Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

the Community Energy Challenge in Illinois. Washington, DC:Improving Energy Code Compliance in Illinois's Buildings.Improving Energy Code Compliance in Illinois's Buildings.

Williams, Alison

2013-01-01T23:59:59.000Z

2

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

B. (2005). Residential Energy Code Evaluatinons: Review andProvidence, RI: Building Codes Assistance Project. ZING2007 Commercial Energy Code Compliance Study. Calgary, AB:

Williams, Alison

2013-01-01T23:59:59.000Z

3

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings (pp. 5-387 -Summer Study on Energy Efficiency in Buildings. pp. 8-249Summer Study on Energy Efficiency in Buildings. pp. 4-275 -

Williams, Alison

2013-01-01T23:59:59.000Z

4

Texas State Building Energy Code: Analysis of Potential Benefits and Costs of Commercial Lighting Requirements  

SciTech Connect (OSTI)

The State Energy Conservation Office of Texas has asked the U.S. Department of Energy to analyze the potential energy effect and cost-effectiveness of the lighting requirements in the 2003 IECC as they consider adoption of this energy code. The new provisions of interest in the lighting section of IECC 2003 include new lighting power densities (LPD) and requirements for automatic lighting shutoff controls. The potential effect of the new LPD values is analyzed as a comparison with previous values in the nationally available IECC codes and ASHRAE/IESNA 90.1. The basis for the analysis is a set of lighting models developed as part of the ASHRAE/IES code process, which is the basis for IECC 2003 LPD values. The use of the models allows for an effective comparison of values for various building types of interest to Texas state. Potential effects from control requirements are discussed, and available case study analysis results are provided but no comprehensive numerical evaluation is provided in this limited analysis effort.

Richman, Eric E.; Belzer, David B.; Winiarski, David W.

2005-09-15T23:59:59.000Z

5

Building Energy Code  

Broader source: Energy.gov [DOE]

Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

6

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

7

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

8

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

9

Guam- Building Energy Code  

Broader source: Energy.gov [DOE]

NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

10

Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-2001 as the Commercial Building Energy Code in Tennessee  

SciTech Connect (OSTI)

ASHRAE Standard 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings (hereafter referred to as ASHRAE 90.1-2001 or 90.1-2001) was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The State of Tennessee is considering adopting ASHRAE 90.1-2001 as its commercial building energy code. In an effort to evaluate whether or not this is an appropriate code for the state, the potential benefits and costs of adopting this standard are considered in this report. Both qualitative and quantitative benefits and costs are assessed. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST) simulations combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits. Tennessee currently has ASHRAE Standard 90A-1980 as the statewide voluntary/recommended commercial energy standard; however, it is up to the local jurisdiction to adopt this code. Because 90A-1980 is the recommended standard, many of the requirements of ASHRAE 90A-1980 were used as a baseline for simulations.

Cort, Katherine A.; Winiarski, David W.; Belzer, David B.; Richman, Eric E.

2004-09-30T23:59:59.000Z

11

Building and Facility Codes Code Building Location Bldg # Coordinates  

E-Print Network [OSTI]

Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

Russell, Lynn

12

Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington  

E-Print Network [OSTI]

COST-EFFECTIVE ENERGY EFFICIENCY MEASURES FOR ABOVE CODE (ASHRAE 90.1-2001 and 2007) SMALL OFFICE BUILDINGS IN THE CITY OF ARLINGTON A Research Project for the City of Arlington ENERGY SYSTEMS LABORATORY Texas Engineering Experiment Station Texas... of the review: Summary of above-code approaches that have been made in the CoA during the 2008-2010. ? Results of the current project: Recommendations of 17 energy efficiency measures (EEMs) to maximize energy savings for small office buildings in the Co...

2011-01-01T23:59:59.000Z

13

Nevada Energy Code for Buildings  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

14

Southeast Energy Efficiency Alliance's Building Energy Codes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

15

Commercial Building Codes and Standards  

Broader source: Energy.gov [DOE]

Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

16

Building Energy Codes Collaborative Technical Assistance for...  

Energy Savers [EERE]

State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

17

San Francisco Building Code Amendments to the  

E-Print Network [OSTI]

Green Building Standards Code 2010 California Residential Code Operative date: January 1, 2011 #12;2 #121 2010 San Francisco Building Code Amendments to the 2010 California Building Code 2010 California;3 CHAPTER 1 SCOPE AND ADMINISTRATION DIVISION I CALIFORNIA ADMINISTRATION No San Francisco Building Code

18

Building Energy Code  

Broader source: Energy.gov [DOE]

'''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to...

19

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

20

Reducing Energy Demand in Buildings Through State Energy Codes...  

Energy Savers [EERE]

Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Understanding Building Energy Codes and Standards  

SciTech Connect (OSTI)

Energy codes and standards play a vital role by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. The Difference Between Energy Codes, Energy Standards and the Model Energy Code Energy codes--specify how buildings must be constructed or perform, and are written in mandatory, enforceable language. States or local governments adopt and enforce energy codes for their jurisdictions. Energy standards--describe how buildings should be constructed to save energy cost-effectively. They are published by national organizations such as the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). They are not mandatory, but serve as national recommendations, with some variation for regional climate. States and local governments frequently use energy standards as the technical basis for developing their energy codes. Some energy standards are written in mandatory, enforceable language, making it easy for jurisdictions to incorporate the provisions of the energy standards directly into their laws or regulations.

Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

2003-03-01T23:59:59.000Z

22

San Francisco Building Code Amendments to the  

E-Print Network [OSTI]

1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code not pertain to energy) Operative date: January 1, 2011 #12;139 Chapter 13C GREEN BUILDING REQUIREMENTS shall be known as the California San Francisco Green Building Standards Code and may be cited

23

City of San Francisco- Green Building Code  

Broader source: Energy.gov [DOE]

San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the...

24

N. Mariana Islands- Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

25

Example Cost Codes for Construction Projects  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

1997-03-28T23:59:59.000Z

26

BUILDING CODES: BARRIERS TO GREEN INNOVATION  

E-Print Network [OSTI]

BUILDING CODES: BARRIERS TO GREEN INNOVATION JENNIFER GARMAN DR. JIM BOWYER DR. STEVE BRATKOVICH/18/2011 DOVETAIL PARTNERS, INC. www.dovetailinc.org Building Codes: Barriers to Green Innovation Introduction Many architects and contractors want to pursue green building design, technologies and construction. Green

27

Cost Codes and the Work Breakdown Structure  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

1997-03-28T23:59:59.000Z

28

City of Chicago- Building Energy Code  

Broader source: Energy.gov [DOE]

The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www...

29

Cost effectiveness of the 1995 model energy code in Massachusetts  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1995 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in Massachusetts. The goal was to compare the cost effectiveness of the 1995 MEC to the energy conservation requirements of the Massachusetts State Building Code-based on a comparison of the costs and benefits associated with complying with each.. This comparison was performed for three cities representing three geographical regions of Massachusetts--Boston, Worcester, and Pittsfield. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily condominium unit. Natural gas, oil, and electric resistance heating were examined. The Massachusetts state code has much more stringent requirements if electric resistance heating is used rather than other heating fuels and/or equipment types. The MEC requirements do not vary by fuel type. For single-family homes, the 1995 MEC has requirements that are more energy-efficient than the non-electric resistance requirements of the current state code. For multifamily housing, the 1995 MEC has requirements that are approximately equally energy-efficient to the non-electric resistance requirements of the current state code. The 1995 MEC is generally not more stringent than the electric resistance requirements of the state code, in fact; for multifamily buildings the 1995 MEC is much less stringent.

Lucas, R.G.

1996-02-01T23:59:59.000Z

30

Cost and benefit of energy efficient buildings  

E-Print Network [OSTI]

A common misconception among developers and policy-makers is that "sustainable buildings" may not be financially justified. However, this report strives to show that building green is cost-effective and does make financial ...

Zhang, Wenying, S.B. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

31

Cost Analysis Approach for Codes  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question "How much insulation is too much?"

32

Building Energy Codes Implementation Overview - 2014 BTO Peer...  

Energy Savers [EERE]

Building Energy Codes Implementation Overview - 2014 BTO Peer Review Building Energy Codes Implementation Overview - 2014 BTO Peer Review Presenter: Jeremiah Williams, U.S....

33

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Broader source: Energy.gov (indexed) [DOE]

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Building Energy Codes Program activities. Through...

34

Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

2011-09-30T23:59:59.000Z

35

Seminar on building codes and standards  

SciTech Connect (OSTI)

A seminar was conducted for state building code officials and state energy officials to discuss the following: status of the states regulatory activities for energy conservation standards for buildings; the development, administration, and enforcement processes for energy conservation standards affecting new construction; lighting and thermal standards for existing buildings; status of the development and implementation of the Title III Program, Building Energy Performance Standards (BEPS); and current status of the State Energy Conservation Program. The welcoming address was given by John Wenning and the keynote address was delivered by John Millhone. Four papers presented were: Building Energy Performance Standards Development, James Binkley; Lighting Standards in Existing Buildings, Dorothy Cronheim; Implementation of BEPS, Archie Twitchell; Sanctions for Building Energy Performance Standards, Sue Sicherman.

Not Available

1980-01-01T23:59:59.000Z

36

Country Report on Building Energy Codes in India  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America. This reports gives an overview of the development of building energy codes in India, including national energy policies related to building energy codes, history of building energy codes in India, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial buildings in India.

Evans, Meredydd; Shui, Bin; Somasundaram, Sriram

2009-04-07T23:59:59.000Z

37

Country Report on Building Energy Codes in Canada  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America . This reports gives an overview of the development of building energy codes in Canada, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in Canada.

Shui, Bin; Evans, Meredydd

2009-04-06T23:59:59.000Z

38

Country Report on Building Energy Codes in China  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in China, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope and HVAC) for commercial and residential buildings in China.

Shui, Bin; Evans, Meredydd; Lin, H.; Jiang, Wei; Liu, Bing; Song, Bo; Somasundaram, Sriram

2009-04-15T23:59:59.000Z

39

Country Report on Building Energy Codes in Australia  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Australia, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Australia.

Shui, Bin; Evans, Meredydd; Somasundaram, Sriram

2009-04-02T23:59:59.000Z

40

Country Report on Building Energy Codes in Japan  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Japan, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial and residential buildings in Japan.

Evans, Meredydd; Shui, Bin; Takagi, T.

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Country Report on Building Energy Codes in Korea  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in Korea, including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, and lighting) for commercial buildings in Korea.

Evans, Meredydd; McJeon, Haewon C.; Shui, Bin; Lee, Seung Eon

2009-04-17T23:59:59.000Z

42

Country Report on Building Energy Codes in the United States  

SciTech Connect (OSTI)

This report is part of a series of reports on building energy efficiency codes in countries associated with the Asian Pacific Partnership (APP) - Australia, South Korea, Japan, China, India, and the United States of America (U.S.). This reports gives an overview of the development of building energy codes in U.S., including national energy policies related to building energy codes, history of building energy codes, recent national projects and activities to promote building energy codes. The report also provides a review of current building energy codes (such as building envelope, HVAC, lighting, and water heating) for commercial and residential buildings in the U.S.

Halverson, Mark A.; Shui, Bin; Evans, Meredydd

2009-04-30T23:59:59.000Z

43

Los Alamos National Laboratory Building Cost Index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratores. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractural rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor draft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1983-01-01T23:59:59.000Z

44

Los Alamos National Laboratory building cost index  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Building Cost Index indicates that actual escalation since 1970 is near 10% per year. Therefore, the Laboratory will continue using a 10% per year escalation rate for construction estimates through 1985 and a slightly lower rate of 8% per year from 1986 through 1990. The computerized program compares the different elements involved in the cost of a typical construction project, which for our purposes, is a complex of office buildings and experimental laboratories. The input data used in the program consist primarily of labor costs and material and equipment costs. The labor costs are the contractual rates of the crafts workers in the Los Alamos area. For the analysis, 12 field-labor craft categories are used; each is weighted corresponding to the labor craft distribution associated with the typical construction project. The materials costs are current Los Alamos prices. Additional information sources include material and equipment quotes obtained through conversations with vendors and from trade publications. The material and equipment items separate into 17 categories for the analysis and are weighted corresponding to the material and equipment distribution associated with the typical construction project. The building cost index is compared to other national building cost indexes.

Orr, H.D.; Lemon, G.D.

1982-10-01T23:59:59.000Z

45

NEEP Building Energy Codes Project  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDrivingItNational CouncilNEEP Building

46

Building Energy Codes Program Overview - 2014 BTO Peer Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Building Energy Codes Program. Through robust feedback, the BTO...

47

Cost effectiveness of the 1993 Model Energy Code in Colorado  

SciTech Connect (OSTI)

This report documents an analysis of the cost effectiveness of the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family homes in Colorado. The goal of this analysis was to compare the cost effectiveness of the 1993 MEC to current construction practice in Colorado based on an objective methodology that determined the total life-cycle cost associated with complying with the 1993 MEC. This analysis was performed for the range of Colorado climates. The costs and benefits of complying with the 1993 NIEC were estimated from the consumer`s perspective. The time when the homeowner realizes net cash savings (net positive cash flow) for homes built in accordance with the 1993 MEC was estimated to vary from 0.9 year in Steamboat Springs to 2.4 years in Denver. Compliance with the 1993 MEC was estimated to increase first costs by $1190 to $2274, resulting in an incremental down payment increase of $119 to $227 (at 10% down). The net present value of all costs and benefits to the home buyer, accounting for the mortgage and taxes, varied from a savings of $1772 in Springfield to a savings of $6614 in Steamboat Springs. The ratio of benefits to costs ranged from 2.3 in Denver to 3.8 in Steamboat Springs.

Lucas, R.G.

1995-06-01T23:59:59.000Z

48

Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Office Buildings in the City of Arlington  

E-Print Network [OSTI]

Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL-19341 (Thornton et al. 2010) and CoA Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al.... 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341 (Thornton et al. 2010) Wall Construction CoA Roof Configuration PNNL-19341 (Thornton et al. 2010) Foundation Construction PNNL-19341...

Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.S.; Lewis, C.

49

Cost-Effecitive Energy Efficiency Measure for Above 2003 and 2009 IECC Code-Compliant Residential and Commercial Buildings in the City of Arlington  

E-Print Network [OSTI]

of the surface or surfaces), above-code percentages, Home Energy Rating System (HERS) index, and emission reductions. All 21 houses are new construction complied with the 2003 IECC. Five houses used the ESL?s International Code Compliance Calculator (IC3) tool.... The emissions reductions (lbs/yr) estimated for NOx, SOx, and CO2 were extracted from IC3 or ENERGY STAR compliant reports. 3. ENERGY STAR version 2.0 was active from 7/1/2006 to 4/1/2011 (Source from http://www.energystar.gov/index.cfm?c=new_homes...

Kim, H.; Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.

50

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect (OSTI)

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

51

Building Energy Code for the District of Columbia  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

52

Statewide Savings Projections from the Adoption of Commercial Building Energy Codes in Illinois  

SciTech Connect (OSTI)

ANSI/ASHRAE/IESNA Standard 90.1-1999 Energy Standard for Buildings except Low-Rise Residential Buildings was developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. A number of jurisdictions in the state of Illinois are considering adopting ASHRAE 90.1-1999 as their commercial building energy code. This report builds on the results of a previous study, "Analysis of Potential Benefits and Costs of Adopting ASHRAE Standard 90.1-1999 as a Commercial Building Energy Code in Illinois Jurisdictions," to estimate the total potential impact of adopting ASHRAE 90.1-1999 as a statewide commercial building code in terms of Life-Cycle Cost (LCC) savings, total primary energy savings, and pollution emissions reductions.

Cort, Katherine A.; Belzer, David B.

2002-09-30T23:59:59.000Z

53

SPEERs Building Energy Codes Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.AwardsSPEER's Building Energy Codes Program

54

Proposed Energy Provisions of the California Green Building Standards Code  

E-Print Network [OSTI]

Proposed Energy Provisions of the California Green Building Standards Code Part 11 of the California Building Code (also known as CalGreen) Patrick Saxton, P.E. patrick.saxton@energy.ca.gov 916-651-0489 High Performance Buildings and Standards Development Office California Energy Commission September 20

55

Energy Efficient Residential Building Code for Arab Countries  

E-Print Network [OSTI]

This paper presents an energy analysis to support the Egyptian efforts to develop a New Energy Code for New Residential Buildings in the Arab Countries. Also, the paper represents a brief summary of the code contents specially, the effectiveness...

Hanna, G. B.

2010-01-01T23:59:59.000Z

56

Exploring Partnerships to Further Building Code Compliance Enhancement  

Broader source: Energy.gov [DOE]

This presentation, given through the DOE's Technical Assitance Program (TAP), identifies opportunities for municipal and state partnerships to ensure better building code compliance.

57

A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008  

SciTech Connect (OSTI)

Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

2010-10-01T23:59:59.000Z

58

1994 Building energy codes and standards workshops: Summary and documentation  

SciTech Connect (OSTI)

During the spring of 1994, Pacific Northwest Laboratory (PNL), on behalf of the U.S. Department of Energy (DOE) Office of Codes and Standards, conducted five two-day Regional Building Energy Codes and Standards workshops across the United States. Workshops were held in Chicago, Philadelphia, Atlanta, Dallas, and Denver. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing state building codes in their states. The workshops provided an opportunity for state and other officials to learn more about the Energy Policy Act of 1992 (EPAct) requirements for residential and commercial building energy codes, the Climate Change Action Plan, the role of the U.S. Department of Energy and the Building Energy Standards Program at Pacific Northwest Laboratory, the commercial and residential codes and standards, the Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. In addition to receiving information on the above topics, workshop participants were also encouraged to inform DOE of their needs, particularly with regard to implementing building energy codes, enhancing current implementation efforts, and building on training efforts already in place. This paper documents the workshop findings and workshop planning and follow-up processes.

Sandahl, L.J.; Shankle, D.L.

1994-09-01T23:59:59.000Z

59

Eagle County- Eagle County Efficient Building Code (ECO-Green Build)  

Broader source: Energy.gov [DOE]

In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction...

60

1995 building energy codes and standards workshops: Summary and documentation  

SciTech Connect (OSTI)

During the spring of 1995, Pacific Northwest National Laboratory (PNNL) conducted four two-day Regional Building Energy Codes and Standards workshops across the US. Workshops were held in Chicago, Denver, Rhode Island, and Atlanta. The workshops were designed to benefit state-level officials including staff of building code commissions, energy offices, public utility commissions, and others involved with adopting/updating, implementing, and enforcing building energy codes in their states. The workshops provided an opportunity for state and other officials to learn more about residential and commercial building energy codes and standards, the role of the US Department of Energy and the Building Standards and Guidelines Program at Pacific Northwest National Laboratory, Home Energy Rating Systems (HERS), Energy Efficient Mortgages (EEM), training issues, and other topics related to the development, adoption, implementation, and enforcement of building energy codes. Participants heard success stories, got tips on enforcement training, and received technical support materials. In addition to receiving information on the above topics, workshop participants had an opportunity to provide input on code adoption issues, building industry training issues, building design issues, and exemplary programs across the US. This paper documents the workshop planning, findings, and follow-up processes.

Sandahl, L.J.; Shankle, D.L.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Florida Energy Efficiency Building Code, the Second Generation  

E-Print Network [OSTI]

This paper discusses the Revision of the Residential Sections of the Florida Energy Efficiency Code for Building Construction. The procedures utilized in the Revision and the concepts integrated in to the 2nd Generation of the Florida Specific...

Dixon, R. W.

1985-01-01T23:59:59.000Z

62

Greensburg Implements High-Efficiency Building Codes to Achieve...  

Office of Environmental Management (EM)

Building Codes to Achieve Long-Term Energy Savings The LEED Platinum K-12 school in Greensburg, Kansas. Photo from Joah Bussert, Greensburg GreenTown, NREL 19952<...

63

Puerto Rico- Building Energy Code with Mandatory Solar Water Heating  

Broader source: Energy.gov [DOE]

In 2009, the Governor of Puerto Rico provided assurance that Puerto Rico would update its building energy codes as part of the state's application for State Energy Program funds from the American...

64

Synthesis Report on the Implementation of Building Energy Codes in China  

SciTech Connect (OSTI)

China building energy code and details to help improve building energy efficiency at global, national and local levels

Shui, Bin; Haiyan, Lin; Congu, Yu; Halverson, Mark A.; Bo, Song; Jingru, Liu; Evans, Meredydd; Xiajiao, Zhu; Siwei, Lang

2011-03-31T23:59:59.000Z

65

Building guide : how to build Xyce from source code.  

SciTech Connect (OSTI)

While Xyce uses the Autoconf and Automake system to configure builds, it is often necessary to perform more than the customary %E2%80%9C./configure%E2%80%9D builds many open source users have come to expect. This document describes the steps needed to get Xyce built on a number of common platforms.

Keiter, Eric Richard; Russo, Thomas V.; Schiek, Richard Louis; Sholander, Peter E.; Thornquist, Heidi K.; Mei, Ting; Verley, Jason C.

2013-08-01T23:59:59.000Z

66

Life Cycle Cost Analysis for Sustainable Buildings  

Broader source: Energy.gov [DOE]

To help facility managers make sound decisions, FEMP provides guidance and resources on applying life cycle cost analysis (LCCA) to evaluate the cost-effectiveness of energy and water efficiency investments.

67

Example Cost Codes for Construction Projects - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and their corresponding cost codes that may be used for construction projects. g4301-1chp16.pdf -- PDF Document, 93 KB Writer: John Makepeace Subjects: Administration Management...

68

Cost Codes and the Work Breakdown Structure - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WBS and the cost code system, and explains the interface between the two systems. g4301-1chp5.pdf -- PDF Document, 44 KB Writer: John Makepeace Subjects: Administration Management...

69

Energy Efficiency Building Code for Commercial Buildings in Sri Lanka  

SciTech Connect (OSTI)

1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.

Busch, John; Greenberg, Steve; Rubinstein, Francis; Denver, Andrea; Rawner, Esther; Franconi, Ellen; Huang, Joe; Neils, Danielle

2000-09-30T23:59:59.000Z

70

MAE 124/ESYS 103 Discussion: Week 9 Buildings, Building Codes, Land Use  

E-Print Network [OSTI]

MAE 124/ESYS 103 Discussion: Week 9 Buildings, Building Codes, Land Use 0. Let's consider apartment complex under construction August 1, 2003 "If you build it we will burn it. The E.L.F.s are mad of life and the planet." Is ELF pursuing a sustainable "smart growth" strategy? 2. Is open space near

Gille, Sarah T.

71

2015-03-16 Issuance: Building Energy Codes Request for Information  

Broader source: Energy.gov [DOE]

This document is a pre-publication Federal Register request for information regarding the DOE Methodology for Assessing the Cost-effectiveness of Building Energy Codes, as issued by the Building Energy Codes Program Manager on March 16, 2015. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

72

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODES I TWO-OF LITIGATION AGAINST ENERGY CONSERVATION BUILDING CODESDIFFERENT PURPOSES OF ENERGY CONSERVATION BUILDING CODES B.

Benenson, P.

2011-01-01T23:59:59.000Z

73

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

C. RECOMMENDATIONS MAKE CODES TRULY PERFORMANCE BASED WORKENERGY CONSERVATION BUILDING CODES I TWO-WEEK LOAN COPY I iENERGY CONSERVATION BUILDING CODES INTRODUCTION DIFFERENT

Benenson, P.

2011-01-01T23:59:59.000Z

74

Literature Review of Data on the Incremental Costs to Design and Build Low-Energy Buildings  

SciTech Connect (OSTI)

This document summarizes findings from a literature review into the incremental costs associated with low-energy buildings. The goal of this work is to help establish as firm an analytical foundation as possible for the Building Technology Program's cost-effective net-zero energy goal in the year 2025.

Hunt, W. D.

2008-05-14T23:59:59.000Z

75

Building Energy Codes Program | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudget FormulationCamberly Homes -Building

76

Low to No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Low to No Cost Strategy for Energy Efficiency in Public Buildings (Text Version) Electronic Voice:...

77

Understanding Energy Code Acceptance within the Alaska Building Community  

SciTech Connect (OSTI)

This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

Mapes, Terry S.

2012-02-14T23:59:59.000Z

78

Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0  

SciTech Connect (OSTI)

This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

2005-09-29T23:59:59.000Z

79

Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings  

SciTech Connect (OSTI)

This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goal of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.

Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.; Taylor, Zachary T.; Makela, Eric J.

2013-01-26T23:59:59.000Z

80

Enforcing Building Energy Codes in China: Progress and Comparative Lessons  

SciTech Connect (OSTI)

From 1995 to 2005, building energy use in China increased more rapidly than the world average. China has been adding 0.4 to 1.6 billion square meters of floor space annually , making it the world’s largest market for new construction. In fact, by 2020, China is expected to comprise half of all new construction. In response to this, China has begun to make important steps towards achieving building energy efficiency, including the implementation of building energy standards that requires new buildings to be 65% more efficient than buildings from the early 1980s. Making progress on reducing building energy use requires both a comprehensive code and a robust enforcement system. The latter – the enforcement system – is a particularly critical component for assuring that a building code has an effect. China has dramatically enhanced its enforcement system in the past two years, with more detailed requirements for ensuring enforcement and new penalties for non-compliance. We believe that the U.S. and other developed countries could benefit from learning about the multiple checks and the documentation required in China. Similarly, some of the more user-friendly enforcement approaches developed in the U.S. and elsewhere may be useful for China as it strives to improve enforcement in rural and smaller communities. In this article, we provide context to China’s building codes enforcement system by comparing it to the U.S. Among some of the enforcement mechanisms we look at are testing and rating procedures, compliance software, and training and public information.

Evans, Meredydd; Shui, Bin; Halverson, Mark A.; Delgado, Alison

2010-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Cost effectiveness of the 1993 model energy code in New Jersey  

SciTech Connect (OSTI)

This is an analysis of cost effectiveness the Council of American Building Officials` 1993 Model Energy Code (MEC) building thermal-envelope requirements for single-family houses and multifamily housing units in New Jersey. Goal was to compare the cost effectiveness of the 1993 MEC to the alternate allowed in the 1993 Building Officials & Code Administrators (BOCA) National Energy Conservation Code -- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 90A-1980 -- based on a comparison of the costs and benefits associated with complying with each. This comparison was performed for Camden, New Brunswick; Somerville, and Sparta. The analysis was done for two different scenarios: a ``move-up`` home buyer purchasing a single-family house and a ``first-time`` financially limited home buyer purchasing a multifamily unit. For the single-family home buyer, compliance with the 1993 MEC was estimated to increase first costs by $1028 to $1564, resulting in an incremental down payment increase of $206 to $313 (at 20% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was from 1 to 5 years. The home buyer who paid 20% down had recovered increases in down payments and mortgage payments in energy cost savings by the end of the fifth year or sooner and thereafter will save more money each year. For the multifamily unit home buyer first costs were estimated to increase by $121 to $223, resulting in an incremental down payment increase of $12 to $22 (at 10% down). The time when the homeowner realizes net cash savings (net positive cash flow) for houses built in accordance with the 1993 MEC was 1 to 3 years.

Lucas, R.G.

1995-09-01T23:59:59.000Z

82

Energy codes and the building design process: Opportunities for improvement  

SciTech Connect (OSTI)

The Energy Policy Act (EPAct), passed by Congress in 1992, requires states to adopt building energy codes for new commercial buildings that meet or exceed the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) and Illuminating Engineers Society of North America (IES) Standard 90.1-1989 by October 24, 1994. In response to EPAct many states will be adopting a state-wide energy code for the first time. Understanding the role of stakeholders in the building design process is key to the successful implementation of these codes. In 1993, the Pacific Northwest Laboratory (PNL) conducted a survey of architects and designers to determine how much they know about energy codes, to what extent energy-efficiency concerns influence the design process, and how they convey information about energy-efficient designs and products to their clients. Findings of the PNL survey, together with related information from a survey by the American Institute of Architects (AIA) and other reports, are presented in this report. This information may be helpful for state and utility energy program managers and others who will be involved in promoting the adoption and implementation of state energy codes that meet the requirements of EPAct.

Sandahl, L.J.; Shankle, D.L.; Rigler, E.J.

1994-05-01T23:59:59.000Z

83

Integrating Renewable Energy Requirements Into Building Energy Codes  

SciTech Connect (OSTI)

This report evaluates how and when to best integrate renewable energy requirements into building energy codes. The basic goals were to: (1) provide a rough guide of where we’re going and how to get there; (2) identify key issues that need to be considered, including a discussion of various options with pros and cons, to help inform code deliberations; and (3) to help foster alignment among energy code-development organizations. The authors researched current approaches nationally and internationally, conducted a survey of key stakeholders to solicit input on various approaches, and evaluated the key issues related to integration of renewable energy requirements and various options to address those issues. The report concludes with recommendations and a plan to engage stakeholders. This report does not evaluate whether the use of renewable energy should be required on buildings; that question involves a political decision that is beyond the scope of this report.

Kaufmann, John R.; Hand, James R.; Halverson, Mark A.

2011-07-01T23:59:59.000Z

84

Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings  

SciTech Connect (OSTI)

The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

2013-08-30T23:59:59.000Z

85

Renewable Energy Requirements for Future Building Codes: Options for Compliance  

SciTech Connect (OSTI)

As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

2011-09-30T23:59:59.000Z

86

Building Energy Efficiency in India: Compliance Evaluation of Energy Conservation Building Code  

SciTech Connect (OSTI)

India is experiencing unprecedented construction boom. The country doubled its floorspace between 2001 and 2005 and is expected to add 35 billion m2 of new buildings by 2050. Buildings account for 35% of total final energy consumption in India today, and building energy use is growing at 8% annually. Studies have shown that carbon policies will have little effect on reducing building energy demand. Chaturvedi et al. predicted that, if there is no specific sectoral policies to curb building energy use, final energy demand of the Indian building sector will grow over five times by the end of this century, driven by rapid income and population growth. The growing energy demand in buildings is accompanied by a transition from traditional biomass to commercial fuels, particularly an increase in electricity use. This also leads to a rapid increase in carbon emissions and aggravates power shortage in India. Growth in building energy use poses challenges to the Indian government. To curb energy consumption in buildings, the Indian government issued the Energy Conservation Building Code (ECBC) in 2007, which applies to commercial buildings with a connected load of 100 kW or 120kVA. It is predicted that the implementation of ECBC can help save 25-40% of energy, compared to reference buildings without energy-efficiency measures. However, the impact of ECBC depends on the effectiveness of its enforcement and compliance. Currently, the majority of buildings in India are not ECBC-compliant. The United Nations Development Programme projected that code compliance in India would reach 35% by 2015 and 64% by 2017. Whether the projected targets can be achieved depends on how the code enforcement system is designed and implemented. Although the development of ECBC lies in the hands of the national government – the Bureau of Energy Efficiency under the Ministry of Power, the adoption and implementation of ECBC largely relies on state and local governments. Six years after ECBC’s enactment, only two states and one territory out of 35 Indian states and union territories formally adopted ECBC and six additional states are in the legislative process of approving ECBC. There are several barriers that slow down the process. First, stakeholders, such as architects, developers, and state and local governments, lack awareness of building energy efficiency, and do not have enough capacity and resources to implement ECBC. Second, institution for implementing ECBC is not set up yet; ECBC is not included in local building by-laws or incorporated into the building permit process. Third, there is not a systematic approach to measuring and verifying compliance and energy savings, and thus the market does not have enough confidence in ECBC. Energy codes achieve energy savings only when projects comply with codes, yet only few countries measure compliance consistently and periodic checks often indicate poor compliance in many jurisdictions. China and the U.S. appear to be two countries with comprehensive systems in code enforcement and compliance The United States recently developed methodologies measuring compliance with building energy codes at the state level. China has an annual survey investigating code compliance rate at the design and construction stages in major cities. Like many developing countries, India has only recently begun implementing an energy code and would benefit from international experience on code compliance. In this paper, we examine lessons learned from the U.S. and China on compliance assessment and how India can apply these lessons to develop its own compliance evaluation approach. This paper also provides policy suggestions to national, state, and local governments to improve compliance and speed up ECBC implementation.

Yu, Sha; Evans, Meredydd; Delgado, Alison

2014-03-26T23:59:59.000Z

87

"Renewing" UBC Renew Building Full Cost Assessment into  

E-Print Network [OSTI]

"Renewing" UBC Renew Building Full Cost Assessment into Renovate vs. Rebuild Decisions at UBC, 2006 #12;`Renewing' UBC Renew 2 Table of Contents Summary 3 List of Acronyms 5 1. Aspirations: `Renewing' UBC Renew 6 1.1 UBC Renew: Background 6 1.2 Moving Forward: Implementing UBC's Vision

88

Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES  

E-Print Network [OSTI]

Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL of the California Green Building Standards Code Page 3 APPENDIX A4, RESIDENTIAL VOLUNTARY MEASURES APPENDIX A4 of the California Green Building Standards Code Page 4 1. Night lights which comply with Title 24, Part 6 Section

89

Making Automated Building Code Checking A Reality1 Charles S. Han, John Kunz, Kincho H. Law  

E-Print Network [OSTI]

in the September/October 1997 issue of Facility Management Journal 1 #12;2. A Building Model Standard In orderMaking Automated Building Code Checking A Reality1 Charles S. Han, John Kunz, Kincho H. Law Center set of building codes. The complexity and changing nature of codes leads to delays in both the design

Stanford University

90

A long-term, integrated impact assessment of alternative building energy code scenarios in China  

SciTech Connect (OSTI)

China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

2014-04-01T23:59:59.000Z

91

The cost effectiveness of geotechnical investigations in commercial building construction  

E-Print Network [OSTI]

(83). The failure of an earth dam at Benghazi, Libya in December, 1977 provides another ii lustation of the extent of this problem. Water infiltration of a clay core caused this disaster. As stated by one of the failure's investigators, "remedial... has caused expensive foundation remedial measures to insure the stability of the building. 29 SAVINGS ON NAJOR PROJECTS Although it, seems clear that failure to conduct good soils studies often results in costs far exceeding any hopeful "savings...

Temple, Merdith Wyndham Bolling

1985-01-01T23:59:59.000Z

92

Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases  

Broader source: Energy.gov [DOE]

For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

93

Cost-Effectiveness of Home Energy Retrofits in Pre-Code Vintage Homes in the United States  

SciTech Connect (OSTI)

This analytical study examines the opportunities for cost-effective energy efficiency and renewable energy retrofits in residential archetypes constructed prior to 1980 (Pre-Code) in fourteen U.S. cities. These fourteen cities are representative of each of the International Energy Conservation Code (IECC) climate zones in the contiguous U.S. The analysis is conducted using an in-house version of EnergyGauge USA v.2.8.05 named CostOpt that has been programmed to perform iterative, incremental economic optimization on a large list of residential energy efficiency and renewable energy retrofit measures. The principle objectives of the study are as follows: to determine the opportunities for cost effective source energy reductions in this large cohort of existing residential building stock as a function of local climate and energy costs; and to examine how retrofit financing alternatives impact the source energy reductions that are cost effectively achievable.

Fairey, P.; Parker, D.

2012-11-01T23:59:59.000Z

94

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings...  

Broader source: Energy.gov (indexed) [DOE]

Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Blue version of the EERE PowerPoint template,...

95

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study  

E-Print Network [OSTI]

City of Healdsburg Green Building Ordinance Energy Cost-Effectiveness Study April 21, 2011 Scott-3346 sward@ci.healdsburg.ca.us #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 #12;Energy Cost-Effectiveness Study for City of Healdsburg Green Building Ordinances, 4

96

A new database of residential building measures and estimated costs helps the U.S. building industry determine the most  

E-Print Network [OSTI]

A new database of residential building measures and estimated costs helps the U.S. building at the National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures with using various measures to improve the efficiency of residential buildings. This database offers

97

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

SciTech Connect (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

98

The Cost of Enforcing Building Energy Codes: Phase 1  

E-Print Network [OSTI]

Best Practices: Sharing Local and State Successes in Energy EfficiencyBest Practices from the Southwest. Boulder, CO : Southwest Energy EfficiencyBest Practices from the Southwest. Boulder, CO: Southwest Energy Efficiency

Williams, Alison

2013-01-01T23:59:59.000Z

99

Page 1 of 24 Environment Health & Safety, Building Code Enforcement Program  

E-Print Network [OSTI]

, stability, sanitation, adequate light and ventilation, energy conservation, and safety to life and property.2.3 Florida Building Code, Residential Construction standards or practices which are not covered by Florida, Building. 101.3 Intent. The purpose of this code is to establish the minimum requirements to safeguard

Wu, Dapeng Oliver

100

Along-Wind Load Effects on Tall Buildings: Comparative Study of Major International Codes and Standards  

E-Print Network [OSTI]

buildings utilizing major international codes and standards: ASCE 7-98 ASCE 1999 , AS1170.2-89 AustralianAlong-Wind Load Effects on Tall Buildings: Comparative Study of Major International Codes and Standards Yin Zhou1 ; Tracy Kijewski, S.M.ASCE2 ; and Ahsan Kareem, M.ASCE3 Abstract: Most international

Kareem, Ahsan

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable build-up pathways for the US: Generation costs are not system costs  

E-Print Network [OSTI]

The transition to a future electricity system based primarily on wind and solar PV is examined for all regions in the contiguous US. We present optimized pathways for the build-up of wind and solar power for least backup energy needs as well as for least cost obtained with a simplified, lightweight model based on long-term high resolution weather-determined generation data. In the absence of storage, the pathway which achieves the best match of generation and load, thus resulting in the least backup energy requirements, generally favors a combination of both technologies, with a wind/solar PV energy mix of about 80/20 in a fully renewable scenario. The least cost development is seen to start with 100% of the technology with the lowest average generation costs first, but with increasing renewable installations, economically unfavorable excess generation pushes it toward the minimal backup pathway. Surplus generation and the entailed costs can be reduced significantly by combining wind and solar power, and/or a...

Becker, Sarah; Andresen, Gorm B; Jacobson, Mark Z; Schramm, Stefan; Greiner, Martin

2014-01-01T23:59:59.000Z

102

Whole Building Cost and Performance Measurement: Data Collection Protocol Revision 2  

SciTech Connect (OSTI)

This protocol was written for the Department of Energy’s Federal Energy Management Program (FEMP) to be used by the public as a tool for assessing building cost and performance measurement. The primary audiences are sustainable design professionals, asset owners, building managers, and research professionals within the Federal sector. The protocol was developed based on the need for measured performance and cost data on sustainable design projects. Historically there has not been a significant driver in the public or private sector to quantify whole building performance in comparable terms. The deployment of sustainable design into the building sector has initiated many questions on the performance and operational cost of these buildings.

Fowler, Kimberly M.; Spees, Kathleen L.; Kora, Angela R.; Rauch, Emily M.; Hathaway, John E.; Solana, Amy E.

2009-03-27T23:59:59.000Z

103

An Analysis of Statewide Adoption Rates of Building Energy Code by Local Jurisdictions  

SciTech Connect (OSTI)

The purpose of this study is to generally inform the U.S. Department of Energy’s Building Energy Codes Program of the local, effective energy code adoption rate for a sample set of 21 states, some which have adopted statewide codes and some that have not. Information related to the residential energy code adoption process and status at the local jurisdiction was examined for each of the states. Energy code status information was gathered for approximately 2,800 jurisdictions, which effectively covered approximately 80 percent of the new residential building construction in the 21 states included in the study.

Cort, Katherine A.; Butner, Ryan S.

2012-12-31T23:59:59.000Z

104

Building Codes for Classrooms 34MK 3401 Market Street JMHH Jon M. Huntsman Hall  

E-Print Network [OSTI]

Building Codes for Classrooms 34MK 3401 Market Street JMHH Jon M. Huntsman Hall 35MK 3550 Market Market Street KWH Kelly Writers House ACHM Anatomy/Chemistry Building L-FH Lauder-Fischer Hall ADDM Fisher-Bennett Hall LIPP Lippincott BLOC Blockley Hall LLAB Leidy Labs CAST Caster Building LRSM Lab

Plotkin, Joshua B.

105

Energy Efficiency Pilot Projects in Jaipur: Testing the Energy Conservation Building Code  

SciTech Connect (OSTI)

The Malaviya National Institute of Technology (MNIT) in Jaipur, India is constructing two new buildings on its campus that allow it to test implementation of the Energy Conservation Building Code (ECBC), which Rajasthan made mandatory in 2011. PNNL has been working with MNIT to document progress on ECBC implementation in these buildings.

Evans, Meredydd; Mathur, Jyotirmay; Yu, Sha

2014-03-26T23:59:59.000Z

106

Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida  

E-Print Network [OSTI]

consumption, 39 percent of all energy use, and 38 percent of the carbon dioxide emissions in the United States (U.S. DOE 2008). Building energy codes (hereafter "energy codes") are the primary policy instrument energy codes affect residential energy consumption in practice. Evaluations are typically based

Kotchen, Matthew J.

107

Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Buildings  

E-Print Network [OSTI]

This report presents detailed information about the recommendations for achieving 15% above-code energy performance for commercial office buildings complying with ASHRAE Standard 90.1-19991. To accomplish the 15% annual energy consumption reductions...

Montgomery, C.; Yazdani, B.; Haberl, J. S.; Culp, C.; Liu, Z.; Mukhopadhyay, J.; Cho, S.

108

Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy  

E-Print Network [OSTI]

Simplified Prescriptive Options in the Texas Residential Building Energy Code Make Compliance Easy Garrett A. Stone Eric M. DeVito Nelson H. Nease Partner Associate Associate Brickfield, Burchette...

Stone, G. A.; DeVito, E. M.; Nease, N. H.

2002-01-01T23:59:59.000Z

109

Resolving Code and Standard Barriers to Building America Innovations...  

Broader source: Energy.gov (indexed) [DOE]

Northwest National Laboratory This project is developing processes and resources for a Codes and Standards Innovation (CSI) team to assist research partners and industry in...

110

Study of Possible Applications of Currently Available Building Information Modeling Tools for the Analysis of Initial Costs and Energy Costs for Performing Life Cycle Cost Analysis  

E-Print Network [OSTI]

power to the manufacturing industry. The need to satisfy the environmental sustainability requirements, improve operational effectiveness of buildings and apply value engineering principles has increased the dependency on life cycle costing analysis...

Mukherji, Payal Tapandev

2011-02-22T23:59:59.000Z

111

Low-Cost Ventilation in Production Housing - Building America...  

Energy Savers [EERE]

for New Homes: Imagine Homes, San Antonio, Texas Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners...

112

Potential Job Creation in Minnesota as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

113

Potential Job Creation in Nevada as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

114

Potential Job Creation in Tennessee as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

115

Potential Job Creation in Rhode Island as a Result of Adopting New Residential Building Energy Codes  

SciTech Connect (OSTI)

Are there advantages to states that adopt the most recent model building energy codes other than saving energy? For example, can the construction activity and energy savings associated with code-compliant housing units become significant sources of job creation for states if new building energy codes are adopted to cover residential construction? , The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) asked Pacific Northwest National Laboratory (PNNL) to research and ascertain whether jobs would be created in individual states based on their adoption of model building energy codes. Each state in the country is dealing with high levels of unemployment, so job creation has become a top priority. Many programs have been created to combat unemployment with various degrees of failure and success. At the same time, many states still have not yet adopted the most current versions of the International Energy Conservation Code (IECC) model building energy code, when doing so could be a very effective tool in creating jobs to assist states in recovering from this economic downturn.

Scott, Michael J.; Niemeyer, Jackie M.

2013-09-01T23:59:59.000Z

116

Building America Expert Meeting: Code Challenges with Multifamily...  

Energy Savers [EERE]

Meeting was conducted by the IBACOS team on Sept. 29, 2014, and focused on air sealing of area separation wall assemblies in multifamily buildings. This is an identified barrier...

117

Controlling Capital Costs in High Performance Office Buildings: A Review of Best Practices for Overcoming Cost Barriers  

SciTech Connect (OSTI)

This paper presents a set of 15 best practices for owners, designers, and construction teams of office buildings to reach high performance goals for energy efficiency, while maintaining a competitive budget. They are based on the recent experiences of the owner and design/build team for the Research Support Facility (RSF) on National Renewable Energy Facility's campus in Golden, CO, which show that achieving this outcome requires each key integrated team member to understand their opportunities to control capital costs.

Pless, S.; Torcellini, P.

2012-05-01T23:59:59.000Z

118

15% Above-Code Energy Efficiency Measures for Residential Buildings in Texas  

E-Print Network [OSTI]

Emissions Savings (lbs/year) Combined Estimated Cost ($) Simple Estimated Payback (yrs) 0.025 11.1 30.1- Combined Ozone Season Period NOx Emissions Savings (lbs/day) 28.5-16.3 6.7 - 34.9 ESL-TR-07-08-02 Energy Systems Laboratory - August 2007 7... individual measures above for specific savings * Energy Cost: Electricity cost = $0.15/kWh Natural gas cost = $1.00/therm 4. Savings depend on fuel mix used. See detailed writeup (Building Description) * Building type: Residential * Gross area: 2...

Haberl, J. S.; Culp, C.; Yazdani, B.

119

Building America Guidance for Identifying and Overcoming Code, Standard, and Rating Method Barriers  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Building America program implemented a new Codes and Standards Innovation (CSI) Team in 2013. The Team’s mission is to assist Building America (BA) research teams and partners in identifying and resolving conflicts between Building America innovations and the various codes and standards that govern the construction of residences. A CSI Roadmap was completed in September, 2013. This guidance document was prepared using the information in the CSI Roadmap to provide BA research teams and partners with specific information and approaches to identifying and overcoming potential barriers to Building America (BA) innovations arising in and/or stemming from codes, standards, and rating methods. For more information on the BA CSI team, please email: CSITeam@pnnl.gov

Cole, Pamala C.; Halverson, Mark A.

2013-09-01T23:59:59.000Z

120

Low-Cost Wireless Sensors for Building Monitoring Applications...  

Broader source: Energy.gov (indexed) [DOE]

the cost of sensors by improving the technology-specifically, through the use of advanced manufacturing techniques, including printable electronics and additive roll-to-roll...

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technical support document for the proposed Federal Commercial Building energy code  

SciTech Connect (OSTI)

This report presents the justification and technical documentation for all changes and updates made (since 1993) to the Energy Code for Commercial and High-Rise Residential Buildings, the codified version of ASHRAE/IES Standard 90.1-1989, ``Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings.`` These changes and updates, which were subject to the ASHRAE addenda approval process, include Addenda b, c, d, e, g, and i. A seventh addenda, Addenda f, which has not been officially approved by ASHRAE, has been included into the proposed rule. Also included in the changes was technical work conducted to justify revisions to the 1993 DOE lighting power densities. The updated text will be reviewed by the U.S. Department of Energy (DOE) and issued as the new Federal Commercial Building Energy Code (10 CFR 434); Mandatory for New Federal Commercial and Multi-Family High Rise Residential Buildings.

Somasundaram, S.; Halverson, M.A.; Jones, C.C.; Hadley, D.L.

1995-11-01T23:59:59.000Z

122

User's manual for the INDCEPT code for estimating industrial steam boiler plant capital investment costs  

SciTech Connect (OSTI)

The INDCEPT computer code package was developed to provide conceptual capital investment cost estimates for single- and multiple-unit industrial steam boiler plants. Cost estimates can be made as a function of boiler type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs. Boiler plant cost models are provided to reflect various types and sources of coal and alternate means of sulfur and particulate removal. Cost models are also included for low-Btu and medium-Btu gas produced in coal gasification plants.

Bowers, H I; Fuller, L C; Hudson, II, C R

1982-09-01T23:59:59.000Z

123

Cost Control Best Practices for Net Zero Energy Building Projects: Preprint  

SciTech Connect (OSTI)

For net zero energy (NZE) buildings to become the norm in commercial construction, it will be necessary to design and construct these buildings cost effectively. While industry leaders have developed workflows (for procurement, design, and construction) to achieve cost-effective NZE buildings for certain cases, the expertise embodied in those workflows has limited penetration within the commercial building sector. Documenting cost control best practices of industry leaders in NZE and packaging those strategies for adoption by the commercial building sector will help make the business case for NZE. Furthermore, it will promote market uptake of the innovative technologies and design approaches needed to achieve NZE. This paper summarizes successful cost control strategies for NZE procurement, design, and construction that key industry users (such as building owners, architects, and designers) can incorporate into their everyday workflows. It will also evaluate the current state of NZE economics and propose a path forward for greater market penetration of NZE buildings. By demonstrating how to combine NZE technologies and design approaches into an overall efficiency package that can be implemented at minimal (zero, in certain cases) incremental capital cost, the domain of NZE design and construction can be expanded from a niche market to the commercial construction mainstream.

Leach, M.; Pless, S.; Torcellini, P.

2014-02-01T23:59:59.000Z

124

innovati nNREL Recommends Ways to Cut Building Energy Costs in Half  

E-Print Network [OSTI]

the basis for the 50% Advanced Energy Design Guide (AEDG) books. These user-friendly guides are the secondinnovati nNREL Recommends Ways to Cut Building Energy Costs in Half Building designers of capabilities, NREL leads an integrated approach across the spectrum of renewable energy innovation. From

125

Recommendations for 15% Above ASHRAE 90.1-2007 Code-Compliant Building Energy Efficiency Measures for Small Office Buildings  

E-Print Network [OSTI]

per 2009 IECC Section 501.2 15% Above-Code Analysis for Small Office, p.5 January 2012 Energy Systems Laboratory, Texas A&M University Table 1. Base-Case Building Description Building Type Number of occupants = 73 Gross Area (sq. ft.) PNNL...-19341 (Thornton et al. 2010) Aspect Ratio PNNL-19341 (Thornton et al. 2010) Square shape Number of Floors PNNL-19341 (Thornton et al. 2010) Floor-to-Floor Height (ft.) ASHRAE 90.1-1989 13.7.1 Floor-to-Ceiling Height = 9 ft Orientation PNNL-19341...

Kim, H.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

2012-01-01T23:59:59.000Z

126

Daylighting Requirements in the National Building Energy Codes – They’re Here!  

SciTech Connect (OSTI)

Requirements for the control of electric lighting in daylighted areas have historically been avoided in the national building energy codes. This is potentially a rich source of energy savings but as most lighting designers and architects know, daylighting design is not simple! The sheer complication of daylighting design makes crafting daylighting control requirements that could be applied generically in a national energy code a difficult task. However, that is currently changing. The Department of Energy’s (DOE) Building Energy Codes Program (BECP) managed by Pacific Northwest National Laboratory (PNNL) has been supporting the ANSI/ASHRAE/IESNA 90.1 committee in developing improvements to the 90.1 Standard. With subcontract support, the 90.1 Lighting Subcommittee has championed the incorporation of daylighting design and control requirements for the upcoming 2010 version of the nationally available ANSI/ASHRAE/IESNA Standard 90.1 for commercial building energy use.

Richman, Eric E.

2008-06-30T23:59:59.000Z

127

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy Conservation  

E-Print Network [OSTI]

Minimizing Building Electricity Costs in a Dynamic Power Market: Algorithms and Impact on Energy of Computing, The Hong Kong Polytechnic University, Hong Kong, P. R. China 2 Department of Electrical and the electricity bills nowa- days are leading to unprecedented costs. Electricity price is market-based and dynamic

Wang, Dan

128

Building Life Cycle Cost Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruaryResistanceBuilding Energy UseIntegrated Heat

129

Reducing Energy Demand in Buildings Through State Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes Office ofof Energy Redefining9Codes

130

Building Green Cloud Services at Low Cost Josep Ll. Berral  

E-Print Network [OSTI]

at a relatively low additional cost compared to existing services. Keywords-datacenter; renewable energy; green sources of renewable ("green") energy such as solar and wind into datacenters. In particular, several advantage of green energy produced on- site [7]­[10]. Two key observations behind these works are: (1

Bianchini, Ricardo

131

Building America Best Practices Series Volume 16: 40% Whole-House...  

Broader source: Energy.gov (indexed) [DOE]

climate can build homes that achieve whole house energy savings of 40% over the Building America benchmark (the 1993 Model Energy Code) with no added overall costs for...

132

Low-Cost Ventilation in Production Housing - Building America Top  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen and

133

List updated 7/26/2013 BLDG. # BLDG. CODE BUILDING NAME  

E-Print Network [OSTI]

List updated 7/26/2013 BLDG. # BLDG. CODE BUILDING NAME MC01 HC HARRIET L. WILKES HONORS COLLEGE MC UP UTILITY PLANT MC05 DH DINING HALL MC06 RH MACARTHUR RESIDENCE HALL I MC07 HA HIBEL FINE ARTS UTILITY PLANT SITE 8 - FAU AT JUPITER 1 of 1 #12;

Fernandez, Eduardo

134

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

135

Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project  

SciTech Connect (OSTI)

The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

Stevens, J. L.; Titus, R.; Sanford, P. C.

2002-02-26T23:59:59.000Z

136

Using Third-Party Inspectors in Building Energy Codes Enforcement in India  

SciTech Connect (OSTI)

India is experiencing fast income growth and urbanization, and this leads to unprecedented increases in demand for building energy services and resulting energy consumption. In response to rapid growth in building energy use, the Government of India issued the Energy Conservation Building Code (ECBC) in 2007, which is consistent with and based on the 2001 Energy Conservation Act. ECBC implementation has been voluntary since its enactment and a few states have started to make progress towards mandatory implementation. Rajasthan is the first state in India to adopt ECBC as a mandatory code. The State adopted ECBC with minor additions on March 28, 2011 through a stakeholder process; it became mandatory in Rajasthan on September 28, 2011. Tamil Nadu, Gujarat, and Andhra Pradesh have started to draft an implementation roadmap and build capacity for its implementation. The Bureau of Energy Efficiency (BEE) plans to encourage more states to adopt ECBC in the near future, including Haryana, Uttar Pradesh, Karnataka, Maharashtra, West Bengal, and Delhi. Since its inception, India has applied the code on a voluntary basis, but the Government of India is developing a strategy to mandate compliance. Implementing ECBC requires coordination between the Ministry of Power and the Ministry of Urban Development at the national level as well as interdepartmental coordination at the state level. One challenge is that the Urban Local Bodies (ULBs), the enforcement entities of building by-laws, lack capacity to implement ECBC effectively. For example, ULBs in some states might find the building permitting procedures to be too complex; in other cases, lack of awareness and technical knowledge on ECBC slows down the amendment of local building by-laws as well as ECBC implementation. The intent of this white paper is to share with Indian decision-makers code enforcement approaches: through code officials, third-party inspectors, or a hybrid approach. Given the limited capacity and human resources available in the state and local governments, involving third-party inspectors could rapidly expand the capacity for plan reviews and broad implementation. However, the procedures of involving third-parties need to be carefully designed in order to guarantee a fair process. For example, there should be multiple checks and certification requirements for third-party inspectors, and the government should have the final approval when third-party inspectors are used in a project. This paper discusses different approaches of involving third-parties in ECBC enforcement; the Indian states may choose the approaches that work best in their given circumstances.

Yu, Sha; Evans, Meredydd; Kumar, Pradeep; Van Wie, Laura; Bhatt, Vatsal

2013-01-31T23:59:59.000Z

137

Recommendations on Implementing the Energy Conservation Building Code in Rajasthan, India  

SciTech Connect (OSTI)

India launched the Energy Conservation Building Code (ECBC) in 2007 and Indian Bureau of Energy Efficiency (BEE) recently indicated that it would move to mandatory implementation in the 12th Five-Year Plan. The State of Rajasthan adopted ECBC with minor modifications; the new regulation is known as the Energy Conservation Building Directives – Rajasthan 2011 (ECBD-R). It became mandatory in Rajasthan on September 28, 2011. This report provides recommendations on an ECBD-R enforcement roadmap for the State of Rajasthan.

Yu, Sha; Makela, Eric J.; Evans, Meredydd; Mathur, Jyotirmay

2012-02-01T23:59:59.000Z

138

A Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency  

E-Print Network [OSTI]

The continuous rise of energy consumption is a global concern. On the one hand, energy is still mainly coming rate, estimated at around 40% of the total energy used worldwide. Surprisingly, the resulting carbonA Multi-objective Approach to Balance Buildings Construction Cost and Energy Efficiency ´Alvaro

Hamadi, Yousseff

139

Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions  

SciTech Connect (OSTI)

The aim of commissioning new buildings is to ensure that they deliver, if not exceed, the performance and energy savings promised by their design. When applied to existing buildings, commissioning identifies the almost inevitable 'drift' from where things should be and puts the building back on course. In both contexts, commissioning is a systematic, forensic approach to quality assurance, rather than a technology per se. Although commissioning has earned increased recognition in recent years - even a toehold in Wikipedia - it remains an enigmatic practice whose visibility severely lags its potential. Over the past decade, Lawrence Berkeley National Laboratory has built the world's largest compilation and meta-analysis of commissioning experience in commercial buildings. Since our last report (Mills et al. 2004) the database has grown from 224 to 643 buildings (all located in the United States, and spanning 26 states), from 30 to 100 million square feet of floorspace, and from $17 million to $43 million in commissioning expenditures. The recorded cases of new-construction commissioning took place in buildings representing $2.2 billion in total construction costs (up from 1.5 billion). The work of many more commissioning providers (18 versus 37) is represented in this study, as is more evidence of energy and peak-power savings as well as cost-effectiveness. We now translate these impacts into avoided greenhouse gases and provide new indicators of cost-effectiveness. We also draw attention to the specific challenges and opportunities for high-tech facilities such as labs, cleanrooms, data centers, and healthcare facilities. The results are compelling. We developed an array of benchmarks for characterizing project performance and cost-effectiveness. The median normalized cost to deliver commissioning was $0.30/ft2 for existing buildings and $1.16/ft2 for new construction (or 0.4% of the overall construction cost). The commissioning projects for which data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded the direct value of the energy savings. Commissioning also improves worker comfort, mitigates indoor air quality problems

Mills, Evan

2009-07-16T23:59:59.000Z

140

Feedbacks from Focus Group Meeting on Training and Implementation of Building Energy Codes in China  

SciTech Connect (OSTI)

A focus group meeting is a very effective quality research approach to collect information on a specific project. Through focus group meetings at both Changchun and Ningbo in August 2010, the project team gained a more complete understandings of key stakeholders (such as their education level), their training needs and expectations, key factors influencing their decision making, and incurred implementation difficulties. In addition, the meeting helped the project team (especially PNNL) improve its understanding of the implementation status of building energy codes in other regions (such as small cities and counties neighboring to urban areas, small townships and rural areas distant from urban areas). The collected feedbacks will serve as important input not only for better design of training materials and the development of an on-line training website, but also for development of follow-up projects to promote building energy codes in China.

Shui, Bin; Lin , Haiyan; Song, Bo; Halverson, Mark A.; Evans, Meredydd; Zhu, Xiaojiao

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

of current energy costs in Illinois).     To compare energy Energy Conservation  Code for Residential Buildings in Illinois.  Energy Conservation  Code for Residential Buildings in Illinois.  

Al-Beaini, S.

2010-01-01T23:59:59.000Z

142

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas City, Missouri  

SciTech Connect (OSTI)

The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of about $145 a year for an average new house. Construction cost increases are estimated at $655. Home owners will experience an annual cost savings of close to $100 a year because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

Lucas, Robert G.

2011-09-30T23:59:59.000Z

143

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building TechnologiesBuilding Stock. Golden, Colorado: National Renewable Energy

Feng, Wei

2013-01-01T23:59:59.000Z

144

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Summer Study on Energy Efficiency in Buildings August 12,Standard for Energy Efficiency of Public Buildings. Energyfor Energy Efficiency of Residential Buildings in Hot Summer

Feng, Wei

2013-01-01T23:59:59.000Z

145

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Department of Energy Commercial Reference Building Models ofthe National Building Stock. Golden, Colorado: Nationaland Renewable Energy, Building Technologies Program, of the

Feng, Wei

2013-01-01T23:59:59.000Z

146

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network [OSTI]

effect from CO2 emission resulting from the combustion of fossil fuels in utility power plants and the use of chlorofluorocarbon refrigerants, which is currently thought to affect depletion of the ozone layer. The ban on fluorocarbon fluids has been...LIFE CYCLE COST ANALYSIS OF WASTE HEAT OPERATED ABSORPTION COOLING SYSTEMS FOR BUILDING HVAC APPLICATIONS V. Murugavel and R. Saravanan Refrigeration and Air conditioning Laboratory Department of Mechanical Engineering, Anna University...

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

147

Building Technologies Program: Tax Deduction Qualified Software- VisualDOE version 4.1 build 0002  

Broader source: Energy.gov [DOE]

Provides required documentation that VisualDOE version 4.1 build 0002 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

148

Building Technologies Program: Tax Deduction Qualified Software ? Green Building Studio Web Service version 3.1  

Broader source: Energy.gov [DOE]

Provides required documentation that Green Building Studio Web Service version 3.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

149

Building Technologies Program: Tax Deduction Qualified Software- Green Building Studio Web Service version 3.0  

Broader source: Energy.gov [DOE]

Provides required documentation that Green Building Studio Web Service version 3.0 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

150

Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings  

SciTech Connect (OSTI)

These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

None

1980-06-01T23:59:59.000Z

151

Reduced Space-Time and Time Costs Using Dislocation Codes and Arbitrary Ancillas  

E-Print Network [OSTI]

We propose two distinct methods of improving quantum computing protocols based on surface codes. First, we analyze the use of dislocations instead of holes to produce logical qubits, potentially reducing spacetime volume required. Dislocations induce defects which, in many respects, behave like Majorana quasi-particles. We construct circuits to implement these codes and present fault-tolerant measurement methods for these and other defects which may reduce spatial overhead. One advantage of these codes is that Hadamard gates take exactly $0$ time to implement. We numerically study the performance of these codes using a minimum weight and a greedy decoder using finite-size scaling. Second, we consider state injection of arbitrary ancillas to produce arbitrary rotations. This avoids the logarithmic (in precision) overhead in online cost required if $T$ gates are used to synthesize arbitrary rotations. While this has been considered before, we consider also the parallel performance of this protocol. Arbitrary ancilla injection leads to a probabilistic protocol in which there is a constant chance of success on each round; we use an amortized analysis to show that even in a parallel setting this leads to only a constant factor slowdown as opposed to the logarithmic slowdown that might be expected naively.

M. B. Hastings; A. Geller

2014-08-14T23:59:59.000Z

152

15% Above-Code Energy Efficiency Measures for Commercial Buildings in Texas  

E-Print Network [OSTI]

efficiency measures. In the pages that follow, 15% above-code measures for new commercial buildings are presented for the 41 non-attainment and affected counties in Texas, separated by climate area. Each page contains a description of the individual....6% $1,718 $18,135 $0 - $0 3 Occupancy Sensors Installation 11.5% $32,242 -3.6% -$576 $31,667 $26,500 - $28,000 4 Shading (none to 2.5 ft overhangs) 1.6% $3,261 2.4% $395 $3,656 $67,900 - $110,000 B HVAC System Measures 5 Cold Deck Reset 5.7% $4...

Haberl, J. S.; Culp, C.; Yazdani, B.

153

AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

154

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Mesa, Arizona  

SciTech Connect (OSTI)

The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC and the 2003 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of $145 a year for an average new house compared to the 2003 IECC. This energy cost saving decreases to $125 a year for the 2009 IECC compared to the 2006 IECC. Construction cost increases (per home) for complying with the 2009 IECC are estimated at $1256 relative to the 2003 IECC and $800 for 2006 IECC. Home owners will experience an annual cost savings of about $80 a year by complying with the 2009 IECC because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

Lucas, Robert G.

2011-03-31T23:59:59.000Z

155

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

3 Commercial and Residential Building Site Energy Usagecommercial and residential prototype buildings discussed in the previous section is simulated in EnergyPlus (DOE, 2011). The energy usage

Feng, Wei

2013-01-01T23:59:59.000Z

156

High Performance “Reach” Codes  

E-Print Network [OSTI]

Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

Edelson, J.

2011-01-01T23:59:59.000Z

157

Introduction to Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Fact Sheet)  

SciTech Connect (OSTI)

Momentum behind zero energy building design and construction is increasing, presenting a tremendous opportunity for advancing energy performance in the commercial building industry. At the same time, there is a lingering perception that zero energy buildings must be cost prohibitive or limited to showcase projects. Fortunately, an increasing number of projects are demonstrating that high performance can be achieved within typical budgets. This factsheet highlights replicable, recommended strategies for achieving high performance on a budget, based on experiences from past projects.

Not Available

2014-09-01T23:59:59.000Z

158

LSA Space Guidelines February 2011 The rising costs of utilities and building maintenance have placed increasing stress on the University's  

E-Print Network [OSTI]

1 LSA Space Guidelines ­February 2011 Overview The rising costs of utilities and building costs, the Provost has launched a University-wide Space Initiative that will unfold over a period of several years. The Initiative will inventory all University space and study its management

Resnick, Paul

159

Building Technologies Program: Tax Deduction Qualified Software-EnergyGauge Summit version 3.1 build 2  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.1 build 2 meets Internal Revenue Code §179D, Notice 2006-52, dated January 31, 2007, for calculating commercial building energy and power cost savings.

160

New cost structure approach in green buildings : cost-benefit analysis for widespread acceptance and long-term practice  

E-Print Network [OSTI]

Although the concepts of sustainable building have been widely accepted in the market, there are unavoidable challenges toward widespread acceptance and long-term practice. Crossing green building development, there is ...

Wang, Zhiyong, S.M. Massachusetts Institute of Technology. Engineering Systems Division

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

SciTech Connect (OSTI)

The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

2014-04-09T23:59:59.000Z

162

Effective O&M Policy in Public Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Publications Preparing for the Arrival of Electric Vehicle Low-to-No Cost Strategy for Energy Efficiency in Public Buildings Energy Code Compliance and Enforcement Best...

163

A brief introduction on training and public information of building energy codes in the U.S.  

SciTech Connect (OSTI)

This report is associated with the project of Implementation of Building Energy Codes in China (55793). The report aims to give Chinese audience a brief introduction on training and public information activities of building energy codes in the U.S. The report contains four sections: Section One is about the development history and implementation of building energy codes in the U.S. Section Two is about the organizations of training and public information activities, mainly focused on ASHRAE, ICC, federal and state government. Policy implication, which is Section Three, addresses the role of federal government and on-line training and public information activities in promoting training and public information (the current China training system lacks strong support of central government and on-line training activities). Conclusions are made in Section Four. This report will be uploaded to an upcoming Chinese website which is devoted to provide first-time free on-line training and public information of building energy codes in China.

Shui, Bin

2010-12-01T23:59:59.000Z

164

A Comparison of Building Energy Code Stringency: 2009 IECC Versus 2012 IECC for Commercial Construction in Texas  

E-Print Network [OSTI]

In 2007, the 80th legislature mandated the Energy Systems Laboratory (Laboratory) to take part in Texas rule-making process. As detailed in the Health and Safety Code, Chapter 388, Texas Building Energy Performance Standards, Sec. 388.003 (b-1...

Mukhopadhyay, J.; Baltazar, J.; Haberl, J.; Yazdani, B.; Ellis, S.

2011-01-01T23:59:59.000Z

165

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

makes CHP system generally not attractive in residentialresidential flat tariffs are generally not attractive for CHP and5 Residential Building DER Technologies Selection City CHP (

Feng, Wei

2013-01-01T23:59:59.000Z

166

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Retrieved from National Renewable Energy Laboratory: http://Golden, Colorado: National Renewable Energy Laboratory.for Energy Efficiency and Renewable Energy, Building

Feng, Wei

2013-01-01T23:59:59.000Z

167

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

solar radiation, electricity tariff, technology costs, andrequirements, usage patterns, tariffs, and incentives. Toassessment Electricity tariff Natural gas tariff Technology

Feng, Wei

2013-01-01T23:59:59.000Z

168

An Investigation of Window and Lighting Systems using Life Cycle Cost Analysis for the Purpose of Energy Conservation in Langford Building A at Texas A&M University  

E-Print Network [OSTI]

Langford Building A forms part of the Langford Architectural Complex at Texas A & M University. Inefficient lighting fixtures and single pane windows in Langford Building A contribute to a considerable portion of the total cost of energy...

Hwang, Hea Yeon

2012-07-16T23:59:59.000Z

169

Michigan State Code Adoption Analysis: Cost-Effectiveness of Lighting Requirements - ASHRAE/IESNA 90.1-2004  

SciTech Connect (OSTI)

This report documents PNNL's analysis of the potential energy effect and cost-effectiveness of the lighting requirements in ASHRAE/IESNA 90.1-2004 if this energy code is adopted in the state of Michigan, instead of the current standard.

Richman, Eric E.

2006-09-29T23:59:59.000Z

170

Cost Control Strategies for Zero Energy Buildings: High-Performance Design and Construction on a Budget (Brochure)  

SciTech Connect (OSTI)

There is mounting evidence that zero energy can, in many cases, be achieved within typical construction budgets. To ensure that the momentum behind zero energy buildings and other low-energy buildings will continue to grow, this guide assembles recommendations for replicating specific successes of early adopters who have met their energy goals while controlling costs. Contents include: discussion of recommended cost control strategies, which are grouped by project phase (acquisition and delivery, design, and construction) and accompanied by industry examples; recommendations for balancing key decision-making factors; and quick reference tables that can help teams apply strategies to specific projects.

Not Available

2014-09-01T23:59:59.000Z

171

Cost Analysis of Simple Phase Change Material-Enhanced Building Envelopes in Southern U.S. Climates  

SciTech Connect (OSTI)

Traditional thermal designs of building envelope assemblies are based on static energy flows, yet building envelopes are subject to varying environmental conditions. This mismatch between the steady-state principles and their dynamic operation can decrease thermal efficiency. Design work supporting the development of low-energy houses showed that conventional insulations may not always be the most cost effective solution to improvement envelope thermal performance. PCM-enhanced building envelopes that simultaneously reduce the total cooling loads and shift the peak-hour loads are the focus of this report.

Kosny, J.; Shukla, N.; Fallahi, A.

2013-01-01T23:59:59.000Z

172

Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program  

SciTech Connect (OSTI)

The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

Langner, R.; Hendron, B.; Bonnema, E.

2014-08-01T23:59:59.000Z

173

Assessment of Impacts from Adopting the 2009 International Energy Conservation Code for Residential Buildings in Michigan  

SciTech Connect (OSTI)

Energy and economic analysis comparing the current Michigan residential energy efficiency code to the 2009 IECC.

Lucas, Robert G.

2009-10-18T23:59:59.000Z

174

Approved Module Information for EC307C, 2014/5 Module Title/Name: Green Building Module Code: EC307C  

E-Print Network [OSTI]

Approved Module Information for EC307C, 2014/5 Module Title/Name: Green Building Module Code: EC307 construction; * Conventional and novel materials appropriate for green building; Professional Module Learning Information Module Aims: By building on previous knowledge and experience, to develop

Neirotti, Juan Pablo

175

Lazy Means Smart: Reducing Repair Bandwidth Costs in Erasure-coded Distributed Storage  

E-Print Network [OSTI]

- ditional bandwidth savings. 1. INTRODUCTION Erasure coding schemes, e.g. Reed-Solomon (RS) codes on the example of Reed-Solomon codes, and then explain the repair bandwidth problem. In an RS(n,k) stor- age scheme. 4. EVALUATION METHODOLOGY Evaluating the efficacy of lazy recovery in reducing repair bandwidth

Alvisi, Lorenzo

176

U.S. Department of Energy Solar Decathlon: Challenging Students to Build Energy Efficient, Cost-Effective, and Attractive Solar-Powered Houses  

SciTech Connect (OSTI)

The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency. The paper discusses the solutions developed for the event. We believe that the solutions implemented for Solar Decathlon 2011 represent current trends and that by analyzing, critiquing, and exposing the solutions pursued, the industry can become better suited to address challenges of the future. Constructing a solar community using high-efficiency design and unique materials while remaining code compliant, safe, and effective results in solutions that are market relevant, important, and interesting to the industry as a whole.

Simon, J.

2012-01-01T23:59:59.000Z

177

ASHRAE/IESNA 90.1-1989R, energy code for buildings except low-rise residential buildings, Revision update  

SciTech Connect (OSTI)

The first public review draft of the next cyclical revision to ASHRAE/IESNA 90.1 - 1989, titled {open_quotes}Energy Efficient Design of New Buildings Except New Low-Rise Residential Buildings,{close_quotes} is currently available for public review. This paper provides commentary by the author on the background of the revision and a general comparison of this first public review draft to the 1989 version of the Standard. Those wishing further information on the draft should contact the American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Emerson, K. [Public Service Company of Colorado, Denver, CO (United States)

1996-12-31T23:59:59.000Z

178

Lessons learned from new construction utility demand side management programs and their implications for implementing building energy codes  

SciTech Connect (OSTI)

This report was prepared for the US Department of Energy (DOE) Office of Codes and Standards by the Pacific Northwest Laboratory (PNL) through its Building Energy Standards Program (BESP). The purpose of this task was to identify demand-side management (DSM) strategies for new construction that utilities have adopted or developed to promote energy-efficient design and construction. PNL conducted a survey of utilities and used the information gathered to extrapolate lessons learned and to identify evolving trends in utility new-construction DSM programs. The ultimate goal of the task is to identify opportunities where states might work collaboratively with utilities to promote the adoption, implementation, and enforcement of energy-efficient building energy codes.

Wise, B.K.; Hughes, K.R.; Danko, S.L.; Gilbride, T.L.

1994-07-01T23:59:59.000Z

179

Recommendations for 15% Above-Code Energy Efficiency Measures for Residential Buildings  

E-Print Network [OSTI]

This report presents detailed information about the recommendations for achieving 15% above-code energy performance for single-family residences. The analysis was performed using a simulation model of an International Energy Conservation Code (IECC...

Montgomery, C.; Yazdani, B.; Culp, C.; Haberl, J. S.; Liu, Z.; Mukhopadhyay, J.; Malhotra, M.

180

A Guide to Building Commissioning  

SciTech Connect (OSTI)

Commissioning is the process of verifying that a building's heating, ventilation, and air conditioning (HVAC) and lighting systems perform correctly and efficiently. Without commissioning, system and equipment problems can result in higher than necessary utility bills and unexpected and costly equipment repairs. This report reviews the benefits of commissioning, why it is a requirement for Leadership in Energy and Environmental Design (LEED) certification, and why building codes are gradually adopting commissioning activities into code.

Baechler, Michael C.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Toward zero net energy buildings : optimized for energy use and cost  

E-Print Network [OSTI]

Recently, there has been a push toward zero net energy buildings (ZNEBs). While there are many options to reduce the energy used in buildings, it is often difficult to determine which are the most appropriate technologies ...

Brown, Carrie Ann, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

182

Internet-based Building Performance Analysis Provided as a Low-Cost Commercial Service  

E-Print Network [OSTI]

Internet-based monitoring services can play a very important role in reducing the energy consumed in commercial buildings. They can provide the information needed to identify improvements that should be made in the operation of particular buildings...

Heinemeier, K.; Koran, W.

2001-01-01T23:59:59.000Z

183

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect (OSTI)

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

184

Improving the thermal integrity of new single-family detached residential buildings: Documentation for a regional database of capital costs and space conditioning load savings  

SciTech Connect (OSTI)

This report summarizes the costs and space-conditioning load savings from improving new single-family building shells. It relies on survey data from the National Association of Home-builders (NAHB) to assess current insulation practices for these new buildings, and NAHB cost data (aggregated to the Federal region level) to estimate the costs of improving new single-family buildings beyond current practice. Space-conditioning load savings are estimated using a database of loads for prototype buildings developed at Lawrence Berkeley Laboratory, adjusted to reflect population-weighted average weather in each of the ten federal regions and for the nation as a whole.

Koomey, J.G.; McMahon, J.E.; Wodley, C.

1991-07-01T23:59:59.000Z

185

Comparison of the Supplement to the 2004 IECC to the Current New York Energy Conservation Code - Residential Buildings  

SciTech Connect (OSTI)

The New York State Department of State requested the U.S. Department of Energy (DOE) to prepare a report consisting of two components. The first component is an analysis comparing the effects on energy usage as a result of implementation of the 2004 Supplement to the IECC with the current New York code. The second component is an engineering analysis to determine whether additional costs of compliance with the proposal would be equal to or less than the present value of anticipated energy savings over a 10-year period. Under DOE's direction, Pacific Northwest National Laboratory (PNNL) completed the requested assessment of the potential code upgrade.

Lucas, Robert G.

2004-09-01T23:59:59.000Z

186

A Semi-Empirical Model for Studying the Impact of Thermal Mass and Cost-Return Analysis on Mixed-mode Ventilation in Office Buildings  

E-Print Network [OSTI]

Vertical location EME Energy consumption by mechanical ventilation z0 Vertical location of the neutral and cost-return analysis on mixed-mode ventilation in office buildings," Energy and Buildings, 67, 267 consume about 40% of total primary energy [1], and the energy consumption of office buildings comprises

Chen, Qingyan "Yan"

187

200 Seeley W. Mudd Building Mail Code 4701 500 West 120th Street New York, NY 10027 212-854-4458 Fax 212-854-8257  

E-Print Network [OSTI]

200 Seeley W. Mudd Building Mail Code 4701 500 West 120th Street New York, NY 10027 212 rooms are subject to state sales tax, city occupancy tax, and NYS hotel unit fee. Weekend rates may run

Columbia University

188

A Comparison of the 2003 and 2006 International Energy Conservation Codes to Determine the Potential Impact on Residential Building Energy Efficiency  

SciTech Connect (OSTI)

The IECC was updated in 2006. As required in the Energy Conservation and Production Act of 1992, Title 3, DOE has a legislative requirement to "determine whether such revision would improve energy efficiency in residential buildings" within 12 months of the latest revision. This requirement is part of a three-year cycle of regular code updates. To meet this requirement, an independent review was completed using personnel experienced in building science but not involved in the code development process.

Stovall, Therese K [ORNL; Baxter, Van D [ORNL

2008-03-01T23:59:59.000Z

189

Building America Whole-House Solutions for New Homes: Low-Cost...  

Broader source: Energy.gov (indexed) [DOE]

Insulation at the Edge of a Slab Foundation, Fresno, California Building America Whole-House Solutions for Existing Homes: Passive Room-to-Room Air Transfer, Fresno, California...

190

2013 California Building Energy Efficiency Standards December 2011 CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE)  

E-Print Network [OSTI]

INITIATIVE (CASE) Residential Refrigerant Charge Testing and Related Issues 2013 California Building Energy-owned rights including, but not limited to, patents, trademarks or copyrights #12;Residential Refrigerant Charge Testing and Related Issues Page 2 2013 California Building Energy Efficiency Standards December

191

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah  

SciTech Connect (OSTI)

The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

Cole, Pamala C.; Lucas, Robert G.

2009-05-01T23:59:59.000Z

192

Codes and Standards Title 24 Energy-Efficient Local Ordinances  

E-Print Network [OSTI]

Codes and Standards Title 24 Energy-Efficient Local Ordinances Title: San Mateo County Green Mateo County Green Building Ordinance Energy Cost-Effectiveness Study December 31, 2009 Report prepared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 #12;Energy Cost-Effectiveness Study for the San Mateo County Green Building Ordinance, 12

193

Codes and Standards Title 24 Energy-Efficient Local Ordinances  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 #12;Energy Cost-Effectiveness Study for Local Green Building Ordinances in Climate Zone 6, 12 Standards. The energy requirements of a local green building ordinance are not legally enforceable untilCodes and Standards Title 24 Energy-Efficient Local Ordinances Title: Climate Zone 6 Energy Cost

194

NREL Recommends Ways to Cut Building Energy Costs in Half (Fact Sheet)  

SciTech Connect (OSTI)

Building designers and operators could cut energy use by 50% in large office buildings, hospitals, schools, and a variety of stores - including groceries, general merchandise outlets, and retail outlets - by following the recommendations of researchers at the National Renewable Energy Laboratory (NREL).

Not Available

2011-07-01T23:59:59.000Z

195

NREL Recommends Ways to Cut Building Energy Costs in Half (Fact Sheet)  

SciTech Connect (OSTI)

Building designers and operators could cut energy use by 50% in large office buildings, hospitals, schools, and a variety of stores -- including groceries, general merchandise outlets, and retail outlets -- by following the recommendations of NREL researchers. The innovative energy-saving recommendations are contained in technical support documents and Advanced Energy Design Guides compiled by NREL.

Not Available

2013-08-01T23:59:59.000Z

196

Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-07-03T23:59:59.000Z

197

National Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian; Halverson, Mark A.; Myer, Michael; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-11-30T23:59:59.000Z

198

Cost-effectiveness of ASHRAE Standard 90.1-2010 Compared to ASHRAE Standard 90.1-2007  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) completed this project for the U.S. Department of Energy’s (DOE’s) Building Energy Codes Program (BECP). DOE’s BECP supports upgrading building energy codes and standards, and the states’ adoption, implementation, and enforcement of upgraded codes and standards. Building energy codes and standards set minimum requirements for energy-efficient design and construction for new and renovated buildings, and impact energy use and greenhouse gas emissions for the life of buildings. Continuous improvement of building energy efficiency is achieved by periodically upgrading energy codes and standards. Ensuring that changes in the code that may alter costs (for building components, initial purchase and installation, replacement, maintenance and energy) are cost-effective encourages their acceptance and implementation. ANSI/ASHRAE/IESNA Standard 90.1 is the energy standard for commercial and multi-family residential buildings over three floors.

Thornton, Brian A.; Halverson, Mark A.; Myer, Michael; Cho, Hee Jin; Loper, Susan A.; Richman, Eric E.; Elliott, Douglas B.; Mendon, Vrushali V.; Rosenberg, Michael I.

2013-06-18T23:59:59.000Z

199

Analysis of improved fenestration for code-compliant residential buildings in hot and humid climates  

E-Print Network [OSTI]

glazing technologies were developed, tested and subsequently adopted by the building industry. The underlying goal that has been carried through to present day research has been to develop the potential of windows as net energy suppliers (Arasteh 1994...

Mukhopadhyay, Jaya

2006-10-30T23:59:59.000Z

200

Impact of design cost on project performance of design bid build projects.  

E-Print Network [OSTI]

??The majority of public projects in the United States are procured and constructed by state or local governments using the design-bid-build (DBB) project delivery method.… (more)

Mani, Nirajan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Community Development Department Building & Safety Division  

E-Print Network [OSTI]

BUILDING, RESIDENTIAL AND GREEN BUILDING CODES, AMENDING FREMONT MUNICIPAL CODE TITLE vn (BUILDING TO ENERGY REGULATIONS THE 2010 CALIFORNIA,GREEN BUILDING CODE The City of Fremont proposed to adopt local................ Community Development Department Building & Safety Division 39550 Liberty Street

202

Achieving MinimumCost Multicast: A Decentralized Approach Based on Network Coding  

E-Print Network [OSTI]

, a monetary or energy cost must be paid for each link usage) and the other that applies for strictly convex­to­point links, and consider the problem of minimum­energy multicast in wireless networks as well as the case generally means finding the shortest tree connecting a set of points in a directed graph; in other words

MĂŠdard, Muriel

203

Building America Efficient Solutions for New Homes Case Study...  

Broader source: Energy.gov (indexed) [DOE]

and Energy Smart Home Plans to design zero-energy ready homes that score under HERS 60 for less than 2% added cost over code construction. Case Study: Heritage Buildings,...

204

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

Energy Efficiency & Renewable Energy, Building Technologies Program, Building America Best Practices

Mendes, Goncalo

2014-01-01T23:59:59.000Z

205

Grid Code Facility / Building Name M36 525 Addams Fine Arts Hall  

E-Print Network [OSTI]

38 7039 Walnut Street, 3809 N34 620 Williams Hall Athletic Facilities M31 85 Class of 1923 Ice Rink N 80 Class of 1920 Commons M31 85 Class of 1923 Ice Rink P34 92 Clinical Research Building N34 310

Sharp, Kim

206

Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Virginia Construction Code  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Virginia homeowners. Moving to the 2012 IECC from the current Virginia Construction Code is cost effective over a 30-year life cycle. On average, Virginia homeowners will save $5,836 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $388 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-06-15T23:59:59.000Z

207

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network [OSTI]

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied...

Ackley, J.

2010-01-01T23:59:59.000Z

208

The cost-effectiveness of retrofitting sanitary fixtures in restrooms of a university building  

E-Print Network [OSTI]

Architecture building A at Texas A&M University. The researcher directly measured the actual water-volume per flush of as-is, tune-up, low-consumption manual, and low-consumption automatic water closets and urinals. The data collected by these observations...

Hwang, Byoung Hoon

2004-09-30T23:59:59.000Z

209

Analysis of Code-Compliant Construction in Texas Based on Texas Building Energy Performance Standards (TBEPS)  

E-Print Network [OSTI]

Studies Several other studies have examined the economic impacts of the 2012 IECC compared to the 2009 IECC for new residential buildings in Texas, including the DOE analysis performed by Pacific Northwest National Laboratory (PNNL) (DOE 2012... to the 2009 IECC, including the two analyses performed by PNNL (Halverson et al. 2011, Mapes and Conover 2012); and the analysis performed by Niles Bolton Associates, Inc. (2012). One of the three studies quantified savings from the ASHRAE Standard 90...

Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Yazdani, B.; Haberl, J.

2013-01-01T23:59:59.000Z

210

Saving Energy and Money with Building Energy Codes in the United States  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River SiteDepartmentBuilding

211

Low-Cost Wireless Sensors for Building Applications | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't HappenLow-Cost Production of Hydrogen andLow-Cost Wireless

212

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

in building total energy consumption and related costs (overin building total energy consumption and related costs (overin building total energy consumption and related costs (over

Bailey, Trevor

2013-01-01T23:59:59.000Z

213

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

New York State Energy Code (ASHRAE 90-75) on Office Buildinga model code known as ASHRAE 90-75. Codes based on thisthe lighting section of ASHRAE 90-75 (Los Angeles Federal

Benenson, P.

2011-01-01T23:59:59.000Z

214

Construction cost impact analysis of the U.S. Department of Energy mandatory performance standards for new federal commercial and multi-family, high-rise residential buildings  

SciTech Connect (OSTI)

In accordance with federal legislation, the U.S. Department of Energy (DOE) has conducted a project to demonstrate use of its Energy Conservation Voluntary Performance Standards for Commercial and Multi-Family High-Rise Residential Buildings; Mandatory for New Federal Buildings; Interim Rule (referred to in this report as DOE-1993). A key requisite of the legislation requires DOE to develop commercial building energy standards that are cost effective. During the demonstration project, DOE specifically addressed this issue by assessing the impacts of the standards on (1) construction costs, (2) builders (and especially small builders) of multi-family, high-rise buildings, and (3) the ability of low-to moderate-income persons to purchase or rent units in such buildings. This document reports on this project.

Di Massa, F.V.; Hadley, D.L.; Halverson, M.A.

1993-12-01T23:59:59.000Z

215

Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Building  

E-Print Network [OSTI]

Deck Reset Supply Fan Total Pressure (2.5 to 1.5 in-H2O) Chiller COP (4.9 to 6.1) Boiler Efficiency (Not Aplicable) VSD on Chilled Water Pump (from Constant to VSD) VSD on Hot Water Pump (from Constant to VSD) Min 1st costs $95....5 ft overhangs) Co ld Deck Reset Supply Fan Total Pressure (2.5 to 1.5 in - H2O) Chiller COP (4.9 to 6.1) Bo iler Efficiency (Not Aplicable) VSD on Ch illed Water Pump (from Constant to VSD) VSD on Hot Water Pump (from Constant...

Cho, S.; Mukhopadhyay, J.; Culp, C.; Haberl, J.; Yazdani, B.

216

Greensburg Implements High-Efficiency Building Codes to Achieve Long-Term  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysisTweet us! | DepartmentColoring BookGreeningEnergy

217

Cost-Effective Wall Retrofit Solution for the Interior Side of Building's  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor EngineeringDepartment of Energy8, 2012 Cost StudyExterior

218

Low-Cost Gas Heat Pump For Building Space Heating | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslieEnergy LoanOfficialLow-Cost Direct

219

The French nuclear power plant reactor building containment contributions of prestressing and concrete performances in reliability improvements and cost savings  

SciTech Connect (OSTI)

The Electricite de France`s N4 CHOOZ B nuclear power plant, two units of the world`s largest PWR model (1450 Mwe each), has earned the Electric Power International`s 1997 Powerplant Award. This lead NPP for EDF`s N4 series has been improved notably in terms of civil works. The presentation will focus on the Reactor Building`s inner containment wall which is one of the main civil structures on a technical and safety point of view. In order to take into account the necessary evolution of the concrete technical specification such as compressive strength low creep and shrinkage, the HSC/HPC has been used on the last N4 Civaux 2 NPP. As a result of the use of this type of professional concrete, the containment withstands an higher internal pressure related to severe accident and ensures higher level of leak-tightness, thus improving the overall safety of the NPP. On that occasion, a new type of prestressing has been tested locally through 55 C 15 S tendons using a new C 1500 FE Jack. These updated civil works techniques shall allow EDF to ensure a Reactor Containment lifespan for more than 50 years. The gains in terms of reliability and cost saving of these improved techniques will be developed hereafter.

Rouelle, P.; Roy, F. [Electricite de France, Paris (France). Engineering and Construction Div.

1998-12-31T23:59:59.000Z

220

What's coming in 2012 codes  

E-Print Network [OSTI]

Administration Why Building Energy Codes Matter Why Building Energy Codes Matter ? Buildings account for 70% of electricity use ? Buildings account for 38% of CO2 emissions (Source: US Green Building Council) Residential Progress Commercial Progress... ? Southeast Energy Efficiency Alliance ? Southwest Energy Efficiency Project Why Building Energy Codes Matter Why Building Energy Codes Matter ? Share of Energy Consumed by Major Sectors of the Economy (2010) Source: U.S. Energy Information...

Lacey, E

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of Energy Saving Impacts of New Commercial Energy Codes for the Gulf Coast  

SciTech Connect (OSTI)

Report on an analysis of the energy savings and cost impacts associated with the use of newer and more efficiently commercial building energy codes in the states of Louisiana and Mississippi.

Halverson, Mark A.; Gowri, Krishnan; Richman, Eric E.

2006-12-15T23:59:59.000Z

222

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Utah  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Utah.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

223

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Iowa  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Iowa.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

224

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

225

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

226

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New Jersey  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New Jersey.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

227

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Alabama  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Alabama.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-29T23:59:59.000Z

228

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Wisconsin  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Wisconsin.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

229

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of North Carolina  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of North Carolina.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

230

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Arkansas  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Arkansas.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-26T23:59:59.000Z

231

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Rhode Island  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Rhode Island.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

232

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

233

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Massachusetts  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Massachusetts.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

234

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Nebraska  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Nebraska.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-12-13T23:59:59.000Z

235

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

236

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of South Carolina  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of South Carolina.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

237

Cost Effectiveness of ASHRAE Standard 90.1-2010 for the State of Connecticut  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in teh State of Connecticut.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-29T23:59:59.000Z

238

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the District of Columbia  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the District of Columbia.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-29T23:59:59.000Z

239

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Virginia  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Virginia.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

240

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of New York  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of New York.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

242

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Colorado  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Colorado.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

243

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Texas  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Texas.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

244

Wisconsin Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Wisconsin Uniform Dwelling Code  

SciTech Connect (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $149 for the 2009 IECC and $672 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

245

Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code  

SciTech Connect (OSTI)

The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

246

Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41  

Broader source: Energy.gov [DOE]

Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

247

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.14  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.14 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

248

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.11  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.11 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

249

Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E version 119  

Broader source: Energy.gov [DOE]

Provides required documentation that DOE-21.E version 119 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

250

Building Technologies Program: Tax Deduction Qualified Software- EnergyGauge Summit version 3.13  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyGauge Summit version 3.13 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

251

Building Technologies Program: Tax Deduction Qualified Software- DOE-21.E-JJH version 130  

Broader source: Energy.gov [DOE]

Provides required documentation that DOE-2.1E-JJH version 130 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

252

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.6  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.6 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

253

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.5  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.5 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

254

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.9  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.9 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

255

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.8  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.8 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

256

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.7  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.7 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

257

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.1.0  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.1.0 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

258

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.2.4  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.2.4 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

259

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.2  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.2 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

260

Building Technologies Program: Tax Deduction Qualified Software- TRACE 700 version 6.1.0.0  

Broader source: Energy.gov [DOE]

Provides required documentation that TRACE 700 version 6.1.0.0 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.0.0.025  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.0.0.025 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

262

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.3.0.018  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 1.3.0.018 version 130 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

263

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 1.4.0.025  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 1.4.0.025 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

264

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.1.0.023  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

265

Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50  

Broader source: Energy.gov [DOE]

Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

266

Building Technologies Program: Tax Deduction Qualified Software- EnergyPlus version 2.2.0.023  

Broader source: Energy.gov [DOE]

Provides required documentation that EnergyPlus version 2.1.0.023 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

267

Building Energy Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation | DepartmentDavid Cohan

268

Building Energy Codes Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation | DepartmentDavidProgram

269

Best Practices: Policies for Building Efficiency and Emerging Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about appliance standards, building energy codes, ENERGY STAR program and tax incentives for building efficiency.

270

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

271

Technical Assistance: Increasing Code Compliance - 2014 BTO Peer...  

Energy Savers [EERE]

Code Compliance - 2014 BTO Peer Review More Documents & Publications Building Energy Codes Program - 2014 BTO Peer Review Building Energy Codes Program Overview - 2014 BTO Peer...

272

Energy Codes and the Landlord-Tenant Problem  

E-Print Network [OSTI]

a Commercial Building Energy Code in Michigan,” Report PNNL-Grant Summaries,” 1999. Office of Codes and Standards. , “2004,” , “Building Energy Codes: An Introduction,” 2010.

Papineau, Maya

2013-01-01T23:59:59.000Z

273

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

commercial and residential prototype buildings was simulated in EnergyPlus [15]. The commercial and residential energy usage

Mendes, Goncalo

2014-01-01T23:59:59.000Z

274

The Cost-Effectiveness of Investments to Meet the Guiding Principles for High-Performance Sustainable Buildings on the PNNL Campus  

SciTech Connect (OSTI)

As part its campus sustainability efforts, Pacific Northwest National Laboratory (PNNL) has invested in eight new and existing buildings to ensure they meet the U.S. Department of Energy’s requirements for high performance sustainable buildings (HPSB) at DOE sites. These investments are expected to benefit PNNL by reducing the total life-cycle cost of facilities, improving energy efficiency and water conservation, and making buildings safer and healthier for the occupants. This study examines the cost-effectiveness of the implementing measures that meet the criteria for HPSBs in 3 different types of buildings on the PNNL campus: offices, scientific laboratories, and data centers. In each of the three case studies examined the investments made to achieve HPSB status demonstrated a high return on the HPSB investments that have taken place in these varied environments. Simple paybacks for total investments in the three case study buildings ranged from just 2 to 5 years; savings-to-investment ratios all exceeded the desirable threshold of 1; and the net present values associated with these investments were all positive.

Cort, Katherine A.; Judd, Kathleen S.

2014-08-29T23:59:59.000Z

275

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

Impact Evaluation of New York State Energy Code (ASHRAE 90-N.Y. , N.Y. : New York State Energy Research and DevelopmentJ. "New York Puts Together Its Own State Energy Policy and

Benenson, P.

2011-01-01T23:59:59.000Z

276

Cost-Effective Energy Efficiency Measures for 15% Above 2009 IECC Code-Compliant House for Residential Buildings in TX  

E-Print Network [OSTI]

.3 - 19.2 4 Window Shading and Redistribution (22.6% Equal Window s on All Sides w ith No Shading to S=40.7%, N=22.6%, E/W = 13.6% w ith 2ft. Eaves on All Sides) (L:i ;H:g ) 2.7% - 3.0% $66 - $73 $800 - $1,000 10.9 - 15.1 5 Decreased Window SHGC... (Climate Zone 2: from 0.3 to 0.2 SHGC & from 0.65 to 0.3 U-Value) (L:e ;H:d ) 7.9% - 8.6% $179 - $201 $900 - $1,100 4.5 - 6.1 B HVAC System Measures 8 Relocate Mechanical Systems w ithin Conditioned Space (L:a ;H:i ) 7.5% - 8.5% $173 - $195 $1,000 - $7...

Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

2011-01-01T23:59:59.000Z

277

Cost-Effective Energy Efficiency Measures for 15% Above 2009 IECC Code-Compliant House for Residential Buildings in TX  

E-Print Network [OSTI]

W for lighting and 0.547 kW for equipment) None 0.3 0.4 15% of conditioned floor area None Space Conditions 55,800 55,800 DHW System Type Tank size from ASHRAE HVAC Systems and Equipment Handbook Gas & Electric Type: 40-gallon tank type gas water....3 U-Value;Climate Zone 3: from .3 to .2 SHGC & from 0.5 to 0.3 U-Value) 4 kW Photovoltaic Array 100% Energy Star Permanent CFL or Fluorescent Indoor Lamps 75% Energy Star Permanent CFL or Fluorescent Indoor Lamps Solar Domestic Hot Water System...

Kim, H.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Yazdani, B.

2011-01-01T23:59:59.000Z

278

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

279

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston Texas  

E-Print Network [OSTI]

on information provided by the city of Houston building officials, National Association of Home Builders (NAHB) and specifications for the ?Standard Design? building as defined in Chapter 4 of the 2001 IECC. Table 1 summarizes the base case building... obtained from the National Association of Home Builders (NAHB 2003). The wall insulation is R-11 2 and ceiling insulation is R-19 3 as recommended by the 2001 IECC. The building has wall and roof absorptance of 0.75. The window area is 8...

Mukhopadhyay, J.; Liu, Z.; Malhotra, M.; Kota, S.; Blake, S.; Haberl, J.; Culp, C.; Yazdani, B.

280

Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1  

Broader source: Energy.gov [DOE]

Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas  

E-Print Network [OSTI]

The annual energy cost savings were estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. 2009 IECC Cost Savings Report, p.ii January 2011 Energy Systems Laboratory, Texas A...). 3.2 Annual Total Energy Cost Similar trends were observed in the annual energy costs estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. Across the counties, the 2001...

Kim, H.; Baltazar, J. C.; Haberl, J.

282

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

cold climate zone) buildings use least energy compared to other cold regions, mainly because of its high altitude and ample solar

Mendes, Goncalo

2014-01-01T23:59:59.000Z

283

Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison  

E-Print Network [OSTI]

highest investment in CHP and battery storage, with a costelectricity costs in Alaska. All investments in CHP are in

Mendes, Goncalo

2014-01-01T23:59:59.000Z

284

State Policies to Encourage Green Building Principles  

Broader source: Energy.gov [DOE]

state green building policies, Database of State Incentives for Renewables and Efficiency, energy efficient building codes, energy efficient products

285

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Multifamily Residential Buildings in Houston, Texas  

E-Print Network [OSTI]

on information provided by the city of Houston building officials, National Association of Home Builders (NAHB) and specifications for the ?Standard Design? building as defined in Chapter 4 of the 2001 IECC. Table 1 summarizes the base case building... of light-weight wood frame with 2X4 studs at 16? centre-to-centre with slab-on- grade-floor as per the information obtained from the National Association of Home Builders (NAHB 2003). The wall insulation is R-11 2 and ceiling insulation is R-19 3...

Mukhopadhyay, Jaya; Liu, Zi; Malhotra, Mini; Kota, Sandeep; Blake, Sheila; Haberl, Jeff; Culp, Charles; Yazdani, Bahman

286

Engineering evaluation/cost analysis for the proposed management of 15 nonprocess buildings (15 series) at the Weldon Spring Site Chemical Plant, Weldon Spring, Missouri  

SciTech Connect (OSTI)

The US Department of Energy, under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon-Spring site, located near Weldon Spring, Missouri. The site consists of two noncontiguous areas: (1) a raffinate pits and chemical plant area and (2) a quarry. This engineering evaluation/cost analysis (EE/CA) report has been prepared to support a proposed removal action to manage 15 nonprocess buildings, identified as the 15 Series buildings, at the chemical plant on the Weldon Spring site. These buildings have been nonoperational for more than 20 years, and the deterioration that has occurred during this time has resulted in a potential threat to site workers, the general public, and the environment. The EE/CA documentation of this proposed action is consistent with guidance from the US Environmental Protection Agency (EPA) that addresses removal actions at sites subject to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986. Actions at the Weldon Spring site are subject to CERCLA requirements because the site is on the EPA`s National Priorities List. The objectives of this report are to (1) identify alternatives for management of the nonprocess buildings; (2) document the selection of response activities that will mitigate the potential threat to workers, the public, and the environment associated with these buildings; and (3) address environmental impacts associated with the proposed action.

MacDonell, M M; Peterson, J M

1989-05-01T23:59:59.000Z

287

Apply: Increase Residential Energy Code Compliance Rates (DE...  

Broader source: Energy.gov (indexed) [DOE]

view the webinar or presentation slides. Buildings Home About Emerging Technologies Residential Buildings Commercial Buildings Appliance & Equipment Standards Building Energy Codes...

288

Example of Environmental Restoration Code of Accounts  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

1997-03-28T23:59:59.000Z

289

Decision-making through performance simulation and code compliance from the early, schematic phases of building design  

E-Print Network [OSTI]

and external temperature variations and a utilization factor of the dynamic effect of internal and solar heat (just like performance simulation tools) are mostly used at the end of the building design process that acts as a data manager and process controller to allow concurrent use of #12;2 multiple simulation

290

Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Buildings in Texas  

E-Print Network [OSTI]

Six energy codes were compared in terms of annual site and source energy consumption. This comparison includes ASHRAE Standard 90.1-1989, ASHRAE Standard 90.1-1999, ASHRAE Standard 90.1-2007, ASHRAE Standard 90.1-2010, IECC 2009 and ASHRAE 189...

Mukhopadhyay, J.; Baltazar, J.C.; Kim, H.; Haberl, J.

2011-01-01T23:59:59.000Z

291

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network [OSTI]

of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source...

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

292

Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas  

E-Print Network [OSTI]

residences in Texas by climate zone as well as the average statewide electricity price ( /kWh). The ratio of electric/gas and heat pump houses constructed in Texas was determined using the annual surveys, National Association of Home Builders (NAHB... of Home Builders. Upper Marlboro, MD: NAHB Research Center. NREL. 2001. Building America House Performance Analysis Procedures. (NREL/TP-550-27754) Golden, CO: National Renewable Energy Laboratory. p.34 Paquette, Z., J. Miller, and M. DeWein. 2010...

Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

2012-01-01T23:59:59.000Z

293

Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for the State of New York  

SciTech Connect (OSTI)

This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of energy efficient and cost-effective residential and commercial building energy codes. These codes set the minimum requirements for energy-efficient building design and construction and ensure energy savings on a national level. The basis of the residential building energy codes is the International Energy Conservation Code (IECC) published by the International Code Council (ICC). The IECC is developed and published on a three-year cycle, with a new edition published at the end of each cycle.

Mendon, Vrushali V.; Selvacanabady, Abinesh

2014-12-01T23:59:59.000Z

294

Energy-Smart Building Choices: How School Facilities Managers and Business Officials Are Reducing Operating Costs and Saving Money (Revision)  

SciTech Connect (OSTI)

Operating a typical school today is no easy task for facilities managers and business officials. You're expected to deliver increased services with constrained operating budgets. Many schools stay open for longer hours to accommodate community use of the facilities. Dilapidated buildings and systems gobble up energy, yet in many districts, maintenance needs are overshadowed by the need for expansion or new construction to serve growing student populations and changing educational needs.

Not Available

2002-02-01T23:59:59.000Z

295

Quantifying the Comprehensive Greenhouse Gas Co-Benefits of Green Buildings  

E-Print Network [OSTI]

2010.     California  Green  Building  Standards  Code,  Team].    2008.   Green  Building  Sector  Subgroup:  cellular  data.  Green  Building  Information   Gateway  (

Mozingo, Louise; Arens, Ed

2014-01-01T23:59:59.000Z

296

Quantifying the Comprehensive Greenhouse Gas Co-Benefits of Green Buildings  

E-Print Network [OSTI]

Change  Scoping  Plan:  Building   on  the  Framework.  Cities.   California  Building  Standards  Commission.    California  Green  Building  Standards  Code,   2010.    

Mozingo, Louise; Arens, Ed

2014-01-01T23:59:59.000Z

297

Roadmap Toward a Predictive Performance-based Commercial Energy Code  

SciTech Connect (OSTI)

Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

Rosenberg, Michael I.; Hart, Philip R.

2014-10-01T23:59:59.000Z

298

ASME Code Efforts Supporting HTGRs  

SciTech Connect (OSTI)

In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

D.K. Morton

2011-09-01T23:59:59.000Z

299

ASME Code Efforts Supporting HTGRs  

SciTech Connect (OSTI)

In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

D.K. Morton

2012-09-01T23:59:59.000Z

300

Roof-top solar energy potential under performance-based building energy codes: The case of Spain  

SciTech Connect (OSTI)

The quantification at regional level of the amount of energy (for thermal uses and for electricity) that can be generated by using solar systems in buildings is hindered by the availability of data for roof area estimation. In this note, we build on an existing geo-referenced method for determining available roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of roof-top solar energy. The installation of solar hot water systems (SHWS) and photovoltaic systems (PV) is considered. After satisfying up to 70% (if possible) of the service hot water demand in every municipality, PV systems are installed in the remaining roof area. Results show that, applying this performance-based criterion, SHWS would contribute up to 1662 ktoe/y of primary energy (or 68.5% of the total thermal-energy demand for service hot water), while PV systems would provide 10 T W h/y of electricity (or 4.0% of the total electricity demand). (author)

Izquierdo, Salvador; Montanes, Carlos; Dopazo, Cesar; Fueyo, Norberto [Fluid Mechanics Group, University of Zaragoza and LITEC (CSIC), Maria de Luna 3, 50018 Zaragoza (Spain)

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building America Top Innovations Hall of Fame Profile … High Performance Without Increased Cost: Urbane Homes, Louiseville KY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > SunBuildingInnovationsLas

302

Building a market for small wind: The break-even turnkey cost of residential wind systems in the United States  

SciTech Connect (OSTI)

Although small wind turbine technology and economics have improved in recent years, the small wind market in the United States continues to be driven in large part by state incentives, such as cash rebates, favorable loan programs, and tax credits. This paper examines the state-by-state economic attractiveness of small residential wind systems. Economic attractiveness is evaluated primarily using the break-even turnkey cost (BTC) of a residential wind system as the figure of merit. The BTC is defined here as the aggregate installed cost of a small wind system that could be supported such that the system owner would break even (and receive a specified return on investment) over the life of the turbine, taking into account current available incentives, the wind resource, and the retail electricity rate offset by on-site generation. Based on the analysis presented in this paper, we conclude that: (1) the economics of residential, grid-connected small wind systems is highly variable by state and wind resource class, (2) significant cost reductions will be necessary to stimulate widespread market acceptance absent significant changes in the level of policy support, and (3) a number of policies could help stimulate the market, but state cash incentives currently have the most significant impact, and will be a critical element of continued growth in this market.

Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

2004-03-01T23:59:59.000Z

303

Multi-Year Program Plan, Building Regulatory Programs: 2010-2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

latoryprogramsmypp.pdf More Documents & Publications Appliance Standards and Building Codes Building Energy Codes Implementation Overview - 2014 BTO Peer Review Energy Code...

304

Community Development Building Division  

E-Print Network [OSTI]

California Energy Commission 1516 Ninth Street Sacramento, Ca 95814-5514 Re: Green Building Ordinance of Los Altos Energy Efficiency Ordinance, Green Building Regulations under the 2005 California Building by the Board on that date. The Green Building Regulation, Chapter 12.66 of the City Municipal code, will ensure

305

NIST Preliminary Reconnaissance, Building  

E-Print Network [OSTI]

NIST Preliminary Reconnaissance, Building Performance and Emergency Communications, Joplin)): Support R&D to improve building codes and standards and practices for design and construction of buildings of and data collection on the impact of severe wind on buildings, structures, and infrastructure ­ Section 204

Magee, Joseph W.

306

Energy Department Invests $6 Million to Increase Building Energy...  

Energy Savers [EERE]

Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates Energy Department Invests 6 Million to Increase Building Energy Code Compliance Rates August...

307

Energy Codes and the Landlord-Tenant Problem  

E-Print Network [OSTI]

R33 Keywords: energy efficiency; building codes; real estateSummer Study on Energy Efficiency in Buildings. DepartmentEnergy Efficiency Program Administrators and Building Energy

Papineau, Maya

2013-01-01T23:59:59.000Z

308

State and Local Code Implementation: Northeast Region - 2014...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Code Implementation: South-central Region - 2014 BTO Peer Review Building Energy Codes Program - 2014 BTO Peer Review State and Local Code Implementation: State Energy...

309

Building America Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale, Fresno, California (Fact Sheet)  

SciTech Connect (OSTI)

A new construction pilot community was constructed by builder-partner Wathen-Castanos Hybrid Homes (WCHH) based on a single occupied test house that was designed to achieve greater than 30% energy savings with respect to the House Simulation Protocols (Hendron, Robert; Engebrecht, Cheryn (2010). Building America House Simulation Protocols. Golden, CO: National Renewable Energy Laboratory.). Builders face several key problems when implementing a whole-house systems integrated measures package (SIMP) from a single test house into multiple houses. Although a technical solution already may have been evaluated and validated in an individual test house, the potential exists for constructability failures at the community scale. This report addresses factors of implementation and scalability at the community scale and proposes methodologies by which community-scale energy evaluations can be performed based on results at the occupied test house level. Research focused on the builder and trade implementation of a SIMP and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

Not Available

2014-10-01T23:59:59.000Z

310

Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.  

SciTech Connect (OSTI)

This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

Washington State Energy Code Program

1992-05-01T23:59:59.000Z

311

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors  

E-Print Network [OSTI]

New! Building Energy Standards Essentials for Plans Examiners & Building Inspectors Building energy codes are complex. Plans examiners and building inspectors are expected to understand and enforce energy savings. This new, hands-on course strives to provide plans examiners and building inspectors

312

Worldwide Status of Energy Standards for Buildings - Appendices  

E-Print Network [OSTI]

Organization: Energy Efficiency Building Code (EEBC-92)to increase energy efficiency in buildings: Infonnationabout energy efficiency for buildings in: Jamaica 22.

Janda, K.B.

2008-01-01T23:59:59.000Z

313

Systems Engineering Cost Estimation  

E-Print Network [OSTI]

on project, human capital impact. 7 How to estimate Cost? Difficult to know what we are building early on1 Systems Engineering Lecture 3 Cost Estimation Dr. Joanna Bryson Dr. Leon Watts University of Bath: Contrast approaches for estimating software project cost, and identify the main sources of cost

Bryson, Joanna J.

314

What is Building America?  

SciTech Connect (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

315

What is Building America?  

ScienceCinema (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-07-22T23:59:59.000Z

316

Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings  

E-Print Network [OSTI]

be used to design low energy buildings, predict the energyhigh performing building should have low energy consumptionlow cost and no cost improvements in building energy

Rosenblum, Benjamin Tarr

2012-01-01T23:59:59.000Z

317

Clark County- Energy Conservation Code  

Broader source: Energy.gov [DOE]

In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

318

King County- Green Building Initiative (Washington)  

Broader source: Energy.gov [DOE]

The King County Green Building Initiative started in 2001, and was included in the King Code Code with the Green Building and Sustainable Development Ordinance in 2008. The ordinance requires that...

319

Building Energy Codes Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation |

320

Appliance Standards and Building Codes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy NaturalEnergy 7Appliance Rebates:APPENDIXBuildings

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions  

E-Print Network [OSTI]

..................................................................................4 B1: Building Site Energy Use Intensity....................................................................................4 B2: Building Source Energy Use Intensity...............................................................................5 B3: Building Energy Cost Intensity

322

TOLEDO BETTERS BUILDINGS WITH FINANCING OPTIONS | Department...  

Energy Savers [EERE]

upgrades and financing for buildings, from offices and schools to firehouses and wastewater plants, emphasizing how building owners could save on energy costs while increasing...

323

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

324

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

MĂźller, Jens-Dominik

325

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

326

Safety in Buildings   

E-Print Network [OSTI]

Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

Hutcheon, N. B.

327

Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington  

E-Print Network [OSTI]

.34 & 0.19 SHGC) w ith Dimming Control 16.2% 23.9% $5,596 27.0% $960 $6,556 $55,700 - $83,550 8.5 - 12.7 E Renewable Power Measure 16 28 kW Photovoltaic Array 15.3% 18.7% $4,227 17.1% $607 $4,834 $140,000 - $210,000 29.0 - 43.4 Description of Combined... Control 7.4% 10.1% $2,011 12.8% $402 $2,413 $15,723 - $23,584 6.5 - 9.8 15 Sky light (3% SRR, U-0.34 & 0.19 SHGC) w ith Dimming Control 15.3% 21.9% $4,369 25.1% $789 $5,158 $55,700 - $83,550 10.8 - 16.2 E Renewable Power Measure 16 28 kW Photovoltaic...

Do, S.; Baltazar, J.C.; Haberl, J.; Lewis, C.; Kim, K.H.; Kim, H.

328

Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Restaurant Buildings in the City of Arlington  

E-Print Network [OSTI]

) EPLUS file, Deru et al. 2011 c) College Station Restaurant SurveyPackaged single zone units w/ gas fired furnace Static pressure : 2.5 in-wc Fan efficiency: Overall Eff: 55% (Motor eff. @1800rpm: 87.5) Service Hot Water Peak Hot Water Flow Rate - 133....1 2001 Table 9.4.5 ASHRAE 90.1 2007 Extra Power Allowance N.A 5% Section 9.4.5 ASHRAE 90.1 2007 Equipment Electric Equipment in Dining Space Table 9, Deru et al., 2011 HVAC Systems Zoning HVAC System Type HVAC Efficiency ?240,000 Btu/hr and < 760...

2011-01-01T23:59:59.000Z

329

Cost-Effective Energy Efficiency Measures for Above Code(ASHRAE 90.1-2001 and 2007) Small Restaurant Buildings in the City of Arlington  

E-Print Network [OSTI]

error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy Systems Laboratory or any....2 17 Demand Control Ventilation System 25.6% 14.3% $2,593 1.8% $43 $2,637 $737 - $1,105 0.3 - 0.4 E Service Hot Water Heater Measures 18 Improved Eff iicency for Service Water Heaters (From Et 80% to Et 95%) 2.7% 1.3% $225 0.0% $0 $225 $342 - $513 1...

Mukhopadhyay, J.; Kim, H.; Do, S.; Kim, K.H.; Baltazar, J.C.; Haberl, J.; Lewis, C.

330

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

331

Standards and Codes  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) is committed to improving the energy efficiency of residential buildings in a cost-effective manner. By working with teams of researchers, industry, and organizations...

332

State and Local Code Implementation: South-central Region - 2014...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Region - 2014 BTO Peer Review More Documents & Publications Building Energy Codes Program - 2014 BTO Peer Review State and Local Code Implementation: Northeast Region -...

333

State and Local Code Implementation: State Energy Officials ...  

Energy Savers [EERE]

Energy Officials - 2014 BTO Peer Review More Documents & Publications Building Energy Codes Collaborative Technical Assistance for States Technical Assistance: Increasing Code...

334

Energy Codes and Standards: Facilities  

SciTech Connect (OSTI)

Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

2007-01-01T23:59:59.000Z

335

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

336

Energy Factors, Leasing Structure and the Market Price of Office Buildings in the U.S.  

E-Print Network [OSTI]

such as the energy efficiency of building engineeringIEA, 2008, Energy efficiency requirements in building codes,motivating energy-efficiency in these buildings. 2 Direct

Jaffee, Dwight; Stanton, Richard; Wallace, Nancy

2012-01-01T23:59:59.000Z

337

Transforming Ordinary Buildings into Smart Buildings via Low...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joshi shows how the process enables electronics components to be printed on flexible plastic substrates. Credit: Oak Ridge National Lab Low-Cost Wireless Sensors for Building...

338

Quantum stabilizer codes and beyond  

E-Print Network [OSTI]

The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.

Pradeep Kiran Sarvepalli

2008-10-14T23:59:59.000Z

339

EXPENDITURE OBJECT CODES Foundation FOUNDATION EXPENDITURE OBJECT CODES are used primarily by Accounting Services for Foundation  

E-Print Network [OSTI]

EXPENDITURE OBJECT CODES ­ Foundation 2-J page 1 FOUNDATION EXPENDITURE OBJECT CODES are used primarily by Accounting Services for Foundation transactions. 3080 Foundation Service Fee: Allocation of administrative costs to Foundation beneficiary departmental accounts. 3120 LSU Magazine Costs - Foundation

Harms, Kyle E.

340

Code Description Code Description  

E-Print Network [OSTI]

Leave* 5127 Officials 5217 Faculty Sick Leave Payment 5124 Personal Service Contracts 5211 Research Services Contracts Scholarships & Fellowships Faculty Fringe Contract Services #12;Banner Account Code

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Water Management Guide - Building America Top Innovation | Department...  

Energy Savers [EERE]

Water Management Guide - Building America Top Innovation Water Management Guide - Building America Top Innovation Cover of the EEBA Water Management Guide. As energy codes and...

342

Summary Report: Control Strategies for Mixed-Mode Buildings  

E-Print Network [OSTI]

the IECC building code and ASHRAE 90 have converged on an 8Office Buildings. ” ASHRAE Transactions. Vol. 90 (1B). 1984.

Brager, Gail; Borgeson, Sam; Lee, Yoonsu

2007-01-01T23:59:59.000Z

343

The development of an updatable series of problems that can be used to demonstrate construction cost estimating principles to students of civil engineering and building construction  

E-Print Network [OSTI]

Construction Equipment 5 Prices Summarize Equipment Costs Calculate Labor Manhours Determine wage Rates and Crew Mixes Price out Labor Obtain Material Prices 5 Availabilities Assemble Direct Cost Items Determine Overhead Personnel Calculate Labor Burden... is solving a problem from his text us1ng a labor rate of $2 per hour for a carpenter when the present rate is in excess of $8 per hour. He knows that the expected "right" answer is go1ng to be wrong by at least 400K. Pulver tried to overcome this cost...

Tiner, Wayne Douglas

2012-06-07T23:59:59.000Z

344

Personalized building comfort control  

E-Print Network [OSTI]

Creating an appropriate indoor climate is essential to worker productivity and personal happiness. It is also an area of large expenditure for building owners. And, with rising fuel costs, finding ways of reducing energy ...

Feldmeier, Mark Christopher, 1974-

2009-01-01T23:59:59.000Z

345

VALIDATION OF THE eCALC COMMERCIAL CODE-COMPLIANT SIMULATION VERSUS MEASURED DATA FROM AN OFFICE BUILDING IN A HOT AND HUMID CLIMATE  

E-Print Network [OSTI]

for the case-study building were performed and reported in Cho and Haberl (2008). In this paper an extension of the previous work is presented using the eCALC commercial simulation model, which uses simplified geometry and ASHRAE Standard 90.1-compliant...

Cho, S.; Haberl, J.

346

Recommendations for 15% Above-Code Energy Efficiency Measures on Implementing Houston Amendments to Single-Family Residential Buildings in Houston Texas  

E-Print Network [OSTI]

. No occupancy sensors were installed in the exterior lighting fixtures 13 . Exterior 3 The overall characteristics of the house are from the National Association of Home Builders (NAHB 2003) 4.... National Appliance Energy Conservation Act. NAHB. 2003. The Builders Practices Survey Reports. National Association of Home Builders. Upper Marlboro, MD: NAHB Research Center. NREL. 2001. Building America House Performance Analysis Procedures (NREL...

Mukhopadhyay, J.; Liu, Z.; Malhotra, M.; Kota, S.; Blake, S.; Haberl, J.; Culp, C.; Yazdani, B.

347

Audit Costs for the 1986 Texas Energy Cost Containment Program  

E-Print Network [OSTI]

Direct program costs for detailed audits of 13.5 million square feet of institutional building space in the 1986 Texas Energy Cost Containment Program were $0.047/SF. The building area was 63 percent simple (offices, schools, and universities...

Heffington, W. M.; Lum, S. K.; Bauer, V. A.; Turner, W. D.

1987-01-01T23:59:59.000Z

348

State and Local Code Implementation: Southeast Region - 2014...  

Energy Savers [EERE]

More Documents & Publications Southeast Energy Efficiency Alliance's Building Energy Codes Project EA-1872: Draft Environmental Assessment EA-1871: Final Environmental...

349

Travel Codes Traveler Is Employee  

E-Print Network [OSTI]

Travel Codes Traveler Is Employee: 64100-Domestic Travel 64150-Mileage 64200-International Travel Supplies & Expense Codes 71410-Office Supplies 71430-Lab/Research Supplies (dollar value of each item less Charges Equipment Codes 84320-Equipment (non-computer & peripherals) with a cost of $5,000.00 or more per

Arnold, Jonathan

350

PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--  

E-Print Network [OSTI]

management of electricity demand. ¡ PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

Perez, Richard R.

351

Efficient, transparent, and comprehensive runtime code manipulation  

E-Print Network [OSTI]

This thesis addresses the challenges of building a software system for general-purpose runtime code manipulation. Modern applications, with dynamically-loaded modules and dynamically-generated code, are assembled at runtime. ...

Bruening, Derek L. (Derek Lane), 1976-

2004-01-01T23:59:59.000Z

352

Decommissioning Unit Cost Data  

SciTech Connect (OSTI)

The Rocky Flats Closure Site (Site) is in the process of stabilizing residual nuclear materials, decommissioning nuclear facilities, and remediating environmental media. A number of contaminated facilities have been decommissioned, including one building, Building 779, that contained gloveboxes used for plutonium process development but did little actual plutonium processing. The actual costs incurred to decommission this facility formed much of the basis or standards used to estimate the decommissioning of the remaining plutonium-processing buildings. Recent decommissioning activities in the first actual production facility, Building 771, implemented a number of process and procedural improvements. These include methods for handling plutonium contaminated equipment, including size reduction, decontamination, and waste packaging, as well as management improvements to streamline planning and work control. These improvements resulted in a safer working environment and reduced project cost, as demonstrated in the overall project efficiency. The topic of this paper is the analysis of how this improved efficiency is reflected in recent unit costs for activities specific to the decommissioning of plutonium facilities. This analysis will allow the Site to quantify the impacts on future Rocky Flats decommissioning activities, and to develop data for planning and cost estimating the decommissioning of future facilities. The paper discusses the methods used to collect and arrange the project data from the individual work areas within Building 771. Regression and data correlation techniques were used to quantify values for different types of decommissioning activities. The discussion includes the approach to identify and allocate overall project support, waste management, and Site support costs based on the overall Site and project costs to provide a ''burdened'' unit cost. The paper ultimately provides a unit cost basis that can be used to support cost estimates for decommissioning at other facilities with similar equipment and labor costs. It also provides techniques for extracting information from limited data using extrapolation and interpolation techniques.

Sanford, P. C.; Stevens, J. L.; Brandt, R.

2002-02-26T23:59:59.000Z

353

Comparison of ASHRAE Standard 90.1, 189.1 and IECC Codes for Large Office Building in Texas), Energy Systems Laboratory, Texas A&M University.  

E-Print Network [OSTI]

herein is necessarily error-free. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the Energy.... The comparison is carried out using the simulation model for a large office building initially developed by Ahmad et al. (2005) and Kim et al. (2009) using DOE-2.1e simulation program. The model has been updated and modified as per the requirements...

Mukhopadhyay, J.; Baltazar, J.C.; Kim,H.; Haberl, J.

2011-01-01T23:59:59.000Z

354

Smarter Buildings Survey Consumers Rank Their Office Buildings  

E-Print Network [OSTI]

of all electricity in the US is consumed by buildings ­ and up to 50 percent of that is wasted will be the single largest energy consumers and emitters of greenhouse gasses on our planet. The skyscrapers and building portfolios: ¡ Operational costs. The combined effect of rising energy costs and a dwindling global

355

Building automation systems (BAS) are concerned with control and monitoring of buildings, while aiming to  

E-Print Network [OSTI]

Building automation systems (BAS) are concerned with control and monitoring of buildings, while alarm systems or physical access control), ¡ control the climate in the building/supervise and control operating and energy costs Realization and Experiences with a Low-Cost Building Automation Security Testbed

Behnke, Sven

356

Statewide Electrical Energy Cost Savings and Peak Demand Reduction from the IECC Code-Compliant, Single-Family Residences in Texas (2002-2009)  

E-Print Network [OSTI]

constructed in Texas was determined using the annual surveys, National Association of Home Builders (NAHB) (NAHB 2001?2005 and 2009-2010)4. Figure 6 shows the ratio of the single family residences in Texas by type of heating system for Climate Zone 2 (CZ 2... for New Homes (Paquette et al. 2010), the American Council for an Energy-Efficient Economy (ACEEE) Consumer Guide to Home Energy Savings (Amann et al. 2007), and the similar incremental cost analysis studies in Texas (Malhotra et al. 2008; Kim et al...

Kim, H; Baltazar, J.C.; Haberl, J.

357

FEI Program Session: Date: CHRIS Code: Session Number:  

Broader source: Energy.gov (indexed) [DOE]

OPM Federal Executive Institute - DOE CHRIS Codes: (Program Tuition Cost - 19,875.00) *Program Calendar for Fiscal Year 2015 FEI Program Session: Date: CHRIS Code: Session Number:...

358

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

359

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

Costs and Financial Benefits of Green Buildings” A Report toEvidence on the Green Building Rent and Price Premium,” (Properties. San Rafael: Green Building Finance Consortium.

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

360

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network [OSTI]

to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency...

Raustad, R.; Basarkar, M.; Vieira, R.

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

362

City of Indianapolis- Green Building Incentive Program  

Broader source: Energy.gov [DOE]

The Indianapolis Office of Sustainability and the Department of Code Enforcement offer reduction in permit fees for projects achieving certain green building criteria. Property owners and...

363

Non-Residential Energy Code National and Regional Codes  

E-Print Network [OSTI]

Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 ¡ ASHRAE 90.1 2001 & addenda ¡ E-Benchmark Guidelines (NBI) #12;Approach ¡ Comparison of the State;Approach (cont.) ¡ Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

364

Predicted versus monitored performance of energy-efficiency measures in new commercial buildings from energy edge  

SciTech Connect (OSTI)

Energy Edge is a research-oriented demonstration program involving 28 new commercial buildings in the Pacific Northwest. This paper discusses the energy savings and cost-effectiveness of energy-efficiency measures for the first 12 buildings evaluated using simulation models calibrated with measured end-use data. Average energy savings per building from the simulated code baseline building was 19%, less than the 30% target. The most important factor for the lower savings is that many of the installed measures differ from the measures specified in the design predictions. Only one of the first 12 buildings met the project objective of reducing energy use by more than 30% at a cost below the target of 56 mills/kWh (in 1991 dollars). Based on results from the first 12 calibrated simulation models, 29 of the 66 energy-efficiency measures, or 44%, met the levelized cost criterion. Despite the lower energy savings from individual measures, the energy-use intensities of the buildings are lower than other regional comparison data for new buildings. The authors review factors that contribute to the uncertainty regarding measured savings and suggest methods to improve future evaluations.

Piette, M.A.; Nordman, B.; deBuen, O.; Diamond, R.

1993-08-01T23:59:59.000Z

365

Request for Information: High Impact Commercial Building Technology...  

Energy Savers [EERE]

U.S. Department of Energy's (DOE) Building Technologies Office (BTO) is developing a pipeline of high impact, cost-effective, energy saving and underutilized commercial building...

366

Energy Codes at a Glance  

SciTech Connect (OSTI)

Feeling dim from energy code confusion? Read on to give your inspections a charge. The U.S. Department of Energy’s Building Energy Codes Program addresses hundreds of inquiries from the energy codes community every year. This article offers clarification for topics of confusion submitted to BECP Technical Support of interest to electrical inspectors, focusing on the residential and commercial energy code requirements based on the most recently published 2006 International Energy Conservation CodeŽ and ANSI/ASHRAE/IESNA1 Standard 90.1-2004.

Cole, Pamala C.; Richman, Eric E.

2008-09-01T23:59:59.000Z

367

Spinal codes  

E-Print Network [OSTI]

Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the ...

Perry, Jonathan, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

368

Development of Methodology for Determination of Energy efficient and Cost effective Measures in Existing Single-family Residential Buildings using Easy-to-use Simulation  

E-Print Network [OSTI]

by estimating the 1 Corresponding author. Tel.: +82-10-4642-6290; Email address: keehankim@outlook.com (K.H. Kim) ESL-PA-14-07-02 2 energy savings and cost effectiveness of each measure [2... of the potential ECMs, which includes a calculation of annual energy savings and pay-back period of the potential ECMs. At first, in order to model a standard house that is compliant with the 2009 IECC using the DDP, the performance path alternative provided...

Kim, K.H; Haberl, J.S.

369

High Performance Home Cost Performance Trade-Offs: Production...  

Energy Savers [EERE]

High Performance Home Cost Performance Trade-Offs: Production Builders - Building America Top Innovation High Performance Home Cost Performance Trade-Offs: Production Builders -...

370

High Performance Without Increased Cost: Urbane Homes, Louisville...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Without Increased Cost: Urbane Homes, Louisville, KY - Building America Top Innovation High Performance Without Increased Cost: Urbane Homes, Louisville, KY -...

371

INL Green Building Strategy  

SciTech Connect (OSTI)

Green buildings, also known as sustainable buildings, resource efficient buildings, and high performance buildings, are structures that minimize the impact on the environment by using less energy and water, reducing solid waste and pollutants, and limiting the depletion of natural resources. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish the mission. This infrastructure, particularly the buildings, should incorporate green design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. With this in mind, the recommendations described in this strategy are intended to form the INL foundation for green building standards. The recommendations in this strategy are broken down into three levels: Baseline Minimum, Leadership in Energy and Environmental Design (LEED)Certification, and Innovative. Baseline Minimum features should be included in all new occupied buildings no matter what the purpose or size. These features do not require significant research, design, or capital costs and yet they can reduce Operation and Maintenance (O&M) costs and produce more environmentally friendly buildings. LEED Certification features are more aggressive than the Baseline Minimums in that they require documentation, studies, and/or additional funding. Combined with the Baseline Minimums, many of the features in this level will need to be implemented to achieve the goal of LEED certification. LEED Silver certification should be the minimum goal for all new buildings (including office buildings, laboratories, cafeterias, and visitor centers) greater than 25,000 square feet or a total cost of $10 million. Innovative features can also contribute to LEED certification, but are less mainstream than those listed in the previous two levels. These features are identified as areas where INL can demonstrate leadership but they could require significant upfront cost, additional studies, and/or development. Appendix A includes a checklist summary of the INL Green Building Strategy that can be used as a tool during the design process when considering which green building features to include. It provides a quick reference for determining which strategies have lower or no increased capital cost, yield lower O&M costs, increase employee productivity, and contribute to LEED certification.

Jennifer Dalton

2005-05-01T23:59:59.000Z

372

Utility residential new construction programs: Going beyond the code. A report from the Database on Energy Efficiency Programs (DEEP) Project  

SciTech Connect (OSTI)

Based on an evaluation of 10 residential new construction programs, primarily sponsored by investor-owned utilities in the United States, we find that many of these programs are in dire straits and are in danger of being discontinued because current inclusion of only direct program effects leads to the conclusion that they are not cost-effective. We believe that the cost-effectiveness of residential new construction programs can be improved by: (1) promoting technologies and advanced building design practices that significantly exceed state and federal standards; (2) reducing program marketing costs and developing more effective marketing strategies; (3) recognizing the role of these programs in increasing compliance with existing state building codes; and (4) allowing utilities to obtain an ``energy-savings credit`` from utility regulators for program spillover (market transformation) impacts. Utilities can also leverage their resources in seizing these opportunities by forming strong and trusting partnerships with the building community and with local and state government.

Vine, E.

1995-08-01T23:59:59.000Z

373

Marin County- Green Building Requirements  

Broader source: Energy.gov [DOE]

Marin County's original Single Family Dwelling Energy Efficiency Ordinance went into effect on January 1, 2003. The building code has grown in strength and scope through the years and the...

374

Example of Environmental Restoration Code of Accounts - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes. g4301-1chp17.pdf -- PDF Document, 12 KB Writer: John Makepeace Subjects: Administration Management...

375

US Department of Energy Office of Codes and Standards resource book  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide a discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stockholders in the building energy codes and standards arena.

NONE

1996-01-01T23:59:59.000Z

376

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings  

SciTech Connect (OSTI)

Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-01-01T23:59:59.000Z

377

Comparison of 2006 IECC and 2009 IECC Commercial Energy Code Requirements for Kansas City, MO  

SciTech Connect (OSTI)

This report summarizes code requirements and energy savings of commercial buildings in climate zone 4 built to the 2009 IECC when compared to the 2006 IECC. In general, the 2009 IECC has higher insulation requirements for exterior walls, roof, and windows and have higher efficiency requirements for HVAC equipment (HVAC equipment efficiency requirements are governed by National Appliance Conversion Act of 1987 (NAECA), and are applicable irrespective of the IECC version adopted). The energy analysis results show that residential and nonresidential commercial buildings meeting the 2009 IECC requirements save between 6.1% and 9.0% site energy, and between 6.4% and 7.7% energy cost when compared to 2006 IECC. Analysis also shows that semiheated buildings have energy and cost savings of 3.9% and 5.6%.

Huang, Yunzhi; Gowri, Krishnan

2011-03-22T23:59:59.000Z

378

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials' (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U[sub o]-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for group R'' residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

379

Technical support document for proposed revision of the model energy code thermal envelope requirements  

SciTech Connect (OSTI)

This report documents the development of the proposed revision of the council of American Building Officials` (CABO) 1993 supplement to the 1992 Model Energy Code (MEC) (referred to as the 1993 MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. The goal of this analysis was to develop revised guidelines based on an objective methodology that determined the most cost-effective (least total life-cycle cost [LCC]) combination of energy conservation measures (ECMs) for residences in different locations. The ECMs with the lowest LCC were used as a basis for proposing revised MEC maximum U{sub o}-value (thermal transmittance) curves in the MEC format. The changes proposed here affect the requirements for ``group R`` residences. The group R residences are detached one- and two-family dwellings (referred to as single-family) and all other residential buildings three stories or less (referred to as multifamily).

Conner, C.C.; Lucas, R.G.

1993-02-01T23:59:59.000Z

380

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TRADE COSTS AND THE GAINS FROM TRADE IN CROP AGRICULTURE  

E-Print Network [OSTI]

costs, trade liberalization. JEL codes: F18, Q17, Q54. Although the theoretical case for the gains from

Tullos, Desiree

382

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

383

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network [OSTI]

Building energy codes do not apply in rural areas, whichfor rural buildings. The “No Building Codes” scenario energyEnergy Policy 37 (6): 2066- Ministry of Construction (MOC)/Ministry of Housing and Urban-Rural

Zhou, Nan

2010-01-01T23:59:59.000Z

384

Hydrogen Production CODES & STANDARDS  

E-Print Network [OSTI]

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS for 2010 ¡ Reduce the cost of distributed production of hydrogen from natural gas and/or liquid fuels to $1 SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pete Devlin #12;Hydrogen

385

Sustainable Building Basics  

Broader source: Energy.gov [DOE]

Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

386

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

387

Operating Costs Estimates Cost Indices  

E-Print Network [OSTI]

to update costs of specific equipment, raw material or labor or CAPEX and OPEX of entire plants Cost Indices

Boisvert, Jeff

388

Applications of RESRAD family of computer codes to sites contaminated with radioactive residues.  

SciTech Connect (OSTI)

The RESIL4D family of computer codes was developed to provide a scientifically defensible answer to the question ''How clean is clean?'' and to provide useful tools for evaluating human health risk at sites contaminated with radioactive residues. The RESRAD codes include (1) RESRAD for soil contaminated with radionuclides; (2) RESRAD-BUILD for buildings contaminated with radionuclides; (3) RESRAD-CHEM for soil contaminated with hazardous chemicals; (4) RESRAD-BASELINE for baseline risk assessment with measured media concentrations of both radionuclides and chemicals; (5) RESRAD-ECORISK for ecological risk assessment; (6) RESRAD-RECYCLE for recycle and reuse of radiologically contaminated metals and equipment; and (7) RESRAD-OFFSITE for off-site receptor radiological dose assessment. Four of these seven codes (RESRAD, RESRAD-BUILD, RESRAD-RECYCLE, and RESRAD-OFFSITE) also have uncertainty analysis capabilities that allow the user to input distributions of parameters. RESRAD has been widely used in the United States and abroad and approved by many federal and state agencies. Experience has shown that the RESRAD codes are useful tools for evaluating sites contaminated with radioactive residues. The use of RESRAD codes has resulted in significant savings in cleanup cost. Analysis of 19 site-specific uranium guidelines is discussed in the paper.

Yu, C.; Kamboj, S.; Cheng, J.-J.; LePoire, D.; Gnanapragasam, E.; Zielen, A.; Williams, W. A.; Wallo, A.; Peterson, H.

1999-10-21T23:59:59.000Z

389

Cost Principles Webinar for DOE Grant Recipients  

Broader source: Energy.gov [DOE]

The Office of Management and Budget (OMB) Cost Principles in the Code of Federal Regulations (CFR) define, by organization type, what kinds of costs are allowable or unallowable for reimbursement...

390

Analysis of electric vehicle interconnection with commercial building microgrids  

E-Print Network [OSTI]

energy costs, CO 2 emissions, or multiple objectives of providing services to a building microgrid produces technology neutral

Stadler, Michael

2011-01-01T23:59:59.000Z

391

A Buildings Module for the Stochastic Energy Deployment System  

SciTech Connect (OSTI)

The U.S. Department of Energy (USDOE) is building a new long-range (to 2050) forecasting model for use in budgetary and management applications called the Stochastic Energy Deployment System (SEDS), which explicitly incorporates uncertainty through its development within the Analytica(R) platform of Lumina Decision Systems. SEDS is designed to be a fast running (a few minutes), user-friendly model that analysts can readily run and modify in its entirety through a visual programming interface. Lawrence Berkeley National Laboratory is responsible for implementing the SEDS Buildings Module. The initial Lite version of the module is complete and integrated with a shared code library for modeling demand-side technology choice developed by the National Renewable Energy Laboratory (NREL) and Lumina. The module covers both commercial and residential buildings at the U.S. national level using an econometric forecast of floorspace requirement and a model of building stock turnover as the basis for forecasting overall demand for building services. Although the module is fundamentally an engineering-economic model with technology adoption decisions based on cost and energy performance characteristics of competing technologies, it differs from standard energy forecasting models by including considerations of passive building systems, interactions between technologies (such as internal heat gains), and on-site power generation.

Lacommare, Kristina S H; Marnay, Chris; Stadler, Michael; Borgeson, Sam; Coffey, Brian; Komiyama, Ryoichi; Lai, Judy

2008-05-15T23:59:59.000Z

392

BETTER BUILDINGS ALLIANCE  

Office of Energy Efficiency and Renewable Energy (EERE)

Commercial buildings—our offices, schools, hospitals, restaurants, hotels and stores—consume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

393

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

394

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

395

Incentive program for energy efficient design of state buildings  

SciTech Connect (OSTI)

In 1996, the State of Utah instigated a pilot program intended to improve the energy efficiency of newly designed State buildings. The goal of the program was to show that buildings could be designed to be more energy efficient than the State's energy code, ASHRAE/IES 90.1, without adding to the construction costs. Four of the eight buildings beat the code by at least 50%; one by 40% and one by only 22%. One project is still in design. This paper summarizes the program's design, implementation and results through May 3, 1998. It presents an informal evaluation and discusses program highlights - both positive and negative. The difficulties--both technical and political--in using the ASHRAE Standard for Energy Efficient Design of New Buildings (ASHRAE/IES 90.1) in an incentive-based program are discussed. Possible solutions to specific problems are presented. The impact of incentives on the design teams, their methods and the resulting design are also discussed.

Case, M.E.; Wingerden, J. [and others

1998-07-01T23:59:59.000Z

396

Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate  

SciTech Connect (OSTI)

This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

2011-09-01T23:59:59.000Z

397

Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate  

SciTech Connect (OSTI)

This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

2011-09-01T23:59:59.000Z

398

Transcript for Building America Video  

Broader source: Energy.gov [DOE]

Transcript of a video about how DOE’s Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

399

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network [OSTI]

We see that the low energy buildings need not cost more thanincludes both very low energy buildings, and buildings thatThe range shows the low-energy buildings at the left end,

Piette, M.A.

2010-01-01T23:59:59.000Z

400

HPCBSHigh Performance Commercial Building Systems Amanda Potter, Hannah Friedman and Tudi Haasl,  

E-Print Network [OSTI]

HPCBSHigh Performance Commercial Building Systems Amanda Potter, Hannah Friedman and Tudi Haasl commercial building energy use. Although the success and cost-effectiveness of commissioning projects depends systems are becoming more prevalent in commercial buildings, yet building owners often find

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Energy Codes: State and Local Code Implementation Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation |Mark Lessans Fellow

402

Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems  

E-Print Network [OSTI]

Reducing energy consumption of buildings is a good contribution to protect the environment and to reduce costs. The first and most important step to operate a building most efficiently is to make aware of most of the technical parameters. Connecting...

Mehler, G.

2008-01-01T23:59:59.000Z

403

Our Ref: 4376.04 ADDING A CODE CONFORMANCE TOOL TO AN INTEGRATED  

E-Print Network [OSTI]

Our Ref: 4376.04 ADDING A CODE CONFORMANCE TOOL TO AN INTEGRATED BUILDING DESIGN ENVIRONMENT in full. #12;ADDING A CODE CONFORMANCE TOOL TO AN INTEGRATED BUILDING DESIGN ENVIRONMENT W.B. Mugridge, J of ThermalDesigner, a code conformance tool, and its connection to an integrated building model. The original

Amor, Robert

404

LIFE Cost of Electricity, Capital and Operating Costs  

SciTech Connect (OSTI)

Successful commercialization of fusion energy requires economic viability as well as technical and scientific feasibility. To assess economic viability, we have conducted a pre-conceptual level evaluation of LIFE economics. Unit costs are estimated from a combination of bottom-up costs estimates, working with representative vendors, and scaled results from previous studies of fission and fusion plants. An integrated process model of a LIFE power plant was developed to integrate and optimize unit costs and calculate top level metrics such as cost of electricity and power plant capital cost. The scope of this activity was the entire power plant site. Separately, a development program to deliver the required specialized equipment has been assembled. Results show that LIFE power plant cost of electricity and plant capital cost compare favorably to estimates for new-build LWR's, coal and gas - particularly if indicative costs of carbon capture and sequestration are accounted for.

Anklam, T

2011-04-14T23:59:59.000Z

405

Introduction to Algebraic Codes  

E-Print Network [OSTI]

codes. Since the elementary coding theory is assumed to be of interest only to ... the algebraic codes, mainly BCH codes, Reed-Solomon codes and classical ...

406

Mainstreaming Building Energy Efficiency Codes in Developing...  

Open Energy Info (EERE)

developed countries. It also includes case studies of four developing countries-China,Egypt,India,and Mexico-and the state of California in the United States of America. It aims...

407

Building Energy Code | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNREL

408

Building Energy Codes | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower Jump to:BuffaloNetwork

409

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy- Mixed Humid AffordableforColdDepartmentEnergy

410

Building Codes Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation | Department of

411

SWEEPs Building Energy Codes Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013: AlaskaSTEM0-1

412

Facilities Cost Pool: Maintenance Service Responsibilities  

E-Print Network [OSTI]

C 16 EXTERIOR LANDSCAPING University Standard FM FM C 17 EXTERIOR STD BUILDING SIGNS FM FM FM FM FMD 22 DATA POINT MONITORING Environmental building standard FM FM C Cost Pool: Maintenance Service Responsibilities 2 Table of Contents 3 Building Shell

Gulliver, Robert

413

Transforming Ordinary Buildings into Smart Buildings via Low-Cost,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun andDepartmentTransformational

414

Holographic codes  

E-Print Network [OSTI]

There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

Latorre, Jose I

2015-01-01T23:59:59.000Z

415

Holographic codes  

E-Print Network [OSTI]

There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

Jose I. Latorre; German Sierra

2015-02-23T23:59:59.000Z

416

Building America  

SciTech Connect (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

417

Cost-Effectiveness Analysis of the Residential Provisions of...  

Office of Scientific and Technical Information (OSTI)

These codes set the minimum requirements for energy-efficient building design and construction and ensure energy savings on a national level. The basis of the residential...

418

Simulating the Transverse Ising Model on a Quantum Computer: Error Correction with the Surface Code  

E-Print Network [OSTI]

of a fault- tolerant quantum computer. The surface code approach has one of the highest known tolerable error of the surface code is four orders of magnitude higher than the concatenation code, building a quantum computer implementation, a new approach to building a quantum computer with the surface code (which is a kind

Geller, Michael R.

419

Jackson Park Hospital Green Building Medical Center  

SciTech Connect (OSTI)

Jackson Park Hospital completed the construction of a new Medical Office Building on its campus this spring. The new building construction has adopted the City of Chicago�s recent focus on protecting the environment, and conserving energy and resources, with the introduction of green building codes. Located in a poor, inner city neighborhood on the South side of Chicago, Jackson Park Hospital has chosen green building strategies to help make the area a better place to live and work.

William Dorsey; Nelson Vasquez

2010-03-01T23:59:59.000Z

420

City of Los Angeles- Zoning Code  

Broader source: Energy.gov [DOE]

Chapter I of Los Angeles' Municipal Code, Height of Building or Structures, provides an exemption for solar energy devices, or similar structures. They may be erected above the height limit...

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Prescriptive Codes: A Cure or a Curse?  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question Do codes and standards get in the way of high performance?"

422

Adoption of Voluntary Environmental Standards: The Role of Signaling and Intrinsic Benefits in the Diffusion of the LEED Green Building Standards.  

E-Print Network [OSTI]

the Diffusion of Green Building Practices. ” AppliedCosts and Financial Benefits of Green Buildings: A Report toDiffusion of the LEED Green Building Standards August 17,

Corbett, C.J.; Muthulingam, S.

2007-01-01T23:59:59.000Z

423

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

424

The retrofitting of existing buildings for seismic criteria  

E-Print Network [OSTI]

This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

Besing, Christa, 1978-

2004-01-01T23:59:59.000Z

425

Building Energy-Efficiency Best Practice Policies and Policy Packages  

E-Print Network [OSTI]

in California to be zero net energy by 2020, and for allof zero-net energy buildings codes for 2018 and 2020.to make zero net energy codes feasible by 2020 and 2030. The

Levine, Mark

2014-01-01T23:59:59.000Z

426

Howard County- High Performance and Green Building Property Tax Credits  

Broader source: Energy.gov [DOE]

The state of Maryland permits local governments (Md Code: Property Tax § 9-242) to offer property tax credits for high performance buildings and energy conservation devices (Md Code: Property Tax §...

427

Project materials [Commercial High Performance Buildings Project  

SciTech Connect (OSTI)

The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

None

2001-01-01T23:59:59.000Z

428

DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS  

E-Print Network [OSTI]

CONTROLS DISTRIBUTED GENERATION USE AND CONTROL IN BUILDINGS ABSTRACT The increasing commercial is designed to continuously minimize energy costs by monitoring utility prices and building demand, while.g., thermal energy storage) have been developed. Measurements of building electrical and thermal demand were

Mease, Kenneth D.

429

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

430

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

431

Benefits of Commisioning New & Existing Buildings  

E-Print Network [OSTI]

of * Data from Whole Building Design Guide ? a program of National Institute of Building Sciences (06-21-2010) 5 $4.00 $1.00 WHY ARE OWNERS USING THE CX PROCESS? Data obtained from ?Costs and Benefits of Commissioning New and Existing Commercial... Buildings? ? June 21, 2005. LBNL, PECI, TAMU-ESL Data obtained from ?Costs and Benefits of Commissioning New and Existing Commercial Buildings? ? June 21, 2005. LBNL, PECI, TAMU-ESL WHAT HAPPENS WHEN NEW BUILDINGS AREN?T PROPERLY COMMISSIONED...

Meline, K.

2011-01-01T23:59:59.000Z

432

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

433

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

434

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

435

Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data  

SciTech Connect (OSTI)

This report presents data and assumptions employed in an application of PNNL’s Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of state–level population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

2014-12-06T23:59:59.000Z

436

Building America Whole-House Solutions for New Homes: Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Homes: Field Testing of Compartmentalization Methods for Multifamily Construction Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code - Building...

437

Inspiring and Building the Next Generation of Residential Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

energy efficient and offer improved air quality, comfort and greater durability. In response, building codes are constantly increasing in rigor and consumers are expecting more...

438

Green Buildings in Green Cities: Integrating Energy Efficiency into the Real Estate Industry  

E-Print Network [OSTI]

the larger diffusion of green and energy efficient buildingsowners, the costs of green and energy efficient buildings,market. Demand for Green and Energy Efficient Buildings The

Bardhan, Ashok; Kroll, Cynthia A.

2011-01-01T23:59:59.000Z

439

Acoustical and Noise Control Criteria and Guidelines for Building Design and Operations  

E-Print Network [OSTI]

Noise, vibration and acoustical design, construction, commissioning and operation practices influence building cost, efficiency, performance and effectiveness. Parameters for structural vibration, building systems noise, acoustics and environmental...

Evans, J. B.; Himmel, C. N.

440

Free Energy Code Online Discussion  

E-Print Network [OSTI]

Free Energy Code Online Discussion for Building Department Personnel Join us for this FREE 90 by California utility customers under the auspices of the California Public Utilities Commission and in support -- availability subject to enrollment levels: Tuesday, October 1 ­ Click here to register Wednesday, October 2

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

442

Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates  

SciTech Connect (OSTI)

This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

2011-02-01T23:59:59.000Z

443

Intelligent Controls for Net-Zero Energy Buildings  

SciTech Connect (OSTI)

The goal of this project is to develop and demonstrate enabling technologies that can empower homeowners to convert their homes into net-zero energy buildings in a cost-effective manner. The project objectives and expected outcomes are as follows: • To develop rapid and scalable building information collection and modeling technologies that can obtain and process “as-built” building information in an automated or semiautomated manner. • To identify low-cost measurements and develop low-cost virtual sensors that can monitor building operations in a plug-n-play and low-cost manner. • To integrate and demonstrate low-cost building information modeling (BIM) technologies. • To develop decision support tools which can empower building owners to perform energy auditing and retrofit analysis. • To develop and demonstrate low-cost automated diagnostics and optimal control technologies which can improve building energy efficiency in a continual manner.

Li, Haorong; Cho, Yong; Peng, Dongming

2011-10-30T23:59:59.000Z

444

Building technologies program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

445

California Air Resources Board's "California Green Building Strategy"  

E-Print Network [OSTI]

California Air Resources Board's "California Green Building Strategy" Collectively, energy use. Significant GHG emission reductions can be achieved through the design and construction of new green buildings $56 billion in electricity and natural gas costs. Green buildings provide a cost-effective strategy

446

Carroll County- Green Building Property Tax Credit  

Broader source: Energy.gov [DOE]

The state of Maryland permits Carroll County (Md Code: Property Tax § 9-308(e)) to offer property tax credits for high performance buildings if it chooses to do so.* Carroll County has exercised...

447

Buildings, Commissioning, Efficiency, Comfort, and CO2  

E-Print Network [OSTI]

. Continuous commissioning and CC are registered trademarks of the Texas Engineering Experiment Station Commissioning of Existing Buildings Major International Activities ? IEA Annex 40 ?Commissioning of Buildings and HVAC Systems for Improved Energy... Performance? IEA Annex 47 ?Cost Effective Commissioning for Existing and Low Energy Buildings? Commissioning of Existing Buildings International Examples ? China ? to be added? Belgium ? to be added? Japan ? Akashi et al. Source: Mills et al. 2005 Source...

Claridge, D. E.

2006-01-01T23:59:59.000Z

448

Building America Case Study: Cost Analysis of Roof-Only Air Sealing and Insulation Strategies on 1-1/2 Story Homes in Cold Climates, Minneapolis, MN (Fact Sheet)  

SciTech Connect (OSTI)

The External Thermal and Moisture Management System (ETMMS), typically seen in deep energy retrofits, is a valuable approach for the roof-only portions of existing homes, particularly the 1 1/2-story home. It is effective in reducing energy loss through the building envelope, improving building durability, reducing ice dams, and providing opportunities to improve occupant comfort and health.

Not Available

2014-12-01T23:59:59.000Z

449

Filter Press Building  

E-Print Network [OSTI]

"FILTER PRESS BUILDING" AVON LAKE WATER POLLUTION CONTROL CENTER HEAT PUMP HEATING AND COOLING SYSTEM William M. Bush, P.E. The Cleveland Electric Illuminating Company Cleveland, Ohio ABSTRACT The high heat value of the plant's treated wa..." of the thousands of homes in the com munity, we were able to recommend a system of heat recovery refrigeration cycles that would provide space conditioning at a fraction of the cost of natural gas. The all-electric recommendation was accepted because...

Bush, W. M.

450

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

451

Speech coding  

SciTech Connect (OSTI)

Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

Ravishankar, C., Hughes Network Systems, Germantown, MD

1998-05-08T23:59:59.000Z

452

Scalable three-dimensional thermal-hydraulic best-estimate code BAGIRA  

SciTech Connect (OSTI)

The three-dimensional thermal-hydraulic best-estimate code BAGIRA for modeling of multi-phase flows was developed without any artificial physical assumptions or simplifications. The mathematical model is based on numerical approximations of exact three-dimensional equations, including effective multi-dimensional models for turbulent heat and mass transfer. With use of BAGIRA All-Russian Scientific Research Inst. of Nuclear Power Plants (VNIIAES) has developed a full-scope and analytical simulators using BAGIRA for a number of power plants with VVER-1000 and RBMK type design, which are being used in Kalinin, Kursk, Smolensk, Chernobyl, and Bilibino NPPs. The comparison of calculated and experimental results shows that BAGIRA can successfully reproduce the most important processes observed in experiments. BAGIRA is implemented in FORTRAN. It is a relatively complicated code that tends to decompose task by aspects. Such a style is welcoming for extensions, which can be added without code redesign. We would like to present an aspect-oriented mix-in approach for BAGIRA code extension. It allows to make it scalable in number of directions leaving original code base untouched. It is possible to add new effects/units, and even to produce a supercomputer version of the code. The last is a key point today due to availability of low-cost compact supercomputers, which makes building compact NPP simulators possible. (authors)

Vasenin, V. A.; Krivchikov, M. A. [Moscow State Univ., Moscow (Russian Federation); Kroshilin, V. E.; Kroshilin, A. E.; Roganov, V. A. [All-Russian Scientific Research Inst. of Nuclear Power Plants (VNIIAES), Ferganskaya 25, Moscow (Russian Federation)

2012-07-01T23:59:59.000Z

453

An algorithm for minimization of quantum cost  

E-Print Network [OSTI]

A new algorithm for minimization of quantum cost of quantum circuits has been designed. The quantum cost of different quantum circuits of particular interest (eg. circuits for EPR, quantum teleportation, shor code and different quantum arithmetic operations) are computed by using the proposed algorithm. The quantum costs obtained using the proposed algorithm is compared with the existing results and it is found that the algorithm has produced minimum quantum cost in all cases.

Anindita Banerjee; Anirban Pathak

2010-04-09T23:59:59.000Z

454

Report to the Legislature in Compliance with Public Utilities Code  

E-Print Network [OSTI]

"................................................................................................................................8 DISTRIBUTED GENERATION COSTS AND SAVINGSReport to the Legislature in Compliance with Public Utilities Code Section 910 March 2013 #12...................................................................17 Self-Generation Incentive Program (SGIP

455

SAN LUIS OBISPO COU NTY DEPARTMENT OF PLANNING AND BUILDING  

E-Print Network [OSTI]

95814-5514 Re: Application for Approval of the San Luis Obispo County Green Building Ordinance the Green Building Ordinance and the Energy Cost Effective Study. The Board of Supervisors received the Green Building Ordinance which will ensure that residential and non-residential buildings in the County

456

SAN LUIS OBISPO COUNTY DEPARTMENT OF PLANNING AND BUILDING  

E-Print Network [OSTI]

DEPARTMENT Re: Application for Approval of the San Luis Obispo County Green Building Ordinance the Green Building Ordinance and the Energy Cost Effective Study. The Board of Supervisors received the Green Building Ordinance which will ensure that residential and non-residential buildings in the County

457

Establishing research directions in sustainable building design  

E-Print Network [OSTI]

Establishing research directions in sustainable building design: Koen Steemers The Martin Centre Research Technical Report 5 #12;Final Project Report Establishing research directions in sustainable building design Project ID Code: IT 1.28 Lead Investigator: Dr. Koen Steemers Period: 1st July 2001 to 30th

Watson, Andrew

458

Nonresidential Building Energy Use Disclosure Program  

E-Print Network [OSTI]

Ž program online tool for managing building energy use data. (hk) "Prospective buyer" means a person who has)"Data Verification Checklist" means a report generated by Portfolio Manager that summarizes a property's physical¡ ¡/ Nonresidential Building Energy Use Disclosure Program California Code of Regulations Title

459

Making America's Buildings Better (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

460

Minimum concave cost flows in capacitated grid networks  

E-Print Network [OSTI]

We study the minimum concave cost flow problem over a two-dimensional .... as a building block for the theory of production planning and inventory control.

2014-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

avoid costly consequences: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for increased market penetration for energy efficient new buildings. An innovative, marginal (replacement cost) rate... Frosenfeld, A. N.; Verdict, M. E. 1985-01-01 153 IEEE...

462

High Performance Healthcare Buildings: A Roadmap to Improved Energy Efficiency  

E-Print Network [OSTI]

Integrated design, incorporation of models from other advanced buildingsand building operators. Communication with users through integrated designintegrated design process has great potential to advance cost-effective reductions in energy intensity – often while improving building

Singer, Brett C.

2010-01-01T23:59:59.000Z

463

Sustainable Building Pioneer Wins Top Award from Engineering...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

design-build process that shows how meeting energy efficiency goals can be at the heart of controlling costs and delivering a functional building. The RSF provides a living...

464

DOE Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings  

Broader source: Energy.gov [DOE]

The Building America Program is hosting a no-cost, webinar-based training on Retrofitting Central Space Conditioning Strategies for Multifamily Buildings. The webinar will focus on improving the...

465

AIAA 010974 A Multi-Code-Coupling Interface for  

E-Print Network [OSTI]

AIAA 01­0974 A Multi-Code-Coupling Interface for Combustor/Turbomachinery Simulations Sriram 500, Reston, VA 20191­4344 #12;AIAA 01­0974 A Multi-Code-Coupling Interface for Combustor bottlenecks. This paradigm has been used to build a code coupling interface for a three-dimensional combustor

Stanford University

466

31Home Power #16 April/May 1990 Code Corner  

E-Print Network [OSTI]

ivilization is spreading throughout the country, and with it, the bureaucracy of building codes and electrical away from obstructions to maximize the collection of solar energy. In these locations they are good31Home Power #16 ˇ April/May 1990 Code Corner PV that Meets the National Electric Code John Wiles

Johnson, Eric E.

467

A joint U.S.-China demonstration energy efficient office building  

E-Print Network [OSTI]

design approach is used to identify the most cost-effective energy strategies for this building, including passive solar

Zimmerman, Mary Beth; Huang, Yu JoeWatson, Rob; Shi, Han; Judkoff, Ron; She rman, Micah

2000-01-01T23:59:59.000Z

468

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

In 1984 and 1986, 35.3 million square feet of state owned buildings were audited to identify cost saving retrofit projects. Originally intended for direct legislative funding or bond sales, funding became available in 1989 through oil overcharge...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

469

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect (OSTI)

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

470

Energy management systems for commercial buildings. Final report  

SciTech Connect (OSTI)

Increasing costs of energy and the development of lower cost microelectronics have created a growing market for energy management systems applied to commercial buildings. This report examines the spectrum of EMS available and how they are used in different types of commercial buildings. An informal survey of 197 commercial building owners provided additional information on EMS installed and the energy savings attributed to those systems. Evaluations were performed to identify types of EMS appropriate to specific types of commercial buildings.

Woody, A.W.

1986-02-01T23:59:59.000Z

471

National Green Building Standard Analysis  

SciTech Connect (OSTI)

DOE's Building America Program is a research and development program to improve the energy performance of new and existing homes. The ultimate goal of the Building America Program is to achieve examples of cost-effective, energy efficient solutions for all U.S. climate zones. Periodic maintenance of an ANSI standard by review of the entire document and action to revise or reaffirm it on a schedule not to exceed five years is required by ANSI. In compliance, a consensus group has once again been formed and the National Green Building Standard is currently being reviewed to comply with the periodic maintenance requirement of an ANSI standard.

NAHB Research Center, Upper Marlboro, Maryland

2012-07-01T23:59:59.000Z

472

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

473

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

474

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

475

Integrated Building Management System (IBMS)  

SciTech Connect (OSTI)

This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

Anita Lewis

2012-07-01T23:59:59.000Z

476

MELCOR computer code manuals  

SciTech Connect (OSTI)

MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

1995-03-01T23:59:59.000Z

477

Anaheim Public Utilities- Green Building and New Construction Rebate Program  

Broader source: Energy.gov [DOE]

Anaheim Public Utilities (APU) offers commercial, industrial, residential, and institutional customers the Green Building Incentives Program to offset construction, installation and upgrade costs...

478

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

In this project, the Raleigh Housing Authority worked with Building America team, the Advanced Residential Integrated Solutions Collaborative, to determine the most cost-effective...

479

Energy-Saving Homes, Buildings, and Manufacturing Success Stories...  

Broader source: Energy.gov (indexed) [DOE]

solutions for our nation's buildings and manufacturing supply lines mean large-scale energy and cost savings. Learn how EERE's investments in energy solutions for homes,...

480

Building America Technology Solutions for New and Existing Homes...  

Broader source: Energy.gov (indexed) [DOE]

assess the performance of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of...

Note: This page contains sample records for the topic "building codes cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Department Invests $6 Million to Support Commercial Building...  

Office of Environmental Management (EM)

help businesses cut energy costs through improved efficiency, while also reducing carbon pollution. Last year, commercial buildings consumed about 20 percent of all energy used in...

482

Building America Whole-House Solutions for Existing Homes: Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. bacasestudyillinoishomeperf.pdf More Documents &...

483

Simulation as a Tool to Develop Guidelines of Envelope Design of a Typical Office Building in Egypt  

E-Print Network [OSTI]

This paper describes the use of building performance simulation software in order to develop guidelines for designing energy-efficient office building. In Egypt energy codes for all building types are being under development. On the other hand...

Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A.; El-Sayed Khalil, M.

2011-01-01T23:59:59.000Z

484

Cost-Effective Energy Efficiency Measures for Above Code (ASHRAE 90.1-2001 and 2007) Small Retail Buildings in the City of Arlington (Presentation) (Revised) , Energy Systems Laboratory, Texas A&M University.  

E-Print Network [OSTI]

of occupants = 120 Gross Area (sq. ft.) CoA Aspect Ratio PNNL 20405:ASHRAE 90.1-2010 245 ft (L) X 61 ft (W) Number of Floors PNNL 20405:ASHRAE 90.1-2010 Floor-to-Floor Height (ft.) PNNL 20405:ASHRAE 90.1-2010 Floor-to-Ceiling Height = 17 ft Orientation PNNL... 20405:ASHRAE 90.1-2010 Wall Construction CoA Roof Configuration PNNL 20405:ASHRAE 90.1-2010 Foundation Construction PNNL 20405:ASHRAE 90.1-2010 Wall Absorptance DOE 2.1E BDL SUMMARY, Page 12 Assuming gray, light oil paint Wall Insulation (hr...

Kim, H.; Do, S; Kim, K.; Baltazar, J. C.; Haberl, J.; Lewis, C.

2011-01-01T23:59:59.000Z

485

Building America Technology Solutions for New and Existing Homes...  

Office of Environmental Management (EM)

which will provide factory homebuilders with high performance, cost-effective alternative envelope designs that will meet stringent energy code requirements. Stud Walls...

486

Building technolgies program. 1994 annual report  

SciTech Connect (OSTI)

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

487

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anba’ut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

488

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures??

489

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

490

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

491

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

492

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

493

Buildings GHG Mitigation Estimator Worksheet, Version 1  

Broader source: Energy.gov [DOE]

Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

494

Home Energy Ratings and Building Performance  

E-Print Network [OSTI]

climate as they affect the rating score of a proposed or completed structure. The rating is used to determine the most cost effective mechanical systems, building envelope design including window and door types, effect of various roofing materials...

Gardner, J.C.

495

Solar Design Standards for State Buildings  

Broader source: Energy.gov [DOE]

Arizona law requires that new state building projects over six thousand square feet follow prescribed solar design standards. Solar improvements should be evaluated on the basis of life cycle costs...

496

Building on Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

easy-to-use tools to size and finance rooftop solar panels; and download virtual energy audit software that can cut costs for building owners and help get retrofits started...

497

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

498

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

499

Re-Assessing Green Building Performance: A Post Occupancy Evaluation of 22 GSA Buildings  

SciTech Connect (OSTI)

2nd report on the performance of GSA's sustainably designed buildings. The purpose of this study was to provide an overview of measured whole building performance as it compares to GSA and industry baselines. The PNNL research team found the data analysis illuminated strengths and weaknesses of individual buildings as well as the portfolio of buildings. This section includes summary data, observations that cross multiple performance metrics, discussion of lessons learned from this research, and opportunities for future research. The summary of annual data for each of the performance metrics is provided in Table 25. The data represent 1 year of measurements and are not associated with any specific design features or strategies. Where available, multiple years of data were examined and there were minimal significant differences between the years. Individually focused post occupancy evaluation (POEs) would allow for more detailed analysis of the buildings. Examining building performance over multiple years could potentially offer a useful diagnostic tool for identifying building operations that are in need of operational changes. Investigating what the connection is between the building performance and the design intent would offer potential design guidance and possible insight into building operation strategies. The 'aggregate operating cost' metric used in this study represents the costs that were available for developing a comparative industry baseline for office buildings. The costs include water utilities, energy utilities, general maintenance, grounds maintenance, waste and recycling, and janitorial costs. Three of the buildings that cost more than the baseline in Figure 45 have higher maintenance costs than the baseline, and one has higher energy costs. Given the volume of data collected and analyzed for this study, the inevitable request is for a simple answer with respect to sustainably designed building performance. As previously stated, compiling the individual building values into single metrics is not statistically valid given the small number of buildings, but it has been done to provide a cursory view of this portfolio of sustainably designed buildings. For all metrics except recycling cost per rentable square foot and CBE survey response rate, the averaged building performance was better than the baseline for the GSA buildings in this study.

Fowler, Kimberly M.; Rauch, Emily M.; Henderson, Jordan W.; Kora, Angela R.

2010-06-01T23:59:59.000Z

500

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...