficiency of Public Buildings. This paper analyzes the characteristics of the variable refrigerant volume multi-zone air conditioning system, and discusses the advantages of its application.

Zhu, H.

2006-01-01T23:59:59.000Z

154

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network (OSTI)

3) for different fan-powered mixing box designs and controloperating fan-powered mixing boxes in all of their designs.design, while still satisfying the building's cooling load. Consequently, fans and

Bauman, F.S.

2008-01-01T23:59:59.000Z

155

Ameresco and Hill Air Force Base: SPP Success Story | ENERGY STAR Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Hill Air Force Base: SPP Success Story Hill Air Force Base: SPP Success Story Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

156

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network (OSTI)

in DOE-2, an oversized cooling tower with two-speed fans iscooling, and dry cooling towers to provide 55"F supply air.for the compressors and cooling tower fans exceed that of

Bauman, F.S.

2008-01-01T23:59:59.000Z

157

Cold air distribution in office buildings: technology assessment for califonia  

E-Print Network (OSTI)

in DOE-2, an oversized cooling tower with two-speed fans iscooling, and dry cooling towers to provide 55F supply air.for the compressorsand cooling tower fans exceeds that of

Bauman, Fred; Borgers, T.; LaBerge, P.; Gadgil, A.

1993-01-01T23:59:59.000Z

158

Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance  

Science Conference Proceedings (OSTI)

This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 110{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 110{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage and energy efficiency viewpoint. Our numerical approach and energy analysis will next be applied in designing and evaluating the performance of a planned full-scale pilot test of the proposed underground CAES concept.

Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

2011-07-15T23:59:59.000Z

159

Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage  

DOE Green Energy (OSTI)

The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

Hobson, M. J.

1981-11-01T23:59:59.000Z

160

Hybrid energy storage systems based on compressed air and supercapacitors with maximum efficiency point tracking  

E-Print Network (OSTI)

This paper presents a hybrid energy storage system based on Compressed Air Energy Storage (CAES), where the charging and discharging is done within maximum efficiency conditions. As the maximum efficiency conditions impose the level of converted power, an intermittent time-modulated operation mode is applied to the thermodynamic converter to obtain a variable converted power. A smoothly variable output power is achieved with the help of a supercapacitive auxiliary storage device used as a filter. The paper describes the concept of the system, the power-electronic interface circuits and especially the Maximum Efficiency Point Tracking (MEPT) algorithm and the strategy used to vary the output power. In addition, the paper will present the characteristics of a high efficiency storage device where the pure pneumatic machine is replaced by an oil-hydraulics and pneumatics converter, used under isothermal conditions. Practical results are also presented, recorded from a low-power pneumatic motor coupled to a small DC generator, as well as from a first prototype of the final hydraulic/pneumatic system.

Sylvain Lemofouet; Alfred Rufer

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Improving Energy Efficiency of Compressed Air System Based on System Audit  

E-Print Network (OSTI)

can cover the maximum system demand. The similar successfulsized to meet the maximum plant air demand. Few air systems

Shanghai, Hongbo Qin; McKane, Aimee

2008-01-01T23:59:59.000Z

162

Hot Air Stratification of Ceiling Air Supply in a Large Space Building  

E-Print Network (OSTI)

The effects of different states of air supply and airflow patterns on temperature gradient distribution are calculated and analyzed with the help of FFSV3.0 software, using the LB models and LES and RANS methods. An experimental study with upper supply and upper return air flow was performed in normal airflow room. The results were compared with numerical simulation results and were found to agree well. Information on delaminating laws, and measurements of the relationship of delaminating heights and air supply temperature and velocity is also presented. According to the simulation results, a formula that avoids hot air delaminating in ceiling air supply is derived, which can guide engineering design.

Wang, H.; Wang, Z.; Liu, C.

2006-01-01T23:59:59.000Z

163

TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE  

SciTech Connect

This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

2005-12-01T23:59:59.000Z

164

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary  

DOE Green Energy (OSTI)

An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

165

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90 levels instead of 150 and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84 -86 when outside ambient temperatures range from 98 -100. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

166

Addition of inexpensive solar air-heaters to a pre-engineered metal building. Final report  

DOE Green Energy (OSTI)

At Mississippi State University a research project was begun in 1976 to investigate the use of site-built solar collectors for heating air in poultry houses. The purpose of this work was to design and test a functional air heater solar collector which would be inexpensive to construct and acceptable to poultry producers. The results reported are an extension of the original concept. The basic concept is to use a pre-engineered metal building for the structure and incorporate the solar air heaters as an integral part of the south facing wall of the building. The outer skin of the building is used as the absorber plate for the collctors. Construction and testing of the solar collectors and heat storage systems are discussed, and the performance characteristics of the site-built solar collectors are described. (WHK)

Forbes, R E; McClendon, R W

1979-05-01T23:59:59.000Z

167

Compressed Air Energy Storage: Proven US CAES Plant Cost Achievements and Potential Engineering, Design & Project Management Based C ost Reductions  

Science Conference Proceedings (OSTI)

Compressed Air Energy Storage (CAES) is a market ready technology that can play a valuable role in enhancing grid flexibility for variable generation integration. Relative to combustion turbines, CAES provides additional benefits and value streams, such as potential classification as a transmission asset, lower emissions, superior regulation service, reduction of wind spillage and in other ways improving wind plant economics. Although high cost estimates for CAES circulate in the industry, the first ...

2012-12-20T23:59:59.000Z

168

Numerical analysis of temperature and flow effects in a dry, one-dimensional aquifer used for compressed air energy storage  

DOE Green Energy (OSTI)

A detailed description of the method of analysis and the results obtained for an investigation of the hydrodynamic and thermodynamic response of a model of a dry porous media reservoir used for compressed air energy storage (CAES) is presented. Results were obtained from a one-dimensional simulation of the cycling of heated air to and from a radial flow field surrounding a single well in a porous rock. It was assumed that the performance of the bulk of the reservoir could be characterized by the performance of a single well.

Smith, G.C.; Wiles, L.E.; Loscutoff, W.V.

1979-02-01T23:59:59.000Z

169

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

170

ACT{sup 2} project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building`s performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building`s performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

171

Analysis of air-temperature measurements from the Three Mile Island Unit 2 reactor building  

DOE Green Energy (OSTI)

The performance of the ambient air resistance temperature detectors (RTDs) just after the hydrogen burn in the TMI-2 Reactor Building is examined. The performance of the sensors is compared with physical models of the sensor/ambient air system. With one exception, the RTD data appear to be valid for the period examined. Based on the data, the hydrogen burn ended considerably before the first data points were recorded.

Fryer, M.O.

1983-04-01T23:59:59.000Z

172

Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid  

E-Print Network (OSTI)

The combination of several concepts of new energy technologies may make it possible to reduce the energy needs for thermal comfort, especially cooling and dehumidification, in small sized, single-story commercial buildings. The potentials and limitations of retrofit technology for these characteristic structures have been the focus of the experience gained through the design and installation of a system adapted to a building constructed in the early 1960's. The existing split package air conditioning system was combined with a desiccant air-conditioning unit with a waste heat and solar heat reclaim component. While this retrofit system is feasible, a number of questions remain to be considered regarding the design, installation and operation of the total system. This paper focuses on the practical applications of such a hybrid system - both architectural/construction issues and the mechanical components/system considerations.

Arnas, O. A.; McQueen, T. M.

1984-01-01T23:59:59.000Z

173

Upgrade of Compressed Air Control System Reduces Energy Costs at Michelin Tire Plant. Office of Industrial Technologies (OIT) BestPractices Project Case Study  

Science Conference Proceedings (OSTI)

This case study highlights the upgraded compressed air system at a Michelin tire manufacturing plant in Spartanburg, South Carolina. The controls upgrade project enabled multiple compressor operation without blow-off, and significantly reduced energy costs.

Not Available

2002-01-01T23:59:59.000Z

174

The Technical and Economical Analysis of the Air-conditioning System Usage in Residential Buildings in Beijing  

E-Print Network (OSTI)

In this paper, we show that the air-conditioning usage in residential buildings in Beijing grows rapidly in relation to the development of civil construction. More and more people are not satisfied with the current style of only using split air-conditioning units in residential buildings, and are using the central air-conditioning system in residential buildings. To determine the best air conditioning mode, a residential tower building with 22 layers was chosen for analysis. The advantages and disadvantages of the central air-conditioning system and the residential multi-unit air-conditioning equipment system and the LiBr absorption chiller were compared based on calculating the first-cost and the annual cost (according to providing cooling 90 days annually). The predicted results show the economical feasibility of using the refrigerating units in air-conditioning systems in Beijing region, and point out the developing directions for the future.

Sheng, G.; Xie, G.

2006-01-01T23:59:59.000Z

175

Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing  

SciTech Connect

This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-04-12T23:59:59.000Z

176

Evaluating Indoor Air Quality (IAQ) as Modifying Factor in Designing Public School Buildings in Jordan  

E-Print Network (OSTI)

The most fundamental goal in the design of educational facilities is to provide an environment that encourages learning achievement for students and teachers. Poor indoor air quality (IAQ) can negatively affect student health, comfort and performance that will eventually produce unacceptable learning environment. Poor IAQ can decrease a person's ability to perform specific mental tasks requiring concentration, calculation and memory. Therefore, schools should be designed, built and maintained in away to minimize and control the source of pollution. Around 29% of Jordanians occupy school buildings each day. A specific prototype building design was applied in the different locations of the country. This prototype could be appropriate for one location but it is not for the entire country that has diversity in climatic and environmental conditions The purpose of this research paper was to evaluate the indoor air quality in public school buildings in urban and rural area, through investigations of the causes and its effects on student health, comfort, and performance. Achieving healthy indoor air quality is a multifaceted a problem which can be arrived at by a comprehensive and interdisciplinary approach to the design, construction and operation of the school building. Results indicate that the prototype system used was not appropriate as healthy school design, and it did not take into consideration the indoor environmental factors as crucial issue in designing school buildings.

Ali, H. H.; Al-Momani, H.

2004-01-01T23:59:59.000Z

177

Energy and Buildings, 8 (1985) 105 -122 105 Temperature-and Wind-induced Air Flow Patterns  

E-Print Network (OSTI)

Energy and Buildings, 8 (1985) 105 - 122 105 Temperature- and Wind-induced Air Flow Patterns measurements, wind pressure data and air infiltration calculation. INTRODUCTION Studies on the energy,B. DICKINSON,D. GRIMSRUDand R. LIPSCHUTZ Energy Performance of Buildings Group, Energy and Environment Division

178

Energy and air quality implications of passive stack ventilation in residential buildings  

SciTech Connect

Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

2011-01-01T23:59:59.000Z

179

ACT sup 2 project report: Ventilation and air tightness measurement of the Sunset Building  

Science Conference Proceedings (OSTI)

This report presents the results of ventilation and air tightness measurements made on the test section of the Sunset Building as part of the ACT{sup 2} project. Real-time measurements were made over a two-week period in July 1991 to determine the building's performance; most of the results derive from intensive measurements made during (unoccupied) weekend periods. The ventilation rate of the entire building was measured to be about 2 air changes per hour of outdoor air which exceeds ASHRAE Standard 62-1989 design requirements by over a factor of two. Ventilation in all specific locations was found to be adequate, except for conference rooms -- some of which were significantly under ventilated. Opportunities exist for energy savings with better control of the ventilation. Ventilation efficiency was measured for the test section and selected sub-sections as well. In order to account for interzonal and intrazonal interactions, axillary information was collected and used to adjust the data. The implications of this data may be important for future interpretation of the building's performance.

Sherman, M.; Dickerhoff, D.

1991-10-01T23:59:59.000Z

180

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings  

SciTech Connect

This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

2006-07-31T23:59:59.000Z

182

Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.  

SciTech Connect

The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark Andrew

2013-03-01T23:59:59.000Z

183

Influence of Air-Conditioning Waste Heat on Air Temperature in Tokyo during Summer: Numerical Experiments Using an Urban Canopy Model Coupled with a Building Energy Model  

Science Conference Proceedings (OSTI)

A coupled model consisting of a multilayer urban canopy model and a building energy analysis model has been developed to investigate the diurnal variations of outdoor air temperature in the office areas of Tokyo, Japan. Observations and numerical ...

Yukitaka Ohashi; Yutaka Genchi; Hiroaki Kondo; Yukihiro Kikegawa; Hiroshi Yoshikado; Yujiro Hirano

2007-01-01T23:59:59.000Z

184

EVALUATION OF THE INDOOR AIR QUALITY PROCEDURE FOR USE IN RETAIL BUILDINGS  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Indoor Air Quality Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings Spencer M. Dutton, Wanyu R. Chan, Mark J. Mendell, Marcella Barrios, Srinandini Parthasarathy, Meera Sidheswaran, Douglas P. Sullivan, Katerina Eliseeva, William J. Fisk Environmental Energy Technologies Division Indoor Environment Group Lawrence Berkeley National Laboratory Berkeley, CA 94720 February 1, 2013 The research reported here was supported by the California Energy Commission Public Interest Energy Research Program, Energy-Related Environmental Research Program, award number 500-09-049.The study was additionally supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under contract DE-AC02-05CH11231.

185

Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings  

SciTech Connect

The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

2011-07-31T23:59:59.000Z

186

Preliminary feasibility evalution of compressed air storage power systems. Volume II. Appendices, period June 1975--December 1976  

DOE Green Energy (OSTI)

Interest in compressed air storage has been developing in Sweden, Finland, Denmark, England, and France, as well as the United States. One commercial unit is under construction in Huntorf, West Germany. Compressed air for peak power can be stored either in natural or man-made caverns. Only new excavations in hard rock down to depths of about 2500 feet are considered in this report. In 1974, conditions for underground storage were discussed in a Geological Survey of Potential Cavern Areas in New England, referred to as the CAINE report. In this survey of the northeast region, the rest of the corridor between Washington and Boston has been added. The rock formations in the entire area of about 45,000 square miles are evaluated. The physical properties of rocks and criteria for their evaluation in underground openings are discussed. Methods of rock excavation and the basis for selecting areas are considered. Information on bedrock units along the corridor is reviewed. A list of favorable rock formations is included.

Not Available

1976-12-01T23:59:59.000Z

187

Evaluation of thermal-energy-storage materials for advanced compressed-air energy-storage systems. Final report  

SciTech Connect

Proposed designs of adiabatic and hybrid advanced compressed air energy storage (ACAS) plants have utilized sensible heat storage systems to store the heat developed during air compression for subsequent use during the power generation phase of operation. This experimental study was performed to screen four porposed heat storage materials for performance and durability: 3/8-in. sintered iron oxide pellets, 1/2-in. Denstone pellets, 1-in. cast iron alloy balls, and crushed Dresser basalt. Specific concerns addressed included particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicated that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possible stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants.

Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

1983-03-01T23:59:59.000Z

188

Smart Operations of Air-Conditioning and Lighting Systems in Government Buildings for Peak Power Reduction  

E-Print Network (OSTI)

During the summer 2007 smart operation strategies for air-conditioning (A/C) and lighting systems were developed and tested in a number of governmental buildings in Kuwait as one of the solutions to reduce the national peak demand for electrical power that commonly occur around 15:00 h. The working hours for these building are generally between 07:00 and 14:00 h and their peak demand exceeds 600 MW. The smart operation strategies implemented in these buildings included pre-closing treatment (PCT) between 13:00 and 14:00 h and time-of-day control (TDC) after 14:00 h. Also de-lamping was carried out in some of the buildings to readjust the higher than recommended illumination levels. This paper presents the achievements of implementing these smart operations strategies in Justice Palace Complex (JPC) as a case study. The peak load of this building was 3700 kW. The achievements are summarized as an all time saving of 22 kW by de-lamping, an additional saving of 27 kW through TDC of lighting, direct savings between 13:00 and 22:00 h by closing supply and return air fans of 52 air-handling units with a connected load 400 kW, and an additional saving of 550 kW during the same period by optimizing the cooling production and distribution. In conclusion project achieved an overall reduction in power demand of around 20% between 13:00 to 17:00 h and reduction ranging from 7% to 15% between 17:00 to 20:00 h.

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

2008-10-01T23:59:59.000Z

189

Fault detection methods for vapor-compression air conditioners using electrical measurements  

E-Print Network (OSTI)

(cont.) This method was experimentally tested and validated on a commercially available air handler and duct system. In the second class of faults studied, liquid refrigerant, rather than vapor, enters the cylinder of a ...

Laughman, Christopher Reed.

2008-01-01T23:59:59.000Z

190

A cost-effective and fuel-conserving nonelectric air conditioner that combines engine-driven compression and absorption cycles  

SciTech Connect

A natural-gas-fueled electricity-producing condensing furnace with the potential of being mass produced at a cost of less than $1000 and providing a cost-effective and highly fuel-conserving alternative to virtually every residential gas furnace in the world has been developed. While this is a new system, it completely consists of existing mass-produced components including single-cylinder air-cooled engines, induction motors/generators, and control devices. Thus, timely commercialization can be expected and an important new energy technology and industry can result. However, all the benefits of this electricity-producing furnace occur during the winter. This has stimulated the search for a new system that can provide comparable benefits in terms of fuel conservation, the environment, and electric utility peak reduction during the summer, along with the prospects of a new and efficient new use for the natural gas surpluses that occur during the summer. The resulting system, which can use existing component equipment, is a commercial-size nonelectric air conditioner that consists of an automobile-type engine converted to natural gas, or possibly a diesel or combustion turbine, driving a Freon compression cycle, with virtually all of the engine reject heat from the exhaust and from the engine cooling system driving a conventional absorption air conditioning cycle.

Wicks, F.

1988-01-01T23:59:59.000Z

191

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

Science Conference Proceedings (OSTI)

Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements. The following lists suggest potential EERE-Buildings activities, grouped by whether EERE-Buildings would play a lead or supporting role.

Vine, Edward

2002-05-01T23:59:59.000Z

192

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 1: establish facility design criteria and utility benefits  

SciTech Connect

Compressed air energy storage (CAES) has been identified as one of the principal new energy storage technologies worthy of further research and development. The CAES system stores mechanical energy in the form of compressed air during off-peak hours, using power supplied by a large, high-efficiency baseload power plant. At times of high electrical demand, the compressed air is drawn from storage and is heated in a combustor by the burning of fuel oil, after which the air is expanded in a turbine. In this manner, essentially all of the turbine output can be applied to the generation of electricity, unlike a conventional gas turbine which expends approximately two-thirds of the turbine shaft power in driving the air compressor. The separation of the compression and generation modes in the CAES system results in increased net generation and greater premium fuel economy. The use of CAES systems to meet the utilities' high electrical demand requirements is particularly attractive in view of the reduced availability of premium fuels such as oil and natural gas. This volume documents the Task 1 work performed in establishing facility design criteria for a CAES system with aquifer storage. Information is included on: determination of initial design bases; preliminary analysis of the CAES system; development of data for site-specific analysis of the CAES system; detailed analysis of the CAES system for three selected heat cycles; CAES power plant design; and an economic analysis of CAES.

1980-10-01T23:59:59.000Z

193

ESS 2012 Peer Review - Isothermal Compressed Air Energy Storage for Grid-Scale Applications - Adam Rauwerdink, SustainX  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Isothermal C AES f or G rid---Scale A pplica7ons Permanent Magnet Motor/Generator CONTACT: Adam Rauwerdink Manager, Business Development arauwerdink@sustainx.com Crankshaft Key advantages * Clean: isothermal process consumes no fuel, produces no emissions * Flexible: can be sited where best utilized, not where geology mandates * Proven components  Crankshaft, generator, pipe-type storage  20-year life at full power/capacity * Scalable: power and energy scale independently * Safe: no hazardous materials or chemicals Proven mechanical systems using steel, water, and air SustainX Heat Transfer Technology (Compression/Expansion) 0 20 40 60 80 100 120 Lead Acid Lithium Ion ICAES 20 YEAR PROJECT LEVELIZED COST OF ENERGY (cents/kWh) INITIAL CAPEX DoD DERATING REPLACEMENT FUEL & O&M

194

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

195

Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability  

DOE Green Energy (OSTI)

The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

Lessard, R.D.; Blecher, W.A.; Merrick, D.

1981-09-01T23:59:59.000Z

196

Energy Savings in Buildings Using Air Movement and Allowing Floating Temperature in Rooms  

E-Print Network (OSTI)

The purpose of the research study was to determine if building loads could be reduced by using an intelligent controller rather than a thermostatic controller to operate heating and air conditioning equipment. In order to switch the equipment on and off at the proper times, the intelligent controller calculated temperature limits using a mathematical procedure that determined the percentage of people who would be comfortable in rooms of the building. Simulations showed the annual cost savings from intelligent controllers ranged from 6 to 37 percent for residences and from 6 to 29 percent for the offices. An ancillary study showed that a ceiling fan provided comfort in a 112 square foot floor area to 85 F and in a 200 to 250 square foot area to 82 F.

Spain, S.

1985-01-01T23:59:59.000Z

197

Water coning in porous media reservoirs for compressed air energy storage  

DOE Green Energy (OSTI)

The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

Wiles, L.E.; McCann, R.A.

1981-06-01T23:59:59.000Z

198

The role of the US Department of Energy in indoor air quality and building ventilation policy development  

SciTech Connect

Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.

Traynor, G.W. [Lawrence Berkeley Lab., CA (United States); Talbott, J.M.; Moses, D.O. [USDOE, Washington, DC (United States)

1993-07-01T23:59:59.000Z

199

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

DOE Green Energy (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

200

History of First U.S. Compressed Air Energy Storage (CAES) Plant (110-MW-26 h): Volume 1: Early CAES Development  

Science Conference Proceedings (OSTI)

In 1991, Alabama Electric Cooperative's 110-MW-26 h compressed air energy storage (CAES) plant, the first in the United States, became commercially operational. This report, first in a series, documents the history of the plant from project conception to the beginning of plant construction.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EA-1751: Smart Grid, New York State Gas & Electric, Compressed Air Energy Storage Demonstration Plant, Near Watkins Glen, Schuyler County, New York  

Energy.gov (U.S. Department of Energy (DOE))

DOE will prepare an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of a compressed air energy storage demonstration plant in Schuyler County, New York.

202

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network (OSTI)

We investigated 40 typical air conditioned buildings in Changsha in 2005, including 15 hotel buildings, 6 commercial buildings, 5 office buildings, 6 hospital buildings and 8 synthesis buildings. On this basis we analyze the relation between types of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source based on the electric refrigeration. Among the heat sources, the prospect of gas boilers is better. In addition, the air source heat pump depends heavily on whether some crucial issues such as frost can be solved during its application. The water-source heat pump will likely be applied. Based on the analysis of energy consumption and energy bills, we determine the feasible measures for energy conservation including the aspects of design, operation and management. Among them, special attention should be paid to energy metering and running time of air conditioning systems in civil buildings in Changsha.

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

203

Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems  

DOE Green Energy (OSTI)

This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

Wetter, Michael

2009-06-17T23:59:59.000Z

204

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

205

Energy Performance Evaluation and Development of Control Strategies for the Air-conditioning System of a Building at Construction Stage  

E-Print Network (OSTI)

Energy consumption of HVAC systems in commercial buildings takes a great part of the total building energy consumption. Energy performance evaluation plays an important role in building energy efficiency improvement for existing buildings and new buildings. It is also the basis for the retrofitting measure evaluation for existing buildings and the control improvement evaluation of new buildings for building energy performance contracts. In this study, the energy performance evaluation of a super high-rising commercial office building in construction is presented. Alternative control strategies are proposed to improve the energy efficiency based on the current measurements of the original design as well as additional metering instruments as requested. These control strategies mainly involve optimal chiller sequencing control, cooling tower sequencing control, optimal water pressure differential set-point control, AHU supply air static pressure reset control and DCV-based fresh air control, etc. To assess the economic feasibility, the benchmark electricity consumption and the optimal electricity consumption using alternative controls strategies are estimated using dynamic simulations. The results show that the electricity savings using the alternative control strategies can cover the costs of an additional metering system and related software and hardware in about one year.

Wang, S.; Xu, X.; Ma, Z.

2006-01-01T23:59:59.000Z

206

IMPACT OF REDUCED INFILTRATION AND VENTILATION ON INDOOR AIR QUALITY IN RESIDENTIAL BUILDINGS  

E-Print Network (OSTI)

in building materials such as insulation, particleboard,Particleboard Insulation Adhesives Paint Building Contentsfoam insulation, and radon from various building materials -

Hollowell, Craig D.

2011-01-01T23:59:59.000Z

207

Evaluation of Indoor Air Quality Parameters and Airborne Fungal Spore Concentrations by Season and Type of HVAC System in a School Building.  

E-Print Network (OSTI)

??An indoor air quality survey has been conducted in a school building. Samples were collected inone room in each wing and each level on a (more)

McLeod, Jeffrey D.

2008-01-01T23:59:59.000Z

208

Building America Top Innovations Hall of Fame Profile … Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Imagine Homes of San Antonio, Texas, worked Imagine Homes of San Antonio, Texas, worked with Building America team partner IBACOS to improve the continuity of the air barrier along the thermal enclosure by using spray foam insulation in the walls and attic. Building America research teams effectively demonstrated the importance of thermal bypass air barriers, which led to their inclusion in ENERGY STAR for Homes Version 3 specifications in 2006 and then to inclusion in the 2009 IECC. This is a great example of effective research driving a complete market transformation process for a critical high-performance home innovation. Air sealing of the home's thermal enclosure has been required by the energy code for many years. However, in years past, the provisions were somewhat vague and only required that critical areas of potential air leakage (e.g., joints,

209

Building America Best Practices Series, Vol. 10 - Retrofit Techniques & Technologies: Air Sealing, A Guide for Contractors to Share with Homeowners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGIES PROGRAM TECHNOLOGIES PROGRAM R Retrofit Techniques & Technologies: Air Sealing A Guide for Contractors to Share with Homeowners PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory April 12, 2010 April 12, 2010 * PNNL-19284 BUILDING AMERICA BEST PRACTICES SERIES VOLUME 10. BuiLDiNG AmERiCA BEST PRACTiCES SERiES Retrofit Techniques and Technologies: Air Sealing

210

Compressed Air Systems  

Energy.gov (U.S. Department of Energy (DOE))

Efficiency Vermont offers rebates to encourage the installation of efficient compressors. Rebates amounts are dependent on the type of equipment. There is no set limit on the amount of rebates that...

211

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

212

Building Energy Software Tools Directory: DD4M Air Duct Design  

NLE Websites -- All DOE Office Websites (Extended Search)

friction, constant velocity and or static regain procedures to design air ducts for air conditioning, heating, ventilation and materials handling. Allows 1000 duct sections...

213

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

A variety of methods of sealing supply-air registers wereand sealing practices when leakage at connections to duct-mounted equipment is not considered. The measured air-

Fisk, W.J.

2011-01-01T23:59:59.000Z

214

BUILDING VENTILATION AND INDOOR AIR QUALITY PROGRAM. CHAPTER FROM ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

considerations. A heat exchanger will be installed in anAir Heat Exchangers . 14 Subcontractair-to- air heat exchangers; additional subcontract

Cairns, Elton J.

2011-01-01T23:59:59.000Z

215

Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin  

E-Print Network (OSTI)

This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor. By means of testing data analysis, it is indicated that several problems such as unsuitable operation schedule of the chiller, low COP, irrational matching of pump and motor, unbalanced conditions of chilled water flow, and low working stability and efficiency ratio of the pump are existent. The paper presents suggestions for improvement with relevance based on the induction and analysis of system fault found in measurements.

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

216

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

217

Tunable Compression of Wind Tunnel Data  

Science Conference Proceedings (OSTI)

Tunable Compression of Wind Tunnel Data. Summary: Measurements of pressures exerted by wind on buildings, as are ...

2010-09-12T23:59:59.000Z

218

Duct Systems in large commercial buildings: Physical characterization, air leakage, and heat conduction gains  

E-Print Network (OSTI)

Air Leakage, and Heat Conduction Gains William 1. Fisk,0.75 to 0.90; thus, heat conduction decreased the coolingby air leakage or heat conduction, because these ducts are

Fisk, W.J.

2011-01-01T23:59:59.000Z

219

An overview of solar assisted air-conditioning system application in small office buildings in Malaysia  

Science Conference Proceedings (OSTI)

In many regions of the world especially tropical weather in Malaysia, the demand for cooling of indoor air is growing due to increasing comfort expectations and increasing cooling loads. Air-conditioning, the most common cooling mechanism for providing ... Keywords: Malaysian climatic conditions, absorption chiller, evacuated tube solar collector, high energy consumption, peak load demand, solar assisted air conditioning system, solar energy

Lim Chin Haw; Kamaruzzaman Sopian; Yusof Sulaiman

2009-02-01T23:59:59.000Z

220

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

Science Conference Proceedings (OSTI)

The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

2011-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colorado State University Industrial Assessment Center Report CO0564 1 AR No. 1 -Repair Compressed Air Leaks  

E-Print Network (OSTI)

= $1,060/yr Estimated Peak Electric Demand Savings = 46 kW-mo./yr Estimated Peak Electric Demand Cost energy consumption and peak demand charges since less power will be required to operate the compressed). The rated capacity at the maximum operating pressure of 100 psi is 291 actual cubic feet per minute (acfm

222

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network (OSTI)

oxide and activated carbon fibers for removing a particle,oxide and activated carbon fibers for removing a particle,cleaning with activated carbon fiber filters Building and

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

223

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Converse: Seasonal Energy Storage in a Renewable Energy S  

E-Print Network (OSTI)

The large-scale generation of electrical wind energy is planned in many countries, but the intermittent nature of its supply, and variations in load profile indicate a strong requirement for energy storage to deliver the energy when needed. Whilst pumped hydro storage, batteries and fuel cells have some advantages, only compressed air energy storage (CAES) has the storage capacity of pumped hydro, but with lower cost and less geographic restrictions. Existing diabatic CAES plant lose heat energy from the cycle during compression, and which must be re-generated before the compressed air is expanded in a modified gas turbine. Adiabatic CAES, on the other hand, uses a separate thermal energy store during the compression part of the cycle. During the generation part of the cycle the thermal energy store is used to reheat the air, which is then expanded through a sliding pressure air turbine. This storage technology offers significant improvements in cycle efficiency and, as no fuel is used, it generates no CO2. This paper describes the work of 19 partners within the AA-CAES Project (Advanced Adiabatic Compressed Air Energy

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

224

Building America Top Innovations Hall of Fame Profile … Attic Air Sealing Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terminology Terminology Air Barrier Material (ABM) --- A does not allow air to pass throu plywood/OSB, foam board, duc lumber. Backing --- Any material that s be sprayed so as to provide an glass batts. Baffle (B) --- Manufactured chu direct ventilation air flow up an foam board or cardboard. Thermal Blocking --- Any rigid heat sources like chimneys or metal and gypsum board. Fasteners --- Staples, screws o

225

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the IAQ Impact of Particle Air Cleaners in a Single-Zone Building ... Indoor Air 2002, 9th International Conference on Indoor Air Quality and Climate. ...

226

Energy audits reveal significant energy savings potential in India`s commercial air-conditioned building sector  

SciTech Connect

The United States Agency for International Development (USAID) began its Energy Management Consultation and Training (EMCAT) project in India. The EMCAT project began in 1991 as a six-year (1991--1997) project to improve India`s technological and management capabilities for both the supply of energy and its efficient end use. The end-use component of EMCAT aims for efficient energy utilization by industries and other sectors such as the commercial sector. A specific task under the end-use component was to conduct energy surveys/audits in high energy-use sectors, such as air-conditioned (AC) buildings in the commercial sector, and to identify investment opportunities that could improve energy utilization. This article presents results of pre-investment surveys that were conducted at four commercial air-conditioned facilities in 1995. The four facilities included two luxury hotels in New Delhi, and one luxury hotel and a private hospital in Bombay. Energy conservation opportunities (ECOs) were explored in three major energy-using systems in these buildings: air-conditioning, lighting, and steam and domestic hot water systems.

Singh, G.; Presny, D.; Fafard, C. [Resource Management Associates of Madison, Inc., WI (United States)

1997-12-31T23:59:59.000Z

227

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

Science Conference Proceedings (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

228

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

229

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

inexpensive, portable, and can be installed by inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, a window air conditioner is required to meet only modest minimum efficiency standards, and its typical installation in a window causes air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of

230

Building America Top Innovations 2013 Profile … High-Efficiency Window Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an inexpensive, portable form of spot cooling, an inexpensive, portable form of spot cooling, making them a good solution for supplemental cooling, for air conditioning in homes that lack ductwork, and for renters. As a result, 7.5 million window air conditioners are purchased each year in the United States-more than all other home cooling equipment combined. However, window air conditioners have low minimum efficiency standards, and their installation typically results in air leakage, which significantly reduces the equipment's performance. To measure the impact these products have on home energy use, researchers at the National Renewable Energy Laboratory (NREL) studied the performance of one 10-year-old and three new window air conditioners in a range of climates and conditions at NREL's Advanced Heating, Ventilation, and

231

Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads  

Science Conference Proceedings (OSTI)

This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

Karagiozis, A.N.

2007-05-15T23:59:59.000Z

232

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

233

Energy and air quality implications of passive stack ventilation in residential buildings  

E-Print Network (OSTI)

Sherman, M.H. (2008). Energy Implications of Meeting ASHRAE62.2, ASHRAE Transactions, June 2008, Vol. 114, Pt. 2, pp.and Sustainable Buildings, ASHRAE. Orme, M. 1998. "Energy

Mortensen, Dorthe Kragsig

2011-01-01T23:59:59.000Z

234

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

235

Variable Refrigerant Flow Air Conditioners and Heat Pumps for Commercial Buildings  

Science Conference Proceedings (OSTI)

Multi-split heat pumps have evolved from a technology suitable for residential and light commercial buildings to variable refrigerant flow (VRF) systems that can provide efficient space conditioning for large commercial buildings. VRF systems are enhanced versions of ductless multi-split systems, permitting more indoor units to be connected to each outdoor unit and providing additional features such as simultaneous heating and cooling and heat recovery. VRF systems are very popular in Asia and Europe and...

2008-01-25T23:59:59.000Z

236

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

237

Operation of Energy-Efficient Air-Conditioned Buildings: An Overview  

E-Print Network (OSTI)

To design an optimum HVAC airside system that provides comfort and air quality in the air-conditioned spaces with efficient energy consumption is a great challenge. This paper evaluates recent progresses of HVAC airside design for the air-conditioned spaces. The present evaluation study defines the current status, future requirements, and expectations. It has been found that, the experimental investigations should be considered in the new trend of studies, not to validate the numerical tools only, but also to provide a complete database of the airflow characteristics in the air-conditioned spaces. Based on this analysis and the vast progress of computers and associated software, the artificial intelligent technique will be a competitor candidate to the experimental and numerical techniques. Finally, the researches that relate between the different designs of the HVAC systems and energy consumption should concern with the optimization of airside design as the expected target to enhance the indoor environment.

Khalil, E. E.

2010-01-01T23:59:59.000Z

238

New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report  

E-Print Network (OSTI)

activated carbon fiber (ACF) cloths, which can be deployedair during the day. The ACF media can be v regeneratedof VOC-free air with the ACF system is only 2-15% of the

Sidheswaran, Meera

2013-01-01T23:59:59.000Z

239

Development of a Dedicated 100 Percent Ventilation Air Heat Pump  

Science Conference Proceedings (OSTI)

The concept of using dedicated 100 percent ventilation makeup air conditioning units to meet indoor air quality standards is attractive because of the inherent advantages. However, it is challenging to design and build direct expansion unitary equipment for this purpose. EPRI teamed with ClimateMaster to develop and test a prototype of a vapor compression heat pump to advance the state of the art in such equipment. The prototype unit provides deep dehumidification and cooling of ventilation air in the su...

2000-12-14T23:59:59.000Z

240

OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS  

SciTech Connect

The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

LLOYD, E.R.

2006-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Gosselin, J.R. and Chen, Q. 2008. "A dual airflow window for indoor air quality improvement and energy conservation in buildings," HVAC&R Research, 14(3), 359-372.  

E-Print Network (OSTI)

and energy conservation in buildings," HVAC&R Research, 14(3), 359-372. A Dual Airflow Window for Indoor Air. For commercial buildings IAQ can be regulated by the HVAC system that mixes fresh outdoor air with return air

Chen, Qingyan "Yan"

242

SIMULATION OF THE THERMAL INTERACTION BETWEEN A BUILDING INTEGRATED PHOTOVOLTAIC COLLECTOR AND AN AIR-  

E-Print Network (OSTI)

, the storage of thermal energy is used to increase the efficiency of heating and cooling of buildings that convert solar thermal energy to electrical power. The heat capacity of a solid material is mostly of heat with the surroundings. This exchange of heat can be used to store thermal energy. Currently

Paris-Sud XI, Université de

243

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

E-Print Network (OSTI)

and Renewable Energys Building Technology, State andand Renewable Energys Building Technology, State andand Renewable Energys Building Technology, State and

Vine, Edward

2002-01-01T23:59:59.000Z

244

Smart Operations of Air-Conditioning and Lighting Systems in a Government Buildings for Peak Power Reduction  

E-Print Network (OSTI)

This paper presents the achievements of implementing smart operations strategies for air-conditioning (A/C) and lighting systems in Justice Palace Complex (JPC), Kuwait during the summer 2007. The peak load of this building was 3700 kW. The achievements are summarized as direct savings between 13:00 and 22:00 h by closing supply and return air fans of 52 air-handling units with a connected load 400 kW, and an additional saving of 550 kW during the same period by optimizing the cooling production and distribution. Also an all time saving of 22 kW by de-lamping, and additional saving of 27 kW through TDC of lighting were achieved. In conclusion project achieved an overall reduction in power demand of around 20% between 13:00 to 17:00 h and reduction ranging from 7% to 15% between 17:00 to 20:00 h.

Al-Hadban, Y.; Maheshwari, G. P.; Al-Nakib, D.; Al-Mulla, A.; Alasseri, R.

2010-01-01T23:59:59.000Z

245

Experimental Research and Performance Analysis of a Solar-Powered Air-conditioning System in a Green Building  

E-Print Network (OSTI)

Based on the green building of the Shanghai Institute of Architectural Science, a solar-powered adsorption air-conditioning system was designed. The operational performance under a typical operating mode in summer was studied, which includes temperature variations of solar collector arrays, heat storage tank and adsorption chillers as well as refrigerating output variations of the system. Experimental results show that adsorption chillers have the advantages of low driving temperature, stability and long working time with high efficiency. Under representative working conditions in summer, the average refrigerating output of solar powered air-conditioning system is 15.31kW during operation of 8 hours; moreover, the maximum attains 20kW. Correspondingly, the average system COP is 0.35, and the average solar COP is 0.15. The solar fraction in summer is concluded to be 71.73%. In addition, the variations of solar-powered air-conditioning system performance with ambient parameters (solar radiant intensity and ambient temperature) and operating parameters (temperatures and flow rates) are analyzed.

Zhai, X.; Wang, R.; Dai, Y.; Wu, J.

2006-01-01T23:59:59.000Z

246

A smart GUI based air-conditioning and lighting controller for energy saving in building  

Science Conference Proceedings (OSTI)

This paper will concentrate on the algorithm and control strategies where the air-conditioners and lighting system can be controlled using microcontroller; a microcontroller is chosen due to its low cost and high flexibility. Conceptually, the controller ... Keywords: energy saving control system, graphic LCD, graphical user interface (GUI), microcontroller

M. F. Abas; N. MD. Saad; N. L. Ramli

2009-12-01T23:59:59.000Z

247

Compressed air energy storage: preliminary design and site development program in an aquifer. Final draft, Task 2: Volume 2 of 3. Characterize and explore potential sites and prepare research and development plan  

DOE Green Energy (OSTI)

The characteristics of sites in Indiana and Illinois which are being investigated as potential sites for compressed air energy storage power plants are documented. These characteristics include geological considerations, economic factors, and environmental considerations. Extensive data are presented for 14 specific sites and a relative rating on the desirability of each site is derived. (LCL)

None

1980-12-01T23:59:59.000Z

248

Fault Detection and Diagnosis in Building HVAC Systems  

E-Print Network (OSTI)

diagnostic method for vapor compression air conditioners,evaluation of faults in vapor compression cycle equipment,Diagnostic Methods to Vapor Compression Cooling Equipment,

Najafi, Massieh

2010-01-01T23:59:59.000Z

249

Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base  

DOE Green Energy (OSTI)

The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

Kaba, R.L.; Petrie, T.W.

1999-03-16T23:59:59.000Z

250

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

251

Preliminary design study of underground pumped hydro and compressed-air energy storage in hard rock. Volume 1. Executive summary. Final report  

DOE Green Energy (OSTI)

Potomac Electric Power Company (PEPCO) and Acres American Incorporated (AAI) have carried out a preliminary design study of water-compensated Compressed Air Energy Storage (CAES) and Underground Pumped Hydroelectric (UPH) plants for siting in geological conditions suitable for hard rock excavations. The work was carried out over a period of three years and was sponsored by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI) and PEPCO. The study was divided into five primary tasks as follows: establishment of design criteria and analysis of impact on power system; selection of site and establishment of site characteristics; formulation of design approaches; assessment of environmental and safety aspects; and preparation of preliminary design of plant. The salient aspects considered and the conclusions reached during the consideration of the five primary tasks for both CAES and UPH are presented in this Executive Summary, which forms Volume 1 of the series of reports prepared during the study. The investigations and analyses carried out, together with the results and conclusions reached, are described in detail in Volumes 2 through 13 and ten appendices.

Not Available

1981-05-01T23:59:59.000Z

252

Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.  

DOE Green Energy (OSTI)

The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

Holst, Kent (Iowa Stored Energy Plant Agency, Traer, IA); Huff, Georgianne; Schulte, Robert H. (Schulte Associates LLC, Northfield, MN); Critelli, Nicholas (Critelli Law Office PC, Des Moines, IA)

2012-01-01T23:59:59.000Z

253

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

E-Print Network (OSTI)

CAAA CCAP CFL CRER EE/RE EERE-Buildings EIA GCVTC GCVTR GHGState and Community Programs (EERE-Buildings) could play inthis area. EERE-Buildings can play a very important role in

Vine, Edward

2002-01-01T23:59:59.000Z

254

The Technical and Economical Analysis of a Centralized Air-Conditioning System with Cold Storage Refrigeration in High-Rise Residential Buildings  

E-Print Network (OSTI)

In recent years, the application of a centralized air-conditioning system (CACS) with cold storage refrigeration in high-rise residential buildings has gradually increased. Due to the large difference between civil residential buildings and commercial buildings, characteristics such as the cooling load in summer and the storey height must be considered in the design of the air-conditioning system, and the cold storage equipment and the cold supplying means must be properly selected. The option of establishing centralized air-conditioning equipment with cold storage and supplying unified cold in high-rise residential buildings is analyzed objectively with technical and economical methods in this paper. It is not true that the option of supplying unified cold can save energy all the time. CACS with cold storage will not always be economical. Based on a 27-floor building, the running costs in summer and the first costs are both compared between CACS with and without cold storage refrigeration. The cold storage method selected will significantly impact the residents.

Xiang, C.; Xie, G.

2006-01-01T23:59:59.000Z

255

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... approaches: a base case of envelope infiltration only, passive inlet vents in ... building air change rates, air distribution within the house, heating and ...

256

Compressed Gas Cylinder Policy  

E-Print Network (OSTI)

, storage, and usage of compressed gas cylinders. 2.0 POLICY Colorado School of Mines ("Mines" or "the, storage, and usage requirements outlined below. This policy is applicable school-wide including all, or electrical circuits. Flammable gas cylinders must be stored in the building's gas cylinder storage cage until

257

Development and Analysis of Desiccant Enhanced Evaporative Air Conditioner Prototype  

SciTech Connect

This report documents the design of a desiccant enhanced evaporative air conditioner (DEVAP AC) prototype and the testing to prove its performance. Previous numerical modeling and building energy simulations indicate a DEVAP AC can save significant energy compared to a conventional vapor compression AC (Kozubal et al. 2011). The purposes of this research were to build DEVAP prototypes, test them to validate the numerical model, and identify potential commercialization barriers.

Kozubal, E.; Woods, J.; Judkoff, R.

2012-04-01T23:59:59.000Z

258

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

259

Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy  

E-Print Network (OSTI)

EERE-Buildings staff would need to work closely with federal, regional, state, and local organizationsEERE-Buildings staff would need to work closely with federal, regional, state, and local organizationsEERE-Buildings senior management engaged in the process of developing strategic and operational plans for their organization.

Vine, Edward

2002-01-01T23:59:59.000Z

260

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Energy Conservation Initiative (New Hampshire) | Open...  

Open Energy Info (EERE)

Technologies Lighting, Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation Active...

262

Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests  

SciTech Connect

The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

Jalalzadeh, A. A.; Hancock, E.; Powell, D.

2007-12-01T23:59:59.000Z

263

Linking the Eta Model with the Community Multiscale Air Quality (CMAQ) Modeling System to Build a National Air Quality Forecasting System  

Science Conference Proceedings (OSTI)

NOAA and the U.S. Environmental Protection Agency (EPA) have developed a national air quality forecasting (AQF) system that is based on numerical models for meteorology, emissions, and chemistry. The AQF system generates gridded model forecasts ...

Tanya L. Otte; George Pouliot; Jonathan E. Pleim; Jeffrey O. Young; Kenneth L. Schere; David C. Wong; Pius C. S. Lee; Marina Tsidulko; Jeffery T. McQueen; Paula Davidson; Rohit Mathur; Hui-Ya Chuang; Geoff DiMego; Nelson L. Seaman

2005-06-01T23:59:59.000Z

264

Occupant satisfaction in mixed-mode buildings  

E-Print Network (OSTI)

Environmental Quality in Green Buildings. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

265

Occupant satisfaction in mixed-mode buildings.  

E-Print Network (OSTI)

65- From Proceedings, Air Conditioning and the Low CarbonRefrigeration, and Air-conditioning Engineers Emmerich, S.J.Building. Final Report, Air-Conditioning and Refrigeration

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

266

A post-occupancy monitored evaluation of the dimmable lighting, automated shading, and underfloor air distribution system in The New York Times Building  

NLE Websites -- All DOE Office Websites (Extended Search)

23E 23E A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building E.S. Lee, L.L. Fernandes, B. Coffey, A. McNeil, R. Clear Lawrence Berkeley National Laboratory T. Webster, F. Bauman, D. Dickerhoff, D. Heinzerling, T. Hoyt University of California Berkeley Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division January 2013 ! 2 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty,

267

Buildings Technology Research and Development ...  

Science Conference Proceedings (OSTI)

... Utilities are provided by a central/district for heating & cooling, chilled water and compressed air - water and electricity are supplied by local ...

2012-04-12T23:59:59.000Z

268

International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200  

DOE Green Energy (OSTI)

This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

Neymark, J.; Judkoff, R.

2002-01-01T23:59:59.000Z

269

The politics of consensus-building : case study of diesel vehicles and urban air pollution in South Korea  

E-Print Network (OSTI)

Look at the three efforts to resolve public disputes over diesel passenger cars and urban air quality management in South Korea. this dissertation explores the main obstacles in nascent democracies to meeting the necessary ...

Kim, Dong-Young, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

270

Air Flow Distribution in a Mechanically-Ventilated High-Rise Residential Building* Richard C. Diamond and Helmut E. Feustel  

E-Print Network (OSTI)

Council for an Energy Efficient Economy, Washington DC, 1992. SHAPIRO-BARUCH, IAN, "Evaluation. The individual apartments have electric-resistance heaters in each room, and double-pane windows and sliding retrofits. New double-pane, low-e windows replaced the old windows throughout the building. A computerized

Diamond, Richard

271

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Fang, JB; Persily, AK; CONTAM88 Building Input Files for Multi-Zone Airflow and ... Indoor Air Quality and Climate, 7th International Conference. ...

272

Buildings | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Program Better Buildings Challenge Max Tech and Beyond Design Competition Rooftop Solar Challenge Rooftop Unit Challenge for Commercial Air Conditioners Wireless...

273

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... linearly with the wind speed. The energy associated with each of the 25 buildings was then summed to estimate the national energy cost of air ...

274

Building and Fire Publications  

Science Conference Proceedings (OSTI)

At the 1968 ASHRAE Annual Meeting in Lake Placid, New York, the symposium 'Fire Hazards in Buildings and Air-Handling Systems' was held. ...

275

Optimization of Air Conditioning Cycling.  

E-Print Network (OSTI)

??Systems based on the vapor compression cycle are the most widely used in a variety of air conditioning applications. Despite the vast growth of modern (more)

Seshadri, Swarooph

2012-01-01T23:59:59.000Z

276

General Compression | Open Energy Information  

Open Energy Info (EERE)

Compression Compression Jump to: navigation, search Name General Compression Place Newton, Massachusetts Zip 2458 Product Massachusetts-based developer of compressed air energy storage systems. Coordinates 43.996685°, -87.803724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.996685,"lon":-87.803724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

278

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

279

Co-simulation of innovative integrated HVAC systems in buildings  

E-Print Network (OSTI)

Canada: International Building Perfor- mance SimulationExternal coupling between building energy simulation andexternal coupling of building energy and air ow modeling

Trcka, Marija

2010-01-01T23:59:59.000Z

280

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network (OSTI)

S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

Williams, Alison

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

282

Sustainable Building Design Revolving Loan Fund (Arkansas) |...  

Open Energy Info (EERE)

MeasuresWhole Building, CustomOthers pending approval, Doors, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat recovery, Lighting, Motor VFDs,...

283

Indoor Air Quality Group  

Science Conference Proceedings (OSTI)

... CONTAM has been used at NIST to study the indoor air quality impacts of HVAC systems in single-family residential buildings, ventilation in large ...

2011-10-31T23:59:59.000Z

284

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

285

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

286

Building Energy Software Tools Directory: CAMEL  

NLE Websites -- All DOE Office Websites (Extended Search)

CAMEL Calculates the design heating and cooling loads and associated psychrometrics for air conditioning plant in buildings. CAMEL is one of the leading air conditioning load...

287

State Buildings Energy Conservation Bond Program (Montana) |...  

Open Energy Info (EERE)

CaulkingWeather-stripping, Central Air conditioners, Chillers, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting Active Incentive No...

288

Air Leakage of Furnaces and Air Handlers  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Leakage of Furnaces and Air Handlers Air Leakage of Furnaces and Air Handlers Title Air Leakage of Furnaces and Air Handlers Publication Type Journal Article LBNL Report Number LBNL-5553E Year of Publication 2010 Authors Walker, Iain S., Mile Lubliner, Darryl J. Dickerhoff, and William W. Delp Journal 2010 ACEEE Summer Study on Energy Efficiency in Buildings The Climate for efficiency is now Date Published 08/2010 Abstract In recent years, great strides have been made in reducing air leakage in residential and to a lesser extent small commercial forced air duct systems. Several authorities have introduced low leakage limits for thermal distribution systems; for example, the State of California Energy Code for Buildings gives credit for systems that leak less than 6% of the total air flow at 25 Pa.

289

Building Energy Software Tools Directory: Acoustics Program  

NLE Websites -- All DOE Office Websites (Extended Search)

by Subject Whole Building Analysis Codes & Standards Materials, Components, Equipment, & Systems Other Applications Atmospheric Pollution Energy Economics Indoor Air Quality...

290

Tension-Compression Testing  

Science Conference Proceedings (OSTI)

Tension-Compression Testing. ... version of the tension-compression test, to enable ... loading around draw-beads, where calibration tests must include ...

2013-04-10T23:59:59.000Z

291

Boulder Laboratories Building 1 Renovation  

Science Conference Proceedings (OSTI)

... fresh air for modern laboratory work, electrical ... of Building 1 at the NIST Boulder laboratories. ... conservation of water, energy, and construction ...

2012-02-13T23:59:59.000Z

292

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1  

E-Print Network (OSTI)

Liquid piston gas compression James D. Van de Ven a,*, Perry Y. Li b,1 a Worcester Polytechnic piston Gas compression Air compressor Compression efficiency a b s t r a c t A liquid piston concept is proposed to improve the efficiency of gas compression and expansion. Because a liquid can conform

Li, Perry Y.

293

Building Technologies Research and  

E-Print Network (OSTI)

that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling rooftop unit inside the large "outdoor" environmental chamber (Building 5800, D-103) Heat pump water

Oak Ridge National Laboratory

294

School Building Survey  

U.S. Energy Information Administration (EIA)

6 Does the building have insulation in the walls and ceiling? 7 Are inside stairwells open or enclosed? 8 Do windows and doors seal tightly, or do they leak air?

295

An Application of State-Of-The-Art HVAC and Building Systems  

E-Print Network (OSTI)

This case study describes the successful application of state-of-the-art HVAC and building systems at a large commercial office and industrial facility. The facility's exterior envelope systems, HVAC systems, lighting systems, energy conservation systems, exhaust/heat recovery/make-up air systems, water cooling systems, compressed air systems, electrical distribution systems, water heating systems, and other systems and measures taken are each discussed in detail. The important role that energy engineering played in the overall planning, design, and management of the project is given particular emphasis. Also, the engineering strategies used to integrate energy efficiency, performance optimization, current technology, and cost effectiveness are underscored throughout.

Fiorino, D. P.

1988-09-01T23:59:59.000Z

296

Occupant satisfaction in mixed-mode buildings  

E-Print Network (OSTI)

Refrigeration, and Air-conditioning Engineers Emmerich, S.J.Building. Final Report, Air-Conditioning and RefrigerationHowever, prior to the 1950s, air conditioning and mechanical

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

297

Extension of the high load limit in the Homogeneous Charge Compression Ignition engine  

E-Print Network (OSTI)

The Homogeneous Charge Compression Ignition (HCCI) engine offers diesel-like efficiency with very low soot and NOx emissions. In a HCCI engine, a premixed charge of air, fuel and burned gas is compressed to achieve ...

Scaringe, Robert J. (Robert Joseph)

2009-01-01T23:59:59.000Z

298

Advanced Manufacturing Office: Training: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

determine different compressor control strategies, align the supply-side to demand-side operation, and gain an understanding of the value of heat recovery. Participants will...

299

Carbon-Free Compressed Air Energy Storage.  

E-Print Network (OSTI)

??The inherent intermittency of the two fastest growing renewable energy sources, wind and solar, presents a significant barrier to widespread penetration and replacement of fossil-fuel (more)

Shively, Dustin Andrew

2009-01-01T23:59:59.000Z

300

Energy Tips: Minimize Compressed Air Leaks  

NLE Websites -- All DOE Office Websites (Extended Search)

newsletter, for example, provides timely articles and information on comprehensive energy systems for industry. You can access these resources and more by visiting the...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Air conditioning: Impact on the built environment  

Science Conference Proceedings (OSTI)

The topics discussed in this book are: Introduction. 1. Air Conditioning - An Ever Expanding Market. 2. Building Envelope Design and Air Contitioning. 3. Air Conditioning and Energy - The CIBSE Building Energy Code. 4. Thermal Storage in Air Conditioning Systems. 5. Good Practice in the Design and Construction of Air Conditioning Systems. 6. Software for Air Conditioning Load Analysis and Design. 7. Lloyd's of London - The Architecture of Air Conditioning - Prediction of the Environment.

Sherratt, A.F.C.

1987-01-01T23:59:59.000Z

302

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

2013-06-01T23:59:59.000Z

303

Energy efficiency buildings program, FY 1980  

SciTech Connect

A separate abstract was prepared on research progress in each group at LBL in the energy efficient buildings program. Two separate abstracts were prepared for the Windows and Lighting Program. Abstracts prepared on other programs are: Energy Performance of Buildings; Building Ventilation and Indoor Air Quality Program; DOE-21 Building Energy Analysis; and Building Energy Data Compilation, Analysis, and Demonstration. (MCW)

1981-05-01T23:59:59.000Z

304

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

305

A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS  

E-Print Network (OSTI)

A.K. (1997) Evaluating building IAQ and ventilation withcommercial and institutional buildings. Indoor Air 9: 226-Healthy and Sustainable Buildings, October 15- 17, 2007,

Fisk, William J.

2008-01-01T23:59:59.000Z

306

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

307

Conducting fiber compression tester  

DOE Patents (OSTI)

The invention measures the resistance across a conductive fiber attached to a substrate place under a compressive load to determine the amount of compression needed to cause the fiber to fail. 3 figs.

DeTeresa, S.J.

1989-12-07T23:59:59.000Z

308

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. C opyright 2009 Carbon Dioxide Compression DOE EPRI NIST ... Greenhouse gas sequestration Page 5. 5 C opyright 2009 ...

2013-04-22T23:59:59.000Z

309

Case Study 12 - Airflow and Indoor Air Quality Models of DOE ...  

Science Conference Proceedings (OSTI)

... Air Quality Models of DOE Reference Commercial Buildings. ... are intended to simultaneously reduce building energy consumption while maintaining ...

310

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

311

System-Level Monitoring and Diagnosis of Building HVAC System.  

E-Print Network (OSTI)

??Heating, ventilation, and air conditioning (HVAC) is an indoor environmental technology that is extensively instrumented for large-scale buildings. Among all subsystems of buildings, the HVAC (more)

Wu, Siyu

2013-01-01T23:59:59.000Z

312

City of Scottsdale - Green Building Incentives (Arizona) | Open...  

Open Energy Info (EERE)

Comprehensive MeasuresWhole Building, CustomOthers pending approval, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Furnaces, Heat pumps,...

313

Focus on Energy - Incentives for Existing Multi-Family Buildings...  

Open Energy Info (EERE)

Lighting, Lighting ControlsSensors, Furnaces, Boilers, Heat pumps, Heat recovery, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation, Geothermal...

314

Town of Buckeye - Green Building Incentive (Arizona) | Open Energy...  

Open Energy Info (EERE)

Comprehensive MeasuresWhole Building, CustomOthers pending approval, DuctAir sealing, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Furnaces, Heat pumps,...

315

Duct systems in large commercial buildings: physical characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct systems in large commercial buildings: physical characterization, air leakage and heat conduction gains Title Duct systems in large commercial buildings: physical...

316

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

317

List of Building Insulation Incentives | Open Energy Information  

Open Energy Info (EERE)

Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners CustomOthers pending approval DuctAir sealing Heat pumps...

318

Building Science - Ventilation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

319

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network (OSTI)

Refrigeration, and Air-conditioning Engineers. ASHRAE researches and publishes many detailed references on building design,

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

320

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

322

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How...

323

NETL: CO2 Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Compression CO2 Compression The CO2 captured from a power plant will need to be compressed from near atmospheric pressure to a pressure between 1,500 and 2,200 psi in order to be transported via pipeline and then injected into an underground sequestration site. Read More! CO2 Compression The compression of CO2 represents a potentially large auxiliary power load on the overall power plant system. For example, in an August 2007 study conducted for DOE/NETL, CO2 compression was accomplished using a six-stage centrifugal compressor with interstage cooling that required an auxiliary load of approximately 7.5 percent of the gross power output of a subcritical pressure, coal-fired power plant. As a result, DOE/NETL is sponsoring R&D to develop novel methods that can significantly decrease the

324

Building Energy Software Tools Directory: Data Center Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole Building Analysis Codes & Standards Materials, Components, Equipment, & Systems Other Applications Atmospheric Pollution Energy Economics Indoor Air Quality Multibuilding...

325

Project: Contaminant Control in High-Performance Buildings  

Science Conference Proceedings (OSTI)

... Specifically, the use of building materials with low VOC emissions may allow energy savings by lowering outdoor air ventilation requirements. ...

2013-01-15T23:59:59.000Z

326

Energy and building envelope  

SciTech Connect

This book presents the papers given at a conference on building thermal insulation, energy efficiency, and solar architecture. Topics considered at the conference include thermal comfort, heating loads, the air change rate in residential buildings, core-insulated external walls, passive solar options, cooling loads, daylighting, solar gain, the energy transmittance of glazings, heat storage units in phase change materials, heat transfer through windows, and rock bed heat storage for solar heating systems.

1986-01-01T23:59:59.000Z

327

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

328

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

329

Training the Next Generation of Commercial Building ...  

Science Conference Proceedings (OSTI)

... The heating, ventilation and air conditioning equipment, in these buildings, is controlled by a thermostat and other systems (lights and plugs) have ...

2012-02-14T23:59:59.000Z

330

Building Energy Software Tools Directory: Load Express  

NLE Websites -- All DOE Office Websites (Extended Search)

Create project files with Load Express in just 4 easy steps. Select a weather profile, enter simulation parameters, define the zonesrooms in the building and create air handler...

331

Building 1 Renovation (+37.9 million)  

Science Conference Proceedings (OSTI)

... The poor condition of Building 1 causes ... be attempted, current laboratory conditions create large ... including all heating and air conditioning and other ...

2010-10-05T23:59:59.000Z

332

NIST Building and Fire Research Laboratory Publications ...  

Science Conference Proceedings (OSTI)

... of building materials, lighting, and indoor air quality. ... Pello, AC Fire Propagation in Concurrent Flows. ... 193844 fire spread; buoyant flow; fire research ...

1996-08-14T23:59:59.000Z

333

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

334

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

335

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

336

Transporting & Shipping Hazardous Materials at LBNL: Compressed Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Gases Compressed Gases Self-Transport by Hand & Foot Self-Transport by Vehicle Ship by Common Carrier Conduct Field Work Return Cylinders Self-Transport by Hand & Foot Staff may personally move (self-transport) compressed gas cylinders by hand & foot between buildings and in connecting spaces (i.e., hallways, elevators, etc.) within buildings provided it can be done safely. The following safety precautions apply: Use standard cylinder dollies to transport compressed gas cylinders. While dollies are preferred, cylinders weighing 11 Kg (25 lbs) or less may be hand-carried. Never move a cylinder with a regulator connected to it. Cylinder valve-protection caps and valve-opening caps must be in place when moving cylinders. Lecture bottles and other cylinders that are

337

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

338

Transpired Air Collectors - Ventilation Preheating  

DOE Green Energy (OSTI)

Many commercial and industrial buildings have high ventilation rates. Although all that fresh air is great for indoor air quality, heating it can be very expensive. This short (2-page) fact sheet describes a technology available to use solar energy to preheat ventilation air and dramatically reduce utility bills.

Christensen, C.

2006-06-22T23:59:59.000Z

339

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

340

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

342

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

343

Modeling Compressed Turbulence  

Science Conference Proceedings (OSTI)

From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.

Israel, Daniel M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

344

and Pollutant Safeguarding Buildings  

E-Print Network (OSTI)

), integrates experimental and modeling research in order to understand the dispersion of airborne pollutants dispersion, indoor/outdoor air exchange, and building protection. Airflow and Pollutant Transport Group V V V experimental data (right), for tracer gas concentration at breathing height in a model atrium, demonstrating

345

Page 1 of 22 Building Num: Date  

E-Print Network (OSTI)

Check List Page 1 of 22 Building Num: Date: Compressed Gases/WeldingChecklist Title: Action stored away from flammable materials? 1910.252(a)(2)(i) #12;Check List Page 2 of 22 Building Num: Date)(D) Is the insulation material intact on welding machine rod holders? 1910.254(d)(9)(i) #12;Check List Page 3 of 22

Homes, Christopher C.

346

Air blast type coal slurry fuel injector  

SciTech Connect

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

347

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, R.G.

1984-08-31T23:59:59.000Z

348

Project: Ventilation and Indoor Air Quality in Low-Energy ...  

Science Conference Proceedings (OSTI)

Ventilation and Indoor Air Quality in Low-Energy Buildings Project. Summary: NIST is developing tools and metrics to both ...

2012-12-27T23:59:59.000Z

349

Compression molding of aerogel microspheres  

DOE Patents (OSTI)

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

Pekala, Richard W. (Pleasant Hill, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

1998-03-24T23:59:59.000Z

350

Compression molding of aerogel microspheres  

DOE Patents (OSTI)

An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

Pekala, R.W.; Hrubesh, L.W.

1998-03-24T23:59:59.000Z

351

A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners in the United States spend Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specific room and are easy for anyone to install. In contrast to these benefits, window A/Cs come at a cost-they operate less efficiently (using more energy to do the same cooling) than most other residential A/C systems. Researchers at the National Renewable Energy Laboratory (NREL) studied window A/Cs on behalf of the U.S.

352

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

353

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

354

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

355

Compressed Sensing in Astronomy  

E-Print Network (OSTI)

Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper we investigate how compressed sensing (CS) can provide new insights into astronomical data compression and more generally how it paves the way for new conceptions in astronomical remote sensing. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found on board space mission. We introduce a practical and effective recovery algorithm for decoding compressed data. In astronomy, physical prior information is often crucial for devising effective signal processing methods. We particularly point out that a CS-based compression scheme is flexible enough to account for such information. In this context, compressed sensing is a new framework in which data acquisition and data processing are merged. We show also that CS provides a new fantastic way to handle multiple observations of the same field view, allowing us to recover information at very low signal-to-noise ratio, which is impossible with standard compression methods. This CS data fusion concept could lead to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments on board the Herschel spacecraft which will be launched in 2008.

J. Bobin; J-L Starck; R. Ottensamer

2008-02-01T23:59:59.000Z

356

Solar heated building structure  

Science Conference Proceedings (OSTI)

A solar heated building structure comprises an exterior shell including side walls and a roof section with the major portion of the roof section comprised of light transmitting panels or panes of material to permit passage of sunlight into the attic section of the building structure. The structure is provided with a central vertical hollow support column containing liquid storage tanks for the circulation and collection of heated water from a flexible conduit system located on the floor of the attic compartment. The central column serves as a heating core for the structure and communicates by way of air conduits or ducts with the living areas of the structure. Fan means are provided for continuously or intermittently circulating air over the hot water storage tanks in the core to transfer heat therefrom and distribute the heated air into the living areas.

Rugenstein, R.W.

1980-03-11T23:59:59.000Z

357

Closed-loop air cooling system for a turbine engine  

DOE Patents (OSTI)

Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

North, William Edward (Winter Springs, FL)

2000-01-01T23:59:59.000Z

358

Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?  

E-Print Network (OSTI)

The supply air temperature set point for a singleduct constant air volume air handling unit (AHU) system is often reset based on either return air temperature or outside air temperature in order to reduce simultaneous cooling and heating energy consumption. Both reset strategies make engineering sense as long as the reset schedules are reasonable. Quite often the decision to use one over the other is made with the assumption that they will all achieve some sorts of energy savings. However, the impact of these two strategies on AHU energy consumption could be very different. A comparison of these two commonly used supply air temperature reset strategies for a single-duct constant air volume system is presented in this paper. It is shown that from either the building energy consumption or building comfort point of view, the reset strategy based on outside air temperature is inherently better than that based on return air temperature. Significant amount of heating energy savings can be achieved by switching from return air temperature based reset to outside air temperature based reset. The reset strategy can also benefit variable air volume (VAV) AHUs. An improved supply air temperature set point reset control strategy is proposed by combining and staging the outside air and return air temperature based resets.

Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

2002-01-01T23:59:59.000Z

359

Reactive Air Aluminizing - Energy Innovation Portal  

Reactive Air Aluminizing is a process for applying a protective coating on steel components in solid oxide fuel ... Building Energy Efficiency; ...

360

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Automobile air-conditioning unit. Final report  

SciTech Connect

In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

Schaetzle, W.J.

1982-12-01T23:59:59.000Z

362

Technology Assessment and Application Guide for Active Power's CoolAir DC  

Science Conference Proceedings (OSTI)

This report describes and documents the construction and performance of a novel battery free backup power product, CoolAir (DC) based upon TACAS (Thermal Compressed Air Storage) technology and manufactured by Active Power of Austin, Texas. Comprised of compressed air tanks, thermal storage unit, high-speed air turbine, flywheel, and power electronics, the CoolAir DC is designed to deliver DC power to devices such as an uninterruptible power supply or adjustable speed drive while producing cool air during...

2005-11-15T23:59:59.000Z

363

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards Photo of two inspectors looking at a clipboard on a commercial building site with the steel frame of a commercial building in the background. Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by including it in state and local codes is an effective strategy for achieving that goal. The Building Energy Codes Program works with the International Code Council (ICC), American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Illuminating Engineering Society of North America (IESNA), American Institute of Architects (AIA), the building industry, and state and local officials to develop and promote more stringent and easy-to-understand building energy codes and to assess potential code barriers to new energy-efficient technologies.

364

Energy Efficient Building Ventilation Systems: Innovative Building-Integrated Enthalpy Recovery  

Science Conference Proceedings (OSTI)

BEETIT Project: A2 is developing a building moisture and heat exchange technology that leverages a new material and design to create healthy buildings with lower energy use. Commercial building owners/operators are demanding buildings with greater energy efficiency and healthier indoor environments. A2 is developing a membrane-based heat and moisture exchanger that controls humidity by transferring the water vapor in the incoming fresh air to the drier air leaving the building. Unlike conventional systems, A2 locates the heat and moisture exchanger within the depths of the buildings wall to slow down the air flow and increase the surface area that captures humidity, but with less fan power. The systems integration into the wall reduces the size and demand on the air conditioning equipment and increases liable floor area flexibility.

None

2010-10-15T23:59:59.000Z

365

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

366

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

367

Analysis of Efficiency Standards for Air Conditioners, Air ...  

U.S. Energy Information Administration (EIA)

Federal agencies to select ENERGY STAR and ... analyze the proposed air conditioner and heat pump standards, a new baseline ... square foot office building 0.4 to 0.8 ...

368

Method and apparatus for extracting water from air  

DOE Patents (OSTI)

The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

Spletzer, Barry L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

369

Method and apparatus for extracting water from air  

DOE Patents (OSTI)

The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

Spletzer, Barry L. (Albuquerque, NM); Callow, Diane Schafer (Albuquerque, NM); Marron, Lisa C. (Albuquerque, NM); Salton, Jonathan R. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

370

Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles  

E-Print Network (OSTI)

Most air handling units (AHUs) in commercial buildings have an air economizer cycle for free cooling under certain outside air conditions. During the economizer cycle, the outside air and return air dampers are modulated to seek mixing air temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55F for space humidity control. Actually the dehumidification is not necessary when outside air dew point is less than 55F. Meanwhile the space may have less cooling load due to envelope heat loss and/or occupant schedule. These provide an opportunity to use higher supply air temperature to reduce or eliminate mechanical cooling and terminal box reheat. On the other hand the higher supply air temperature will require higher air flow as well as higher fan power. Therefore the supply air temperature has to be optimized to minimize the combined energy for fan, cooling and heating energy. In this paper a simple energy consumption model is established for AHU systems during the economizer and then a optimal supply air temperature control is developed to minimize the total cost of the mechanical cooling and the fan motor power. This paper presents AHU system energy modeling, supply air temperature optimization, and simulated energy savings.

Xu, K.; Liu, M.; Wang, G.; Wang, Z.

2007-01-01T23:59:59.000Z

371

Zoned heating and air conditioning system  

SciTech Connect

This patent describes a zoned heating and air conditioning system comprising: a central air handling system with an air heating means and an air cooling means and a blower connected to an air duct system; thermostats each have heating and cooling set points, respectively associated with and located in different zones of a building; dampers respectively associated with each building zone positioned in the air duct system. Each damper has an open position allowing air into the respective zone from the duct system and a closed position; relay means for connecting one thermostat to the air handling system upon a call for heating or cooling by one thermostat and disconnecting all other thermostats by connecting one thermostat's connections between the thermostat and air handling system. Only one thermostat is connected to the air handling system at a time and the relay means disconnects one thermostat from the air handling system after one thermostat is satisified; and damper actuating means for unlocking each damper in one building zone responsive actuated by a respective zone thermostat connected to the air handling system by the relay means. The damper actuates means including a damper solenoid for each damper located adjacent each damper and connected to a respective zone thermostat. It unlocks each damper in one building zone responsive to being actuated by the respective zone thermostat and unlocks the dampers in one building zone when one thermostat is actuated while preventing the dampers in another thermostat's building zone from unlocking.

Beachboard, S.A.

1987-06-16T23:59:59.000Z

372

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

373

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

374

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

375

Chapter 8: Constructing the Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: : Constructing the Building Developing a Construction Plan Writing Effective Construction Documents Safeguarding Design Goals During Construction Protecting the Site Low-Impact Construction Processes Protecting Indoor Air Quality Managing Construction Waste LANL | Chapter 8 Constructing the Building Developing a Construction Plan A high-performance design is a great achievement, but it doesn't mean much if the building isn't then built as intended. Getting from design to a completed project happens in two stages: 1) development of construction documents and 2) actual construction. To successfully implement a sustainable design, the construction docu- ments must accurately convey the specifics that deter- mine building performance, and they have to set up

376

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

377

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

378

Solar air conditioning  

DOE Green Energy (OSTI)

Development of a hybrid solar-assisted air conditioning system that combines a vapor compression section for sensible cooling with a desiccant section for dehumidification and that uses both solar energy and condenser waste heat to drive the dehumidifier has been under way for the last two years (1981 and 1982). The results of this research are included in this report: utilizing solar energy in an economical way has proven quite difficult.

Robison, H.

1981-01-01T23:59:59.000Z

379

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

380

AFIS data compression: an example of how domain specific compression algorithms can produce very high compression ratios  

Science Conference Proceedings (OSTI)

This article describes the development and implementation of a data compression algorithm designed specifically for fingerprints, referred to as GBP compression. The algorithm is herein discussed. Data Compression algorithms can be designed for general ... Keywords: AFIS, automated fingerprint identification systems, compatibility, compression, data compression, data encryption, data integrity, double compression, fingerprinting, graphics, image compression, image quality, limits of compression, portability, retrofitting, serial compression, software engineering

Givon Zirkind

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Duct leakage impacts on VAV system performance in California large commercial buildings  

E-Print Network (OSTI)

air leakage rate, then proposed buildings will be rewarded for sealingduct sealing even more cost-effective. Table 5. TRNSYS Air-

Wray, Craig P.; Matson, Nance E.

2003-01-01T23:59:59.000Z

382

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

383

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

384

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

385

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

386

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

387

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

388

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

389

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

390

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

391

Building Energy Software Tools Directory: Building Energy Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Analyzer Building Energy Analyzer Building Energy Analyzer logo. Provides quick economic analysis for commercial and industrial buildings. Building Energy Analyzer (BEA) estimates annual and monthly loads and costs associated with air-conditioning, heating, on-site power generation, thermal storage, and heat recovery systems for a given building and location. The user can compare the performance of standard and high efficiency electric chillers, variable speed electric chillers, absorption chillers, engine chillers, thermal storage, on-site generators, heat recovery, or desiccant systems. The user can also prepare side-by-side economic comparisons of different energy options and equipment life cycle cost analysis. The BEA is a system screening tool. It is a tool that is

392

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

393

Functional compression : theory and application  

E-Print Network (OSTI)

We consider the problem of functional compression. The objective is to separately compress possibly correlated discrete sources such that an arbitrary deterministic function of those sources can be computed given the ...

Doshi, Vishal D. (Vishal Devendra)

2008-01-01T23:59:59.000Z

394

Commercial Building Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Commercial Building Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

395

Available Technologies: Compression Ratio Dehumidification  

The Compression Ratio Dehumidification technology will address a growing concern since energy efficiency standards became broadly adopted nationwide.

396

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

397

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

398

Meeting the Air Leakage  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting the Air Leakage Meeting the Air Leakage Requirements of the 2012 IECC The U.S. Department of Energy (DOE) recognizes the enormous potential that exists for improving the energy efficiency, safety and comfort of homes. The newest edition of the International Energy Conservation Code ® (IECC) (2012) sets the bar higher for energy efficiency, and new air sealing requirements are one of the key new provisions. This guide is a resource for understanding the new air leakage requirements in the 2012 IECC and suggestions on how these new measures can be met. It also provides information from Building America's Air Sealing Guide, Best Practices and case studies on homes that are currently meeting the provisions. The 2012 IECC and a few International Residential Code (IRC) requirements are referenced throughout the guide.

399

Whole Building Ventilation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

400

High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback  

DOE Green Energy (OSTI)

This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when they are opened. As a result of this effort, we have devised a new design and have filed for a patent on a method of control which is believed to overcome this problem. The engine we have been working with originally had a single camshaft which controlled both the intake and exhaust valves. Single cycle lift and timing control was demonstrated with this system. (3) Large eddy simulations and KIVA based simulations were used in conjunction with flow visualizations in an optical engine to study fuel air mixing. During this effort we have devised a metric for quantifying fuel distribution and it is described in several of our papers. (4) A control system has been developed to enable us to test the benefits of the various technologies. This system used is based on Opal-RT hardware and is being used in a current DOE sponsored program.

Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

2007-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy studies on central and variable refrigerant flow air-conditioning systems  

Science Conference Proceedings (OSTI)

Air-conditioning is a major contributor to energy end-use in commercial buildings. Different types of airconditioning systems are installed in commercial buildings including packaged systems

2012-01-01T23:59:59.000Z

402

Buildings Operations and ETS Exposure  

E-Print Network (OSTI)

Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations have implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS.- Environ Health Perspect 107(Suppl 2):313-317 (1999).

John D. Spengler

1998-01-01T23:59:59.000Z

403

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

404

Electrochemical Hydrogen Compression (EHC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Hydrogen Compression (EHC) Pinakin Patel and Ludwig Lipp Presentation at DOE Hydrogen Compression, Storage and Dispensing Workshop at ANL Argonne, IL March 20, 2013 2 * Experience with all fuel cells - MCFC, SOFC, PEM, PAFC, etc. * Excellent progress in commercialization of MCFC technology (>300 MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency fuel cells FCE Overview $- $2,000 $4,000 $6,000 $8,000 $10,000 2003 2007 2011 mid-term Product cost per kW 3 H 2 Peak and Back- up Power Fuel Cell Cars DFC ® Power Plant (Electricity + Hydrogen) Solid State Hydrogen Separator (EHS) Solid State Hydrogen

405

Effects of operating conditions, compression ratio, and gasoline reformate on SI engine knock limits  

E-Print Network (OSTI)

A set of experiments was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each condition the effect of spark ...

Gerty, Michael D

2005-01-01T23:59:59.000Z

406

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

407

Energy Savings in Industrial Buildings  

E-Print Network (OSTI)

The industrial sector accounts for more than one-third of total energy use in the United States and emits 28.7 percent of the countrys greenhouse gases. Energy use in the industrial sector is largely for steam and process heating systems, and electricity for equipment such as pumps, air compressors, and fans. Lesser, yet significant, amounts of energy are used for industrial buildings heating, ventilation, and air conditioning (HVAC), lighting and facility use (such as office equipment). Due to economic growth, energy consumption in the industrial sector will continue to increase gradually, as will energy use in industrial buildings. There is a large potential for energy saving and carbon intensity reduction by improving HVAC, lighting, and other aspects of building operation and technologies. Analyses show that most of the technologies and measures to save energy in buildings would be cost-effective with attractive rates of return. First, this paper will investigate energy performance in buildings within the manufacturing sector, as classified in the North American Industry Classification System (NAICS). Energy use patterns for HVAC and lighting in industrial buildings vary dramatically across different manufacturing sectors. For example, food manufacturing uses more electricity for HVAC than does apparel manufacturing because of the different energy demand patterns. Energy saving opportunities and potential from industrial buildings will also be identified and evaluated. Lastly, barriers for deployment of energy savings technologies will be explored along with recommendations for policies to promote energy efficiency in industrial buildings.

Zhou, A.; Tutterow, V.; Harris, J.

2009-05-01T23:59:59.000Z

408

Building Envelopes | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

409

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network (OSTI)

daylighting, Heating, Ventilation, and Air Conditioning (HVAC) system(systems. Seven buildings have some earth berming; eleven have daylighting.

Piette, M.A.

2010-01-01T23:59:59.000Z

410

Building Energy Software Tools Directory: HPSIM  

NLE Websites -- All DOE Office Websites (Extended Search)

HPSIM HPSIM Detailed, fundamentals-based, steady-state simulation model of an air-to-air heat pump operating on the vapor-compression-cycle principle and charged with single-component refrigerant. HPSIM (Heat Pump SIMulation) includes tube-by-tube modeling of plate-fin air-to-refrigerant heat exchangers. Keywords heat pump, research Validation/Testing - Expertise Required High level of computer literacy; high level of technical understanding of vapor-compression heat pumps. Users 40 user organizations. Audience University engineering faculty and graduate students, for training in refrigeration and air conditioning; R&D and design engineers employed by manufacturers of air-conditioning equipment. Input Detailed design description of heat pump components; compressor performance

411

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

412

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

413

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

414

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

415

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

416

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

417

A Guide to Building Commissioning  

SciTech Connect

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

418

A Guide to Building Commissioning  

SciTech Connect

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

419

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Insulation and Duct Insulation and Sealing Requirements in Commercial Buildings 2009 and 2012 IECC; ASHRAE 90.1-2007 and 2010; 2009 and 2012 IMC Duct insulation and sealing, especially insulated supply ducts delivering conditioned air within a building, save energy. The intent of energy efficiency codes, as related to duct insulation and sealing, is to keep mechanically warmed or cooled air as close to a constant, desired temperature as possible and prevent the conditioned air from escaping the duct system while it is being moved to spaces where it is needed. If reduced heat transfer through insulated ducts is accounted for in the heating, ventilating, and air conditioning (HVAC) load calculations, it may even be possible to reduce the size of HVAC equipment.

420

Recent development in green buildings  

Science Conference Proceedings (OSTI)

Because of the environmental concerns about some materials used in buildings, particularly chlorofluorocarbon (CFC) fluids used as the blowing agent for insulation materials and as refrigerants used in the air conditioning systems have led to a search for environmentally safe alternatives. For insulation materials, new non-CFC blowing agents are still under development. However, the old insulation materials in the buildings will stay because they do not pose any further environmental damage. It is a different story for refrigerants used in air conditioning systems. This study reports that the change-over from CFC to non-CFC refrigerants in the existing and future air conditioning equipment could be a chance not only to take care of the environmental concerns, but to save energy as well. Alternative air conditioning technologies, such as the desiccant dehumidification and absorption systems, and the potential of some natural substances, such as carbon dioxide, as the future refrigerants are also discussed.

Mei, V.C.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Glossary | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Balancing, Air Balancing, Air Adjusting air flow rates through air distribution system devices, such as fans and diffusers, by manually adjusting the position of dampers, splitter vanes, extractors, etc., or by using automatic control devices, such as constant air volume or variable air volume boxes. Balancing, Hydronic Adjusting water flow rates through hydronic distribution system devices, such as pumps and coils, by manually adjusting the position valves, or by using automatic control devices, such as automatic flow control valves. Ballast A device used in conjunction with an electric-discharge lamp to cause the lamp to start and operate under the proper circuit conditions of voltage, current, wave form, electrode heat, etc. Basement Wall Basement walls that enclose heated spaces are part of the building

422

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network (OSTI)

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between the building and the whole society, and between the building and the air conditioning system. Eight public buildings in Shanghai have been chosen for analyzing the characteristics of energy consumption of the air conditioning system in real time.

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

423

Green Building Incentive | Open Energy Information  

Open Energy Info (EERE)

Green Building Incentive Green Building Incentive Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

424

Green Building Incentives | Open Energy Information  

Open Energy Info (EERE)

Building Incentives Building Incentives Jump to: navigation, search Green buildings are designed and constructed using practices and materials that minimize the impacts of the building on the environment and on human health. Many cities and counties offer financial incentives to promote green building. The most common form of incentive is a reduction or waiver of a building permit fee. The U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) is a popular point-based certification program for green buildings. The LEED system awards points for site selection and development; material, energy and water efficiency; indoor air quality; innovation; and the application of renewable technologies. (Note that this category includes green building incentives

425

Economic model predictive control for building energy systems.  

E-Print Network (OSTI)

??In the United States, buildings account for nearly three quarters of electricity consumption and about 40% of greenhouse gas emissions. The heating, ventilation and air-conditioning (more)

Ma, Jingran

2012-01-01T23:59:59.000Z

426

Potential benefits of cool roofs on commercial buildings: conserving...  

NLE Websites -- All DOE Office Websites (Extended Search)

of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on...

427

Window Use in Mixed-Mode Buildings: A Literature Review  

E-Print Network (OSTI)

Institute of Technology. CIBSE (Chartered Institution ofand air-conditioned offices. CIBSE National Conference, 227-Building Service Engineers (CIBSE) in the UK indicates that,

Ackerly, Katie; Baker, Lindsay; Brager, Gail

2011-01-01T23:59:59.000Z

428

Cutting-Edge Building Technologies Offer Big Energy Savings Potential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013, the program awarded nearly 6 million for nine projects, covering such areas as building insulation and window, air conditioning and heat pump technologies. Four of these...

429

Quantitative relationship of sick building syndrome symptoms with ventilation rates  

E-Print Network (OSTI)

at two outdoor air supply rates." Indoor Air 14 Suppl 8: 7-Miettinen (1995). "Ventilation rate in office buildings andAssociation of ventilation rates and CO 2 concentrations

Fisk, William J.

2009-01-01T23:59:59.000Z

430

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

431

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

432

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

433

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

434

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

435

Variables optimization of building air conditioning system  

Science Conference Proceedings (OSTI)

A heating and climatizer system based on selective absorption of solar energy by a selective collector. The experimental study shows that the performance of this system depends on several variables: the nature of the colporteur fluid, the flow of the ... Keywords: heating and climatisation, modelation and optimization, solar energy

Marius-Constantin Popescu; Cornelia Aida Bulucea; Gheorghe Manolea; Cristian Vladu

2009-10-01T23:59:59.000Z

436

Air movement preferences observed in office buildings  

E-Print Network (OSTI)

in a Hot-humid Climate. ASHRAE Transactions 100: 457-475.in a Cold Climate. ASHRAE Transactions 103: 205-220. Fang L,Sensations of Sedentary Man. ASHRAE Transactions 80 (1):

2007-01-01T23:59:59.000Z

437

New Regenerative Cycle for Vapor Compression Refrigeration  

SciTech Connect

The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and second step of compression. In the proposed system, the compressor compresses the vapor only to 50-60% of the final pressure, while the additional compression is provided by a jet device using internal potential energy of the working fluid flow. Therefore, the amount of mechanical energy required by a compressor is significantly reduced, resulting in the increase of efficiency (either COP or EER). The novelty of the cycle is in the equipment and in the way the multi-staging is accomplished. The anticipated result will be a new refrigeration system that requires less energy to accomplish a cooling task. The application of this technology will be for more efficient designs of: (1) Industrial chillers, (2) Refrigeration plants, (3) Heat pumps, (4) Gas Liquefaction plants, (5) Cryogenic systems.

Mark J. Bergander

2005-08-29T23:59:59.000Z

438

Energy utilization analysis of buildings  

DOE Green Energy (OSTI)

The accurate calculation of the energy requirements and heating and cooling equipment sizes for buildings is one of the most important, as well as one of the most difficult, problems facing the engineer. The fundamental principles utilized in the procedures developed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) are explained and brief descriptions of the computer programs using these procedures are given. Such computer programs generally are capable of: simulating the thermal response of a building to all sources of heat gains and losses, accounting for all non-thermal energy requirements in the building or on the sites, translating the building operating schedules into energy demand and consumption, identifying the peak capacity requirements of heating and cooling equipment, and performing an economic analysis that would select the most economical overall owning and operating cost equipment and energy source that minimize the building's life cycle cost.

Lokmanhekim, M.

1978-06-01T23:59:59.000Z

439

Commercial Building HVAC: How it Affects People  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building HVAC: How it Affects People Commercial Building HVAC: How it Affects People Speaker(s): William Fisk Date: November 13, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner Commercial building heating, ventilating, and air conditioning (HVAC) systems are designed primarily to maintain a reasonable level of thermal comfort while limiting first costs and energy consumption. However, research conducted predominately within the last decade suggests that commercial building HVAC significantly influences human outcomes other than thermal comfort, including the health, satisfaction, and work performance of the building's occupants. This presentation will review the relationships of these outcomes with HVAC system type, filtration system efficiency, indoor air temperature, and outside air ventilation rate.

440

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Photon compression in cylinders  

DOE Green Energy (OSTI)

It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10/sup 14/ watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10/sup 5/ joules cm/sup -2/ and powers of >10/sup 13/ watts cm/sup -2/ are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling.

Ensley, D.L.

1977-01-12T23:59:59.000Z

442

Mechanical Compression Heat Pumps  

E-Print Network (OSTI)

Mechanical compression heat pumping is not new in industrial applications. In fact, industry history suggests that the theoretical concept was developed before 1825. Heat pump manufacturers gained the support of consultants and end-users when the energy crisis hit this country in 1973. That interest, today, has been dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical foundation for heat pumps and present the mechanical and thermal requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling proceed along parallel demand paths. The case history will examine the system flexibility and the economic advantages realized in a barley malting process.

Apaloo, T. L.; Kawamura, K.; Matsuda, J.

1986-06-01T23:59:59.000Z

443

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

444

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

445

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

446

TC 89 Thermal performance of buildings and building components  

E-Print Network (OSTI)

of cavities 6 7 Report 10 ANNEX A (informative) Tabulated thermal conductivity (-value) of selected materials and building components. Introduction The test method according to prEN 12412­2 "Windows, doors and shutters. The standard does not include effects of solar radiation and heat transfer caused by air leakage and three

Massachusetts at Amherst, University of

447

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Ken Gray P.E. HQ AFCESA /CENR Air Force Renewable Energy Programs April, 2011 FUPWG "Make Energy a Consideration in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics  Air Force Energy Use  Air Force Facility Energy Center  Current RE Generation  Project Development System  Programmed RE Generation FY11-13  Goal Achievement 2 I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Air Force 2010 Energy Use The Air Force spent approximately $8.2 billion for energy in 2010; an increase of 22% from 2009 Energy Cost and Consumption Trends Energy Cost Breakdown Aviation 79% Facilities 17% 3 Aviation 84% Facilities 12% Vehicles & Equipment

448

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

449

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

450

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

451

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

452

Shock compression of precompressed deuterium  

DOE Green Energy (OSTI)

Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultrafast time scale (< 100 ps) and a microscopic length scale (< 1 {micro}m). We further report a fast transition in shock wave compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high-density dynamic compression of hydrogen may be possible on microscopic length scales.

Armstrong, M R; Crowhurst, J C; Zaug, J M; Bastea, S; Goncharov, A F; Militzer, B

2011-07-31T23:59:59.000Z

453

Dynamically Consistent Formulations in Meteorological and Air Quality Models for Multiscale Atmospheric Studies. Part II: Mass Conservation Issues  

Science Conference Proceedings (OSTI)

Eulerian air quality models that require gridded meteorological inputs have to adapt to recent advances in meteorological models for fully compressible atmosphere. When the input meteorological data are recast with a robust fully compressible ...

Daewon W. Byun

1999-11-01T23:59:59.000Z

454

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

Code Code Jump to: navigation, search Building energy codes adopted by states (and some local governments) require commercial and/or residential construction to adhere to certain energy standards. While some governmental bodies have developed their own building energy codes, many use existing codes, such as the International Energy Conservation Code (IECC), developed and published by the International Code Council (ICC); or ASHRAE 90.1, developed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). A few local building energy codes require certain commercial facilities to meet green building standards. [1] Building Energy Code Incentives CSV (rows 1 - 85) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

455

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

456

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

457

Direct Digital Control in Air Conditioning Systems for Energy Efficiency  

E-Print Network (OSTI)

With the rapid development of Intelligent Buildings (IB), the Building Automation System (BAS) has come to control and manage the equipment in the building more and more scientifically, economically and rationally, which can not only raise the function and the level of the building, but also save energy. At present, air-conditioning design in internal commercial buildings is becoming more complex and enormous. The proportion of air conditioning systems in the whole building is getting larger. In order to control and manage the air-conditioning systems effectively and take full use of energy-saving technology, we apply computer control to the system of air automation control. This paper discusses direct digital control (DDC) in the air conditioning system in buildings.

Liu, W.; Ye, A.; Li, D.

2006-01-01T23:59:59.000Z

458

Compression effects on pressure loss in flexible HVAC ducts  

SciTech Connect

A study was conducted to evaluate the effect of compression on pressure drop in flexible, spiral wire helix core ducts used in residential and light commercial applications. Ducts of 6 inches, 8 inches and 10 inches (150, 200 and 250 mm) nominal diameters were tested under different compression configurations following ASHRAE Standard 120-1999--Methods of Testing to Determine Flow Resistance of HVAC Air Ducts and Fittings. The results showed that the available published references tend to underestimate the effects of compression. The study demonstrated that moderate compression in flexible ducts, typical of that often seen in field installations, could increase the pressure drop by a factor of four, while further compression could increase the pressure drop by factors close to ten. The results proved that the pressure drop correction factor for compressed ducts cannot be independent of the duct size, as suggested by ASHRAE Fundamentals, and therefore a new relationship was developed for better quantification of the pressure drop in flexible ducts. This study also suggests potential improvements to ASHRAE Standard 120-1999 and provides new data for duct design.

Abushakra, Bass; Walker, Iain S.; Sherman, Max H.

2002-07-01T23:59:59.000Z

459

Building Energy Software Tools Directory: BEAVER  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAVER BEAVER Logo for BEAVER WINDOWS environment for the ESPII Fortran program which estimates the energy consumption of buildings using the ASHRAE Response Factor Method. BEAVER building energy simulation provides for user friendly input of data, processing and viewing of the results. BEAVER estimates the energy consumption of a building hourly over a given period of time taking into account the site location, the building structure and the type of building services installed to maintain the desired environmental conditions. It enables a designer to investigate alternatives and make energy comparisons quickly and effectively for a very wide range of building configurations and air conditioning systems using actual measured climatic data. A comprehensive range of air handling systems, primary plant and control

460

Energy efficient buildings: A world of possibilities  

SciTech Connect

Throughout the world, buildings are a major energy consumer. However, it can be shown that buildings that save from 30 to 50% over common practice can be built using available technologies while actually increasing occupant comfort and functionality. In addition, many technologies are in the development stage that promise even further increases in energy efficiency in buildings. This paper reviews the current state-of-the-art in energy efficient building practice including building equipment and envelopes. Topics discussed include heating, ventilating and air conditioning equipment; lighting; insulation; building envelopes; and building commissioning. The energy effects of switching to non-chlorofluorocarbons in building insulation and refrigeration equipment are discussed. Advanced technologies currently under development that might have a substantial impact on future energy use including advanced absorption chillers, new lighting and window technologies, and thermally activated heat pumps are also described. 24 refs., 6 figs.

Kuliasha, M.A.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building compressed air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Preoperational test report, vent building ventilation system  

Science Conference Proceedings (OSTI)

This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

462

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

463

Compressed String Dictionaries  

E-Print Network (OSTI)

The problem of storing a set of strings --- a string dictionary --- in compact form appears naturally in many cases. While classically it has represented a small part of the whole data to be processed (e.g., for Natural Language processing or for indexing text collections), more recent applications in Web engines, Web mining, RDF graphs, Internet routing, Bioinformatics, and many others, make use of very large string dictionaries, whose size is a significant fraction of the whole data. Thus novel approaches to compress them efficiently are necessary. In this paper we experimentally compare time and space performance of some existing alternatives, as well as new ones we propose. We show that space reductions of up to 20% of the original size of the strings is possible while supporting fast dictionary searches.

Brisaboa, Nieves R; Martnez-Prieto, Miguel A; Navarro, Gonzalo

2011-01-01T23:59:59.000Z

464

Benefits of Sustainable Building Design | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits of Sustainable Building Design Benefits of Sustainable Building Design Benefits of Sustainable Building Design October 4, 2013 - 4:22pm Addthis Photo of an air-intake structure outside a Federal facility. An air-intake structure outside of this Federal facility lowers energy costs by taking in chilly night air to cool the building's data center. The application of sustainable building design not only helps Federal facilities meet laws and regulations, it also provides them with many other benefits. These benefits include: Lower energy costs Reduction in operating and maintenance costs Increase in productivity of building occupants Improvement health and psychological well-being of building occupants Reduction in pollutants Opportunity to foster a positive public image. Sustainable building design can reduce annual energy costs anywhere from

465

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

7.1 National Legislation 7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 7 outlines national climate change legislation, tax incentives, Federal regulations, and State programs that have influenced building energy consumption. Section 7.1 summarizes the past 40 years of national energy legislation beginning with the Clean Air Act of 1970. Section 7.2 describes the energy efficiency-related Federal tax incentives created in the last 5 years. Sections 7.3 through 7.7 describe the energy and water efficiency standards currently or soon to be in effect for residential and commercial HVAC equipment, appliances, lighting, and water-consuming products. Section 7.8 covers building energy codes. Following is a summary of the energy legislation discussed in this chapter:

466

Efficient Compression of CO2 and Pipeline Transport Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

CONCEPTS FOR THE COMPRESSION OF CONCEPTS FOR THE COMPRESSION OF LARGE VOLUMES OF CARBON DIOXIDE - PHASE III Southwest Research Institute Team: J. Jeffrey Moore, Ph.D. Neal Evans Timothy Allison, Ph.D. Brian Moreland Klaus Brun, Ph.D. Dresser-Rand Team: Jorge Pacheco, Ph.D. Jason Kerth Michael Dollinger Project Funded by DOE NETL DOE PM: Travis Shultz 2 SOUTHWEST RESEARCH INSTITUTE 11 Divisions *Engine Emissions *Fuels & Lubricants *Automation *Aerospace Electronics *Space Science *Nuclear Waste *Applied Physics *Applied Power *Chemistry *Electronics *Mechanical Engineering * Rotating Machinery Group *1200 Acres *2 million Ft 2 *3200 Employees *1200 Engineers *170 Buildings Project Motivation * CO 2 capture has a significant compression penalty - as high as 8 to 12%.

467

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1997-01-01T23:59:59.000Z

468

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1998-12-29T23:59:59.000Z

469

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

Liskowitz, John W. (Belle Mead, NJ); Wecharatana, Methi (Parsippany, NJ); Jaturapitakkul, Chai (Bangkok, TH); Cerkanowicz, deceased, Anthony E. (late of Livingston, NJ)

1998-01-01T23:59:59.000Z

470

Compressive strength of concrete and mortar containing fly ash  

DOE Patents (OSTI)

The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

1997-04-29T23:59:59.000Z

471

EmPOWER Maryland Commercial and Industrial Efficiency Loan Fund...  

Open Energy Info (EERE)

Chillers, Furnaces, Boilers, Heat pumps, Central Air conditioners, Compressed air, Energy Mgmt. SystemsBuilding Controls, DuctAir sealing, Building Insulation, Windows,...

472

Ventilation measurements in large office buildings  

SciTech Connect

Ventilation rates were measured in nine office buildings using an automated tracer gas measuring system. The buildings range in size from a two-story federal building with a floor area of about 20,000 ft/sup 2/ (1900 m/sup 2/) to a 26-story office building with a floor area of 700,000 ft/sup 2/ (65,000 m/sup 2/). The ventilation rates were measured for about 100 hours in each building over a range of weather conditions. The results are presented and examined for variation with time and weather. In most cases, the ventilation rate of a building is similar for hot and cold weather. In mild weather, outdoor air is used to cool the building and the ventilation rate increases. In the buildings where infiltration is a significant portion of the total ventilation rate, this total rate exhibits a dependence on weather conditions. The measured ventilation rates are discussed in relation to the outdoor air intake strategy in each building. The ventilation rates are also compared to the design rates in the buildings and ventilation rates based on the ASHRAE Standard 62-81. Some of the buildings are at times operated at lower ventilation rates than recommended in Standard 62-81.

Persily, A.K.; Grot, R.A.

1985-01-01T23:59:59.000Z

473

Data Compression with Prime Numbers  

E-Print Network (OSTI)

A compression algorithm is presented that uses the set of prime numbers. Sequences of numbers are correlated with the prime numbers, and labeled with the integers. The algorithm can be iterated on data sets, generating factors of doubles on the compression.

Gordon Chalmers

2005-11-16T23:59:59.000Z

474

Signal compression by subband coding  

Science Conference Proceedings (OSTI)

This is a survey/tutorial paper on data compression using the technique of subband coding. This is widely used in practice, for example, in the MPEG audio coder. A subband coder has two main components: a filter bank that decomposes the source into components, ... Keywords: Compression, Filter banks, Subband coding

Bruce Francis; Soura Dasgupta

1999-12-01T23:59:59.000Z

475

Streaming Compression of Hexahedral Meshes  

Science Conference Proceedings (OSTI)

We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream doc