Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

2

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

3

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

4

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

5

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

6

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

7

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

(92) (92) Distribution Category UC-950 Commercial Buildings Characteristics 1992 April 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The Energy Information Administration (EIA) prepared this publication under the general direction of W. Calvin Kilgore, Director of the Office of Energy Markets and End Use (202-586-1617). The project was directed by Lynda T. Carlson, Director of the Energy End Use and Integrated Statistics Division (EEUISD) (202-586-1112) and Nancy L. Leach, Chief

8

Characteristics RSE Column Factor: Total  

Gasoline and Diesel Fuel Update (EIA)

Per- cent 125 Per- cent 0.4 2.4 1.8 1.2 0.9 0.8 0.8 0.7 1.4 1.1 0.9 Race of Householder White ... 1,592 27 60 105 272 255 358 514 97 155...

9

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

10

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

11

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

12

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

13

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

14

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

15

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

16

Commercial Buildings Characteristics 1995 - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

>Commercial Buildings Home > 1995 Characteristics Data 1995 Data Executive Summary Table of Contents Overview to Detailed Tables Detailed Tables 1995 national and Census region...

17

Commercial Buildings Characteristics 1992 - Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics Data > Publication and Tables Buildings Characteristics Data > Publication and Tables Publication and Tables Percent of Buildings and Floorspace by Census Region, 1992 figure on percent of building and floorspace by census region, 1992 separater bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Full Report - Commercial Buildings Characteristics, 1992 with only selected tables (file size 1.34 MB) pages: 157 Selected Sections: Main Text (file size 883,980 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background Organization of the report

18

Characteristics RSE Column Factor: All Vehicle Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 24.9 18.1 17.4 0.7 0.8 0.8 0.6 4.5 Q 18.4 Race of Householder White ... 138.6 92.3 86.7 5.6 7.3 8.9 2.8 26.7...

19

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

20

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

U.S. Energy Information Administration (EIA) Indexed Site

Disaggregated Principal Building Activities Disaggregated Principal Building Activities Disaggregated Principal Building Activities The 1999 CBECS collected information for 20 general building activities. Five of the activities were aggregated and data for 16 activities are displayed in the detailed tables. Within the aggregated warehouse and storage category, nonrefrigerated warehouses greatly exceeded refrigerated warehouses both in amount of floorspace and number of buildings (compare Figure 1 with Figure 2). Within the mercantile category, the number of retail buildings greatly exceeded strip shopping buildings which, in turn, greatly exceeded enclosed shopping malls (Figure 2). The amount of mercantile floorspace was more evenly distributed (Figure 1) because of differences in average building size-enclosed malls were largest and retail buildings the smallest.

22

Power Signatures as Characteristics of Commercial and Related Buildings  

E-Print Network [OSTI]

This paper proposes the use of "power signatures" as an important concept for building energy analysis. Power signatures are considered to contain "energy or power characteristics" of a building. Developing relationships between energy...

MacDonald, M.

1988-01-01T23:59:59.000Z

23

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

24

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

25

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

26

Re: NBP RFI: CommunicationRse quirements | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of Energy request for comments regarding the communications requirements of electric utilities deploying the Smart Grid. Re: NBP RFI: CommunicationRse quirements More Documents &...

27

Profils des entreprises en matire de RSE et innovation technologique  

E-Print Network [OSTI]

la nature de la relation entre la Responsabilité Sociale des Entreprises (RSE) et l'innovation : Innovation, PME, Responsabilité Sociale des Entreprises (RSE) Rachel BOCQUET - Caroline MOTHE hal-00950166 : Corporate Social Responsibility (CSR), Innovation, SME's hal-00950166,version1-25Feb2014 #12;3 Introduction

Boyer, Edmond

28

Energy Characteristics and Energy Consumed in Large Hospital Buildings in  

Gasoline and Diesel Fuel Update (EIA)

Energy Characteristics and Energy Consumed in Large Hospital Buildings in Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Hospitals consume large amounts of energy because of how they are run and the many people that use them. They are open 24 hours a day; thousands of employees, patients, and visitors occupy the buildings daily; and sophisticated heating, ventilation, and air conditioning (HVAC) systems control the temperatures and air flow. In addition, many energy intensive activities occur in these buildings: laundry, medical and lab equipment use, sterilization, computer and server use, food service, and refrigeration. The 2003 Commercial Building Energy Consumption Survey (CBECS) data showed

29

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

30

An overview of building morphological characteristics derived from 3D building databases.  

SciTech Connect (OSTI)

Varying levels of urban canopy parameterizations are frequently employed in atmospheric transport and dispersion codes in order to better account for the urban effect on the meteorology and diffusion. Many of these urban parameterizations need building-related parameters as input. Derivation of these building parameters has often relied on in situ 'measurements', a time-consuming and expensive process. Recently, 3D building databases have become more common for major cities worldwide and provide the hope of a more efficient route to obtaining building statistics. In this paper, we give an overview of computations we have performed for obtaining building morphological characteristics from 3D building databases for several southwestern US cities, including Los Angeles, Salt Lake City, and Phoenix.

Brown, M. J. (Michael J.); Burian, S. J. (Steven J.); Linger, S. P. (Steve P.); Velugubantla, S. P. (Srinivas, P.); Ratti, Carlo

2002-01-01T23:59:59.000Z

31

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

32

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

33

Buildings Energy Data Book: 4.2 Federal Buildings and Facilities Characteristics  

Buildings Energy Data Book [EERE]

2 Federal Buildings and Facilities Characteristics 2 Federal Buildings and Facilities Characteristics March 2012 4.2.1 Federal Building Gross Floorspace, by Year and Agency Fiscal Year Agency FY 1985 3.37 DOD 63% FY 1986 3.38 USPS 10% FY 1987 3.40 GSA 6% FY 1988 3.23 VA 5% FY 1989 3.30 DOE 3% FY 1990 3.40 Other 13% FY 1991 3.21 Total 100% FY 1992 3.20 FY 1993 3.20 FY 1994 3.11 FY 1995 3.04 FY 1996 3.03 FY 1997 3.02 FY 1998 3.07 FY 1999 3.07 FY 2000 3.06 FY 2001 3.07 FY 2002 3.03 FY 2003 3.04 FY 2004 2.97 FY 2005 2.96 FY 2006 3.10 FY 2007 3.01 Note(s): Source(s): 2007 Percent of Floorspace (10^9 SF) Total Floorspace The Federal Government owns/operates over 500,000 buildings, including 422,000 housing structures (for the military) and 51,000 nonresidential buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2008, Table

34

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

35

Intemodal Equipment Ron Sucik RSE Consulting  

E-Print Network [OSTI]

Constitution with exclusive charge of the operations, administration, management, preservation, maintenance. BAF ­ Bunker Adjustment Factor: Additional charge levied on the shippers to compensate: A warehouse or other specialized building, often with refrigeration or air conditioning, which is used

Bustamante, Fabián E.

36

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

37

Characteristics RSE Column Factor: Households with Children Households...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 6.1 0.8 2.7 2.6 Q Q Q Q Q Q Q 23.2 Race of Householder White ... 54.8 14.4 27.6 12.8 83.7 3.2 6.7 7.2...

38

Characteristics RSE Column Factor: All Model Years Model Year  

Gasoline and Diesel Fuel Update (EIA)

or 17 Years ... 15.2 0.7 0.9 0.9 3.0 3.8 2.8 1.2 0.9 0.9 15.5 Households Without Children ... 92.2 4.2 5.9 6.5 21.8 21.8 14.2 5.9 5.5 6.4 5.5...

39

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

40

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book [EERE]

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

42

1999 Commercial Buildings Characteristics--Conservation Features and  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Features and Practices Conservation Features and Practices Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Conservation Features and Practices The 1999 CBECS collected information about HVAC (heating, ventilation, and air-conditioning) system, building shell, and lighting conservation features and practices plus information on off-hour reduction of end-use equipment. In general, commercial buildings that were larger than average were more likely to have used these conservation features or measures. Detailed tables HVAC Conservation Features and Practices Among HVAC conservation features and practices, commercial buildings owners and managers widely performed maintenance on their HVAC systems (Figure 1). Approximately the same percentage of buildings and floorspace were served by other HVAC conservation features.

43

Efficiency characteristic of building integrated photovoltaics as a shading device  

Science Journals Connector (OSTI)

A building-integrated photovoltaic system (BIPV) has been operated over 1 year in the Samsung Institute of Engineering & Construction Technology (SIECT) in Korea. The PV cells are mounted on the south facade and on the roof of the SIECT in the Giheung area. Special care was taken in the building design to have the PV modules shade the building in the summer, so as to reduce cooling loads, while at the same time allowing solar energy to enter the building during the heating season, and providing daylight. This paper gives a 1 year analysis of the system performance, evaluation of the system efficiency and the power output, taking into account the weather conditions. As a part of certain design compromises, that took into account, aesthetic, safety, and cost considerations, non-optimal tilt angles and occasional shading of the PV modules made the efficiency of PV system lower than the peak rating of the cells. The yearly average efficiency of the sunshade solar panel is 9.2% (average over 28.6C surface temperature), with a minimum of 3.6% (average over 27.9C surface temperature) in June and a maximum of 20.2% (average over 19.5C surface temperature) in December.

Seung-Ho Yoo; Eun-Tack Lee

2002-01-01T23:59:59.000Z

44

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect (OSTI)

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

NONE

1998-10-01T23:59:59.000Z

45

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

46

Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof  

SciTech Connect (OSTI)

Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

2009-10-15T23:59:59.000Z

47

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

48

Building indicator groups based on species characteristics can improve conservation planning  

E-Print Network [OSTI]

is in identifying important areas for the conservation of biodiversity. As networks of areas encompassing biodiversity to select networks of areas for conservation? In the literature, reliable indicator groupsBuilding indicator groups based on species characteristics can improve conservation planning

Manne, Lisa

49

Measurement and Analysis of the Error Characteristics of an InBuilding Wireless Network  

E-Print Network [OSTI]

on fiber or electrical connections have excellent error characteris­ tics but that wireless networksMeasurement and Analysis of the Error Characteristics of an In­Building Wireless Network David fdavide,prsg@cs.cmu.edu Abstract There is general belief that networks based on wireless technolo­ gies

Eckhardt, Dave

50

Une analyse des liens entre types de Green IT et stratgies RSE  

E-Print Network [OSTI]

: France (2013)" #12;ABSTRACT This communication addresses the issue of the adoption of green technologiesUne analyse des liens entre types de Green IT et stratégies RSE An analysis of links between Green/INSTEAD (Luxembourg), CREM R?SUM? Cette communication aborde la question de l'adoption des technologies vertes ou

Boyer, Edmond

51

Table HC1-5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit,  

U.S. Energy Information Administration (EIA) Indexed Site

5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, 5a. Housing Unit Characteristics by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Owner- Occupied Units Type of Owner-Occupied Housing Unit RSE Row Factors Single-Family Apartments in Buildings With Mobile Homes Two to Four Units Five or More Units 0.4 0.4 1.8 2.1 1.4 Total ............................................... 72.7 63.2 2.1 1.8 5.7 6.7 Census Region and Division Northeast ...................................... 13.0 10.8 1.1 0.5 0.6 11.4 New England .............................. 3.5 3.1 0.2 Q 0.1 16.9 Middle Atlantic ............................ 9.5 7.7 0.9 0.4 0.4 13.4 Midwest ......................................... 17.5 16.0 0.3 Q 1.0 10.3 East North Central ......................

52

Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings  

E-Print Network [OSTI]

, Samsung C&T, South Korea 2 Introduction ? Today?s high-rise apartment buildings exhibit high degree of air-tightness. ? They are also subjected to stack effect and seasonal, unpredictable, wind pressure variations. ? Therefore, it is questionable... characteristics for alt0 16 32CMH 0Pa 42CMH 0Pa 74CMH 16Pa 477CMH 984CMH 355CMH 815CMH 173CMH 26Pa 0CMH 0CMH 0CMH 54CMH 0Pa 158CMH 1Pa 35CMH 0Pa 74CMH 18Pa (a)?On?3rd?floor?at?12:00,?Jan?1st 1.5m/s North 50CMH 1Pa 23CMH 0Pa 75CMH 18Pa...

Park, M.

2011-01-01T23:59:59.000Z

53

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

54

Building a Successful Communications Program Based on the Needs and Characteristics of the Affected Communities - 13152  

SciTech Connect (OSTI)

Over 200 local residents streamed through the doors of the Port Hope Lions Centre to see the detailed plans for the historic low-level radioactive waste clean-up project about to take place in their community. The event had a congenial atmosphere as people walked through the hall taking in rows of display panels that explained each element of the project, asked questions of project staff stationed around the room and chatted with friends and neighbours over light refreshments. Later that year, the results of the Port Hope Area Initiative (PHAI) 10. annual public attitude survey revealed an all-time high in community awareness of the project (94%) and the highest levels of confidence (84%) recorded since surveying began. Today, as the PHAI transitions from a decade of scientific and technical studies to implementation, the success of its communications program - as evidenced by the above examples - offers room for cautious encouragement. The PHAI has spent the past 10 years developing relationships with the southern Ontario communities of Port Hope and Port Granby in preparation for Canada's largest low-level radioactive waste environmental restoration project. These relationships have been built around a strong understanding of the communities' individual needs and characteristics and on the PHAI's efforts to consider and respond to these needs. The successes of the past, as well as the lessons learned, will inform the next stage of communications as the projects move into waste excavation and transportation and building of the long-term waste management facilities. (authors)

Herod, Judy; Mahabir, Alexandra; Holmes, Sandy [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, Port Hope, ON, L1A 3S4 (Canada)

2013-07-01T23:59:59.000Z

55

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

56

Table HC1-12a. Housing Unit Characteristics by West Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Housing Unit Characteristics by West Census Region, 2a. Housing Unit Characteristics by West Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. West Census Region RSE Row Factors Total Census Division Mountain Pacific 0.5 1.0 1.7 1.1 Total .............................................................. 107.0 23.3 6.7 16.6 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England ............................................. 5.4 -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- NF Midwest ....................................................... 24.5 -- -- -- NF East North Central ..................................... 17.1 -- -- -- NF West North Central ....................................

57

Table HC1-11a. Housing Unit Characteristics by South Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

1a. Housing Unit Characteristics by South Census Region, 1a. Housing Unit Characteristics by South Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. South Census Region RSE Row Factors Total Census Division South Atlantic East South Central West South Central 0.5 0.9 1.2 1.4 1.4 Total .............................................................. 107.0 38.9 20.3 6.8 11.8 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- -- NF New England ............................................. 5.4 -- -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- -- NF Midwest ....................................................... 24.5 -- -- -- -- NF East North Central .....................................

58

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

59

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

60

Federal Buildings Supplemental Survey - Index Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Federal Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel...

62

Commercial Buildings Energy Consumption Survey (CBECS) - Data - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard

63

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

64

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

65

" of Supplier, Census Region, Census Division, and Economic Characteristics"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity and Steam by Type" Quantity of Purchased Electricity and Steam by Type" " of Supplier, Census Region, Census Division, and Economic Characteristics" " of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ," Electricity",," Steam" ," (million kWh)",," (billion Btu)" ,,,,,"RSE" " ","Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

66

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

67

Table HC1-9a. Housing Unit Characteristics by Northeast Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

9a. Housing Unit Characteristics by Northeast Census Region, 9a. Housing Unit Characteristics by Northeast Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Northeast Census Region RSE Row Factors Total Census Division Middle Atlantic New England 0.5 1.0 1.2 1.6 Total .............................................................. 107.0 20.3 14.8 5.4 NE Census Region and Division Northeast ..................................................... 20.3 20.3 14.8 5.4 NF New England ............................................. 5.4 5.4 Q 5.4 NF Middle Atlantic ........................................... 14.8 14.8 14.8 Q NF Midwest ....................................................... 24.5 -- -- -- NF East North Central ..................................... 17.1 -- -- -- NF

68

Table HC1-10a. Housing Unit Characteristics by Midwest Census Region,  

U.S. Energy Information Administration (EIA) Indexed Site

0a. Housing Unit Characteristics by Midwest Census Region, 0a. Housing Unit Characteristics by Midwest Census Region, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total U.S. Midwest Census Region RSE Row Factors Total Census Division East North Central West North Central 0.5 1.0 1.2 1.8 Total .............................................................. 107.0 24.5 17.1 7.4 NE Census Region and Division Northeast ..................................................... 20.3 -- -- -- NF New England ............................................. 5.4 -- -- -- NF Middle Atlantic ........................................... 14.8 -- -- -- NF Midwest ....................................................... 24.5 24.5 17.1 7.4 NF East North Central ..................................... 17.1 17.1

69

RSE Table 7.4 Relative Standard Errors for Table 7.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 7.4;" 4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",8,21,14,7,9,13 " 20-49",4,6,15,4,13,4 " 50-99",3,6,4,3,6,8 " 100-249",3,8,17,2,5,7 " 250-499",4,1,9,7,1,37 " 500 and Over",1,7,4,1,1,1 "Total",2,3,7,2,1,11

70

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Capability to Switch from Electricity to Alternative Energy" 3. Capability to Switch from Electricity to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Million Kilowatthours)" ,," Electricity Receipts",,," Alternative Types of Energy(b)" ,,"-","-","-----------","-","-","-","-","-","-","-" ,,,,,,,,,,"Coal",,"RSE" ,,"Total"," ","Not","Natural","Distillate","Residual",,,"Coke and",,"Row" ,,"Receipts(c)","Switchable","Switchable","Gas","Fuel Oil","Fuel Oil","Coal","LPG","Breeze","Other(d)","Factors"," "

71

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Capability to Switch from Residual Fuel Oil to Alternative Energy" 6. Capability to Switch from Residual Fuel Oil to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Thousand Barrels)" ,," Residual Fuel Oil",,," Alternative Types of Energy(b)" ," ","-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total",,"Not","Electricity","Natural","Distillate",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

72

" Sources by Industry Group, Selected Industries, and Selected Characteristics,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Capability to Switch from Natural Gas to Alternative Energy" 4. Capability to Switch from Natural Gas to Alternative Energy" " Sources by Industry Group, Selected Industries, and Selected Characteristics," 1991 " (Estimates in Billion Cubic Feet)" ,," Natural Gas",,," Alternative Types of Energy(b)" ,,"-","-","-------------","-","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Distillate","Residual",,,"Coal Coke",,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Fuel Oil","Fuel Oil","Coal","LPG","and Breeze","Other(e)","Factors"

73

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

74

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

75

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

76

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

77

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

78

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

79

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

80

"RSE Table C12.1. Relative Standard Errors for Table C12.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.1. Relative Standard Errors for Table C12.1;" 2.1. Relative Standard Errors for Table C12.1;" " Units: Percents." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" "NAICS"," ","of All Buildings",,"Enclosed Floorspace","of All Buildings","of Buildings Onsite" "Code(a)","Subsector and Industry","Onsite","Establishments(b)","per Establishment","Onsite","per Establishment" ,,"Total United States" , 311,"Food",2,0,2,1,1 311221," Wet Corn Milling",0,0,0,0,0 312,"Beverage and Tobacco Products",11,0,15,14,14

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Building Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

82

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

and find out about new information products and services. Contact: Martha Johnson, Survey Manager (martha.johnson@eia.doe.gov) World Wide Web: http:www.eia.doe.gov...

83

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

359 25.2 Food Service ... 285 Q Q 40 218 1,353 Q Q 220 981 23.2 Health Care ... 105 Q Q 6 92 2,333 Q Q 234 2,066 23.5 Lodging...

84

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

47 Q 30.6 Food Service ... 285 274 Q 146 Q Q Q 101 Q 18.5 Health Care ... 105 105 19 27 20 4 23 32 Q 33.4 Lodging...

85

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Q Q Q Q Q 30.2 Food Service ... 285 285 285 184 Q Q Q 82 Q 19.4 Health Care ... 105 105 105 51 18 4 2 Q Q 26.8 Lodging...

86

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

87

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

88

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

89

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

90

"RSE Table C10.1. Relative Standard Errors for Table C10.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table C10.1;" 1. Relative Standard Errors for Table C10.1;" " Unit: Percents." " "," "," ",,,"Computer","Control of","Processes"," "," "," ",,,,," " " "," ","Computer Control","of Building-Wide","Environment(b)","or Major","Energy-Using","Equipment(c)","Waste","Heat","Recovery","Adjustable -","Speed","Motors" "NAICS"," " "Code(a)","Subsector and Industry","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know","In Use(d)","Not in Use","Don't Know"

91

A study of the characteristics of natural light in selected buildings designed by Le Corbusier, Louis I. Kahn and Tadao Ando  

E-Print Network [OSTI]

.................................................................. 6 2.1 Historical Perspectives on Natural Light Inside the Buildings ... 6 2.1.1 Pre-Industrial Architecture........................................... 8 2.1.1.1 Egypt ............................................................. 9... type during the Early Christian architecture was one of the prominent forms that came to be associated with a particular building type, religious in this case. It was an attempt at improvisation with the timber trusses replacing the roman concrete...

Gill, Sukhtej Singh

2009-06-02T23:59:59.000Z

92

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

93

"RSE Table E1.1. Relative Standard Errors for Table E1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table E1.1;" .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

94

"RSE Table E13.2. Relative Standard Errors for Table E13.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table E13.2;" 2. Relative Standard Errors for Table E13.2;" " Unit: Percents." " ",,,"Renewable Energy" ,,,"(excluding Wood" "Economic","Total Onsite",,"and" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",15,15,58,37 " 20-49",17,19,27,7 " 50-99",6,6,5,9 " 100-249",7,7,25,4 " 250-499",2,2,0,0 " 500 and Over",1,1,0,1 "Total",2,2,15,1 "Employment Size" " Under 50",16,16,90,35

95

"RSE Table E7.2. Relative Standard Errors for Table E7.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table E7.2;" 2. Relative Standard Errors for Table E7.2;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS",,"Consumption","per Dollar","of Value" "Code(a)","Economic Characteristic(b)","per Employee","of Value Added","of Shipments" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",2,2,2 ," 20-49",2,3,2 ," 50-99",3,3,2 ," 100-249",2,3,2 ," 250-499",3,3,3

96

"RSE Table E2.1. Relative Standard Errors for Table E2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

E2.1. Relative Standard Errors for Table E2.1;" E2.1. Relative Standard Errors for Table E2.1;" " Unit: Percents." " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",9,87,48,26,1,85,16,25 " 20-49",11,32,28,5,63,20,3,21 " 50-99",8,23,38,2,22,49,42,4

97

"RSE Table E13.1. Relative Standard Errors for Table E13.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table E13.1;" 1. Relative Standard Errors for Table E13.1;" " Unit: Percents." " ",," "," ",," " ,,,,"Sales and","Net Demand" "Economic",,,"Total Onsite","Transfers","for" "Characteristic(a)","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,52,15,4,4 " 20-49",2,14,17,33,2 " 50-99",2,31,6,10,2 " 100-249",1,13,7,9,1 " 250-499",2,2,2,1,2 " 500 and Over",1,2,1,1,1

98

Building Technologies Office: Building America: Bringing Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

99

Building Performance Database Analysis Tools  

Broader source: Energy.gov [DOE]

The BPD statistically analyzes the energy performance and physical and operational characteristics of real commercial and residential buildings. The Buildings Performance Database offers two primary methods to analyze building performance data. These are Explore, which allows users to browse a single dataset within the BPD, and Compare, which allowed users to compare multiple datasets within the BPD side-by-side.

100

1992 CBECS BC  

U.S. Energy Information Administration (EIA) Indexed Site

8. Principal Building Activity, Number of Buildings 8. Principal Building Activity, Number of Buildings and Floorspace, 1992 Building Characteristics RSE Column Factor: All Buildings (thousand) Total Floorspace (million square feet) RSE Row Factor 0.9 1.1 All Buildings ........................................................ 4,806 67,876 3.7 Principal Building Activity Education ............................................................ 301 8,470 7.5 Food Sales ......................................................... 130 757 14.5 Food Service ..................................................... 260 1,491 8.7 Health Care Inpatient ............................................................. 19 1,287 18.7 Outpatient .......................................................... 44 476 17.8 Laboratory

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

"RSE Table E7.1. Relative Standard Errors for Table E7.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table E7.1;" 1. Relative Standard Errors for Table E7.1;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" "Economic","Consumption","per Dollar","of Value" "Characteristic(a)","per Employee","of Value Added","of Shipments" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2,2,2 " 20-49",2,3,2 " 50-99",3,3,2 " 100-249",2,3,2 " 250-499",3,3,3 " 500 and Over",1,2,2 "Total",1,1,1 "Employment Size" " Under 50",2,3,3 " 50-99",3,3,3

102

"RSE Table E13.3. Relative Standard Errors for Table E13.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table E13.3;" 3. Relative Standard Errors for Table E13.3;" " Unit: Percents." ,"Total of" "Economic","Sales and","Utility","Nonutility" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,4,10 " 20-49",33,35,70 " 50-99",10,12,10 " 100-249",9,14,1 " 250-499",1,1,3 " 500 and Over",1,1,2 "Total",3,4,5 "Employment Size" " Under 50",42,44,21 " 50-99",20,21,73 " 100-249",16,16,38 " 250-499",1,2,1

103

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

104

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

105

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

106

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

107

S:\\VM3\\RX97\\TBL_LIST.WPD  

Gasoline and Diesel Fuel Update (EIA)

b. Household Characteristics by Four Most Populated States, Percent of U.S. Households, 1997 Household Characteristics RSE Column Factor: Total Four Most Populated States RSE Row...

108

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

109

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

110

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

111

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

112

Public Order and Safety Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Order and Safety Order and Safety Characteristics by Activity... Public Order and Safety Public order buildings are those used for the preservation of law and order or public safety. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of public order and safety buildings were not owned by Federal, state, or local governments. Only 7 percent of all public order and safety buildings were constructed in the 1990's. The Northeast Census region had a high concentration of public order and safety buildings—43 percent of these buildings are in the Northeast (while the Northeast region contained only 9 percent of all commercial buildings).

113

Table HC1-1a. Housing Unit Characteristics by Climate Zone,  

U.S. Energy Information Administration (EIA) Indexed Site

a. Housing Unit Characteristics by Climate Zone, a. Housing Unit Characteristics by Climate Zone, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Climate Zone 1 RSE Row Factors Fewer than 2,000 CDD and -- 2,000 CDD or More and Fewer than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Fewer than 4,000 HDD 0.4 1.8 1.0 1.1 1.2 1.1 Total ............................................... 107.0 9.2 28.6 24.0 21.0 24.1 8.0 Census Region and Division Northeast ...................................... 20.3 1.9 10.0 8.4 Q Q 6.8 New England .............................. 5.4 1.4 4.0 Q Q Q 18.4 Middle Atlantic ............................ 14.8 0.5 6.0 8.4 Q Q 4.6 Midwest ......................................... 24.5 5.4 14.8 4.3 Q Q 19.0 East North Central ...................... 17.1

114

Table HC1-3a. Housing Unit Characteristics by Household Income,  

U.S. Energy Information Administration (EIA) Indexed Site

3a. Housing Unit Characteristics by Household Income, 3a. Housing Unit Characteristics by Household Income, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total 2001 Household Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factors Less than $14,999 $15,000 to $29,999 $30,000 to $49,999 $50,000 or More 0.6 1.3 1.1 1.0 0.9 1.4 1.0 Total ............................................... 107.0 18.7 22.9 27.1 38.3 15.0 33.8 3.3 Census Region and Division Northeast ...................................... 20.3 3.3 4.2 4.9 7.8 2.6 6.8 6.4 New England .............................. 5.4 0.8 1.1 1.3 2.3 0.6 1.6 9.9 Middle Atlantic ............................ 14.8 2.6 3.2 3.5 5.6 2.0 5.2 7.7 Midwest ......................................... 24.5 3.7 5.2 6.8 8.9 2.8 7.4 5.8 East North Central ......................

115

Table HC1-2a. Housing Unit Characteristics by Year of Construction,  

U.S. Energy Information Administration (EIA) Indexed Site

2a. Housing Unit Characteristics by Year of Construction, 2a. Housing Unit Characteristics by Year of Construction, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Year of Construction RSE Row Factors 1990 to 2001 1 1980 to 1989 1970 to 1979 1960 to 1969 1950 to 1959 1949 or Before 0.5 1.6 1.2 1.0 1.1 1.1 0.8 Total ............................................... 107.0 15.5 18.2 18.8 13.8 14.2 26.6 4.3 Census Region and Division Northeast ...................................... 20.3 1.5 2.4 2.1 2.8 3.0 8.5 8.8 New England .............................. 5.4 0.4 0.7 0.4 0.8 0.9 2.3 11.3 Middle Atlantic ............................ 14.8 1.1 1.7 1.7 2.0 2.2 6.2 11.2 Midwest ......................................... 24.5 2.8 3.7 3.6 2.9 3.5 8.1 10.2 East North Central ...................... 17.1 2.0 2.5 2.5 2.0 2.6 5.5 11.9

116

Table HC1-8a. Housing Unit Characteristics by Urban/Rural Location,  

U.S. Energy Information Administration (EIA) Indexed Site

8a. Housing Unit Characteristics by Urban/Rural Location, 8a. Housing Unit Characteristics by Urban/Rural Location, Million U.S. Households, 2001 Housing Unit Characteristics RSE Column Factor: Total Urban/Rural Location 1 RSE Row Factors City Town Suburbs Rural 0.5 0.8 1.3 1.3 1.4 Total .............................................................. 107.0 49.9 18.0 21.2 17.9 4.2 Census Region and Division Northeast ..................................................... 20.3 7.7 4.5 4.7 3.4 7.4 New England ............................................. 5.4 2.1 1.6 0.7 1.1 13.4 Middle Atlantic ........................................... 14.8 5.6 2.9 4.0 2.3 8.5 Midwest ....................................................... 24.5 11.1 4.9 4.8 3.7 10.1 East North Central ..................................... 17.1 8.3 3.0 3.4 2.5

117

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

118

The French codes RCC-M and RSE-M -- Design, construction and in-service inspection rules for the mechanical components of PWR nuclear islands: An overview and a comparison to the ASME codes  

SciTech Connect (OSTI)

The RCC-M, ``Regles de Conception et de Construction des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``Design and Construction Rules for the Mechanical Components of PWR Nuclear Islands`` and the RSE-M, ``Regles de Surveillance en Exploitation des Materiels Mecaniques des Ilots Nucleaires REP`` or, in English, ``In-Service Inspection Rules for the Mechanical Components of PWR Nuclear Islands`` gather all design, construction and operating practices relating to the mechanical components of French PWR nuclear islands. This paper is a presentation of these two codes. Throughout this presentation the specific aspects of the French approach will be underlined and will be compared to that of the ASME codes--mainly Section 3 and Section 11. The broad general technical scopes of the French codes are similar to those of the ASME codes. However, in some important areas of design, material specifications, procurement and manufacturing, the provisions of the RCC-M and RSE-M deviate from those of a strict mechanical Code and are more self-sustaining than those of ASME.

Journet, J.; Masson, S.H.; Morel, A.; Remond, A.; Grandemange, J.M.

1995-12-01T23:59:59.000Z

119

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

120

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

122

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

123

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

124

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

125

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

126

Analysis of Building Envelope Construction in 2003 CBECS  

SciTech Connect (OSTI)

The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOEs Reference Buildings .

Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

2007-06-01T23:59:59.000Z

127

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

128

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

129

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

130

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

131

Building America Building Science Education Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

132

Building Technologies Office: Building Energy Optimization Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

133

Buildings Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

134

Building Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

135

Building Technologies Office: Commercial Building Energy Asset Score  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

136

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

137

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

138

Building Technologies Office: Commercial Reference Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

139

Building Technologies Office: Buildings to Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

140

Buildings Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

142

Better Buildings Neighborhood Program: Better Buildings Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

143

Building Technologies Office: National Laboratories Supporting Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

144

Building Technologies Office: Integrated Building Management System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

145

Historic Building Renovations  

Broader source: Energy.gov [DOE]

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

146

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

147

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

148

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

149

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

150

Better Buildings Neighborhood Program: Better Buildings Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

151

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

152

Building Technologies Office: About Residential Building Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

153

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

154

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers [EERE]

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

155

Building America Building Science Education Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

156

Federal Buildings Supplemental Survey 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

157

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

158

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

159

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

160

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings  

Broader source: Energy.gov [DOE]

Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type.

162

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

163

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

164

Commercial Buildings Consortium  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

165

Energy Efficient Buildings Hub  

Broader source: Energy.gov [DOE]

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

166

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

167

Building Technologies Office: Building America Research Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

168

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

169

Buildings Performance Database (BPD)- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

The overall goal of the Buildings Performance Database (BPD) is to provide public access to high-quality building characteristics and energy consumption data to incentivize, analyze, and validate energy efficiency investments.

170

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

171

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network [OSTI]

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

172

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

173

Building Technologies Program: Building America Publications  

Broader source: Energy.gov (indexed) [DOE]

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

174

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

175

Commercial Building Energy Asset Scoring Tool Application Programming Interface  

Broader source: Energy.gov (indexed) [DOE]

Commercial Building Energy Asset Scoring Tool Commercial Building Energy Asset Scoring Tool Application Programming Interface NORA WANG GEOFF ELLIOTT JUSTIN ALMQUIST EDWARD ELLIS Pacific Northwest National Laboratory JUNE 14, 2013 Commercial Building Energy Asset Score Energy asset score evaluates the as- built physical characteristics of a building Energy Asset Score and its overall energy efficiency, independent of occupancy and operational choices. The physical characteristics include Building envelope (window, wall, roof) HVAC systems (heating, cooling, air distribution) Lighting system (luminaire and lighting control systems) Service hot water system Other major energy-using equipment (e.g. commercial refrigerator, commercial kitchen appliances, etc.) Building energy use is affected by many factors.

176

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed

177

Building Performance Simulation  

E-Print Network [OSTI]

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

178

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

179

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

180

Building Performance Simulation  

E-Print Network [OSTI]

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

182

Residential and commercial buildings data book: Third edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

183

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

184

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

185

RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2  

U.S. Energy Information Administration (EIA) Indexed Site

E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,18,10,7,3,8 " 20-49",2,19,5,3,11,8 " 50-99",2,14,6,2,17,10 " 100-249",1,11,4,2,1,12 " 250-499",2,1,10,2,0,1 " 500 and Over",1,1,1,1,0,1

186

Building Technologies Office: Energy Efficient Buildings Hub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

187

Model Building  

E-Print Network [OSTI]

In this talk I begin with some general discussion of model building in particle theory, emphasizing the need for motivation and testability. Three illustrative examples are then described. The first is the Left-Right model which provides an explanation for the chirality of quarks and leptons. The second is the 331-model which offers a first step to understanding the three generations of quarks and leptons. Third and last is the SU(15) model which can accommodate the light leptoquarks possibly seen at HERA.

Paul H. Frampton

1997-06-03T23:59:59.000Z

188

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

189

Building America Analysis Spreadsheets | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

190

Building Energy Software Tools Directory: ISOVER Energi  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

191

Building Technologies Office: Webinars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

192

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

193

Transforming Commercial Building Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

194

Transforming Commercial Building Operations  

Broader source: Energy.gov (indexed) [DOE]

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

195

Building America Webinar: Opportunities to Apply Phase Change Materials to Building Enclosures  

Broader source: Energy.gov [DOE]

This webinar, presented by research team Fraunhofer Center for Sustainable Energy Systems (CSE), reviewed basic physical characteristics and thermal properties of phase change materials (PCMs) and provided guidance on how to effectively apply PCMs in buildings in the United States.

196

Buildings Performance Database Analysis Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

197

Commercial Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

198

Home | Better Buildings Workforce  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

199

Buildings without energy bills  

Science Journals Connector (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

200

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Historic Building Renovations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

202

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

203

Overview of Commercial Buildings, 2003 - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) consumed 36 percent of energy for space heating and 21 percent for lighting (Figure 2) The CBECS is a national-level sample survey conducted quadrennially of buildings greater than 1,000 square feet in size that devote more than 50

204

Building Technologies Office: Subscribe to Building America Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

205

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

206

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

207

Building Technologies Research and  

E-Print Network [OSTI]

Building Technologies Research and Integration Center Breaking new ground in energy efficiency #12;Building Technologies Research To enjoy a sustainable energy and environmental future, America must these enormous challenges. Today, through the Building Technologies and Research Integration Center (BTRIC

Oak Ridge National Laboratory

208

Building Performance Simulation  

E-Print Network [OSTI]

low energy buildings, with site EUI of 40 or lowerbuildings in the US (EUI of 90 kBtu/ft). Thisthe bubble represents the EUI. These buildings were

Hong, Tianzhen

2014-01-01T23:59:59.000Z

209

Building Energy Software Tools Directory: Tools by Country - Canada  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Canada Canada A C D E F H I M P R S V Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. CATALOGUE windows, fenestration, product information, thermal characteristics Free software. DAYSIM annual daylight simulations, electric lighting energy use, lighting controls Free software. Software has been updated. EE4 CBIP whole building performance, building incentives Free software. Software has been updated. EE4 CODE standards and code compliance, whole building energy performance Free software. Software has been updated. Energy Profile Tool benchmarking, energy efficiency screening, end-use energy analysis, building performance analysis, utility programs ENERPASS

210

"Building Energy Data Exchange Specification"  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

211

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

212

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

213

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

214

Building Technologies Office Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

215

Building Technologies Office: Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

216

Building Performance Simulation  

E-Print Network [OSTI]

LEEDNCCertifiedBuildings (courtesyNewBuildingInstitute) Figure3MeasuredEnergyUseIntensitiesofBig?BoxRetailsinUSandCanada(

Hong, Tianzhen

2014-01-01T23:59:59.000Z

217

GSA Building Energy Strategy  

Broader source: Energy.gov (indexed) [DOE]

Rapid Building Assessments Green Button 12 Remote Building Analytics Platform First Fuel Dashboard 13 Data Center Ronald Reagan Detail Summary First Fuel Analysis 14...

218

Solar buildings. Overview: The Solar Buildings Program  

SciTech Connect (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

219

Building Technologies Office: Commercial Building Codes and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

220

Building Technologies Office: Building America 2013 Technical Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Green in Greensburg: City Hall Building  

Broader source: Energy.gov (indexed) [DOE]

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

222

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

223

Building Technologies Office: Better Buildings Neighborhood Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

224

Building Green in Greensburg: Business Incubator Building  

Broader source: Energy.gov (indexed) [DOE]

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

225

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

226

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

227

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

228

About the Buildings Performance Database | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

229

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

230

A Look at Commercial Buildings in 1995  

U.S. Energy Information Administration (EIA) Indexed Site

site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > A Look at Commercial Buildings in 1995 “A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures” The report can be downloaded in its entirety, or in sections (all in PDF format): Full report (includes all detailed tables; 402 pages, 5.7 MB) Contents: At A Glance (4 pages, 315 KB) Chapters 1 through 5 (61 pages, 363 KB) 1. Overview 2. Major Characteristics of Commercial Buildings 3. End Uses, Energy Sources, and Energy Consumption 4. End-Use Equipment and Energy Conservation 5. Detailed Tables (introductory text) How to Read the Tables Categories of Data in the Tables

231

Residential and commercial buildings data book. Second edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

232

Better Buildings Neighborhood Program  

Broader source: Energy.gov [DOE]

U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

233

Building Technology MSc Programme  

E-Print Network [OSTI]

of this programme is on the design of innovative and sustainable building components and their integration

Langendoen, Koen

234

Building Technologies Office: Building America Climate-Specific Guidance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

235

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

236

Building Technologies Office: Buildings Performance Database Analysis Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

237

Building Technologies Office: About the Commercial Buildings Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

238

Building Technologies Office: Building Energy Data Exchange Specification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

239

Commercial Buildings Consortium  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

240

Residential Buildings Integration Program  

Broader source: Energy.gov (indexed) [DOE]

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Residential Buildings Integration Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

242

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

243

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

244

DOE - Better Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

245

Fact Sheet- Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

Fact Sheet - Better Buildings Residential, from U.S. Department of Energy, Better Buildings Neighborhood Program.

246

John Anderson Campus UNIVERSITY BUILDINGS  

E-Print Network [OSTI]

John Anderson Campus UNIVERSITY BUILDINGS 1 McCance Building 2 Collins Building 3 Livingstone Tower 4 Accommodation Office 5 Graham Hills Building 6 Turnbull Building 7 Royal College Building 8 Students' Union 9 Centre for Sport & Recreation 10 St Paul's Building/Chaplaincy 11 Thomas Graham Building

Mottram, Nigel

247

Building America System Research  

Broader source: Energy.gov (indexed) [DOE]

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

248

Building Technologies Office: Building Science Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

249

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

250

Building Green in Greensburg: City Hall Building  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing City Hall building in Greensburg, Kansas.

251

Building America Webinar: High Performance Building Enclosures...  

Broader source: Energy.gov (indexed) [DOE]

used to improve energy performance of building envelopes while dealing with issues like ice damming during exterior "overcoat" insulation retrofits? How can deep energy retrofits...

252

NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Field Data Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where residential building characteristics (building geometry, insulation levels, equipment types, etc.), generally collected through energy audits, have been connected to measured energy use. With an emphasis on older homes, the repository contains datasets from Home Energy Rating System

253

Building Technologies Office: Partner With DOE and Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

254

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

255

Database Aids Building Owners and Operators in Energy-Efficiency Project Decision Making  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE's Buildings Performance Database, launched in June 2013, provides access to empirical data on the actual energy performance, as well as physical and operational characteristics of commercial and residential buildings.

256

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

257

Commercial Building Energy Asset Score Features | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Score Score Features Commercial Building Energy Asset Score Features The Asset Scoring Tool evaluates buildings by use type. The initial version of the Asset Scoring Tool included: office, school, retail, and unrefrigerated warehouse buildings. Phase II currently under development, which will be used for the 2013 Pilot, includes library, lodging, multi-family housing, and courthouse buildings, as well as mixed-use types of buildings that incorporate Phase I and II. You can enter small and large commercial buildings, and an Asset Score will be equally applicable to new and existing buildings. Inputs You can enter these building characteristics: General information-number of floors, footprint dimension, orientation, and use type Envelope components-roof, exterior wall, and floor types and

258

Energy Efficient Buildings Hub  

Broader source: Energy.gov (indexed) [DOE]

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

259

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

260

NREL: Buildings Research - Residential Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Office: Building America Research Teams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

262

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

263

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

264

Building Technologies Office: Building America's Top Innovations Advance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

265

Building Technologies Office: Subscribe to Building Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

266

Reference Buildings by Building Type: Strip mall | Department...  

Broader source: Energy.gov (indexed) [DOE]

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

267

Reference Buildings by Building Type: Large Hotel | Department...  

Broader source: Energy.gov (indexed) [DOE]

Hotel Reference Buildings by Building Type: Large Hotel In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the...

268

DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Strong: Building FORTIFIED Homes Part II DOE ZERH Webinar: Going Green and Building Strong: Building FORTIFIED Homes Part II Watch the video or view the presentation slides below...

269

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

270

Building Green in Greensburg: Business Incubator Building | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Business Incubator Building Building Green in Greensburg: Business Incubator Building This poster highlights energy efficiency, renewable energy, and sustainable features of the...

271

Apply: Funding Opportunity- Buildings University Innovators and Leaders Development (BUILD)  

Broader source: Energy.gov [DOE]

The Building Technologies Office (BTO)s Emerging Technologies Program has announced the availability of up to $1 million for the Buildings University Innovators and Leaders Development (BUILD)...

272

Building Technologies Office: Commercial Building Energy Asset Score  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

273

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

7.3.2 Building Performance Analysis . . . . . . 7.4 RelatedWork 2.1 Building Physical Design . . . . . . . . . .3.2.6 Building Applications . . . . . . . . . . .

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

274

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

275

Macallen Building Condominiums  

High Performance Buildings Database

Boston, MA The Macallen Building, a 140-unit condominium building in South Boston, was designed to incorporate green design as a way of marketing a green lifestyle while at the same time increasing revenue from the project.

276

Building Energy Code  

Broader source: Energy.gov [DOE]

''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

277

Lockheed Building 157  

High Performance Buildings Database

Sunnyvale, CA In 1983, Lockheed Missiles and Space Company, Inc. (now Lockheed Martin) moved 2,700 engineers and support staff from an older office building on the Lockheed campus into the new Building 157.

278

Better Buildings Federal Award  

Broader source: Energy.gov [DOE]

The Better Buildings Federal Award recognizes the Federal Government's highest-performing buildings through a competition to reduce annual energy use intensity (Btu per square foot of facility space) on a year-over-year basis.

279

Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

280

Building Energy Standards  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Special Building Renovations  

Broader source: Energy.gov [DOE]

A number of building types have specific energy uses and needs, and as such the renewable opportunities may be different from a typical office building. This section briefly discusses the following...

282

Grid-Responsive Buildings  

Broader source: Energy.gov [DOE]

The U.S.-India Joint Center for Building Energy Research and Development (CBERD) conducts energy efficiency research and development with a focus on integrating information technology with building controls and physical systems for commercial/high-rise residential units.

283

Sustainable Building Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Sustainable Building Contacts Sustainable Building Contacts For more information about sustainable buildings and campuses, contact: Sarah Jensen...

284

Buildings Performance Database  

Broader source: Energy.gov (indexed) [DOE]

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

285

Buildings Performance Database Overview  

Broader source: Energy.gov [DOE]

Buildings Performance Database Overview, from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

286

Kiowa County Commons Building  

Broader source: Energy.gov [DOE]

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

287

Buildings Sector Working Group  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating, cooking, lighting, and refrigeration * Hurdle rates - Update using latest Johnson Controls reports regarding commercial investment decisions * ENERGY STAR buildings -...

288

HEEP CENTER Building # 1502  

E-Print Network [OSTI]

1 HEEP CENTER Building # 1502 EMERGENCY EVACUATION PLAN Prepared by: Harry Cralle and Mark Wright a building. Examples of such occasions include: smoke/fire, gas leak, bomb threat. Pre-planning and rehearsal are effective ways to ensure that building occupants recognize the evacuation alarm and know how to respond

Tomberlin, Jeff

289

Digital Planetaria: Building Bridges  

E-Print Network [OSTI]

Digital Planetaria: Building Bridges Building Bridges Between Institutions, Universities Group Goals & Objectives: The goal of the Building Bridges focus group was to create a framework applications and dreaming about their potential in the digital dome environment. #12;L to R, Back to front

Collar, Juan I.

290

Link Building Martin Olsen  

E-Print Network [OSTI]

Link Building Martin Olsen PhD Dissertation Department of Computer Science Aarhus University Denmark #12;#12;Link Building A Dissertation Presented to the Faculty of Science of Aarhus University The Computational Complexity of Link Building Proc. Computing and Combinatorics, 14th Annual International

291

BROOKHAVENNATIONAL LABORATORY Building 510  

E-Print Network [OSTI]

BROOKHAVENNATIONAL LABORATORY Building 510 P.O. Box 5000 Upton, NY 11973-5000 Phone 631 344 in C-AD buildings. Work Planning and Control for Experiments The intent of this agreement is to ensure or modification work on experiments performed by Physics personnel or guests in C-AD buildings. The Collider

Homes, Christopher C.

292

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction Roble Hall 'CO NNO R LN Skilling HEPL South Green Earth Sciences Mitchell Earth Sciences Moore Materials Rsrch. Durand David Packard Elect. Eng. Paul G. Allen Building Godzilla Thornton Center Bambi Roble Gym e

Bogyo, Matthew

293

Bioengineering/ Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building Bioengineering/ Chemical Engineering Building, Under Construction HFD HFD HFD GALVEZST CAPISTRANOW BOWDOIN LN L VIAORTEGA VIAPALOU O 'CO NNO R LN Skilling HEPL South Green Earth Building Godzilla Thornton Center Bambi Roble Gym e Cypress Hall Cedar Hall Cogen Facility Tresidder Union

Bogyo, Matthew

294

The Economics of Green Building  

E-Print Network [OSTI]

Environment Quality in Green Buildings: A Review," Nationalof Popular Attention to Green Building Notes: Sources:2007 - 2009 panel of green buildings and nearby control

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

295

Federal Buildings Supplemental Survey 1993  

U.S. Energy Information Administration (EIA) Indexed Site

mobile homes and trailers, even if they housed commercial activity; and oil storage tanks. (See Commercial Building and Nonresidential Building.) Building Envelope or Shell...

296

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network [OSTI]

made in the energy efficiency of buildings. Better cost dataimproving energy efficiency of buildings is being addressedimprovement of energy efficiency in buildings are briefly

Wall, L.W.

2009-01-01T23:59:59.000Z

297

Hybrid Model for Building Performance Diagnosis and Optimal Control  

E-Print Network [OSTI]

and two capacitances, is used to simulate building envelope whose parameters are determined in frequency domain using the theoretical frequency characteristics of the envelope. Internal mass is represented by a 2R2C thermal network model, which consists...

Wang, S.; Xu, X.

2003-01-01T23:59:59.000Z

298

Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design  

E-Print Network [OSTI]

Building characteristics Country Australia Canada Finland Italy Ventilation Air- Non air- Unknown system conditioned conditioned Operable Yes No Unknown windows LEED

Frontczak, Monika; Schiavon, Stefano; Goins, John; Arens, Edward A; Zhang, Hui Ph.D; Wargocki, Pawel

2012-01-01T23:59:59.000Z

299

Archive Reference Buildings by Building Type: Stand-alone retail  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

300

Archive Reference Buildings by Building Type: Strip mall  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Archive Reference Buildings by Building Type: Secondary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

302

Archive Reference Buildings by Building Type: Small office  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

303

Archive Reference Buildings by Building Type: Fast food  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

304

Archive Reference Buildings by Building Type: Primary school  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

305

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

306

Chapter 3: Building Siting  

Broader source: Energy.gov (indexed) [DOE]

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

307

NREL: Buildings Research - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

308

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

309

Better Buildings Alliance  

Broader source: Energy.gov (indexed) [DOE]

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

310

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

311

Autotune Building Energy Models  

Broader source: Energy.gov (indexed) [DOE]

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

312

Building Energy Software Tools Directory: AWDABPT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AWDABPT AWDABPT AWDABPT logo Provides dynamic temperature simulation of 1- to 15- room buildings, shelters, and cabinets over the course of 20 days. Useful for accommodation of heat dissipating equipment. Cooling or power plant failure and later restoration can be simulated. Includes indicative external bush/forest fire mode. Screen Shots Keywords building temperature simulation, thermal performance Validation/Testing The Help document includes graphs that show estimated versus measured temperatures. It is freely available for download via the Website. Expertise Required Understanding of building thermal characteristics, conductivity, U-value, heat capacity, latent heat. Users Old DOS version - several. Current version - one, in Australia. Audience Building designers requiring estimates of room temperatures within

313

Green Building Codes | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

314

Building Technologies Office: Better Buildings Challenge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenge Challenge Photo of the Atlanta skyline on a sunny day, including the gold dome of the state capitol. The City of Atlanta has committed 16 million square feet of public and private space to substantive upgrades as part of the Better Buildings Challenge. Credit: iStockphoto The Better Buildings Challenge is part of the U.S. Department of Energy's (DOE's) Better Buildings Initiative, which aims to make U.S. commercial and industrial buildings at least 20% more efficient during the next decade. To achieve this aggressive target, DOE is working with public and private sector partners that commit to being leaders in energy efficiency. These partners will implement energy savings practices that improve energy efficiency and save money, and will showcase effective strategies and the results of their efforts.

315

Building America FY14 Projects by Building Type  

Broader source: Energy.gov [DOE]

This table lists U.S. Department of Energy Building America FY14 research projects by building type.

316

Ventilation in Multifamily Buildings  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Ventilation in Multifamily Buildings Welcome to the Webinar! We will start at 2:00 PM Eastern Time Be sure that you are also dialed into the telephone conference call: Dial-in number: 888-324-9601; Pass code: 5551971 Download the presentation at: www.buildingamerica.gov/meetings.html Building Technologies Program eere.energy.gov Building America: Introduction November 1, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies

317

Building Data Visualization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Building Data Visualization contour plot Figure 1: Contour plot showing the various operating stages of occupancy sensors described in the case study. Data visualization for buildings is the display of a rich set of variables and parameters that managers can use to verify the energy savings of energy- efficient technology and identify malfunctions in building equipment or problems with operating strategies. Effective data visualization depends on having graphic presentation formats that reveal the phenomena relevant to the building's performance. A research project at the Center for Building Science is aimed at developing data visualization techniques for improved building management. Buildings with energy management control systems as well as dedicated monitoring equipment in the

318

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Building Type Definition Includes These Sub-Categories from 2003 CBECS Questionnaire Education Buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Buildings on education campuses for which the main use is not classroom are included in the category relating to their use. For example, administration buildings are part of "Office", dormitories are "Lodging", and libraries are "Public Assembly". elementary or middle school high school college or university preschool or daycare adult education career or vocational training religious education Food Sales Buildings used for retail or wholesale of food. grocery store or food market

319

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

320

Property:Building/Boundaries | Open Energy Information  

Open Energy Info (EERE)

Boundaries Boundaries Jump to: navigation, search This is a property of type String. Boundaries Pages using the property "Building/Boundaries" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + Several buildings + Sweden Building 05K0002 + Part of a building + Sweden Building 05K0003 + One building + Sweden Building 05K0004 + One building + Sweden Building 05K0005 + One building + Sweden Building 05K0006 + Several buildings + Sweden Building 05K0007 + One building + Sweden Building 05K0008 + One building + Sweden Building 05K0009 + One building + Sweden Building 05K0010 + One building + Sweden Building 05K0011 + One building + Sweden Building 05K0012 + One building + Sweden Building 05K0013 + One building + Sweden Building 05K0014 + One building +

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

How Will Buildings Be Selected for the 2012 CBECS? How Will Buildings Be Selected for the 2012 CBECS? Background and Overview Did You Know? In the CBECS, commercial refers to any structure that is neither residential, manufacturing/ industrial, nor agricultural. Building refers to a structure that is totally enclosed by walls that extend from the foundation to the roof. Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) will begin in April 2013, collecting data for reference year 2012. The goal of the CBECS is to provide basic statistical information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings. The 2003 CBECS estimated that there were 4.9 million commercial buildings in the US. Because it would be completely impractical and prohibitively

322

Federal Buildings Supplemental Survey--Public Use Files  

U.S. Energy Information Administration (EIA) Indexed Site

What is FBSS? What is FBSS? WHAT IS FBSS? The Federal Buildings Supplemental Survey (FBSS) was conducted in 1993 by the Energy Information Administration (EIA) in conjunction with the Department of Energy's Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. OFEMP requested that the FBSS provide building-level energy-related characteristics for a special sample of commercial buildings owned by the Federal government. This special sample met the following OFEMP-specified criteria: (1) Federal buildings from different areas of the country - Federal Regions 3, 6, and 9; Fewer sample buildings from Department of Defense (DOD) -- sample selection ratio of 1:10 for DOD buildings in each Federal Region; and

323

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Lighting in Commercial Buildings Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

324

Evaluate Greenhouse Gas Emissions Profile for Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:43am Addthis YOU ARE HERE Step 2 To identify the most cost-effective greenhouse gas (GHG) reduction strategies across a Federal agency's building portfolio, a Federal agency will need an understanding of building energy performance and the building characteristics that drive performance. The data required to support current Federal GHG reporting requirements (e.g., agency-wide fuel consumption, electricity use by zip code) are typically not sufficient to fully understand where the best opportunities for improvement are located. More detailed information about the building assets being managed-much of which may already be collected for other purposes-can help to inform where to direct investments.

325

Commercial Building Asset Rating Program  

Broader source: Energy.gov [DOE]

Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

326

Saving Energy in Multifamily Buildings  

Broader source: Energy.gov [DOE]

This presentation is for the Building Technologies program webinar titled Saving Energy in Multifamily Buildings delivered on July 25, 2011.

327

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

1.1 Buildings Sector Energy Consumption 1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 1 provides an overview of energy use in the U.S. buildings sector, which includes single- and multi-family residences and commercial buildings. Commercial buildings include offices, stores, restaurants, warehouses, other buildings used for commercial purposes, and government buildings. Section 1.1 presents data on primary energy consumption, as well as energy consumption by end use. Section 1.2 focuses on energy and fuel expenditures in U.S. buildings. Section 1.3 provides estimates of construction spending, R&D, and construction industry employment. Section 1.4 covers emissions from energy use in buildings, construction waste, and other environmental impacts. Section 1.5 discusses key measures used throughout the Data Book, such as a quad, primary versus delivered energy, and carbon emissions. Section 1.6 provides estimates of embodied energy for various commercial building assemblies. The main points from this chapter are summarized below:

328

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

329

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

330

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Learn More. Warming Up to Pump Heat. Learn More. Cut Refrigerator Energy Use to Save Money. Learn More. News DOE Publishes Petition of CSA Group for Classification as a Nationally

331

Building Technologies Office: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Keep Up To Date Read the Better Buildings Network View newsletter. The Network View is an e-newsletter that provides information on the newly launched Better Buildings Residential Network. The Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to build upon the many successes of the Better Buildings Neighborhood Program. Read the latest issue. Through the Better Buildings Neighborhood Program, communities across the country are improving neighborhoods, creating jobs, and increasing access to energy savings in homes and businesses. Following are some of the news-making innovations and results that Better Buildings Neighborhood Program partners are achieving. Latest DOE News and Blog Posts

332

Building Science - Ventilation  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Ventilation Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com Build Tight - Ventilate Right Building Science Corporation Joseph Lstiburek 2 Build Tight - Ventilate Right How Tight? What's Right? Building Science Corporation Joseph Lstiburek 3 Air Barrier Metrics Material 0.02 l/(s-m2) @ 75 Pa Assembly 0.20 l/(s-m2) @ 75 Pa Enclosure 2.00 l/(s-m2) @ 75 Pa 0.35 cfm/ft2 @ 50 Pa 0.25 cfm/ft2 @ 50 Pa 0.15 cfm/ft2 @ 50 Pa Building Science Corporation Joseph Lstiburek 4 Getting rid of big holes 3 ach@50 Getting rid of smaller holes 1.5 ach@50 Getting German 0.6 ach@50 Building Science Corporation Joseph Lstiburek 5 Best As Tight as Possible - with - Balanced Ventilation Energy Recovery Distribution Source Control - Spot exhaust ventilation Filtration

333

Building Technologies Office: Building-Level Energy Management Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-Level Energy Building-Level Energy Management Systems Research Project to someone by E-mail Share Building Technologies Office: Building-Level Energy Management Systems Research Project on Facebook Tweet about Building Technologies Office: Building-Level Energy Management Systems Research Project on Twitter Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Google Bookmark Building Technologies Office: Building-Level Energy Management Systems Research Project on Delicious Rank Building Technologies Office: Building-Level Energy Management Systems Research Project on Digg Find More places to share Building Technologies Office: Building-Level Energy Management Systems Research Project on AddThis.com... About Take Action to Save Energy

334

Commercial Building Partnership  

Broader source: Energy.gov (indexed) [DOE]

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

335

Commercial Building Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Partnership Building Partnership (CBP) Adam Hirsch National Renewable Energy Laboratory Email: Adam.Hirsch@nrel.gov Phone: (303) 384-7874 Wednesday, April 3 2013 BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov * 2008: NREL + PNNL selected partner companies and technical consultants and won joint solicitation - Collaborators selected based on commitment to hitting project goals and likelihood of success * Projects began in 2009 with aim of 3-5 year completion

336

Midwest Building Energy Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

337

Kiowa County Commons Building  

Broader source: Energy.gov (indexed) [DOE]

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

338

The Lovejoy Building  

High Performance Buildings Database

Portland, OR Originally built in 1910 as the stables for the Marshall-Wells Hardware Company, the Lovejoy Building is the home of Opsis Architects. The owner/architects purchased and renovated the historic building to house their growing business and to provide ground-floor office lease space and second-floor offices for their firm. Opsis wanted to use the building to experience and demonstrate the technologies and practices it promotes with clients.

339

Building South Weyburn Avenue  

E-Print Network [OSTI]

36 P32 PCHS P9 P1 P8 P6 P2 P3 P5 17 P4 P7 PRO 11 15 10 Kinross Building Kinross Building South Road Charles E. Young Drive North R oyce D rive CharlesE.YoungDriveNorth Manning Avenue Manning Avenue/Engineering and Mathematical Sciences 8270 Boelter Hall SEL/Geology-Geophysics 4697 Geology Building Music Library 1102

Williams, Gary A.

340

Midwest Building Energy Program  

Broader source: Energy.gov (indexed) [DOE]

Midwest Building Energy Program Midwest Building Energy Program Stacey Paradis Midwest Energy Efficiency Alliance sparadis@mwalliance.org 312-784-7267 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Purpose * Reduce Energy Use in New Construction (Energy Codes) * Reduce Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to States In Midwest Adopt Latest Model Energy Codes * Foster Maximum Compliance with Current Energy Codes

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Buildings Research - Commercial Buildings Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Buildings Research Staff Commercial Buildings Research Staff Members of the Commercial Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as computer science, physics, and chemistry. Brian Ball Kyle Benne Eric Bonnema Larry Brackney Alberta Carpenter Michael Deru Ian Doebber Kristin Field Katherine Fleming David Goldwasser Luigi Gentile Polese Brent Griffith Rob Guglielmetti Elaine Hale Bob Hendron Lesley Herrmann Adam Hirsch Eric Kozubal Feitau Kung Rois Langner Matt Leach Nicholas Long Daniel Macumber James Page Andrew Parker Shanti Pless Jennifer Scheib Marjorie Schott Michael Sheppy Greg Stark Justin Stein Daniel Studer Alex Swindler Paul Torcellini Evan Weaver Photo of Brian Ball Brian Ball, Ph.D., Senior Engineer brian.ball@nrel.gov

342

Building Technologies Office: Building America Solution Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

343

Quintessence Model Building  

E-Print Network [OSTI]

A short review of some of the aspects of quintessence model building is presented. We emphasize the role of tracking models and their possible supersymmetric origin.

Ph. Brax; J. Martin; A. Riazuelo

2001-09-27T23:59:59.000Z

344

What is Building America?  

SciTech Connect (OSTI)

DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient.

None

2013-06-20T23:59:59.000Z

345

Whole Building Energy Simulation  

Broader source: Energy.gov [DOE]

Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

346

Buildings Success Stories  

Energy Savers [EERE]

1 Buildings Success Stories en Zero Energy Ready Home Program: Race to Zero Student Design Competition http:energy.goveeresuccess-storiesarticleszero-energy-ready-home-progra...

347

Building bridges for fish  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building-bridges-for-fish Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives...

348

Building Technologies Office: Building America Market Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

349

An object-oriented framework for simulation-based green building design optimization with genetic algorithms  

Science Journals Connector (OSTI)

Simulation-based optimization can assist green building design by overcoming the drawbacks of trial-and-error with simulation alone. This paper presents an object-oriented framework that addresses many particular characteristics of green building design ... Keywords: Genetic algorithm, Green building, Object-oriented framework, Optimization, Simulation programs, Sustainable development

Weimin Wang; Hugues Rivard; Radu Zmeureanu

2005-01-01T23:59:59.000Z

350

U.S. Department of Energy Building Energy Data Exchange Specification  

Broader source: Energy.gov [DOE]

This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships.

351

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

352

Building Technologies Office: Building America Research for the American  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

353

A Look at Principal Building Activities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Commercial Buildings Home> Special Topics > 1995 Principal Home > Commercial Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public Assembly Public Order and Safety Warehouse and Storage Vacant Other Summary Comparison Table (All Activities) More information on the: Commercial Buildings Energy Consumption Survey A Look at ... Principal Building Activities in the Commercial Buildings Energy Consumption Survey (CBECS) When you look at a city skyline, most of the buildings you see are commercial buildings. In the CBECS, commercial buildings include office buildings, shopping malls, hospitals, churches, and many other types of buildings. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial.

354

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Sustainability A B E G K L S U Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. BEES environmental performance, green buildings, life cycle assessment, life cycle costing, sustainable development Free software. Software has been updated. Building Greenhouse Rating operational energy, greenhouse performance, national benchmark Free software. Building Performance Compass Commercial Buildings, Multi-family Residence, Benchmarking, Energy Tracking, Improvement Tracking, Weather Normalization BuildingAdvice Whole building analysis, energy simulation, renewable energy, retrofit analysis, sustainability/green buildings Software has been updated. ECO-BAT environmental performance, life cycle assessment, sustainable development Software has been updated.

355

MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS  

E-Print Network [OSTI]

) Common Use Areas All floored areas in the building for circulation and standard facilities provided and the like. These are extracts of NWPC standard method of measurement of building areas with an addition fromSection S ANNEXURE 4 MEASUREMENT OF BUILDING AREAS MEASUREMENT OF BUILDING AREAS 1. GROSS BUILDING

Wang, Yan

356

Trottier BuildingTrottier Building Fire SafetyFire Safety  

E-Print Network [OSTI]

building 1.1. Fire SafetyFire Safety 2.2. Fire Protection equipmentFire Protection equipment 3 OfficersFire Prevention Officers #12;Trottier BuildingTrottier Building Fire ProtectionFire Protection#12;Trottier BuildingTrottier Building Fire SafetyFire Safety in Trottier buildingin Trottier

Pientka, Brigitte

357

Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

358

Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

359

Reference Buildings by Building Type: Midrise Apartment  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

360

Reference Buildings by Building Type: Primary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Reference Buildings by Building Type: Small office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

362

Reference Buildings by Building Type: Large office  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

363

Reference Buildings by Building Type: Small Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

364

Reference Buildings by Building Type: Secondary school  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

365

Reference Buildings by Building Type: Large Hotel  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

366

Reference Buildings by Building Type: Strip mall  

Office of Energy Efficiency and Renewable Energy (EERE)

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

367

Reference Buildings by Building Type: Hospital  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

368

Reference Buildings by Building Type: Medium office  

Broader source: Energy.gov [DOE]

In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

369

RESEARCH BUILDING AT NORTHWESTERN  

E-Print Network [OSTI]

-intensive medical schools. Perkins+Will has designed a building that will be superbly functional and have great selected the Chicago architectural firm of Perkins+Will to design the new Biomedical Research Building and advances sustainable practices with green technology and design features that support environmental

Engman, David M.

370

Tell: Building a consistent,  

E-Print Network [OSTI]

, Joseph M. Hellerstein, William R. Marczak UC Berkeley November 19, 2010 #12;Show and Tell: BuildingShow and Tell: Building a consistent, replicated shopping cart in Bloom Peter Alvaro, Neil Conway, Joseph M. Hellerstein, William R. Marczak Background The CALM Conjecture Introducing Bloom Writing

California at Irvine, University of

371

The Research Building Blocks  

E-Print Network [OSTI]

The Research Building Blocks For Teaching Children to Read Third Edition Put Reading First Kindergarten Through Grade 3 Third Edition #12;#12;The Research Building Blocks for Teaching Children to Read Centers Program, PR/Award Number R305R70004, as administered by the Office of Educational Research

Rau, Don C.

372

CONTACT INFO BUILDING SHELTER  

E-Print Network [OSTI]

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

373

Electric Services in Buildings  

Science Journals Connector (OSTI)

... Institution of Electrical Engineers on October 22. In the early days, electrical installations in buildings were for lighting and bells. Wood casing was used, and, so far as ... equipment were placed anywhere where they would be out of sight. Now new and larger buildings are being erected all over the country, and electrical contractors are having difficulty in ...

1936-10-31T23:59:59.000Z

374

Heat Requirements of Buildings  

Science Journals Connector (OSTI)

... and Ventilating Engineers in a publication entitled Recommendations for the Computation of Heat Requirements for Buildings (Pp. iii+41. Is. 9d.) This comprises a section of the ... parts. That on temperature-rise and rates of change gives the recommended values applicable to buildings ranging alphabetically from aircraft sheds to warehouses. The design of heating and ventilating installations ...

1942-02-28T23:59:59.000Z

375

Technical College Buildings  

Science Journals Connector (OSTI)

... should have such a paucity of literature dealing with material needs in the matter of buildings and equipment necessary for its field of activity. Books dealing with laboratories can be ... is therefore to be specially welcomed, particularly at the present time when the demands for buildings for technical education are so marked (London: Association of Technical Institutions and the Association ...

1935-08-10T23:59:59.000Z

376

New Buildings at Rothamsted  

Science Journals Connector (OSTI)

... June 21 was made the occasion of the official opening of a new block of buildings at the farm and the inauguration of an extensive electrical installation in the farm ... at the farm and the inauguration of an extensive electrical installation in the farm buildings. The Right Hon. Sir John Gilmour, Minister of Agriculture, declared the ...

1932-07-02T23:59:59.000Z

377

Farm Buildings in Britain  

Science Journals Connector (OSTI)

... the Government does not think that a case has been established for a Government farm buildings research centre, but the Agricultural Research Council is undertaking a survey of farm ... research centre, but the Agricultural Research Council is undertaking a survey of farm buildings in Great Britain and is issuing a bibliography of research publications on the subject. ...

1961-07-29T23:59:59.000Z

378

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... describes three vibrators at present in use, together with the methods of testing. In buildings, the vibrator is securely braced between two columns. A 4 in. x 4 ... . Resulting vibrations in structures or in the ground are measured by portable seismographs. For buildings a magnification of about 200 may be used, but for dams or on the ...

1966-06-11T23:59:59.000Z

379

Earthquake-proof Buildings  

Science Journals Connector (OSTI)

... more, the recent Quetta earthquake has emphasised the importance of erecting none but earthquake-proof buildings in a district subject to destructive shocks. The few houses in Quetta that could ... flanks of hills composed of hard rocks. Areas in which brickwork was seriously cracked and buildings occasionally fell, lay on the flanks of the hills facing the Pacific and in ...

Charles Davison

1936-01-11T23:59:59.000Z

380

University of London Buildings  

Science Journals Connector (OSTI)

... to the provision of an open space on part of the site of the new buildings of the University of London at Bloomsbury. He informs us that since his election ... by Mr. Humberstone that this undertaking was not carried out by the layout of the buildings. Representations were therefore made, with the result that a new design and layout have ...

1935-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrical Equipment of Buildings  

Science Journals Connector (OSTI)

... eleventh) edition of the regulations of the Institution of Electrical Engineers for the wiring of buildings was published in June (London: Spon. Cloth 1s. 6d. net; paper cover ... of electrical energy in and about all types of dwelling houses, business premises, public buildings and factories, whether tho electric supply is derived from an external source or from ...

1939-10-14T23:59:59.000Z

382

Concrete Steel Buildings  

Science Journals Connector (OSTI)

... and engineers who consult this book will have little trouble in finding full descriptions of buildings similar to any they may be called upon to design. Examples of transit sheds ... to design. Examples of transit sheds for docks, railway goods stations, warehouses, factory buildings, business premises, villas, flour mills, hotels, theatres, &c., are all ...

T. H. B.

1907-09-19T23:59:59.000Z

383

Farm Buildings Research  

Science Journals Connector (OSTI)

... THE first supplement, 1958-61, of Part 3, Buildings for Poultry, issued by the Agricultural Research Council, has recently been published (Pp. ... . 71. London: Agricultural Research Council, 1963. 4s.). This bibliography of farm buildings research provides important basic information: in the past, much waste has occurred from the ...

1963-07-27T23:59:59.000Z

384

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... in an article under this heading (NATURE, vol. xxix. p. 290) to buildings in Caracas, which are low, slightly pyramidal, have flat roofs, and are bound ... architecture, and as such I must say that certainly the houses are generally one-story buildings, but all the remainder of the foregoing description is quite erroneous. However, I ...

A. ERNST

1884-04-24T23:59:59.000Z

385

Earthquakes and Buildings  

Science Journals Connector (OSTI)

... A COMPLETE discussion of the effects which earthquakes produce upon buildings would form a treatise as useful as it would be interesting. Not only would ... to a few of the more important practical conclusions respecting the: effect of earthquakes on buildings, which may be of value to those whose mission it is to erect ...

JOHN MILNE

1884-01-24T23:59:59.000Z

386

Farm Buildings Research  

Science Journals Connector (OSTI)

... A BIBLIOGRAPHY, Fann Buildings Research, was issued by the Agricultural Research Council in 1958, covering publications of the ... published (Pp. 69. Agricultural Research Council, 1962. 4.). This deals with buildings for pigs and provides a brief annotation for each referenco quoted. An author index ...

1963-01-12T23:59:59.000Z

387

American School Buildings  

Science Journals Connector (OSTI)

... it was determined to begin with a study of the functional planning of elementary school buildings, and a report on this subject has been published by the United States Government ... that the elementary school curriculum is changing in ways which radically affect the planning of buildings, and that costs depend largely on the extent to which school work is organized ...

1938-05-14T23:59:59.000Z

388

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",4645,4011,1841,2029,141,635,46,164,425 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2272,980,1205,87,280,"Q",77,183 "5,001 to 10,000 ..............",889,783,384,375,"Q",106,"Q","Q",87

389

Communicating Building Energy Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Communicating Building Energy Performance Communicating Building Energy Performance Speaker(s): William Bordass Date: August 26, 2008 - 12:00pm Location: 90-3075 Seminar Host/Point of Contact: Paul Mathew The heightened interest in building energy performance has exposed problems with reporting and benchmarking. Established conventions may no longer suit current needs, and new complications are emerging as national and corporate reporting (e.g. for carbon accounting and trading) begin to impact on the certification and labelling of building energy performance. If we are to achieve genuinely low-energy and carbon buildings, we need to get much better at reporting and benchmarking our intentions and outcomes, and particularly making performance visible and communicating it to all the people concerned. In design, this could help us to reduce the persistent

390

Buildings Performance Metrics Terminology  

Broader source: Energy.gov (indexed) [DOE]

Energy's Commercial Building Initiative Page 1 Energy's Commercial Building Initiative Page 1 January 2009 Buildings Performance Metrics Terminology To clarify how the terms are used in the Department of Energy's Performance Metrics Research Project, a list of terms related to performance metrics are defined and include examples and comments. Visit www.commercialbuildings.energy.gov/performance_metrics.html to learn more. Baseline - a standard reference case used as a basis for comparison Examples: a simulation model of an ASHRAE 90.1 compliant building, control building, measurement of energy consumption prior to application of an energy conservation measure Comments: Establishing a clearly defined baseline very important and is often the most difficult task. Defining a repeatable baseline is essential if the work is to be compared to results of other

391

Better Buildings Neighborhood Program  

Broader source: Energy.gov (indexed) [DOE]

Program Name or Ancillary Text eere.energy.gov Program Name or Ancillary Text eere.energy.gov BTO Program Peer Review Analysis Leading to Lessons Learned Better Buildings Neighborhood Program Danielle Sass Byrnett, DOE Dave Roberts, NREL david.roberts@nrel.gov 303.384.7496 April 3, 2013 Better Buildings Neighborhood Program Analysis Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United States and are responsible for nearly 40% of the country's greenhouse gas emissions. Several well documented barriers have prevented the development of a self-sustaining building energy upgrade market to reduce this energy use.

392

Residential Building Code Compliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Residential Building Code Compliance: Recent Findings and Implications Energy use in residential buildings in the U.S. is significant-about 20% of primary energy use. While several approaches reduce energy use such as appliance standards and utility programs, enforcing state building energy codes is one of the most promising. However, one of the challenges is to understand the rate of compliance within the building community. Utility companies typically use these codes as the baseline for providing incentives to builders participating in utility-sponsored residential new construction (RNC) programs. However, because builders may construct homes that fail to meet energy codes, energy use in the actual baseline is higher than would be expected if all buildings complied with the code. Also,

393

Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Buildings EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

394

Buildings Energy Databook  

Buildings Energy Data Book [EERE]

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

395

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

8.1 Buildings Sector Water Consumption 8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy needed to supply that water. The main points from this chapter are summarized below: In 2005, water use in the buildings sector was estimated at 39.6 billion gallons per day, which is nearly 10% of total water use in the United States. From 1985 to 2005, water use in the residential sector closely tracked population growth, while water use in the commercial sector grew almost twice as fast.

396

buildings | OpenEI  

Open Energy Info (EERE)

buildings buildings Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2

397

NREL Buildings Research Video  

SciTech Connect (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campusthe first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2009-01-01T23:59:59.000Z

398

NREL Buildings Research Video  

ScienceCinema (OSTI)

Through research, the National Renewable Energy Laboratory (NREL) has developed many strategies and design techniques to ensure both commercial and residential buildings use as little energy as possible and also work well with the surroundings. Here you will find a video that introduces the work of NREL Buildings Research, highlights some of the facilities on the NREL campus, and demonstrates these efficient building strategies. Watch this video to see design highlights of the Science and Technology Facility on the NREL campus?the first Federal building to be LEED Platinum certified. Additionally, the video demonstrates the energy-saving features of NRELs Thermal Test Facility. For a text version of this video visit http://www.nrel.gov/buildings/about_research_text_version.html

None

2013-05-29T23:59:59.000Z

399

Compare Activities by Building Age  

U.S. Energy Information Administration (EIA) Indexed Site

Activities by Building Age Activities by Building Age Compare Activities by ... Building Age Median Age of Building by Building Type Vacant buildings, retail stores (other than malls), and religious worship buildings tended to be the oldest buildings. Food sales buildings (which were predominantly convenience stores) and outpatient health care buildings were mainly newer buildings. Figure showing median age of building by building type. If you need assistance viewing this page, please call 202-586-8800. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: July 24, 2002 Page last modified: May 4, 2009 2:52 PM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/compareage.html If you are having any technical problems with this site, please contact the EIA

400

Energy assessment of office buildings in China using China building energy codes and LEED 2.2  

Science Journals Connector (OSTI)

Abstract China building energy codes (CBEC) have been introduced for over two decades but little has been publicized in literature. LEED on the contrary is the most publicized building environmental assessment scheme. To enable better understanding of the compliance standards of CBEC, this paper presents the energy performance assessment results (represented by energy and energy cost savings) of three office buildings in China (one in Beijing and two in Shanghai) using the current versions of CBEC and LEED. The energy and energy cost savings of the three buildings were predicted based on hour-by-hour simulations using the weather data and energy tariffs of Beijing and Shanghai where the three studied buildings are located, and their actual building and system characteristics. The study revealed that LEED in general sets more stringent requirements than CBEC in indoor design conditions, building envelope characteristics and air-conditioning system features. Amongst various building end uses, energy use for air-conditioning was found dominating the assessment results, and the use of energy efficient measures not forming part of the baseline criteria, could lead to 2 to 5% reduction in the overall building energy use. The two schemes were benchmarked against BEAM Plus and their weaknesses were also unveiled.

Hua Chen; W.L. Lee; Xiaolin Wang

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Technologies Office: Appliances Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

402

Building Technologies Office: Webinar Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webinar Archives to Webinar Archives to someone by E-mail Share Building Technologies Office: Webinar Archives on Facebook Tweet about Building Technologies Office: Webinar Archives on Twitter Bookmark Building Technologies Office: Webinar Archives on Google Bookmark Building Technologies Office: Webinar Archives on Delicious Rank Building Technologies Office: Webinar Archives on Digg Find More places to share Building Technologies Office: Webinar Archives on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program

403

Building Technologies Office: Strategic Plans  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

404

Types of Lighting in Commercial Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Types of Lighting in Commercial Buildings - Full Report Types of Lighting in Commercial Buildings - Full Report file:///C|/mydocs/CBECS%20analysis/CBECS%20lighting/lighting_pdf.html[4/28/2009 9:20:44 AM] Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the

405

Building Technologies Office: Commercial Building Energy Asset Score Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

406

Commercial Prototype Building Models | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prototype Building Models Prototype Building Models The U.S. Department of Energy (DOE) supports the development of commercial building energy codes and standards by participating in review processes and providing analyses that are available for public review and use. To calculate the impact of ASHRAE Standard 90.1, researchers at Pacific Northwest National Laboratory (PNNL) created a suite of 16 prototype buildings covering 80% of the commercial building floor area in the United States for new construction, including both commercial buildings and mid- to high-rise buildings. These prototype buildings-derived from DOE's Commercial Reference Building Models-cover all the reference building types except supermarkets, and also add a new building prototype representing high-rise apartment buildings. As ASHRAE Standard 90.1

407

Reference Buildings by Building Type: Stand-alone retail | Department...  

Broader source: Energy.gov (indexed) [DOE]

Stand-alone retail Reference Buildings by Building Type: Stand-alone retail In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet...

408

City of Scottsdale- Green Building Policy for Public Buildings  

Broader source: Energy.gov [DOE]

In 2005, Scottsdale approved a green building policy for new city buildings and remodels. The resolution requires all new, occupied city buildings of any size to be designed, contracted and built...

409

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

3 3 Share of Total U.S. Households, by Census Region, Division, and Vintage, as of 2005 Prior to 1950 to 1970 to 1980 to 1990 to 2000 to Region 1950 1969 1979 1989 1999 2005 Northeast 6.7% 5.2% 2.4% 2.1% 1.3% 0.8% 18.5% New England 2.1% 1.2% 0.5% 0.5% 0.3% 0.3% 4.9% Middle Atlantic 4.6% 4.0% 1.9% 1.6% 1.0% 0.5% 13.6% Midwest 5.7% 5.8% 3.6% 2.5% 3.7% 1.7% 23.0% East North Central 4.3% 3.9% 2.7% 1.8% 2.1% 1.1% 16.0% West North Central 1.4% 1.9% 0.9% 0.7% 1.6% 0.6% 7.1% South 4.0% 6.9% 6.4% 7.5% 7.5% 4.3% 36.6% South Atlantic 2.0% 3.4% 3.5% 4.2% 4.3% 2.2% 17.4% East South Central 0.9% 1.3% 0.9% 1.0% 1.3% 0.7% 6.2% West South Central 1.2% 2.3% 4.7% 2.2% 1.8% 1.4% 13.6% West 3.4% 4.6% 4.5% 4.6% 3.1% 1.5% 21.8% Mountain 0.7% 1.2% 1.3% 1.5% 1.3% 0.9% 6.8% Pacific 2.8% 3.4% 3.3% 3.1% 1.8% 0.6% 15.0% United States 19.9% 22.5% 17.0% 16.7% 15.6% 8.3% 100% Source(s): All Vintages EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC10

410

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book [EERE]

8 8 Presence of Air-Conditioning and Type of Heating System in New Single-Family Homes Type of Primary Heating System Warm-Air Hot Water Other or | Furnace Heat Pump or Steam (1) None (2) | 1980 57% 24% 4% 15% | 62% 1981 56% 25% 3% 16% | 65% 1982 53% 26% 4% 17% | 66% 1983 56% 29% 4% 12% | 69% 1984 55% 30% 4% 11% | 71% 1985 54% 30% 5% 11% | 70% 1986 54% 29% 7% 10% | 69% 1987 57% 27% 7% 9% | 71% 1988 60% 26% 7% 8% | 75% 1989 63% 24% 6% 7% | 77% 1990 64% 23% 6% 6% | 76% 1991 65% 22% 6% 7% | 75% 1992 66% 24% 6% 5% | 77% 1993 67% 24% 5% 5% | 78% 1994 67% 24% 5% 4% | 79% 1995 66% 25% 5% 4% | 79% 1996 70% 23% 5% 2% | 81% 1997 70% 23% 5% 2% | 82% 1998 72% 21% 4% 3% | 83% 1999 72% 22% 4% 2% | 84% 2000 71% 23% 4% 2% | 85% 2001 71% 23% 4% 1% | 86% 2002 71% 23% 4% 2% | 87% 2003 71% 24% 3% 2% | 88% 2004 70% 26% 3% 1% | 90% 2005 67% 29% 3% 1% | 89% 2006 63% 33% 3% 2% | 89% 2007 62% 34% 2% 2% | 90% 2008 60% 34% 3% 3% | 89% 2009 56% 37% 3% 4% | 88% 2010 56% 38% 2% 3% | 88% Note(s) Source(s):

411

Types of Lighting in Commercial Buildings - Lighting Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lmW). Lamps with a higher efficacy value are...

412

Building America Research Teams: Spotlight on Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA)  

Broader source: Energy.gov [DOE]

This article profiles the Building America teams, Alliance for Residential Building Innovation (ARBI) and Building America Research Alliance (BARA).

413

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

414

Building-integrated photovoltaics  

SciTech Connect (OSTI)

This is a study of the issues and opportunities for building-integrated PV products, seen primarily from the perspective of the design community. Although some quantitative analysis is included, and limited interviews are used, the essence of the study is qualitative and subjective. It is intended as an aid to policy makers and members of the technical community in planning and setting priorities for further study and product development. It is important to remember that the success of a product in the building market is not only dependent upon its economic value; the diverse group of building owners, managers, regulators, designers, tenants and users must also find it practical, aesthetically appealing and safe. The report is divided into 11 sections. A discussion of technical and planning considerations is followed by illustrative diagrams of different wall and roof assemblies representing a range of possible PV-integration schemes. Following the diagrams, several of these assemblies are then applied to a conceptual test building which is analyzed for PV performance. Finally, a discussion of mechanical/electrical building products incorporating PVs is followed by a brief surveys of cost issues, market potential and code implications. The scope of this report is such that most of the discussion does not go beyond stating the questions. A more detailed analysis will be necessary to establish the true costs and benefits PVs may provide to buildings, taking into account PV power revenue, construction costs, and hidden costs and benefits to building utility and marketability.

NONE

1993-01-01T23:59:59.000Z

415

Report on the project Building knowledge  

E-Print Network [OSTI]

Building knowledge To build citizens To build cities Report on the project #12;#12;RectoR's message 1. oveReport on the project Building knowledge To build citizens To build cities UPF CAMPUS IC?RIA

416

Building America Solution Center - Building America Top Innovation...  

Energy Savers [EERE]

America Top Innovation SCimagemale.jpg The Building America Solution Center is a Web-based tool connecting users to fast, free, and expert building science and energy...

417

Building America Webinar: Building America: Research for Real...  

Office of Environmental Management (EM)

(DOE) Building America program has been a source of innovations for high performance homes. Join Eric Werling, Building America Program Coordinator, and Sam Rashkin, Chief...

418

Webinar: Make Your Building Sing!: Building-Retuning to Reduce...  

Broader source: Energy.gov (indexed) [DOE]

(PNNL) developed a curricula focused on retuning both large (with a building automation system, or BAS) and small (without a BAS) commercial buildings. Hear from Better...

419

Building operating systems services: An architecture for programmable buildings.  

E-Print Network [OSTI]

architecture of an Automated Logic building managementAssociation. [24] Automated Logic Corporation. ALC systemarchitecture of an Automated Logic building management

Dawson-Haggerty, Stephen

2014-01-01T23:59:59.000Z

420

A Look at Principal Building Activities in Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

Buildings Home> Special Topics > 1995 Principal Building Activities Office Education Health Care Retail and Service Food Service Food Sales Lodging Religious Worship Public...

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Types of Lighting in Commercial Buildings - Principal Building...  

U.S. Energy Information Administration (EIA) Indexed Site

floorspace compared by building activity (Figure 5). The two exceptions are education and health care buildings. Both rank higher in amount of lit floorspace because a larger...

422

BETTER BUILDINGS ALLIANCE  

Broader source: Energy.gov [DOE]

Commercial buildingsour offices, schools, hospitals, restaurants, hotels and storesconsume nearly 20% of all energy used in the United States. We spend more than $200 billion each year to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by commissioning existing systems so they operate as intended. Energy efficiency is a cost-effective way to save money, support job growth, reduce pollution, and improve competitiveness.

423

Buildings Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Events Buildings Events August 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Building America Webinar: High...

424

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

Hong, Tianzhen

2014-01-01T23:59:59.000Z

425

High Performance and Sustainable Buildings Guidance | Department...  

Energy Savers [EERE]

High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance High Performance and Sustainable Buildings Guidance More Documents &...

426

The Building Standard (Scotland) Amendment Regulations 1964  

E-Print Network [OSTI]

STATUTORY INSTRUMENTS 1964 No. 802 (S. 50) BUILDING AND BUILDINGS The Building Standards (Scotland) Amendment Regulations 1964...

Noble, Michael

1964-01-01T23:59:59.000Z

427

Building Dashboard Kiosk | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Kiosk Screenshot Logo: Building Dashboard Kiosk...

428

Building Dashboard Network | Open Energy Information  

Open Energy Info (EERE)

Management, Building Systems, Energy Management, Enterprise Management, Reporting, Sustainability, Tools, Water Building Dashboard Network Screenshot Logo: Building Dashboard...

429

Model Predictive Control for Energy Efficient Buildings  

E-Print Network [OSTI]

Building thermal loadThe building thermal load predictor. . . . . . . .of Figures 1.1 Classification schematic for building MPC

Ma, Yudong

2012-01-01T23:59:59.000Z

430

Buildings*","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" B6. Building Size, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings* ...............",4645,2552,889,738,241,129,65,25,7 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

431

Buildings","Building Size"  

U.S. Energy Information Administration (EIA) Indexed Site

A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" A5. Building Size, Number of Buildings for All Buildings (Including Malls), 2003" ,"Number of Buildings (thousand)" ,"All Buildings","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,000 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4859,2586,948,810,261,147,74,26,8 "Principal Building Activity" "Education ....................",386,162,56,60,48,39,16,5,"Q" "Food Sales ...................",226,164,44,"Q","Q","Q","Q","N","N"

432

Benchmarking Building Performance & the Australian Building Greenhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Benchmarking Building Performance & the Australian Building Greenhouse Benchmarking Building Performance & the Australian Building Greenhouse Rating Scheme Speaker(s): Paul Bannister Date: August 21, 2006 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Stephen Selkowitz (Two topics): Benchmarking Building Performance: In a variety of voluntary and regulatory initiatives around the globe, including the introduction of the European Building Performance Directive, the question of how to assess the performance of commercial buildings has become a critical issue. There are presently a number of initiatives for the assessment of actual building performance internationally, including in particular US Energy Star Buildings rating tools and the Australian Building Greenhouse Rating scheme. These schemes seek to assess building energy performance on the

433

90.1 Prototype Building Models Outpatient Healthcare | Building Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Outpatient Healthcare Outpatient Healthcare The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

434

Building Technologies Office: Small- and Medium-Sized Building Automation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small- and Medium-Sized Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project to someone by E-mail Share Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Facebook Tweet about Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Twitter Bookmark Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Google Bookmark Building Technologies Office: Small- and Medium-Sized Building Automation and Control System Needs: Scoping Study Research Project on Delicious Rank Building Technologies Office: Small- and Medium-Sized Building

435

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" 1. Selected Principal Building Activity: Part 1, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Education","Food Sales","Food Service","Health Care",,"Lodging","Retail (Other Than Mall)" ,,,,,"Inpatient","Outpatient" "All Buildings* ...............",4645,386,226,297,8,121,142,443 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,162,164,202,"N",56,38,241 "5,001 to 10,000 ..............",889,56,44,65,"N",38,21,97 "10,001 to 25,000 .............",738,60,"Q",23,"Q",19,38,83

436

Building Energy Software Tools Directory: Building Performance Compass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Performance Compass Building Performance Compass Building Performance Compass logo Building Performance Compass analyzes commercial and multi-family building energy use patterns in a simple, easy-to-use Web-based interface. Using building details and energy data from the building’s utility bills, it is unique in its ability to benchmark and compare all buildings, whether residential or commercial. Recent enhancements to Building Performance Compass include new multi-family support, the ability to track non-energy quantities such as water and waste, and features such as its fast-feedback report, which enables reporting energy savings as early as one month after work is completed. Building Performance Compass also provides extensive tracking of building data and usage, as well as the ability to upload and track

437

Types of Lighting in Commercial Buildings - Building Size and Year  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting and Building Size and Year Constructed Lighting and Building Size and Year Constructed Building Size Smaller commercial buildings are much more numerous than larger commercial buildings, but comprise less total floorspace-the 1,001 to 5,000 square feet category includes more than half of total buildings, but just 11 percent of total floorspace. In contrast, just 5 percent of buildings are larger than 50,000 square feet, but they account for half of total floorspace. Lighting consumes 38 percent of total site electricity. Larger buildings consume relatively more electricity for lighting than smaller buildings. Nearly half (47%) of electricity is consumed by lighting in the largest buildings (larger than 500,000 square feet). In the smallest buildings (1,001 to 5,000 square feet), one-fourth of electricity goes to lighting

438

Smart Buildings: Business Case and Action Plan  

E-Print Network [OSTI]

4: Use Integrated Design for All New Buildings New buildingsUse Integrated Design for All New Buildings Recommendation #an existing building, requires an integrated design approach

Ehrlich, Paul

2009-01-01T23:59:59.000Z

439

Better Buildings Alliance | Department of Energy  

Energy Savers [EERE]

Better Buildings Alliance Better Buildings Alliance Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review commlbldgs05taddonio0...

440

Buildings | OpenEI Community  

Open Energy Info (EERE)

Buildings Buildings Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Dc Living Walls Posted by: Dc 15 Nov 2013 - 13:26 Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more... Tags: ancient building system, architect, biomimicry, building technology, cooling, cu, daylight, design problem, energy use, engineer, fred andreas, geothermal, green building, heat transfer, heating, living walls, metabolic adjustment, net zero, pre-electricity, Renewable Energy, Solar, university of colorado, utility grid, Wind

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Better Buildings Neighborhood Program: Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events to Events to someone by E-mail Share Better Buildings Neighborhood Program: Events on Facebook Tweet about Better Buildings Neighborhood Program: Events on Twitter Bookmark Better Buildings Neighborhood Program: Events on Google Bookmark Better Buildings Neighborhood Program: Events on Delicious Rank Better Buildings Neighborhood Program: Events on Digg Find More places to share Better Buildings Neighborhood Program: Events on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Events Better Buildings Neighborhood Program partners around the county are actively engaged in promoting energy efficiency and showcasing their achievements. Here's a look at what some of our partners have been doing. 2013 2012 2011 September-October 2013

442

Building Technologies | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Envelope Equipment Building Technologies Deployment System/Building Integration Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Buildings SHARE Building Technologies Reducing the energy consumption of the nation's buildings and resulting carbon emissions is essential to achieving a sustainable clean energy future. To address the enormous challenge, Oak Ridge National Laboratory is focused on helping develop new building technologies, whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations in all of these areas.

443

Frederick County- Green Building Program  

Broader source: Energy.gov [DOE]

Frederick County administers a green building program. It has two goals: (1) to ensure that County building projects implement strategies that enhance environmental performance and fiscal...

444

Building information modeling for MEP.  

E-Print Network [OSTI]

??Building Information Modeling (BIM) is a new way of approaching the design, construction, and management of a building. It is an innovative method that bridges (more)

McFarland, Jessica E

2007-01-01T23:59:59.000Z

445

The Economics of Green Building  

E-Print Network [OSTI]

Even among green buildings, increased energy efficiency isof total returns to energy efficient and green constructionof Energy and Indoor Environment Quality in Green Buildings:

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

446

Building Life Cycle Cost Programs  

Broader source: Energy.gov [DOE]

The National Institute of Standards and Technology (NIST) developed the Building Life Cycle Cost (BLCC) Program to provide computational support for the analysis of capital investments in buildings.

447

Sustainable Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Buildings Buildings Sustainable Buildings Mission The team evaluates and incorporates the requirements for sustainable buildings as defined in Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, and (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 436.1, Departmental Sustainability, and approved by LM. The team advocates the use of sustainable building practices. Scope The team evaluates how to locate, design, construct, maintain, and operate its buildings and facilities in a resource-efficient, sustainable, and economically viable manner, consistent with its mission. The team provides a process to evaluate sustainable building practices for any new construction, major renovation, and existing capital asset buildings in

448

Buildings Technologies | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings Technologies 1-4 of 4 Results June 2014 June 2014 ORNL's inaugural issue of Building Technologies Update highlights a breakthrough in home refrigeration research, the new...

449

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

9Market Transformation 9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S. Environmental Protection Agency and the U.S. Department of Energy, and the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) rating system. It also includes data on three professional certifications and five case studies of high performance buildings. The main points from this chapter are summarized below:

450

Science Behind ORNL's Building  

E-Print Network [OSTI]

C 1340 Standard For Estimating Heat Gain or Loss Through Ceilings Under Attics #12;Summer Operation of HVAC Duct in ASHRAE Climate Zone 3 #12;11 Roof Savings Calculator · Building Details · HVAC efficiency

Wang, Xiaorui "Ray"

451

Buildings Stock Load Control  

E-Print Network [OSTI]

: An assembly of the various blocks of the library of simbad and simulink permit to model building. Finally the last part prensents the study results: Graphs and tables to see the load shedding strategies impacts....

Joutey, H. A.; Vaezi-Nejad, H.; Clemoncon, B.; Rosenstein, F.

2006-01-01T23:59:59.000Z

452

Building a Foundation  

E-Print Network [OSTI]

Building a Foundation examines my personal history growing up in a Midwestern, conservative, farming community, within a family of boys. This exhibition of drawings and prints explores ideas of identity and the American male experience...

Metzger, Jonathan David

2013-05-31T23:59:59.000Z

453

BUILD Summer Program 2014  

E-Print Network [OSTI]

a battery using the DAQ (data acquisition) system. One of her projects is to downsize/redesign a muscle in Matlab. #12;BUILD Summer Program 2014 Marc Madore, an undergraduate from Johns Hopkins University

454

BETTER BUILDINGS PARTNER SUMMARIES  

Broader source: Energy.gov [DOE]

In addition to Better Buildings Neighborhood Program Summary of Reported Data From July 1, 2010 September 30, 2013, each document below presents a summary of data reported by an organization...

455

Building Energy Efficient Schools  

E-Print Network [OSTI]

Many new school buildings consume only half the energy required by similar efficient structures designed without energy performance as a design criterion. These are comfortable and efficient while construction costs remain about the same as those...

McClure, J. D.; Estes, J. M.

1985-01-01T23:59:59.000Z

456

Safety in Buildings  

E-Print Network [OSTI]

Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, and the spread of disease...

Hutcheon, N. B.

457

Computers in Commercial Buildings  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

equal to 50, 000 square feet ) had 2,061 computers per million square feet. Education and health care buildings had the next highest ratio of computers to square feet, with 1,377...

458

Better Buildings Residential  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy's (DOE's) Better Buildings Residential programs work with residential energy efficiency programs and their partners to improve homeowners' lives, the economy, and the...

459

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Most Popular Tables PDFXLS 3.1.4 2010 Commercial Energy End-Use Splits, by Fuel Type PDFXLS 1.1.1 U.S. Residential and Commercial Buildings Total Primary Energy Consumption PDFXLS...

460

Building Energy Modeling Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Sustainable Building Basics  

Broader source: Energy.gov [DOE]

Sustainable building design and operation strategies demonstrate a commitment to energy efficiency, and environmental stewardship. These approaches result in an optimal balance of energy, cost, environmental, and societal benefits, while still meeting the mission of a Federal agency and the function of the facility or infrastructure. For buildings and facilities, responsible resource management and the assessment of operational impacts encompass the principles of sustainability. Sustainable development aims to meet the needs of the present without compromising future needs.

462

High Performance Buildings Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The High Performance Buildings Database is a shared resource for the building industry, a unique central repository of in-depth information and data on high-performance, green building projects across the United States and abroad. The database includes information on the energy use, environmental performance, design process, finances, and other aspects of each project. Members of the design and construction teams are listed, as are sources for additional information. In total, up to twelve screens of detailed information are provided for each project profile. Projects range in size from small single-family homes or tenant fit-outs within buildings to large commercial and institutional buildings and even entire campuses. The database is a data repository as well. A series of Web-based data-entry templates allows anyone to enter information about a building project into the database. Once a project has been submitted, each of the partner organizations can review the entry and choose whether or not to publish that particular project on its own Web site.

463

Better Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Better Buildings Better Buildings Last year, commercial and industrial buildings used roughly 50% of the energy in the U.S. economy at a cost of over $400 billion. These buildings and operations can be made much more efficient using a variety of cost effective efficiency improvements while creating jobs and building a stronger economy. We have similar opportunities in our homes. In February 2011, President Obama, building upon the investments of the American Recovery and Reinvestment Act, announced the Better Buildings Initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years and accelerate private sector investment in energy efficiency. Better Buildings strategies include: Last year, commercial and industrial buildings used roughly 50% of the

464

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Home > Trends in Commercial Buildings > Trends in Buildings Floorspace Data tables Commercial Buildings Trend—Detail Commercial Floorspace Trend—Detail Background: Adjustment to data Trends in Buildings and Floorspace Each year buildings are added to and removed from the commercial buildings sector. Buildings are added by new construction or conversion of existing buildings from noncommercial to commercial activity. Buildings are removed by demolition or conversion from commercial to noncommercial activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the United States; by 1992, the number increased 27 percent to 4.8 million (an average annual increase of 1.8%) (Figure 1). In 1995, the estimated number declined to 4.6 million buildings, but it is unlikely that there was an actual decline in the number of buildings. To understand the apparent decline, two factors should be considered—the change in the way that the target population of commercial buildings was defined in 1995 and the uncertainty of estimates from sample surveys:

465

(TWST = Tri-Cities West Building) West Building  

E-Print Network [OSTI]

Elevator (TWST = Tri-Cities West Building) West Building 1st Floor Stage to parking lot Nursing TV Parking Lot and Cougar Garden Admissions Elevator Elevator Commons To the East Building Mac Lab Vet Center Professional Programs Student Affairs Nursing Lab Media Services Lobby West Building 2nd Floor (TWST = Tri

Collins, Gary S.

466

Two Integrated Teaching Buildings Two Integrated Teaching Buildings  

E-Print Network [OSTI]

Draft Plan Two Integrated Teaching Buildings #12;Two Integrated Teaching Buildings Effort to avoid screening effect Relocate the third building to the opposite side of Station Road. Allow larger site area for the remaining two buildings for better disposition of blocking layout. Place the large spaces like lecture

Huang, Jianwei

467

On Opposition in Spherical Buildings and Twin Buildings  

E-Print Network [OSTI]

On Opposition in Spherical Buildings and Twin Buildings Peter Abramenko 1 \\Lambda Hendrik Van apartments in twin buildings by means of the opposition relation on chambers. We also characterize adjacency of chambers in twin buildings by means of opposition of chambers. As an application, we study maps which

Bielefeld, University of

468

Building Knowledge about Buildings Matthew T. Young and Eyal Amir  

E-Print Network [OSTI]

Building Knowledge about Buildings Matthew T. Young and Eyal Amir University of Illinois, Urbana The ability to encode information about the structure of buildings is essential for the development of applications which are able to reason about buildings and answer queries concerning their design and function

Amir, Eyal

469

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

470

Energy Efficiency and Green Building Standards for State Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

471

Climate change and buildings | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate change and buildings Climate change and buildings Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Find out who's partnered with ENERGY STAR Become an ENERGY STAR partner Find ENERGY STAR certified buildings and plants ENERGY STAR certification Featured research and reports Facts and stats Climate change and buildings Climate change and buildings

472

High-Performance Building Requirements for State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

473

Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" 8. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Nongovernment-Owned Buildings",,,,"Government-Owned Buildings" ,,"Nongov- ernment- Owned Buildings","Owner Occupied","Nonowner Occupied","Unocc- upied","Govern- ment- Owned Buildings","Federal","State","Local" "All Buildings* ...............",64783,49421,23591,23914,1916,15363,1956,3808,9599 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6043,2682,3162,199,746,"Q",206,498 "5,001 to 10,000 ..............",6585,5827,2858,2791,"Q",758,"Q","Q",620

474

Archived Reference Building Type: Hospital  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

475

Archived Reference Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

476

SIVE Workshop '95 Building Map  

E-Print Network [OSTI]

SIVE Workshop '95 Building Map Workshop . Room W401 in Pappajohn Business Administration Building RIVERSIDE DRIVE (HIGHWAYS 1 & 6) Highways 1 & 6 (from Coralville) Riverside Drive RIVER IOWA ART BUILDING 1234567890 1234567890 1234567890 1234567890 Pappajohn Business Administration Building IMU RAMP DUBUQUE ST

Cremer, James

477

EUCLIDEAN BUILDINGS By Guy Rousseau  

E-Print Network [OSTI]

EUCLIDEAN BUILDINGS By Guy Rousseau Buildings were introduced by Jacques Tits in the 1950s to give these buildings were called of spherical type [Tits-74]. Later Fran¸cois Bruhat and Jacques Tits constructed buildings associated to semi-simple groups over fields endowed with a non archimedean valuation. When

Remy, Bertrand

478

Building Address Locations -Assumes entire  

E-Print Network [OSTI]

Housman Building 80 E. Concord St R BU School of Medicine, Instructional Building 80 E. Concord St L BU JBuilding Address Locations - Assumes entire building unless noted Designation Submit through* 560, 4 BU Crosstown Center 801 Massachusetts Ave Floor 1, 2 BMC BCD Building 800 Harrison Avenue BCD BMC

Guenther, Frank

479

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

480

Building Technologies Office: Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Newsletter Newsletter Sign up for the BTO Newsletter Sign up for the BTO Newsletter Around the Building Technologies Office - May Connect with the Building Technologies Office (BTO) information that interests you-program events and news, financial opportunities, and industry events. Upcoming BTO Webinars: Whole-Building Energy Modeling: Reducing Modeling Time with the OpenStudio 0.8 User Interface and the Building Component Library When: Thursday, June 28, 2012, 12:00-1:30 p.m. ET View the webinar materials. Description: The webinar will outline recent improvements to NREL and DOE's free open-platform energy modeling software, OpenStudio. This webinar will preview OpenStudio version 0.8, which features integration with the Building Component Library, an on-line repository of reusable components for rapid and consistent energy modeling. The presenters will demonstrate a complete and easy-to-use modeling workflow using the OpenStudio SketchUp Plug-in and the stand-alone OpenStudio application.

Note: This page contains sample records for the topic "building characteristics rse" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

482

Building the Information Superhighway  

Office of Scientific and Technical Information (OSTI)

"Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. "Building the Information Superhighway" takes a look back at the history of the Internet, starting at a time when it had slowed to a crawl and the government was about to abandon the Internet as inherently flawed in concept. The article documents the contributions of the Department of Energy's Lawrence Berkeley National Laboratory in rescuing and then building today's Information Superhighway. Written in 1993, the article explores both the past and the future of the Internet. The people quoted in the article were visionary, seeing the road ahead with almost 20–20 vision. Building the Information Superhighway Summer 1993 By Jeffery Kahn, JBKahn@lbl.gov In 1989, LBL researcher Bill Johnston was called to Washington for a U.S. Senate hearing. Its purpose: to explore the potential of a national information superhighway.

483

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

484

Chapter 9: Commissioning the Building  

Broader source: Energy.gov (indexed) [DOE]

: : Commissioning the Building Commissioning Process Overview Commissioning Activities and Documentation LANL | Chapter 9 Commissioning the Building Commissioning Process Overview Commissioning is a process - a systematic process of ensuring that a building performs in accordance with the design intent, contract documents, and the owner's operational needs. Commissioning is fundamental to the success of the whole-building design process. Due to the sophistication of building designs and the com- plexity of building systems constructed today, commis- sioning is necessary, but not automatically included as part of the typical design and contracting process. Commissioning is critical for ensuring that the building design is successfully constructed and operated.

485

Description of CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of Building Types Description of Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the subcategories were combined into these more general building categories, which are consistent with prior CBECS surveys.

486

building | OpenEI Community  

Open Energy Info (EERE)

building building Home Dc's picture Submitted by Dc(10) Member 17 September, 2013 - 12:39 Are you willing to reply to a text message once a day with information about your comfort level at your indoor location? building comfort design improve incentive indoor message sms text Yes 50% (2 votes) No 0% (0 votes) Maybe if I had an incentive 25% (1 vote) Maybe if my reply is confidential and anonymous 0% (0 votes) Maybe if the data will be used to improve building design 25% (1 vote) Total votes: 4 Buildings account for roughly 40% of all U.S. energy use (70% of all electricity): residential buildings account for 22% of all U.S. energy use and commercial buildings account for 18% of all U.S. energy use[i]. There is an unanswered need for information about buildings in use and how building design affects building occupant comfort, productivity, and, by

487

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics See also: Equipment |...

488

Ventilation, temperature, and HVAC characteristics in small and medium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Publication Type Journal Article Refereed Designation Refereed Year of Publication 2012 Authors Bennett, Deborah H., William J. Fisk, Michael G. Apte, X. Wu, Amber L. Trout, David Faulkner, and Douglas P. Sullivan Journal Indoor Air Volume 22 Issue 4 Pagination 309-20 Abstract This field study of 37 small and medium commercial buildings throughout California obtained information on ventilation rate, temperature, and heating, ventilating, and air-conditioning (HVAC) system characteristics. The study included seven retail establishments; five restaurants; eight offices; two each of gas stations, hair salons, healthcare facilities, grocery stores, dental offices, and fitness centers; and five other buildings. Fourteen (38%) of the buildings either could not or did not provide outdoor air through the HVAC system. The air exchange rate averaged 1.6 (s.d. = 1.7) exchanges per hour and was similar between buildings with and without outdoor air supplied through the HVAC system, indicating that some buildings have significant leakage or ventilation through open windows and doors. Not all buildings had sufficient air exchange to meet ASHRAE 62.1 Standards, including buildings used for fitness centers, hair salons, offices, and retail establishments. The majority of the time, buildings were within the ASHRAE temperature comfort range. Offices were frequently overcooled in the summer. All of the buildings had filters, but over half the buildings had a filter with a minimum efficiency reporting value rating of 4 or lower, which are not very effective for removing fine particles. PRACTICAL IMPLICATIONS: Most U.S. commercial buildings (96%) are small- to medium-sized, using nearly 18% of the country's energy, and sheltering a large population daily. Little is known about the ventilation systems in these buildings. This study found a wide variety of ventilation conditions, with many buildings failing to meet relevant ventilation standards. Regulators may want to consider implementing more complete building inspections at commissioning and point of sale.

489

Commercial Building Energy Asset Score Program  

Broader source: Energy.gov [DOE]

Fact sheet summarizing the Building Technologies Program's commercial building energy asset score program

490

Better Buildings Alliance Equipment Performance Specifications  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

491

Whole Building Ventilation Systems  

Broader source: Energy.gov (indexed) [DOE]

Whole-Building Whole-Building Ventilation Systems for Existing Homes © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Home Performance / Weatherization  Addressing ventilation is the exception  Max tightness, e.g. BPI's "Building Airflow Standard" (BAS)  References ASHRAE 62-89  BAS = Max [0.35 ACH, 15 CFM/person], CFM50 eq.  If BD tests show natural infiltration below BAS...  Ventilation must be recommended or installed.  SO DON'T AIR SEAL TO MUCH! © 2011 Steven Winter Associates, Inc. All rights reserved. © 2011 Steven Winter Associates, Inc. All rights reserved. Ventilation Requirements Ventilation systems for existing homes that are:

492

Better Buildings Summit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EERE Home | Programs & Offices | Consumer Information EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Summit Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Recognition photo with Kristen Taddonio and Kathleen Hogan Save the Date! DOE Better Buildings Summit May 7-May 9, 2014 Washington, D.C. The U.S. Department of Energy (DOE) is holding a national Summit to catalyze investment in energy efficiency across the public, private, commercial, industrial, and multifamily sectors. We look forward to recognizing leaders and highlighting innovative market solutions and best practices. Registration will be opening in February 2014. See what attendees had to say about last year's event: "I was very impressed with the amount of practical information that was

493

Table B6. Building Size, Number of Buildings, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

B6. Building Size, Number of Buildings, 1999" B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings ................",4657,2348,1110,708,257,145,59,23,7 "Principal Building Activity" "Education ....................",327,119,61,52,49,30,10,5,"Q" "Food Sales ...................",174,138,"Q","Q","Q","Q","Q","N","N"

494

Buildings*","Principal Building Activity"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" 3. Selected Principal Activity: Part 2, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Principal Building Activity" ,,"Office","Public Assembly","Public Order and Safety","Religious Worship","Service","Warehouse and Storage" "All Buildings* ...............",4645,824,277,71,370,622,597 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,503,119,37,152,434,294 "5,001 to 10,000 ..............",889,127,67,"Q",104,100,110 "10,001 to 25,000 .............",738,116,69,"Q",83,66,130 "25,001 to 50,000 .............",241,43,9,"Q",27,17,27

495

Santa Clara County - Green Building Policy for County Government Buildings  

Broader source: Energy.gov (indexed) [DOE]

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

496

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

497

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

498

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

499

Building Technologies Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hVac controls guide hVac controls guide for Plans examiners and Building inspectors September 2011 authors: Eric Makela, PNNL James Russell, PECI Sarah Fujita, PECI Cindy Strecker, PECI Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Technologies Program 2 contents introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 how to use the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 code requirements and compliance checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Performance Path 10 Control Requirements for All Systems 11 Thermostatic Control of Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply Fan Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

500

Bagley University Classroom Building  

High Performance Buildings Database

Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.