Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect (OSTI)

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

NONE

1998-10-01T23:59:59.000Z

2

Commercial Buildings Characteristics, 1992  

SciTech Connect (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

3

Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables  

Reports and Publications (EIA)

The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

2008-01-01T23:59:59.000Z

4

Uncertainties in Energy Consumption Introduced by Building Operations and  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

5

Energy consumption of building 39  

E-Print Network [OSTI]

The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

Hopeman, Lisa Maria

2007-01-01T23:59:59.000Z

6

Commercial Buildings Characteristics 1992  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)Buildings Characteristics 1992

7

Commercial Buildings Characteristics 1992  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)Buildings Characteristics

8

Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey  

SciTech Connect (OSTI)

The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

Davis, J.; Swenson, A.

1998-07-01T23:59:59.000Z

9

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network [OSTI]

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

10

1999 Commercial Buildings Characteristics  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

11

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

12

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

Zhou, Nan

2010-01-01T23:59:59.000Z

13

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

14

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

E-Print Network [OSTI]

% of the world's primary energy and contributes 21% of the world's greenhouse gas emissions (DOE Buildings Data Book 2011). The largest sector of energy consumption is the ~119 million buildings in the US which New, PhD Theodore Chandler Member ASHRAE ABSTRACT Building energy models of existing buildings

Wang, Xiaorui "Ray"

15

Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings  

E-Print Network [OSTI]

- tems 1 Introduction In EU countries, primary energy consumption in build- ings represents about 40Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI 18071 ­ Granada, Spain e-mail: A.Gonzalez@decsai.ugr.es Abstract In EU countries, primary energy consump

Casillas Barranquero, Jorge

16

Classification of Energy Consumption in Buildings with Outlier Detection  

E-Print Network [OSTI]

. Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

Yao, Xin

17

Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building  

E-Print Network [OSTI]

Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

Wang, Liping

2014-01-01T23:59:59.000Z

18

Energy consumption metrics of MIT buildings  

E-Print Network [OSTI]

With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

Schmidt, Justin David

2010-01-01T23:59:59.000Z

19

Reducing Occupant-Controlled Electricity Consumption in Campus Buildings  

E-Print Network [OSTI]

2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

Doudna, Jennifer A.

20

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

22

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

Zhou, Nan

2008-01-01T23:59:59.000Z

23

Energy Consumption Analyses of Frequently-used HVAC System Types in High Performance Office Buildings.  

E-Print Network [OSTI]

??The high energy consumption of heating, ventilation and air-conditioning (HVAC) systems in commercial buildings is a hot topic. Office buildings, a typical building set of (more)

Yan, Liusheng

2014-01-01T23:59:59.000Z

24

Simulation Models to Optimize the Energy Consumption of Buildings  

E-Print Network [OSTI]

Page 1 of paper submitted to ICEBO 2008 Berlin SIMULATION MODELS TO OPTIMIZE THE ENERGY CONSUMPTION OF BUILDINGS Sebastian Burhenne Fraunhofer-Institute for Solar Energy Systems Freiburg, Germany Dirk Jacob Fraunhofer...-Institute for Solar Energy Systems Freiburg, Germany ABSTRACT In practice, building operation systems are only adjusted during commissioning. This is done manually and leads to failure-free but often inefficient operation. This work deals...

Burhenne, S.; Jacob, D.

25

1999 Commercial Buildings Characteristics--Building Size  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size of

26

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets  

E-Print Network [OSTI]

A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy consumption plays an important role in the total energy consumption of end use. Energy efficiency in building

Paris-Sud XI, Université de

27

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings  

Broader source: Energy.gov [DOE]

Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking.

28

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network [OSTI]

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption: systems (supermarket refrigeration, ground-source, CHP, multi-zone HVAC, wireless and other communications of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous

Oak Ridge National Laboratory

29

Dynamic Simulation and Analysis of Factors Impacting the Energy Consumption of Residential Buildings  

E-Print Network [OSTI]

Buildings have a close relationship with climate. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window...

Lian, Y.; Hao, Y.

2006-01-01T23:59:59.000Z

30

Development of Energy Consumption Database Management System of Existing Large Public Buildings  

E-Print Network [OSTI]

The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

31

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

window related primary energy consumption of the US building= 1.056 EJ. Primary energy consumption includes a site-to-the amount of primary energy consumption required by space

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

32

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

roughly 2.7% of total US energy consumption. The final tworoughly 1.5% of total US energy consumption. The final twoSpace Conditioning Energy Consumption in US Buildings Annual

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

33

Impacts of Climate Change on Energy Consumption and Peak Demand in Buildings: A Detailed Regional Approach  

SciTech Connect (OSTI)

This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, and end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.

Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.; Skorski, Daniel C.; Scott, Michael J.; Pulsipher, Trenton C.; Huang, Maoyi; Liu, Ying; Rice, Jennie S.

2015-01-01T23:59:59.000Z

34

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings Use

35

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings UseEnergy

36

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildings

37

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:JulyBuildingsEnd-Use

38

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

SciTech Connect (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

39

Energy consumption characterization as an input to building management and performance benchmarking - a case study PPT  

E-Print Network [OSTI]

performance characterization of each of its buildings, looking specifically at the typology of canteen. Developing building energy performance benchmarking systems enables the comparison of actual consumption of individual buildings against others of the same...

Bernardo, H.; Neves, L.; Oliveira, F.; Quintal, E.

2012-01-01T23:59:59.000Z

40

Improve Indoor Air Quality, Energy Consumption and Building Performance: Leveraging Technology to Improve All Three  

E-Print Network [OSTI]

Building owners and occupants expect more from their buildings today- both better IEQ and less energy consumption. Many facilities strive to design and commission a =smart building' - one that is healthy, environmentally conscious and operating...

Wiser, D.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings  

E-Print Network [OSTI]

Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

42

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

Meter allows us to study the energy consumption patterns onThis allows us to study the energy consumption of individualgives us a good framework to study the energy consumption

Balaji, Bharathan

2011-01-01T23:59:59.000Z

43

Implementation of Simple Measures for Savings Water and Energy Consumption in Kuwait Government Buildings  

E-Print Network [OSTI]

This paper gives in details the efforts made by the Public Services Department (PSD) to reduce water and energy consumptions in the Ministry of Social Affairs and Labour's (MOSAL) buildings in Kuwait. PSD manages around 125 buildings distributed...

Albaharani, H.; Al-Mulla, A.

2012-01-01T23:59:59.000Z

44

Energy Consumption Analysis and Energy Conservation Evaluation of a Commercial Building in Shanghai  

E-Print Network [OSTI]

The paper presents a model of a commercial building in Shanghai with energy simulation software, and after calibration, the energy consumption of this building is calculated. On the basis of the simulation and calculation, a series of energy saving...

Chen, C.; Pan, Y.; Huang, Z.; Wu, G.

2006-01-01T23:59:59.000Z

45

Research on the Statistical Method of Energy Consumption for Public Buildings in China  

E-Print Network [OSTI]

The purpose of this research is to develop a national statistical system for energy consumption data for public buildings in China, in order to provide data support for building energy efficiency work. The framework for a national statistical system...

Chen, S.; Li, N.

2006-01-01T23:59:59.000Z

46

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

47

Power Signatures as Characteristics of Commercial and Related Buildings  

E-Print Network [OSTI]

characteristics and building physical characteristics is seen as an important area for improvement of analytical tools for commercial and related buildings. Knowledge of the causes of variations in energy use, and the expected relative impacts of different...

MacDonald, M.

1988-01-01T23:59:59.000Z

48

The Building Energy Report Card is used to compare the actual annual energy consumption of buildings to a  

E-Print Network [OSTI]

's area (Gross Square Feet or GSF). The report card accounts for all forms of energy used in a building.e. kBtu) and is divided by the building's area to proved a unit of energy intensity which is expressedThe Building Energy Report Card is used to compare the actual annual energy consumption

Ciocan-Fontanine, Ionut

49

Strip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings  

E-Print Network [OSTI]

towards reducing the building's en- ergy consumption is to prevent electricity waste due to the improperStrip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings Romain, operators are relying more on historical data pro- cessing to uncover opportunities for energy-savings. How

California at Berkeley, University of

50

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

network for all our smart building solutions. For this weDriven Energy Management for Smart Building Automation Inused in a variety of smart building scenarios. In terms of

Balaji, Bharathan

2011-01-01T23:59:59.000Z

51

Web-Based Method to Generate Specific Energy Consumption Data for the Evaluation and Optimization of Building Operation  

E-Print Network [OSTI]

about energy consumptionand specific data especially in large building stocks?user complaints and energy consumption arerarely considered in building operation?reduction of energy consumption and operation costsas well as ensuring a high work space... consumption specific heating energy consumption buildings with additional technical usage (control room)without arithmetic mean consumption related to the heated net floor area; data measured one full year: 02-2001 to 02-2002 specific yearly energy...

Wagner, A.; Wambsgan, M.; Froehlich, S.

2004-01-01T23:59:59.000Z

52

Improved Building Energy Consumption with the Help of Modern ICT  

E-Print Network [OSTI]

Kyoto process and the global combat against climate change will require more intensive energy saving efforts especially in all developed countries. Key for the success in building sector is the energy efficiency of the existing building stock...

Pietilainen, J.

2003-01-01T23:59:59.000Z

53

Investigation and Analysis of Summer Energy Consumption of Energy Efficient Residential Buildings in Xi'an  

E-Print Network [OSTI]

Tests and questionnaire surveys on the summer energy consumption structure of 100 energy efficient residential buildings have been performed in a certain residential district in Xi'an, China. The relationship between the formation of the energy...

Ma, B.; Yan, Z.; Gui, Z.; He, J.

2006-01-01T23:59:59.000Z

54

Analysis of the Effects of the Application of Solar Water Heater in Building Energy Consumption  

E-Print Network [OSTI]

With the development of the economy, civilian construction in the Changjiang River delta region is rapidly expanding. The boom in the construction industry definitely results in that the proportion of building energy consumption to whole energy...

Wang, J.; Li, Z.

2006-01-01T23:59:59.000Z

55

Texas LoanSTAR Monitoring & Analysis Program- Characterizing Loanstar Buildings & Energy Consumption  

E-Print Network [OSTI]

costs and savings, and the connected loads. Nine buildings are analyzed in additional detail, including indices that look at the maximum-minimum and mean electricity, chilled water, and steam/hot water consumption for the first year of recorded...

Challa, V.; Athar, A.; Abbas, M.; Claridge, D.; Haberl, J.

56

Indoor Conditions Study and Impact on the Energy Consumption for a Large Commercial Building  

E-Print Network [OSTI]

that were studied using dynamic simulations. The article provides interesting insights of the building indoor conditions (summer/winter comfort), humidity, air temperature, mean operative temperature and energy consumption using hourly climate data. A...

Catalina, T.

2011-01-01T23:59:59.000Z

57

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

58

Dynamic Simulation and Analysis of Heating Energy Consumption in a Residential Building  

E-Print Network [OSTI]

In winter, much of the building energy is used for heating in the north region of China. In this study, the heating energy consumption of a residential building in Tianjin during a heating period was simulated by using the EnergyPlus energy...

Liu, J.; Yang, M.; Zhao, X.; Zhu, N.

2006-01-01T23:59:59.000Z

59

Simulation and Analysis of Energy Consumption of Public Building in Chongquig  

E-Print Network [OSTI]

Calculation and analysis of energy consumption must be on the base of simulation of building load. DeST is adopted to calculate dynamic cooling load of the main building in Chongqing city. Then water chilling unit's plant capability is checked...

Chen, G.; Lu, J.; Chen, J.

2006-01-01T23:59:59.000Z

60

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

SciTech Connect (OSTI)

While China's 11th Five Year Plan called for a reduction of energy intensity by 2010, whether and how the energy consumption trend can be changed in a short time has been hotly debated. This research intends to evaluate the impact of a variety of scenarios of GDP growth, energy elasticity and energy efficiency improvement on energy consumption in commercial buildings in China using a detailed China End-use Energy Model. China's official energy statistics have limited information on energy demand by end use. This is a particularly pertinent issue for building energy consumption. The authors have applied reasoned judgments, based on experience of working on Chinese efficiency standards and energy related programs, to present a realistic interpretation of the current energy data. The bottom-up approach allows detailed consideration of end use intensity, equipment efficiency, etc., thus facilitating assessment of potential impacts of specific policy and technology changes on building energy use. The results suggest that: (1) commercial energy consumption in China's current statistics is underestimated by about 44%, and the fuel mix is misleading; (2) energy efficiency improvements will not be sufficient to offset the strong increase in end-use penetration and intensity in commercial buildings; (3) energy intensity (particularly electricity) in commercial buildings will increase; (4) different GDP growth and elasticity scenarios could lead to a wide range of floor area growth trajectories , and therefore, significantly impact energy consumption in commercial buildings.

Zhou, Nan; Lin, Jiang

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Trends in Commercial Buildings--Trends in Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

the use of the four major sources and other energy sources (e.g., district chilled water, solar, wood). Energy consumed in commercial buildings is a significant fraction of that...

62

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

Response The demand response actions give building managersdemand response (DR) events are handled in our system. Both end users and buildingbuilding managers to actuate the plug loads in case of a demand response

Balaji, Bharathan

2011-01-01T23:59:59.000Z

63

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect (OSTI)

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University] [Jacksonville State University; New, Joshua Ryan [ORNL] [ORNL; Chandler, Theodore [Jacksonville State University] [Jacksonville State University

2013-01-01T23:59:59.000Z

64

Planning ahead : characteristics of versatile buildings  

E-Print Network [OSTI]

If a building is to maintain its life-long usefulness it must be possible to alter it to accommodate different programmatic demands. This thesis investigates the spatial and material character that facilitates this ...

Mahler, Stephen N

1983-01-01T23:59:59.000Z

65

1999 Commercial Buildings Energy Consumption Survey Detailed Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3. LightingImports Building7.p e uData

66

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)BuildingsInformation

67

An Operational Energy Consumption Evaluation Index System for Large Public Buildings  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Building Commissioning for Energy Efficiency and Comfort Vol.VII-2-2 An Operational Energy Consumption Evaluation Index System for Large Public Buildings1..., indexes system 1. PREFACE With the continuous development of urbanization level, the lack of energy and the increasing of society?s requirement for energy has become one of the prominent contradictions restricting the development of society...

Li, Y.; Zhang, J.; Sun, D.

2006-01-01T23:59:59.000Z

68

Data Visualization for Quality-Check Purposes of Monitored Electricity Consumption in All Office Buildings in the ESL Database  

E-Print Network [OSTI]

This report comprises an effort to visualize the monitored electricity consumption in all office buildings (not including the office buildings comprising other functions as classrooms and laboratories, for instance) in the ESL database. This data...

Sreshthaputra, A.; Abushakra, B.; Haberl, J. S.; Claridge, D. E.

2000-01-01T23:59:59.000Z

69

1999 Commercial Buildings Characteristics--CBECS Building Types  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds, Buildings1999Size

70

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

architecture that provides fine-grained real-time visibility into building energy consumption enables significant and sustainablearchitecture, to create actionable views of energy usages, which lead to significant and sustainablearchitecture for local energy generation, distribution, and sharing. IEEE Conference on Global Sustainable

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

71

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0 Year-1CubicMajor Characteristics of All

72

Using Utility Bills and Average Daily Energy Consumption to Target Commissioning Efforts and Track Building Performance  

E-Print Network [OSTI]

Using Utility Bills and Average Daily Energy Consumption to Target Commissioning Efforts and Track Building Performance By: David Sellers, Senior Engineer, Portland Energy Conservation Inc, Portland, Oregon ABSTRACT This paper discusses using basic... by contacting the author at: Dsellers@peci.org www.peci.org Phone: - 503-248-4636 extension 224 Mailing address through August 3, 2001 Portland Energy Conservation, Inc. 921 SW Washington Street Suite 312 Portland, Oregon 97205 Mailing address after August 3...

Sellers, D.

2001-01-01T23:59:59.000Z

73

An overview of building morphological characteristics derived from 3D building databases.  

SciTech Connect (OSTI)

Varying levels of urban canopy parameterizations are frequently employed in atmospheric transport and dispersion codes in order to better account for the urban effect on the meteorology and diffusion. Many of these urban parameterizations need building-related parameters as input. Derivation of these building parameters has often relied on in situ 'measurements', a time-consuming and expensive process. Recently, 3D building databases have become more common for major cities worldwide and provide the hope of a more efficient route to obtaining building statistics. In this paper, we give an overview of computations we have performed for obtaining building morphological characteristics from 3D building databases for several southwestern US cities, including Los Angeles, Salt Lake City, and Phoenix.

Brown, M. J. (Michael J.); Burian, S. J. (Steven J.); Linger, S. P. (Steve P.); Velugubantla, S. P. (Srinivas, P.); Ratti, Carlo

2002-01-01T23:59:59.000Z

74

Energy Consumption Status of Public Buildings and the Analysis of the Potential on Energy Efficiency in Xiamen  

E-Print Network [OSTI]

Based on the survey on the preset and applied situation of the central air conditioning systems in public buildings in Xiamen, this paper analyzes the status of energy consumption, and indicates the irrational aspects of operation and management...

Pei, X.; Zhang, S.; Chen, L.; Zhang, X.; Chen, J.

2006-01-01T23:59:59.000Z

75

Impact of Nighttime Shut Down on the Prediction Accuracy of Monthly Regression Models for Energy Consumption in Commercial Buildings  

E-Print Network [OSTI]

Regression models of measured energy use in buildings are widely used as baseline models to determine retrofit savings from measured energy consumption. It is less expensive to determine savings from monthly utility bills when they are available...

Wang, J.; Claridge, D. E.

1998-01-01T23:59:59.000Z

76

Energy Consumption Measuring and Diagnostic Analysis of Air-conditioning Water System in a Hotel Building in Harbin  

E-Print Network [OSTI]

This paper introduces an air-conditioning water system in a hotel building in Harbin, finishes its air-conditioning energy consumption measurement in summer conditions, and presents an estimation index of performance of chiller, pump and motor...

Zhao, T.; Zhang, J.; Li, Y.

2006-01-01T23:59:59.000Z

77

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

78

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

the fraction of total energy consumption attributable toFraction of Total Energy Consumption Background Although thewindow fraction of total energy consumption. We believe that

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

79

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

80

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

82

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

liters Figure 7 Primary Energy Consumption (EJ) Refrigeratorby Efficiency Class Primary Energy Consumption (EJ) Figure 8by Fuel Figure 1 Primary Energy Consumption by End-use)

Zhou, Nan

2010-01-01T23:59:59.000Z

83

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

SciTech Connect (OSTI)

China's rapid economic expansion has propelled it into the ranks of the largest energy consuming nation in the world, with energy demand growth continuing at a pace commensurate with its economic growth. Even though the rapid growth is largely attributable to heavy industry, this in turn is driven by rapid urbanization process, by construction materials and equipment produced for use in buildings. Residential energy is mostly used in urban areas, where rising incomes have allowed acquisition of home appliances, as well as increased use of heating in southern China. The urban population is expected to grow by 20 million every year, accompanied by construction of 2 billion square meters of buildings every year through 2020. Thus residential energy use is very likely to continue its very rapid growth. Understanding the underlying drivers of this growth helps to identify the key areas to analyze energy efficiency potential, appropriate policies to reduce energy use, as well as to understand future energy in the building sector. This paper provides a detailed, bottom-up analysis of residential building energy consumption in China using data from a wide variety of sources and a modeling effort that relies on a very detailed characterization of China's energy demand. It assesses the current energy situation with consideration of end use, intensity, and efficiency etc, and forecast the future outlook for the critical period extending to 2020, based on assumptions of likely patterns of economic activity, availability of energy services, technology improvement and energy intensities.

Zhou, Nan; Nishida, Masaru; Gao, Weijun

2008-12-01T23:59:59.000Z

84

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

the total primary energy consumption in 2000. Furthermore,The Commercial Primary Energy Consumption by Sector GDP

Zhou, Nan

2008-01-01T23:59:59.000Z

85

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

i n g s 2.1 Total Energy Consumption i n Japan's Residentialhouses. 2.1 Total Energy Consumption in Japan's Residentialorder to reduce total energy consumption. Figure 2 suggests

2006-01-01T23:59:59.000Z

86

Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations  

E-Print Network [OSTI]

4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

Konopacki, S.J.

2010-01-01T23:59:59.000Z

87

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

e d u c i n g Primary Energy Consumption and C O 2 emissionssystem can reduce primary energy consumption by about 22system can reduce primary energy consumption by about 26

2006-01-01T23:59:59.000Z

88

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

9 RadLab as a Green Building Testbed 9.126] Autodesk. Autodesk Green Building Studio. http://David Culler. Enabling green building applications. In The

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

89

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

2006. Strengthening the Building Energy Efficiency (BEE)Summer Studies on Energy Efficiency in Buildings, Asilamor,energy efficiency improvement (-1.5%) and building mix (-

Zhou, Nan

2008-01-01T23:59:59.000Z

90

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

91

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

was $0.46/ccf of natural gas and $O.053IkWh of electricity. Natural Gas Consumption Of the total natural gas consumption, steam processes used the largest quantity with 48 percent, followed closely by space heating with 45 percent. The remaining 7... natural gas consumption. The large space heating loads warranted extensive evaluation of the building's thermal envelope for improved heat loss resistance. Electrical Consumption The electricity consumption for the plants (Table 3) was divided...

Twedt, M.; Bassett, K.

92

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

were used to calculate the energy mix in manufacturing,of Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption mix. However, accurately

Fridley, David G.

2008-01-01T23:59:59.000Z

93

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

reliance on biomass for rural energy consumption shows thereliance on biomass for rural energy consumption shows theBiomass is the major energy in rural area. For lighting, an

Zhou, Nan

2010-01-01T23:59:59.000Z

94

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building Technologies, U.S.and Renewable Energy (2005). 2005 Buildings Energy Databook,Buildings Energy Databook Table 1.2.3 (US DOE Office of Energy Efficiency and Renewable

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

95

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

the majority of commercial building energy usages. Electricenergy usage inside the building. Fortunately, a commercialcommercial building energy monitoring are insu?cient in identifying waste or guide improvement because they only provide usage

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

96

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

3 System Architecture 3.1 Building as a2.1 Energy Flows in Buildings . . . . . . . . 2.1.1 Electric2.3.2 Networking . . . . . . . . . . . . 2.4 Building Energy

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

97

Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office buildings: An agent based approach. Energy Buildings (2011), doi:10.1016/j.enbuild.2011.07.007  

E-Print Network [OSTI]

Please cite this article in press as: T. Zhang, et al., Modelling electricity consumption in office behaviour, to simulate the electricity consumption in office buildings. Based on a case study, we use office electricity consumption problems. This paper theoretically contributes to an integration

Aickelin, Uwe

98

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network [OSTI]

optimal control design for HVAC systems, in Proc. Dynamicelectricity consumption in hvac using learning- based model-algorithm design for hvac systems in energy efficient

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

99

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

will allow us to build models of energy usage aggregatedview allows us to build models of energy usage that can beus it provides localization of the occupant; it provides a screen for visualizing energy usage

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

100

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Case 25 Figure 9 CO2 Emissions from Commercial Buildings (27 Figure 12 CO2 Emissions by Sector (Primary Energy,16 Office Building CO2 Emissions (Reference Case, Primary

Fridley, David G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Experimental study of lube oil characteristics in the PCV system and effects on engine oil consumption  

E-Print Network [OSTI]

Engine oil consumption is an important source of hydrocarbon and particulate emissions in modem automobile engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption on ...

Lopez, Oscar, 1980-

2004-01-01T23:59:59.000Z

102

Experiences on the Implementation of the 'Energy Balance' Methodology as a Data Quality Control Tool: Application to the Building Energy Consumption of a Large University Campus  

E-Print Network [OSTI]

As the energy costs have been increasing the more energy efficient measures have been promoted in the buildings sector, the reliability of energy consumption data has been attracting significant attention. For example, the reliability...

Baltazar-Cervantes, J. C.; Sakurai, Y.; Masuda, H.; Feinauer, D.; Liu, J.; Ji, J.; Claridge, D. E.; Deng, S.; Bruner, H.

2007-01-01T23:59:59.000Z

103

Current Status and Future Scenarios of Residential Building Energy Consumption in China  

E-Print Network [OSTI]

LPG is a major energy source, while coal and electricity arethe total residential energy and coal is the dominant fuel.1 Residential Energy consumption by End-use Coal Renewables

Zhou, Nan

2010-01-01T23:59:59.000Z

104

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

consumption, long lifetime on batteries, low sample rates,instead of replying on batteries. At the same time, we arelow power operation on batteries is not required, since the

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

105

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

more than 21 G J are referred to as "heat supply" businessesunder the Heat Supply Business L a w . The first districtE E R = A n n u a l heat supply/annual energy consumption

2006-01-01T23:59:59.000Z

106

Please cite this article in press as: R.E. Edwards, et al., Predicting future hourly residential electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012.03.010  

E-Print Network [OSTI]

, how- ever, whether these techniques can translate to residential buildings, since the energy usage and commercial buildings consitute the largest sec- tor of U.S. primary energy consumption at 40% [1]. Building electrical consumption: A machine learning case study, Energy Buildings (2012), doi:10.1016/j.enbuild.2012

Parker, Lynne E.

107

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Primary Electricity Coal Final energy use in buildings is9 million tonnes of coal equivalent energy could be saved byproportion of energy consumed from coal, coke, liquid fuels,

Fridley, David G.

2008-01-01T23:59:59.000Z

108

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings  

E-Print Network [OSTI]

energy flows in the building electrical load tree. . . . . . . . . . . . . . . . . . . . . . . .intrinsic property of energy load trees is additivity - thevisualization of energy flows in the load tree, as shown in

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

109

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

for a reduction of energy intensity by 2010, whether and howbuildings; (3) energy intensity (particularly electricity)commercial building, energy intensity, energy efficiency,

Zhou, Nan

2008-01-01T23:59:59.000Z

110

The Reality and Future Scenarios of Commercial Building Energy Consumption in China  

E-Print Network [OSTI]

44%, and the fuel mix is misleading; (2) energy efficiency44% and the fuel mix is misleading; (2) energy efficiencyenergy efficiency improvement (-1.5%) and building mix (-

Zhou, Nan

2008-01-01T23:59:59.000Z

111

A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings.  

E-Print Network [OSTI]

??Existing solutions in commercial building energy monitoring are insufficient in identifying energy waste or for guiding improvement. This is because they only provide usage statistics (more)

Jiang, Xiaofan

2010-01-01T23:59:59.000Z

112

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

material intensity, energy intensity of materials, buildingtypes manufacturing energy intensity (how much energy itthe manufacturing energy intensity of each type of building

Fridley, David G.

2008-01-01T23:59:59.000Z

113

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

such as increasing boiler efficiency from 68% averageBuildings: Water Heating Efficiency Boiler Gas Boiler SmallSpace Heating Efficiency District Heating Boiler Gas Boiler

Fridley, David G.

2008-01-01T23:59:59.000Z

114

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

115

Window-Related Energy Consumption in the US Residential andCommercial Building Stock  

SciTech Connect (OSTI)

We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

Apte, Joshua; Arasteh, Dariush

2006-06-16T23:59:59.000Z

116

Statistical Modeling of Daily Energy Consumption in Commercial Buildings Using Multiple Regression and Principal Component Analysis  

E-Print Network [OSTI]

analysis to identify these models. However, such models tend to suffer from physically unreasonable regression coefficients and instability due to the fact that the predictor variables (i.e., climatic parameters, building internal loads, etc...

Reddy, T. A.; Claridge, D.; Wu, J.

117

A Toolkit for Building Energy Consumption Data Quality Assurance/Quality Control  

E-Print Network [OSTI]

Independence of the energy balance load on secondary systems ESL-IC-11-10-30 Proceedings of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB... of the Eleventh International Conference Enhanced Building Operations, New York City, October 18-20, 2011 ICEBO 2011 ? New York JCB/ESL Energy Balance Curve - Interpretation Low CHW High HHW High ELE High Tindoor High VOA High envelope UA...

Baltazar, J.C.

2011-01-01T23:59:59.000Z

118

Sources and characteristics of oil consumption in a spark-ignition engine  

E-Print Network [OSTI]

(cont.) At low load, oil flowing past by the piston was found to be the major consumption source, while the contributions of oil evaporation and of blowby entrainment became more significant with increasing engine load. ...

Yilmaz, Ertan, 1970-

2003-01-01T23:59:59.000Z

119

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Geothermal Heat Pump Central AC by NG Electric water heaterwater heating Technologies Electric heater Gas boiler Coal Boiler Small cogen Stove District heating Heat pumpHeat Pump* *COP Reference Case Alternative Case Table 10 Office Buildings: Water Heating Efficiency Boiler Gas Boiler Small Cogen Electric Water Heater

Fridley, David G.

2008-01-01T23:59:59.000Z

120

Comparison of Two Statistical Approaches to Detect Abnormal Building Energy Consumption with Simulation Test  

E-Print Network [OSTI]

?or? Emea?Esim Eller?Building ? HVAC?system:?DDVAV ? Baseline?period:?March?August,1997 Simulation?Data?Sets 8 0...?ID Eller 1 Outside?airflow?ratio??increase?of??3.1% 2 Outside?airflow?ratio??decrease?of??3.1% 3 Cold?deck?leaving?temperature??increase?of?4?F 4 Cold?deck?leaving?temperature??decrease?of?4.5?F 5 Hot?deck?leaving?temperature??increase?of?10?F 6 Hot...

Lin, G.; Claridge, D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect (OSTI)

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

122

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

in building total energy consumption and related costs (overin building total energy consumption and related costs (overin building total energy consumption and related costs (over

Bailey, Trevor

2013-01-01T23:59:59.000Z

123

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631 Buildings

124

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631 Buildings2

125

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631 Buildings23

126

Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631 Buildings234

127

Commercial Buildings Energy Consumption Survey (CBECS) - Data - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010Barrels)Buildings

128

Characteristics of the Department of Energy's Building Inventory 2005-2010  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) as part of their on-going support to the Department of Energy's Federal Energy Management Program (FEMP) was asked to analyze special building data for an agency to gain a better understanding of the portfolio characteristics to help better shape implementation of their alternative financing activities. This report provides information for one agency, Department of Energy (DOE), and how those characteristics have changed over time.

Loper, Susan A.; Sandusky, William F.

2012-02-01T23:59:59.000Z

129

Building indicator groups based on species characteristics can improve conservation planning  

E-Print Network [OSTI]

is in identifying important areas for the conservation of biodiversity. As networks of areas encompassing biodiversity to select networks of areas for conservation? In the literature, reliable indicator groupsBuilding indicator groups based on species characteristics can improve conservation planning

Manne, Lisa

130

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

131

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

132

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

133

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

134

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

135

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

136

A Simple Method to Continuous Measurement of Energy Consumption of Tank Less Gas Water Heaters for Commercial Buildings  

E-Print Network [OSTI]

energy consumptions of hot water supply in restaurants or residential houses are large amount, guidelines for optimal design are not presented. measurements of energy consumption of tank less gas water heaters very difficult unless gas flow meters...

Yamaha, M.; Fujita, M.; Miyoshi, T.

2006-01-01T23:59:59.000Z

137

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

electricity consumption ..the total building electricity consumption between measured87 Figure 49 Total electricity consumption end use breakdown

Bailey, Trevor

2013-01-01T23:59:59.000Z

138

Air Conditioner User Behavior in a Master-Metered Apartment Building  

E-Print Network [OSTI]

Air conditioner operation was studied in order to understand how energy consumption and peak power are determined by user behavior, equipment operation and building characteristics. In a multi-family building, thirteen room air conditioners were...

Kempton, W.; Feuermann, D.; McGarity, A. E.

1987-01-01T23:59:59.000Z

139

Sensitivity of Building Energy Simulation with Building Occupancy for a University Building  

E-Print Network [OSTI]

of Texas A&M University. The energy model for the building was created using the DOE-2 engine and validated with actual energy consumption data. As constructed building characteristics and occupancy loading data were used in the DOE-2 model. Parametric runs...

Chhajed, Shreyans

2014-08-01T23:59:59.000Z

140

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan Feb Mar AprEnergy

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Residential and commercial buildings data book: Third edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in September, 1986 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; and Additional Buildings and Community Systems Information. 12 refs., 59 figs., 118 tabs.

Amols, G.R.; Howard, K.B.; Nicholls, A.K.; Guerra, T.D.

1988-02-01T23:59:59.000Z

142

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air-Conditioner Energy Consumption in  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 474 Impacts of HVAC Filtration on Air efficiency filters (Points A, B, and C, respectively). #12;Proceedings of Healthy Buildings 2009 Paper 474

Siegel, Jeffrey

143

Continuous Energy Management of the HVAC&R System in an Office Building System Operation and Energy Consumption for the Eight Years after Building Completion  

E-Print Network [OSTI]

The authors continuously studied the energy consumption of a heating, ventilating, air- conditioning and refrigerating (HVAC&R) system in an office for the operation of the system in terms of its expected performance. A fault in the system control...

Akashi, Y.; Shinozaki, M.; Kusuda, R.; Ito, S.

2006-01-01T23:59:59.000Z

144

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand)...

145

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace...

146

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

Figure9?Annualelectricityconsumptioncomparisonofthetotalannualelectricityconsumption,BuildingsAandBmostly measure electricity consumption, cooling loads,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

147

Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield  

E-Print Network [OSTI]

on Residen- iv tial Electricity Consumption 8 Introduction 9Observed residential electricity consumption 2003 to 2006total residential electricity consumption for 2006 by five-

Aroonruengsawat, Anin

2010-01-01T23:59:59.000Z

148

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

149

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

150

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

151

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

152

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

153

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

154

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

155

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

156

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

157

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

158

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

159

Airflow Characteristics of Direct-Type Kitchen Hood Systems in High-Rise Apartment Buildings  

E-Print Network [OSTI]

, Samsung C&T, South Korea 2 Introduction ? Today?s high-rise apartment buildings exhibit high degree of air-tightness. ? They are also subjected to stack effect and seasonal, unpredictable, wind pressure variations. ? Therefore, it is questionable... characteristics for alt0 16 32CMH 0Pa 42CMH 0Pa 74CMH 16Pa 477CMH 984CMH 355CMH 815CMH 173CMH 26Pa 0CMH 0CMH 0CMH 54CMH 0Pa 158CMH 1Pa 35CMH 0Pa 74CMH 18Pa (a)?On?3rd?floor?at?12:00,?Jan?1st 1.5m/s North 50CMH 1Pa 23CMH 0Pa 75CMH 18Pa...

Park, M.

2011-01-01T23:59:59.000Z

160

Investigation and Analysis of Energy Consumption and Cost of Electric Air Conditioning Systems in Civil Buildings in Changsha  

E-Print Network [OSTI]

of cold and heat sources and the HVAC area of the buildings. Meanwhile the economical and feasible types of cold and heat sources are pointed out, i.e., oil boilers and gas boilers for heat source, and centrifugal and screw water chillers for cold source...

Xie, D.; Chen, J.; Zhang, G.; Zhang, Q.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

or fewer than 20 buildings were sampled. NNo responding cases in sample. Notes: Statistics for the "Energy End Uses" category represent total consumption in buildings that...

162

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

163

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

164

Applicability of daylighting computer modeling in real case studies: Comparison between measured and simulated daylight availability and lighting consumption. Building and Environment  

E-Print Network [OSTI]

this paper is published in / Une version de ce document se trouve dans : IEA (International Energy Agency) Task 21 / Annex 29: Daylight in Buildings, November 1998, 68 pp. www.nrc.ca/irc/ircpubs NRCC-42862 Subtask C: Daylighting Design Tools T21/C1-21/CAN/98-11 Applicability of Daylighting Computer Modeling in Real Case Studies: Comparison between Measured and Simulated Daylight Availability and Lighting Consumption A report of IEA SHC Task 21 / IEA ECBCS Annex 29 Daylight in Buildings Subtask C: Daylighting Design Tools Report T21/C1-21/CAN/98-11 Applicability of Daylighting Computer Modeling in Real Case Studies: Comparison between Measured and Simulated Daylight Availability and Lighting Consumption by Anca D. Galasiu * Morad R. Atif * A report of IEA SHC Task 21 / IEA ECBCS Annex 29 * National Research Council Canada, Institute for Research in Construction, Indoor Environment Research Program Subtask C: Daylighting Design Tools Report T21/C1-21/CAN/98-11 IEA Solar Heating and Cooling Programme (IEA SHC) The International Energy Agency (IEA) was established in 1974 as an autonomous agency within the framework of the Economic Cooperation and Development (OECD) to carry out a comprehensive program of energy cooperation among its 24 member countries and the Commission of the European Communities. An important part of the Agency's program involves collaboration in the research, development and demonstration of new energy technologies to reduce excessive reliance on imported oil, increase long-term energy security and reduce greenhouse gas emissions. The IEA's R&D activities are headed by the Committee on Energy Research and Technology (CERT) and supported by a small Secretariat staff, headquartered in Paris. In addition, three Working Parties are charged with monitorin...

A. D. Atif

165

Monthly Indices: A Procedure for Energy Use Display Creating Monthly Indices for Comparing the Energy Consumption of Buildings  

E-Print Network [OSTI]

by individual hydronic fan coil units. The first floor is heated/cooled by a hydronic air handler, and there are single air handlers on floors two through four to supply outside air to each floor. The two story Unit B contains the auditorium, choir Energy... operate whenever the hydronic air handler does not provide cooling, in order to prevent humidity problems. Unit C is a single story building which contains the cafeteria and kitchen. It is heated/cooled by hydronic fan-coil units (six in the cafeteria, two...

Landman, D. S.; Haberl, J. S.

1996-01-01T23:59:59.000Z

166

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database  

SciTech Connect (OSTI)

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

Loper, Susan A.; Sandusky, William F.

2010-12-31T23:59:59.000Z

167

Building Technologies Research and  

E-Print Network [OSTI]

Impact of Buildings Centers of Excellence · 40% of total primary energy consumption · 74% of electricity consumption · 56% of natural gas consumption (including gas-generated electricity used in buildings) · 39 the nation accounts for its energy consumption, making the energy savings potential even greater. National

Oak Ridge National Laboratory

168

Energy-consumption modelling  

SciTech Connect (OSTI)

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

169

A Comparison of the Demographic Characteristics, Movtiations for Fishing, and Consumptive Orientation of Texas Urban and Rural Anglers  

E-Print Network [OSTI]

Sales of Texas fishing licenses have declined since 1988. Several authors have suggested that this decline is related to changes in the demographic characteristics of the Texas population, including increasing urbanization. As urban residents have...

Wolber, Nathan

2010-01-16T23:59:59.000Z

170

Residential and commercial buildings data book. Second edition  

SciTech Connect (OSTI)

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

171

Exceeding Energy Consumption Design Expectations  

E-Print Network [OSTI]

) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

2013-01-01T23:59:59.000Z

172

Towards a Very Low Energy Building Stock: Modeling the U.S. Commercial Building Sector to Support Policy and Innovation Planning  

E-Print Network [OSTI]

the US EIA Commercial Buildings Energy Consumption Survey (2: US commercial building stock energy consumption and floorof time varying energy consumption in the US commercial

Coffey, Brian

2010-01-01T23:59:59.000Z

173

Sensitivity analysis of window characteristics and their interactions on thermal performance in residential buildings  

E-Print Network [OSTI]

acheived during daytime heating hours contribute to energy conservation by reducing the amount of auxiliary heat required to keep the interior temperatures at the desired levels (Balcomb et al. 1984). Proper utilization of solar heat gains should... in the thermal mass will be released to keep the building warm (Balcomb et al. 1984). Proper shading of windows can also greatly affect their thermal performance. Windows with properly designed shading and orientation supply a major portion of a buildings...

George, Julie N

1996-01-01T23:59:59.000Z

174

Building Performance Simulation  

E-Print Network [OSTI]

afuturewith verylowenergybuildingsresultinginveryconsumption of low energy buildings, with site EUIdesignandoperationoflowenergybuildingsthroughbetter

Hong, Tianzhen

2014-01-01T23:59:59.000Z

175

Utility Building Analysis Billing Period: NOV -2013  

E-Print Network [OSTI]

ELECTRICITY Consumption MUNICIPAL WATER Consumption 8 CCF STEAM Consumption CHILLED WATER Consumption GAS Building Analysis Billing Period: NOV - 2013 032 JACKSON HALL: 150,393 Square Feet ELECTRICITY Consumption,550 Square Feet ELECTRICITY Consumption 114,185 KWHRS MUNICIPAL WATER Consumption 1,423 CCF STEAM Consumption

Ciocan-Fontanine, Ionut

176

Methodology for Modeling Building Energy Performance across the Commercial Sector  

SciTech Connect (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

177

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

Zhou, Nan

2010-01-01T23:59:59.000Z

178

Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China  

E-Print Network [OSTI]

of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

Zhou, Nan

2010-01-01T23:59:59.000Z

179

Co-design of Control Algorithm and Embedded Platformfor Building HVAC Systems  

E-Print Network [OSTI]

concerns worldwide. Smart buildings today have sophisticateding building energy consumption by designing smart control

Maasoumy, Mehdi; Zhu, Qi; Li, Cheng; Meggers, Forrest; Sangiovanni-Vincentelli, Alberto

2013-01-01T23:59:59.000Z

180

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

HVAC consumes more electricity in September, the daily trendsHVAC Equipment Figure 44 Building 2 typical weekday electricity consumption trendHVAC Equipment Figure 45 Building 2 typical weekend electricity consumption trend

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

182

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

183

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

184

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

185

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

186

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

187

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network [OSTI]

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

188

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

189

Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications  

SciTech Connect (OSTI)

The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

2013-08-01T23:59:59.000Z

190

Building condition monitoring  

E-Print Network [OSTI]

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

191

Introduction to the Buildings Sector Module of SEDS  

E-Print Network [OSTI]

Ma. CBECS, Commercial Building Energy Consumption Survey,R. , and Lai, J. A Buildings Module for the Stochasticon Energy Efficiency in Buildings, August 17 22, 2008,

DeForest, Nicholas

2011-01-01T23:59:59.000Z

192

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

0 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

193

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

2001 Average Electricity Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household...

194

Energy Information Administration (EIA)- Commercial Buildings...  

U.S. Energy Information Administration (EIA) Indexed Site

Stock: Results from EIA's 2012 CBECS 2012 building stock results Source: U.S. Energy Information Administration, Commercial Buildings Energy Consumption Survey 2012, March...

195

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

buildings. Measured electricity consumption Figure 3 showsthe measured total electricity consumption of the buildingmonths of 2005. The electricity consumption per floor area

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

196

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

sum to totals. Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A, C, and E of the 2003 Commercial Buildings Energy Consumption Survey....

197

Review of Building Energy Saving Techniques  

E-Print Network [OSTI]

The pace of building energy saving in our country is late, compared with developed countries, and the consumption of building energy is much higher. Therefore, it is imperative to open up new building energy saving techniques and heighten energy use...

Zeng, X.; Zhu, D.

2006-01-01T23:59:59.000Z

198

Strategies for Decreasing Petroleum Consumption in the Federal Fleet (Presentation)  

SciTech Connect (OSTI)

Presentation offers strategies federal agency fleets can use to reduce petroleum consumption and build or gain access to alternative fuel infrastructure.

Putsche, V.

2006-06-01T23:59:59.000Z

199

MEASURED ENERGY PERFORMANCE OF ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS: RESULTS FROM THE BECA-CN DATA COMPILATION  

E-Print Network [OSTI]

enabling us to correct for the energy consumption of thesehigh energy consumption; current monitoring will enable usU.S. Department of Energy, Nonrcsidential Building6 Encrgy Consumption

Piette, M.A.

2010-01-01T23:59:59.000Z

200

A long-term, integrated impact assessment of alternative building energy code scenarios in China  

SciTech Connect (OSTI)

China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13% - 22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement.

Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon E.

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An in-depth Analysis of Space Heating Energy Use in Office Buildings  

E-Print Network [OSTI]

and operation of low energy buildings. In this study, thecommercial buildings with low energy consumption. The90.1-2004, Energy standard for buildings except low-rise

Lin, Hung-Wen

2013-01-01T23:59:59.000Z

202

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector  

E-Print Network [OSTI]

Towards a Very Low Energy Building Stock: Modeling the US Commercial Building Sector to Support and continuing development of a model of time varying energy consumption in the US commercial building stock targeting very low future energy consumption in the building stock. Model use has highlighted the scale

203

area operations building: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reference of the suitable plans for the energy efficient reconstruction of buildings in cold area. 2. ANALYSIS ON HEATING ENERGY CONSUMPTION 2.1 Building Situation Based... on...

204

4 Questions for a Better Buildings Case Competition Student Participan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Case Competition supports the broader Better Buildings Initiative goal to reduce energy consumption in commercial, multifamily, public, and industrial buildings across the...

205

Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector  

E-Print Network [OSTI]

2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual electricity consumption by country/region

McNeil, Michael A.; Letschert, Virginie E.

2008-01-01T23:59:59.000Z

206

Getting to Green: Understanding Resource Consumption in the Home  

E-Print Network [OSTI]

energy [19], increasing awareness of resource consumption in the workplace [20] and building homes manage their energy consumption. Next, we outline our methods and findings from a qualitative study of 15 households' current practices around resource consumption and management in a US metropolitan area. We find

Grinter, Rebecca Elizabeth

207

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design  

E-Print Network [OSTI]

http://rcc.its.psu.edu/hpc Computational Simulations in Sustainable Building Design Dr. Jelena and Nuclear Engineering, Pennsylvania State University Background: Sustainable Building Design Buildings Sustainable building design need to optimize building energy consumption while providing good indoor air

Bjørnstad, Ottar Nordal

208

Energy efficiency in building sector in India through Heat  

E-Print Network [OSTI]

electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

Oak Ridge National Laboratory

209

Commercial Buildings Energy Consumption and Expenditures 1992  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECS Public Use Data

210

Factors of material consumption  

E-Print Network [OSTI]

Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

Silva Daz, Pamela Cristina

2012-01-01T23:59:59.000Z

211

Housing characteristics 1993  

SciTech Connect (OSTI)

This report, Housing Characteristics 1993, presents statistics about the energy-related characteristics of US households. These data were collected in the 1993 Residential Energy Consumption Survey (RECS) -- the ninth in a series of nationwide energy consumption surveys conducted since 1978 by the Energy Information Administration of the US Department of Energy. Over 7 thousand households were surveyed, representing 97 million households nationwide. A second report, to be released in late 1995, will present statistics on residential energy consumption and expenditures.

NONE

1995-06-01T23:59:59.000Z

212

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network [OSTI]

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

213

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

SciTech Connect (OSTI)

Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

Wall, L.W.; Rosenfeld, A.H.

1982-12-01T23:59:59.000Z

214

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

215

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

216

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

217

Office of Building Technologies evaluation and planning report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

Pierce, B.

1994-06-01T23:59:59.000Z

218

Hybrid Model of Existing Buildings for Transient Thermal Performance Estimation  

E-Print Network [OSTI]

Building level energy models are important to provide accurate prediction of energy consumption for building performance diagnosis and energy efficiency assessment of retrofitting alternatives for building performance upgrading. Simplified...

Xu, X.; Wang, S.

2006-01-01T23:59:59.000Z

219

Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a buildings system efficiencies, and how well it is correlated to a buildings actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their buildings operation and maintenance.

Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

2013-06-24T23:59:59.000Z

220

Residential Energy Consumption Survey: Housing Characteristics,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnairesU.S. Energy InformationU.S.tni

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for  

E-Print Network [OSTI]

. Index Terms-- Green Buildings, Energy Efficiency, Energy Modeling, Smart Energy, Energy1 Abstract--Energy efficiency for the buildings is vital for the environment and sustainability. Buildings are responsible for significant energy consumption and carbon dioxide emissions in the United

Jain, Raj

222

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

223

Optimal and Autonomous Incentive-based Energy Consumption Scheduling Algorithm for Smart Grid  

E-Print Network [OSTI]

consumption scheduling (ECS) devices in smart meters for autonomous demand side management within equipment [3]. Load management, also known as demand side manage- ment [4]­[6], has been practiced since consumption management in buildings: reducing consumption and shifting consumption [2]. The former can be done

Wong, Vincent

224

Building load control and optimization  

E-Print Network [OSTI]

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

Xing, Hai-Yun Helen, 1976-

2004-01-01T23:59:59.000Z

225

Revisit of Energy Use and Technologies of High Performance Buildings  

SciTech Connect (OSTI)

Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

Li , Cheng; Hong , Tianzhen

2014-03-30T23:59:59.000Z

226

Eagle County- Eagle County Efficient Building Code (ECO-Green Build)  

Broader source: Energy.gov [DOE]

In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction...

227

Operation Diagnosis for Buildings Connecting Building Management Systems with Energy Management Systems  

E-Print Network [OSTI]

Reducing energy consumption of buildings is a good contribution to protect the environment and to reduce costs. The first and most important step to operate a building most efficiently is to make aware of most of the technical parameters. Connecting...

Mehler, G.

2008-01-01T23:59:59.000Z

228

Building energy calculator : a design tool for energy analysis of residential buildings in Developing countries  

E-Print Network [OSTI]

Buildings are one of the world's largest consumers of energy, yet measures to reduce energy consumption are often ignored during the building design process. In developing countries, enormous numbers of new residential ...

Smith, Jonathan Y. (Jonathan York), 1979-

2004-01-01T23:59:59.000Z

229

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0

230

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0Geographic

231

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July

232

CBECS Buildings Characteristics --Revised Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves

233

Experimental and Simulation Study on the Performance of Daylighting in an Industrial Building and its Energy Saving Potential  

E-Print Network [OSTI]

electricity consumption in Hong Kong [3]. For industrial buildings, the percentage varies widely depending-34% of the total building electricity consumption in Dongguan, China [4]. To reduce the energy consumption reduce building energy consumption effectively. Studies on this topic have been mostly conducted

Chen, Qingyan "Yan"

234

THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES  

E-Print Network [OSTI]

is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector, 1970-2020 in quadrillion Btu (EIA, 2001) Figure 1.2 Residential Primary Energy Consumption by end use encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

Papalambros, Panos

235

November 2012 Key Performance Indicator (KPI): Energy Consumption  

E-Print Network [OSTI]

and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

Evans, Paul

236

Simulation-based assessment of the energy savings benefits of integrated control in office buildings  

E-Print Network [OSTI]

Window-Related Energy Consumption in the US Residential andU.S. Lighting Market Characterization Volume I: National Lighting Inventory and Energy ConsumptionBuilding Energy Consumption Survey. EnergyPlus (2008). U.S.

Hong, T.

2011-01-01T23:59:59.000Z

237

Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid  

E-Print Network [OSTI]

for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

Li, Xiang-Yang

238

Current Status and Future Scenarios of Residential Building  

E-Print Network [OSTI]

LBNL-2416E Current Status and Future Scenarios of Residential Building Energy Consumption in China and Future Scenarios of Residential Building Energy Consumption in China Nan Zhou*, Masaru Nishida, and Weijun Gao Keywords: China, residential building, modeling, energy intensity, energy efficiency, scenario

239

Discovering unexpected information using a building energy visualization tool.  

E-Print Network [OSTI]

platform to manage buildings energy. Smart buildings are already managed by BMS (Building Management SystemDiscovering unexpected information using a building energy visualization tool. Lange B.a, Rodriguez insight about buildings energy consumption. We will focus on the usage of this software to extract

Paris-Sud XI, Universit de

240

Modeling energy consumption of residential furnaces and boilers in U.S. homes  

E-Print Network [OSTI]

ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ENERGY CONSUMPTION . . . . . . . . . . . . . . . . . . . . . . . . . .28 ENERGY CONSUMPTION

Lutz, James; Dunham-Whitehead, Camilla; Lekov, Alex; McMahon, James

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Stones  

E-Print Network [OSTI]

3). Photographs by the author. Building Stones, Harrell, UEEOxford Short Citation: Harrell, 2012, Building Stones. UEE.Harrell, James A. , 2012, Building Stones. In Willeke

2012-01-01T23:59:59.000Z

242

A study of the characteristics of natural light in selected buildings designed by Le Corbusier, Louis I. Kahn and Tadao Ando  

E-Print Network [OSTI]

.................................................................. 6 2.1 Historical Perspectives on Natural Light Inside the Buildings ... 6 2.1.1 Pre-Industrial Architecture........................................... 8 2.1.1.1 Egypt ............................................................. 9... type during the Early Christian architecture was one of the prominent forms that came to be associated with a particular building type, religious in this case. It was an attempt at improvisation with the timber trusses replacing the roman concrete...

Gill, Sukhtej Singh

2009-06-02T23:59:59.000Z

243

Reduces electric energy consumption  

E-Print Network [OSTI]

BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

244

Energy Consumption of Transponders  

E-Print Network [OSTI]

Energy Consumption of Transponders Lei Shi Apr. 26, 2011 #12;Contents · Energy Efficient Ethernet · Energy Efficient EPON · Core Network ­ MLR: Reach and Energy Cost #12;Ethernet Energy Consumption is usually over 5 W · Energy Efficient Ethernet (EEE), uses a Low Power Idle mode to reduce energy

California at Davis, University of

245

Reduce Building Energy Consumption by Improving the Supply Air Temperature Schedule and Recommissioning the Terminal Boxes, Submitted to the Energy Management and Operations Division at the M.D. Anderson Cancer Center  

E-Print Network [OSTI]

At the request of the Energy Management and Operations Department at M.D. Anderson Cancer Center, the Energy Systems Laboratory of Texas A&M University performed a study of optimizing the HVAC operation at its Basic Research Building. The Basic...

Liu, M.; Athar, A.; Zhu, Y.; Claridge, D. E.

1995-01-01T23:59:59.000Z

246

Fault Detection and Diagnosis in Building HVAC Systems.  

E-Print Network [OSTI]

??Building HVAC systems account for more than 30% of annual energy consumption in United States. However, it has become apparent that only in a small (more)

Najafi, Massieh

2010-01-01T23:59:59.000Z

247

Building energy retrofitting: from energy audit to renovation proposals.  

E-Print Network [OSTI]

?? Abstract The built environment is responsible for 40% of the global energy demand (1). To reduce building energy consumption, regulations are enhancing the appeal (more)

Clment, Paul Francois

2012-01-01T23:59:59.000Z

248

Energy Consumption Simulation and Analysis of Heat Pump Air Conditioning System in Wuhan by the BIN Method  

E-Print Network [OSTI]

to simulate the annual energy consumption of groundwater heat pump systems (GWHPS) for an office building in Wuhan. Its annual energy consumption was obtained and compared with the partner of the air source heat pump systems (ASHPS). The results show...

Wen, Y.; Zhao, F.

2006-01-01T23:59:59.000Z

249

Software for fault detection in HVAC systems in commercial buildings  

E-Print Network [OSTI]

The building sector of the United States currently consumes over 41% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Deshmukh, Suhrid Avinash

2014-01-01T23:59:59.000Z

250

Impacts of Some Building Design Parameters on Heat Pump Applications  

E-Print Network [OSTI]

One of the most important properties of a sustainable building is to provide thermal comfort conditions for users with a minimum heating and cooling energy consumption. Therefore, primary design parameters of building should be developed...

Erdim, B.; Manioglu, G.

2011-01-01T23:59:59.000Z

251

Improving Operational Strategies of an Institutional Building in Kuwait  

E-Print Network [OSTI]

The Building and Energy Technologies Department (BET) of the Kuwait Institute for Scientific Research has pledged to achieve 10% reduction in buildings energy consumption by the year 2005. Working in line with the Kuwaiti government that highly...

Al-Ragom, F.

2002-01-01T23:59:59.000Z

252

Building Energy Efficiency in China - Status, Trends, Targets, and Solutions  

E-Print Network [OSTI]

It is well accepted that the reduction of building energy consumption is one of the most effective actions fro reducing the emission of CO2 and for protection of energy resources world wide. Understanding and comparing the real building energy...

Xia, J.

2008-01-01T23:59:59.000Z

253

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

254

FORESTRY BUILDING: BUILDING EMERGENCY PLAN  

E-Print Network [OSTI]

FORESTRY BUILDING: BUILDING EMERGENCY PLAN Date Adopted: August 18, 2009 Date Revised June 17, 2013 Prepared By: Diana Evans and Jennifer Meyer #12;PURDUE UNIVERSITY BUILDING EMERGENCY PLAN VERSION 3 2 Table Suspension or Campus Closure SECTION 3: BUILDING INFORMATION 3.1 Building Deputy/Alternate Building Deputy

255

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

256

Reduction of Water Consumption  

E-Print Network [OSTI]

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

257

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

BUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAY BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

258

Energy-Aware Meeting Scheduling Algorithms for Smart Buildings  

E-Print Network [OSTI]

The increasing worldwide concern over the energy con- sumption of commercial buildings calls for new approaches; Build- ing energy efficiency 1 Introduction The energy consumption of commercial buildings is of growingEnergy-Aware Meeting Scheduling Algorithms for Smart Buildings Abhinandan Majumdar Computer Systems

Albonesi, David H.

259

Effects of Courtyard on Thermal Performance of Commercial Buildings in Hot-Dry Climate, Ahmedabad, India  

E-Print Network [OSTI]

of the simulation exercise has been established on the available weather data. The result would be the analysis of energy performance of different building models. Keywords: Courtyards, Building Configuration, Energy Consumption, Thermal Simulation, Computer... in reducing energy consumption of buildings. Many research studies suggest that courtyard as a climatic modifier helps in improving thermal environment and enhancing daylight deep into the interior thus reducing energy consumption of the building...

Kumar, R,

260

Pitfalls in Building and HVAC Audits  

E-Print Network [OSTI]

The purpose of an energy audit is to identify and analyze areas of energy consumption and to propose methods of conservation. In the process of completing an audit the following areas of consumption should be considered: 0 Building Envelope 0 Air...

Gidwani, B. N.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

262

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

263

A review on Phase Change Materials Integrated in Building Walls  

E-Print Network [OSTI]

of buildings rise increasingly, the energy consumption is correspondingly increasing. For example, in France buildings are responsible for the consumption of approx- imatively 46% of all energies and approximatively for reducing energy demand, further investigations are needed to really assess their use. Keywords: Thermal

264

Exploiting Home Automation Protocols for Load Monitoring in Smart Buildings  

E-Print Network [OSTI]

to reduce consumption is also impor- tant. Smart buildings use demand-side energy management to self consumption with renewable generation [17]. Demand- side management requires buildings to 1) continuously mon@cs.williams.edu Abstract Monitoring and controlling electrical loads is crucial for demand-side energy management in smart

Massachusetts at Amherst, University of

265

Research on the Integration Characteristics of Cooling Energy Recovery from Room Exhausting Cool Air in Summer  

E-Print Network [OSTI]

Currently, the design and construction of buildings and building energy systems are far from reasonable. The requirement and consumption of primary energy resources is aggravated, the use of building energy is free and wasteful, and pollution...

Zhang, W.; Wu, J.; Wei, Y.

2006-01-01T23:59:59.000Z

266

Estimation of food consumption  

SciTech Connect (OSTI)

The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

Callaway, J.M. Jr.

1992-04-01T23:59:59.000Z

267

A Dynamic and Context-Driven Benchmarking Framework for Zero-Net-Energy Buildings  

E-Print Network [OSTI]

, the overall annual primary energy consumption is equal to or less than the energy production from renewable) for Buildings in the near future, designers need to consider energy consumption and CO2 emissions during, to contextualize and compare the energy consumption and CO2 emissions of a building. The authors also discuss how

Pala, Nezih

268

Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States  

E-Print Network [OSTI]

of the change in outdoor conditions [3, 4]. In 2010, building energy consumption accounted for 41% of the total activities in buildings. One area directly affected by climate change is the energy consumption for heating on future energy uses. There would be a net increase in source energy consumption by the 2080s for climate

Chen, Qingyan "Yan"

269

UNIVERSITY SUSTAINABILITY POLICY A defining characteristic of the UCD Strategic Plan to 2014 is to build on excellence in teaching and  

E-Print Network [OSTI]

-term commitment to both current and future generations. The vision of a sustainable healthy and living campus of creating a Sustainable Healthy and Living Campus is expressed in the following documents: o UCD StrategicUNIVERSITY COLLEGE DUBLIN UNIVERSITY SUSTAINABILITY POLICY #12;A defining characteristic of the UCD

270

A Computer Analysis of Energy Use and Energy Conservation Options for a Twelve Story Office Building in Austin, Texas  

E-Print Network [OSTI]

the building. The energy consumption of the building was compared with the energy consumption of the building modified to comply with the proposed ASHRAE 90.1p standards. The base design and the ASHRAE design of the Travis building were evaluated in Brownsville...

Katipamula, S.; O'Neal, D. L.; Farad, M.

1986-01-01T23:59:59.000Z

271

& CONSUMPTION US HYDROPOWER PRODUCTION  

E-Print Network [OSTI]

ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

272

Energy Consumption in Data Analysis for On-board and Distributed Applications  

E-Print Network [OSTI]

Energy Consumption in Data Analysis for On-board and Distributed Applications Ruchita Bhargava Energy consumption is an important issue in the growing number of data mining and machine learning of the energy consumption characteristics of dif- ferent data analysis techniques. The paper com- pares

Kargupta, Hilol

273

Rice consumption in China  

E-Print Network [OSTI]

of Agricultural Economics. products has shifted away from staple grains and toward meat, dairy products, eggs, and other secondary foods. Rapid growth of animal production and the government's present target for increased production of specific non-grain crops... could lead to a, large shortage of the coarse grain needed for development of animal husbandry. If per capita. rice consumption grows slowly, there is the potential for excess capacity in rice production if the annual rice production growth rate...

Lan, Jin

1989-01-01T23:59:59.000Z

274

Calibrating DOE-2 to weather and non-weather-dependent loads for a commercial building  

E-Print Network [OSTI]

6. 1. 1 Predicted Chilled Water and Hot Water Consumption. . . . . . . . , . . . 102 6. 1. 2 Whole-building Electricity Consumption . . . 6. 2 Base Model Results Using Austin, TX TMY Weather Data. . . . 104 106 vnt CHAPTl'R VII WHOLE...

Bronson, John Douglas

2012-06-07T23:59:59.000Z

275

Preliminary Analysis of Energy Consumption For Cool Roofing Measures  

E-Print Network [OSTI]

decisions by offering design requirements and establishing building codes. Over the last decade, muchPreliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use

Wang, Xiaorui "Ray"

276

Building America  

SciTech Connect (OSTI)

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

277

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

278

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

279

Markovian Models for Electrical Load Prediction in Smart Buildings  

E-Print Network [OSTI]

Markovian Models for Electrical Load Prediction in Smart Buildings Muhammad Kumail Haider, Asad,13100004,ihsan.qazi}@lums.edu.pk Abstract. Developing energy consumption models for smart buildings is important develop parsimo- nious Markovian models of smart buildings for different periods in a day for predicting

California at Santa Barbara, University of

280

Beardmore Building  

High Performance Buildings Database

Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Margins up; consumption down  

SciTech Connect (OSTI)

The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

Mantho, M.

1983-09-01T23:59:59.000Z

282

Transportation Energy Consumption Surveys  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008Product:7.1Energy Consumption (RTECS)

283

Improving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events  

E-Print Network [OSTI]

recommen- dations on how to reduce the overall energy consumption of the household. In this paper, we build Descriptors H.4 [Information Systems Applications]: Miscellaneous 1. INTRODUCTION The energy sectorImproving Device-level Electricity Consumption Breakdowns in Private Households Using ON/OFF Events

284

Modelling Office Energy Consumption: An Agent Based Approach , Peer-Olaf Siebers1  

E-Print Network [OSTI]

1 Modelling Office Energy Consumption: An Agent Based Approach Tao Zhang1 , Peer-Olaf Siebers1 integrates four important elements, i.e. organisational energy management policies/regulations, energy, to simulate the energy consumption in office buildings. With the model, we test the effectiveness of different

Aickelin, Uwe

285

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network [OSTI]

1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

Chen, Qingyan "Yan"

286

Application of the Software as a Service Model to the Control of Complex Building Systems  

E-Print Network [OSTI]

to lower building carbon footprint. The Distributed Energyenergy consumption, and carbon footprint. DER-CAM is used toenergy purchases and carbon footprint, future installations

Stadler, Michael

2011-01-01T23:59:59.000Z

287

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

288

Application and Design of Residential Building Energy Saving in Cold Climates  

E-Print Network [OSTI]

combines indoor microclimates in order to decrease the building life cycle energy consumption. The air wall technology is studied for adoption of cold climate features. The research results through a National Demonstration Building Project (NDBP) show...

Li, Z.; Li, D.; Mei, S.; Zhang, G.; Liu, J.

2006-01-01T23:59:59.000Z

289

Discussion of Problems in the Development of Building Energy Efficiency In China  

E-Print Network [OSTI]

In the context that Chinese energy shortage is beginning to emerge and China is constructing an economical society, much attention is paid to building energy consumption by the Chinese government and common people. Therefore, Building Energy...

Liu, Y.; Fu, X.; Luo, Q.

2006-01-01T23:59:59.000Z

290

An Overview of the Commercial Buildings Energy Consumption Survey...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia Energy Intensity GDP per capita Population Howard Gruenspecht, The Central Role of...

291

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used...

292

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

an office. The reed switch, PIR sensor and our CC2530 basedus- ing Passive Infra Red (PIR) based motion sensors to8]. In most cases these PIR sensors are hard wired to the

Balaji, Bharathan

2011-01-01T23:59:59.000Z

293

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

inaccuracies. However, we do waste energy when a vacant roombuildings, thus indicating energy waste. In order to makein each room. The energy waste information gives feedback to

Balaji, Bharathan

2011-01-01T23:59:59.000Z

294

Using occupancy to reduce energy consumption of buildings  

E-Print Network [OSTI]

4.2 Smart Energy Meter . . . . . . 4.2.1 Hardwareconsumption provided the Smart Meter installed can send datahave developed the Smart Energy Meter to monitor and actuate

Balaji, Bharathan

2011-01-01T23:59:59.000Z

295

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Partondefault Sign

296

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and UserofProtein structureAnalysis of Partondefault

297

2003 Commercial Buildings Energy Consumption - What is an RSE  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment 2002Technical2003

298

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor thePrices

299

Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor thePricesProjections -

300

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTforInformation

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTforInformationInformation

302

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208Summaary &

303

Commercial Buildings Energy Consumption and Expenditures 1992 - Publication  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208Summaary &and

304

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87

305

Commercial Buildings Energy Consumption Survey (CBECS) Public Use Data  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECS Public Use Data Public

306

Commercial Buildings Energy Consumption and Expenditures 1992 - Index Page  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECS Public Use Data1992

307

Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 Appendix C278 2.281

308

Historic Building Renovations  

Broader source: Energy.gov [DOE]

When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

309

Building Stones  

E-Print Network [OSTI]

was no good source of local building stone, rock was usuallyrock-cut shrines and especially tombs, and these are the sources

2012-01-01T23:59:59.000Z

310

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Sustainable Water Consumption -  

E-Print Network [OSTI]

in green building design projects. As part of the new Student Union Building project, the Alma MaterUBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Sustainable Water Consumption - Water Bottles versus WaterFillz Units Alireza Tavassoli, Yee Chung Wong, Sina

311

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare

312

1999 Commercial Buildings Characteristics--Principal Building Activities  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment Topics:Principal

313

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment Topics:Principaland

314

Application and Mode Establishment of Asset-backed Securitization in Existing Large-scale Public Building Retrofit Financing in China  

E-Print Network [OSTI]

Statistical data for 2005 show that electrical consumption of large-scale public buildings occupying 5 percent of total residential construction area equals 50 percent of the total residential electrical consumption in Beijing. It is necessary...

Sun, J.; Wu, Y.; Dai, Z.; Hao, Y.

2006-01-01T23:59:59.000Z

315

Analyzing the Impact of Residential Building Attributes, Demographic and Behavioral Factors on Natural Gas Usage  

SciTech Connect (OSTI)

This analysis examines the relationship between energy demand and residential building attributes, demographic characteristics, and behavioral variables using the U.S. Department of Energys Residential Energy Consumption Survey 2005 microdata. This study investigates the applicability of the smooth backfitting estimator to statistical analysis of residential energy consumption via nonparametric regression. The methodology utilized in the study extends nonparametric additive regression via local linear smooth backfitting to categorical variables. The conventional methods used for analyzing residential energy consumption are econometric modeling and engineering simulations. This study suggests an econometric approach that can be utilized in combination with simulation results. A common weakness of previously used econometric models is a very high likelihood that any suggested parametric relationships will be misspecified. Nonparametric modeling does not have this drawback. Its flexibility allows for uncovering more complex relationships between energy use and the explanatory variables than can possibly be achieved by parametric models. Traditionally, building simulation models overestimated the effects of energy efficiency measures when compared to actual "as-built" observed savings. While focusing on technical efficiency, they do not account for behavioral or market effects. The magnitude of behavioral or market effects may have a substantial influence on the final energy savings resulting from implementation of various energy conservation measures and programs. Moreover, variability in behavioral aspects and user characteristics appears to have a significant impact on total energy consumption. Inaccurate estimates of energy consumption and potential savings also impact investment decisions. The existing modeling literature, whether it relies on parametric specifications or engineering simulation, does not accommodate inclusion of a behavioral component. This study attempts to bridge that gap by analyzing behavioral data and investigate the applicability of additive nonparametric regression to this task. This study evaluates the impact of 31 regressors on residential natural gas usage. The regressors include weather, economic variables, demographic and behavioral characteristics, and building attributes related to energy use. In general, most of the regression results were in line with previous engineering and economic studies in this area. There were, however, some counterintuitive results, particularly with regard to thermostat controls and behaviors. There are a number of possible reasons for these counterintuitive results including the inability to control for regional climate variability due to the data sanitization (to prevent identification of respondents), inaccurate data caused by to self-reporting, and the fact that not all relevant behavioral variables were included in the data set, so we were not able to control for them in the study. The results of this analysis could be used as an in-sample prediction for approximating energy demand of a residential building whose characteristics are described by the regressors in this analysis, but a certain combination of their particular values does not exist in the real world. In addition, this study has potential applications for benefit-cost analysis of residential upgrades and retrofits under a fixed budget, because the results of this study contain information on how natural gas consumption might change once a particular characteristic or attribute is altered. Finally, the results of this study can help establish a relationship between natural gas consumption and changes in behavior of occupants.

Livingston, Olga V.; Cort, Katherine A.

2011-03-03T23:59:59.000Z

316

Russias R&D for Low Energy Buildings: Insights for Cooperation with Russia  

SciTech Connect (OSTI)

Russian buildings, Russian buildings sector energy consumption. Russian government has made R&D investment a priority again. The government and private sector both invest in a range of building energy technologies. In particular, heating, ventilation and air conditioning, district heating, building envelope, and lighting have active technology research projects and programs in Russia.

Schaaf, Rebecca E.; Evans, Meredydd

2010-05-01T23:59:59.000Z

317

FY 2013 EL Program Description EL Program: Embedded Intelligence in Buildings  

E-Print Network [OSTI]

renewable energy sources, buildings occupants will need access to actionable energy consumption information buildings by 2030.1 Approximately 84% of the life cycle energy use of a building is associated with operating the building rather than the materials and energy used for construction.2 This program

Perkins, Richard A.

318

EL Program: Embedded Intelligence in Buildings Program Manager: Steven Bushby, Energy and Environment Division, x5873  

E-Print Network [OSTI]

renewable energy sources, buildings occupants will need access to actionable energy consumption information1 EL Program: Embedded Intelligence in Buildings Program Manager: Steven Bushby, Energy-zero energy buildings by 2030.1 Approximately 84% of the life cycle energy use of a building is associated

Perkins, Richard A.

319

Impact of Continuous Commissioning on the Energy Star Rating of Hospitals and Office Buildings  

E-Print Network [OSTI]

in Commercial Buildings ..................................................... 1 1.2 Commercial Buildings Energy Performance .......................................... 2 1.3 Background and Purpose of Study... the reduction in consumption by improving overall efficiency is apparently one of the most viable options to explore. 1.1 Energy Use in Commercial Buildings Energy costs for an estimated total of 4.8 million commercial buildings in the United States...

Kulkarni, Aditya Arun

2012-02-14T23:59:59.000Z

320

Agent Technology to Improve Building Energy Efficiency and Occupant Comfort  

E-Print Network [OSTI]

, can further reduce energy consumption of buildings. This paper reviews Multi-Agent Intelligent Internet-mediated control strategies and combines the most useful insights into a new technology called Forgiving Agent Comfort Technology (FACT...

Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Role of Incentives in Building Controls Marketplace  

E-Print Network [OSTI]

that innovative solutions can reduce energy consumption by 25 to 40 percent. According to the Energy Information Administration, buildings today consume 42 percent of energy generated, making investing in energy efficiency a critical piece of efforts to reduce...

Vanderpool, C.

2011-01-01T23:59:59.000Z

322

Life Cycle Analysis and Energy Conservation Standards for State Buildings  

Broader source: Energy.gov [DOE]

In 1995 Ohio passed legislation requiring that all state agencies perform life-cycle cost analyses prior to the construction of new buildings, and energy consumption analyses prior to new leases. ...

323

World energy consumption  

SciTech Connect (OSTI)

Historical and projected world energy consumption information is displayed. The information is presented by region and fuel type, and includes a world total. Measurements are in quadrillion Btu. Sources of the information contained in the table are: (1) history--Energy Information Administration (EIA), International Energy Annual 1992, DOE/EIA-0219(92); (2) projections--EIA, World Energy Projections System, 1994. Country amounts include an adjustment to account for electricity trade. Regions or country groups are shown as follows: (1) Organization for Economic Cooperation and Development (OECD), US (not including US territories), which are included in other (ECD), Canada, Japan, OECD Europe, United Kingdom, France, Germany, Italy, Netherlands, other Europe, and other OECD; (2) Eurasia--China, former Soviet Union, eastern Europe; (3) rest of world--Organization of Petroleum Exporting Countries (OPEC) and other countries not included in any other group. Fuel types include oil, natural gas, coal, nuclear, and other. Other includes hydroelectricity, geothermal, solar, biomass, wind, and other renewable sources.

NONE

1995-12-01T23:59:59.000Z

324

Sustainable Energy Future in China's Building Sector  

E-Print Network [OSTI]

, The Netherlands and Finland (11W/m). Heating and hot water consumption represent 2/3 of energy demand in buildings in China. The thermal performance and heating system efficiency need to be improved dramatically in order to contain the soaring... Efficiency Standard for New Residential Buildings in 1995, the average energy consumption for heating in China is about 90~100kWh/ma 3 which is still almost twice of that in Sweden, Denmark, The Netherlands and Finland (40~50KWh/ma). Furthermore...

Li, J.

2007-01-01T23:59:59.000Z

325

Monitoring and optimization of energy consumption of base transceiver stations  

E-Print Network [OSTI]

The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

2015-01-01T23:59:59.000Z

326

1999 Commercial Buildings Characteristics--Census Region  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquare FeetHouseholds,

327

1999 Commercial Buildings Characteristics--Year Constructed  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment

328

Commercial Buildings Characteristics 1992 - Publication and Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208 283,507,467

329

Commercial Buildings Characteristics 1995 - Index Page  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180 208

330

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84 8711757Detailed

331

Two Similarity Measure Approaches to Whole Building Fault Diagnosis  

E-Print Network [OSTI]

consumption in buildings using similarity measures. The method is referred to as the cosine similarity method if cosine similarity is adopted and is referred to as the Euclidean distance similarity method if Euclidean distance similarity is implemented.... Fig. 1 Block diagram for diagnosing abnormal energy consumption Step 1: Reference Control Change Library Determination Whole building fault diagnosis is different from component level fault diagnosis. It can only give a general clue, for example...

Lin, G.; Claridge, D.

2012-01-01T23:59:59.000Z

332

Building technolgies program. 1994 annual report  

SciTech Connect (OSTI)

The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. We have focused our past efforts on two major building systems, windows and lighting, and on the simulation tools needed by researchers and designers to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. In addition, we are now taking more of an integrated systems and life cycle perspective to create cost-effective solutions for more energy efficient, comfortable, and productive work and living environments. More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity-factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout every space in a building, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Window and lighting systems are thus essential components of any comprehensive building science program.

Selkowitz, S.E.

1995-04-01T23:59:59.000Z

333

Enabling Advanced Environmental Conditioning with a Building Application Stack  

E-Print Network [OSTI]

consumption by over 80%, while the DCF application can reduce recirculating fan power consumption by half% of our electricity in the U.S. [2], are a prime opportunity for information technology to improve that govern building operation are vertically-integrated, barely programmable, and not extensible

Culler, David E.

334

Building Simulation Modelers Are we big data ready?  

E-Print Network [OSTI]

in 2030 has yet to be built 4 #12;5 Energy Consumption and Production Commercial Site Energy Consumption ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems.S. ­ 41% of primary energy/carbon 73% of electricity, 34% of gas · Buildings in China ­ 60% of urban

Tennessee, University of

335

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

336

Building America Expert Meeting: Transforming Existing Buildings...  

Energy Savers [EERE]

Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

337

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

338

Federal Buildings Supplemental Survey 1993  

SciTech Connect (OSTI)

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

339

Moving Towards Net-Zero Energy of Existing Building in Hot Climate  

E-Print Network [OSTI]

.5% of the building consumption. The second phase yields further reduction of the building energy consumption by about 55.4%. The average payback period of most energy conservation measures is about half year. In the third phase, approximately 27% of the total energy...

2012-01-01T23:59:59.000Z

340

Experimental Assessment of a Phase Change Material for Wall Building Use  

E-Print Network [OSTI]

for reducing energy consumption in passively designed buildings. This tendency is confirmed by numerous papers room. The test cell is totally controlled so that a typical day can be repeated (temperature and solar% the last 30 years. Housing and tertiary buildings are responsible for the consumption of approximatively 46

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

What is the problem? Buildings account for 40 percent of U.S.  

E-Print Network [OSTI]

that building energy consumption be significantly reduced. One way this can be achieved is through building energy consumption. The industry is very sensitive to the first cost of new technolo- gies a mismatch exists between who invests (builders and manufacturers) and who benefits (public), public sector

342

Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies  

E-Print Network [OSTI]

; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data consumption, making them more energy-efficient is a vital part of the nation's overall energy strategy's total energy consumption [1]. Improving build- ing energy efficiency is one of the most important energy

Wang, Xiaorui "Ray"

343

Building Stones  

E-Print Network [OSTI]

1992 Are the pyramids of Egypt built of poured concreteel-Anbaut, Red Sea coast, Egypt. Marmora 6, pp. 45 - 56.building stones of ancient Egypt are those relatively soft,

2012-01-01T23:59:59.000Z

344

Building Science  

Broader source: Energy.gov [DOE]

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures??

345

Building debris  

E-Print Network [OSTI]

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

346

Healthy buildings  

SciTech Connect (OSTI)

This book is covered under the following headings: Healthy building strategies/productivity, Energy and design issues, Ventilation, Contaminants, Thermal, airflow, and humidity issues, School-related issues, Sources and sinks, Filtering, Operation and maintenance.

Not Available

1991-01-01T23:59:59.000Z

347

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

348

Healthy buildings  

SciTech Connect (OSTI)

This proceedings is of the Indoor Air Quality (IAQ) Conference held September 4--8, 1991 in Washington, D.C. Entitled the IAQ 91, Healthy Buildings,'' the major topics of discussion included: healthy building strategies/productivity; energy and design issues; ventilation; contaminants; thermal, airflow, and humidity issues; school-related issues; sources and sinks; filtering; and operation and maintenance. For these conference proceedings, individual papers are processed separately for input into the Energy Data Base. (BN)

Geshwiler, M.; Montgomery, L.; Moran, M. (eds.)

1991-01-01T23:59:59.000Z

349

Handbook of energy use for building construction  

SciTech Connect (OSTI)

The construction industry accounts for over 11.14% of the total energy consumed in the US annually. This represents the equivalent energy value of 1 1/4 billion barrels of oil. Within the construction industry, new building construction accounts for 5.19% of national annual energy consumption. The remaining 5.95% is distributed among new nonbuilding construction (highways, ralroads, dams, bridges, etc.), building maintenance construction, and nonbuilding maintenance construction. The handbook focuses on new building construction; however, some information for the other parts of the construction industry is also included. The handbook provides building designers with information to determine the energy required for buildings construction and evaluates the energy required for alternative materials, assemblies, and methods. The handbook is also applicable to large-scale planning and policy determination in that it provides the means to estimate the energy required to carry out major building programs.

Stein, R.G.; Stein, C.; Buckley, M.; Green, M.

1980-03-01T23:59:59.000Z

350

Searching for the Optimal Mix of Solar and Efficiency in Zero Net Energy Buildings  

SciTech Connect (OSTI)

Zero net energy (ZNE) buildings employ efficiency to reduce energy consumption and solar technologies to produce as much energy on site as is consumed on an annual basis. Such buildings leverage utility grids and net-metering agreements to reduce solar system costs and maintenance requirements relative to off-grid photovoltaic (PV)-powered buildings with batteries. The BEopt software was developed to efficiently identify cost-optimal building designs using detailed hour-by-hour energy simulation programs to evaluate the user-selected options. A search technique identifies optimal and near-optimal building designs (based on energy-related costs) at various levels of energy savings along the path from a reference building to a ZNE design. In this paper, we describe results based on use of the BEopt software to develop cost-optimal paths to ZNE for various climates. Comparing the different cases shows optimal building design characteristics, percent energy savings and cash flows at key points along the path, including the point at which investments shift from building improvements to purchasing PV, and PV array sizes required to achieve ZNE. From optimizations using the BEopt software for a 2,000-ft{sup 2} house in 4 climates, we conclude that, relative to a code-compliant (IECC 2006) reference house, the following are achievable: (1) minimum cost point: 22 to 38% source energy savings and 15 to 24% annual cash flow savings; (2) PV start point: 40 to 49% source energy savings at 10 to 12% annual cash flow savings; (3) break-even point: 43 to 53% source energy savings at 0% annual cash flow savings; and (4) ZNE point: 100% source energy savings with 4.5 to 8.1 kW{sub DC} PV arrays and 76 to 169% increase in cash flow.

Horowitz, S.; Christensen, C.; Anderson, R.

2008-01-01T23:59:59.000Z

351

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

SciTech Connect (OSTI)

The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-10-15T23:59:59.000Z

352

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

353

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

354

The Influence of Operating Modes, Room Temperature Set Point and Curtain Styles on Energy Consumption of Room Air Conditioner  

E-Print Network [OSTI]

A field investigation was carried out in an office building of Changsha city in winter and summer, the influence of different running modes, curtain styles and room temperature set point on energy consumption of room air conditioner (RAC...

Yu, J.; Yang, C.; Guo, R.; Wu, D.; Chen, H.

2006-01-01T23:59:59.000Z

355

The Optimizing Control and Energy Saving Operations of One Teaching Building  

E-Print Network [OSTI]

: cold source; energy-saving operation; number control; water temperature control 1. FOREWORD With the fast development of economy and technology, it becomes more and more popular for the public buildings to adopt the central air conditioning... systems. This phenomenon causes the sharp increase of the energy consumption on air conditioning systems, which accounts for 50% of the total energy consumption of buildings[1]. In addition, the energy consumption of the cold source system...

Lu, J.; Chen, Y.; Chen, J.

2006-01-01T23:59:59.000Z

356

Office Buildings: Assessing and Reducing Plug and Process Loads in Office Buildings (Fact Sheet)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in office spaces are poorly understood.

Not Available

2013-04-01T23:59:59.000Z

357

Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)  

SciTech Connect (OSTI)

Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use in retail spaces are poorly understood.

Not Available

2013-04-01T23:59:59.000Z

358

The Wealth-Consumption Ratio  

E-Print Network [OSTI]

We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

Verdelhan, Adrien Frederic

359

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

360

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Energy Consumption Profile for Energy  

E-Print Network [OSTI]

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

362

Progressive consumption : strategic sustainable excess  

E-Print Network [OSTI]

Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

Bonham, Daniel J. (Daniel Joseph MacLeod)

2007-01-01T23:59:59.000Z

363

Building America Webinar: Ventilation in Multifamily Buildings...  

Energy Savers [EERE]

Residential Buildings (CARB), and discussed ventilation strategies for multifamily buildings, including how to successfully implement those strategies through smart design,...

364

Manufacturing consumption of energy 1991  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

365

Investigation of Cooling and Dehumidification Energy Use and Indoor Thermal Conditions in Polk County Schools Permanent Replacement Classroom Buildings  

E-Print Network [OSTI]

of this research was to compare the energy consumption and interior conditions of the autoclaved aerated concrete (AAC) construction with an unvented roof assembly to that of the conventional metal framing and concrete panel buildings. Four buildings, 2 metal...

Moyer, N. A.; Cummings, J. B.; Chasar, D.

2002-01-01T23:59:59.000Z

366

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network [OSTI]

is assumed for rural buildings; therefore energy consumptionBuilding energy codes do not apply in rural areas, whichEnergy efficiency policies need to be implemented in medium-small and small cities and in rural

Zhou, Nan

2011-01-01T23:59:59.000Z

367

A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings  

SciTech Connect (OSTI)

Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

2013-06-06T23:59:59.000Z

368

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

369

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

370

Better Buildings Alliance  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

371

CHUIA VISTA Development Services Department Building Division  

E-Print Network [OSTI]

the diminution of energy consumption levels permitted by the 2008 Building Energy Efficiency Standards. Reduction of total and peak energy use, as a result of incremental energy conservation measures required Commissioner Arthur H. Rosenfeld Ph.D. Commissioner Julia Levin, J.D. California Energy Commission 1516 Ninth

372

Procedure for Measuring and Reporting Commercial Building Energy Performance  

SciTech Connect (OSTI)

This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

2005-10-01T23:59:59.000Z

373

Buildings That Think Green (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Buildings are the SUVs of U.S. energy consumption, gobbling up 71 percent of the nation's electricity. In this Sept. 22, 2008 talk, Arun Majumdar, Director of Berkeley Lab's Environmental Energy Technologies Division, discusses how scientists are creating a new generation of net-zero energy, carbon-neutral buildings.

Majumdar, Arun

2011-04-28T23:59:59.000Z

374

Energy efficient building design: Guidelines for local government  

SciTech Connect (OSTI)

The aim of the project was to develop an effective, in-house energy review process for County building design, covering new buildings and major renovations of existing buildings. Montgomery County enacted regulations for energy efficient design of buildings in July 1986. In essence, the regulation sets energy consumption limits for buildings and calls for life-cycle-cost analysis of design choices. In the course of this project significant achievements were realized in the following areas: Energy Design Guidelines were established or refined in several areas of energy technology and design practice. The Energy Review Process was formalized and implemented. Energy personnel received supplemental training in lighting technologies and design methods, energy analysis programs and commercial design standards. The key technical findings of the project are as follows: A combination of energy design tools was found to provide optimum results, including energy analysis, life-cycle-cost analysis, prescriptive standards and guide specifications. There is a dramatic decrease in design energy consumption in buildings processed under the guidelines, ranging from 30 % to 50 % decrease in energy consumption compared to existing County buildings. On average, it was found that energy-efficient new buildings cost no more to build than energy-hog buildings. An economic analysis indicates a very high rate of return in utility savings compared to the cost of implementing the program. 10 figs.

Balon, R.J.

1989-07-01T23:59:59.000Z

375

A Semi-Empirical Model for Studying the Impact of Thermal Mass and Cost-Return Analysis on Mixed-mode Ventilation in Office Buildings  

E-Print Network [OSTI]

Vertical location EME Energy consumption by mechanical ventilation z0 Vertical location of the neutral and cost-return analysis on mixed-mode ventilation in office buildings," Energy and Buildings, 67, 267 consume about 40% of total primary energy [1], and the energy consumption of office buildings comprises

Chen, Qingyan "Yan"

376

Energy Information Administration - Commercial Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Number of Establishments in Building, Floorspace for All Buildings (Including Malls), 2003 Total Floorspace (million square feet) All Buildings Number of Establishments in...

377

The Persistence of Savings Obtained from Commissioning of Existing Buildings  

E-Print Network [OSTI]

Percentage HW Energy Savings after CC Activity 47 4.4 Yearly Electric Energy Savings after CC Activity Based on pre-CC Energy Consumption Baseline 48 4.5 Trends of Savings for the 10 Buildings after Continuous Commissioning... 50 5.1 Comparison of Pre... very well for residential houses with both daily and monthly data but not for commercial buildings since scheduling effects play a major role in the energy consumption pattern of most commercial buildings (Liu, 1993). The equations 2.3 and 2.4 express...

Cho, Sool Yeon

2008-06-10T23:59:59.000Z

378

Evaluation of Vegetative Roofs' Performance on Energy Consumption in Hot and Humid Climates  

E-Print Network [OSTI]

with Building (6) is that it is located in (Florida), whereas the other buildings are located in cold climates (Maryland, New York, and south Texas). In hot climates most of the energy consumption is used for the air-conditioning of the buildings..., whereas in cold climates most of the energy is used for heating the buildings. However, it could be argued that it is more energy consuming to cool a space than to heat it. This is attributed to the fact that there is heat dissipation from light...

Anderson, J.; Azarbayjani, M.

379

A Methodology to Identify Monthly Energy Use Models from Utility Bill Data for Seasonally Scheduled Buildings: Application to K-12 Schools  

E-Print Network [OSTI]

The measured energy savings from retrofits in buildings is often determined as the difference between the energy consumption predicted by a baseline model and the measured energy consumption during the post retrofit period. Most baseline models...

Wang, W.; Claridge, D. E.; Reddy, T. A.

1998-01-01T23:59:59.000Z

380

Automatic flush valve performance (gallons per flush) measured from fixtures in a mixed-use classroom/office building at Texas A&M University  

E-Print Network [OSTI]

flush valve performance (gpf) of fixtures in a mixed use classroom building at Texas A&M University. Water consumption (gpf) among three types of fixtures; low-consumption manual, old optic automatic and improved optic automatic systems are measured...

Lertbannaphong, Salilla

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

382

Benchmarking Buildings to Prioritize Sites for Emissions Analysis  

Broader source: Energy.gov [DOE]

When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location.

383

Today in Energy - commercial consumption & efficiency  

Reports and Publications (EIA)

Short, timely articles with graphs about recent commercial consumption and efficiency issues and trends.

2028-01-01T23:59:59.000Z

384

Fuel consumption model for FREFLO  

E-Print Network [OSTI]

above, Biggs and Akcelik (1985) proposed a model of the following form: f = fsito + &Pr + z[apr)o o (5) where, Po = total drag power P, = inertia power a = instantaneous acceleration 8, = fuel consumption per unit power 8, = fuel consumption per... that is additional to S, P, . This component is expressed as SzaP, , where &z is considered to be a secondary efficiency parameter that relates fuel to the product of inertia power and acceleration rate, for positive accelerations. This term allows for the effects...

Rao, Kethireddipalli Srinivas

1992-01-01T23:59:59.000Z

385

Label Building Natural Gas Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUWFiveMarchNewLaboratoryNatural

386

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41466 Energy42357891

387

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41466

388

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663 Federal

389

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663 Federal4

390

Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663 Federal42131

391

Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663 Federal421312

392

Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663

393

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 EfficiencyWater Use1231

394

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water58 Annual4561

395

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water58 Annual45613

396

Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural122 Water58 Annual456134

397

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential and

398

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential and3

399

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5The0

400

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5The01

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5The012

402

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S. Residential5The0123

403

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.

404

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.

405

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.5 2015

406

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.5 20156

407

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.5 201567

408

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.5 2015678

409

Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4 2010 U.S.5

410

Building Commissioning Process: Quality Buildings for Better Quality of Life  

E-Print Network [OSTI]

1100 sq. km footprint, Hong Kong is a highly urbanized metropolitan city as compared with other areas. We have a per capita GDP of USD25,500 which is about 15 times of that in China in total. In 2005, we recorded 1.9 million sq. m. for new... important, the systems of the building must be commissioned to a high standard so that it not only fulfils the original design intent, but also operating effectively with minimum energy consumption consistent with comfort and convenience for the occupants...

Leung

2006-01-01T23:59:59.000Z

411

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

412

Survey of Energy Efficient Tracking and Localization Techniques in Buildings Using  

E-Print Network [OSTI]

Survey of Energy Efficient Tracking and Localization Techniques in Buildings Using Optical an overview of energy efficient localization and tracking techniques that can be applied in buildings when's homes and buildings are responsible for 41% of the energy consumption in the European Union

Wieringa, Roel

413

SPECIFICATION AND IMPLEMENTATION OF IFC BASED PERFORMANCE METRICS TO SUPPORT BUILDING LIFE CYCLE ASSESSMENT OF HYBRID  

E-Print Network [OSTI]

with the introduction of tighter building codes have done little to stem the poor energy performance in commercial on owners to quantify the energy usage of their buildings against benchmarks set by government energy (LBNL), Berkeley, CA, USA ABSTRACT Minimising building life cycle energy consumption is becoming

414

Do LEED-certified buildings save energy? Not really. . . John H. Scofield *  

E-Print Network [OSTI]

is an energy-efficient building. But until recently there have been little energy- consumption data put forward the median energy use intensity (EUI)1 of the LEED buildings with the mean EUI for all US commercial that for all US commercial buildings [2­4]. Despite shortcomings, the NBI LEED energy data is the most

Scofield, John H.

415

Energy Sensing and Monitoring Framework with an Integrated Communication Backbone in Energy Efficient Intelligent Buildings  

E-Print Network [OSTI]

Building, Communication, Sustainability, Smart Energy, Smart Box, Cloud Computing, Smart Phone. Abstract Efficient Intelligent Buildings Jianli Pan1, 3, a , Shanzhi Chen2, b , Raj Jain3, c , Subharthi Paul3, d 1. Building environments are significant sources of global energy consumption. To create energy efficient

Jain, Raj

416

Study of natural ventilation in buildings by large eddy simulation Yi Jiang and Qingyan Chen*  

E-Print Network [OSTI]

in buildings can create a comfortable and healthy indoor environment, and can save energy used constitutes a major part of the energy consumption in buildings. To reduce energy used by mechanical cooling is driven in and out of a building due to pressure differences, produced by wind and buoyancy forces

Chen, Qingyan "Yan"

417

Lessons Learned from Case Studies of Six High-Performance Buildings  

SciTech Connect (OSTI)

Commercial buildings have a significant impact on energy use and the environment. They account for approximately 18% (17.9 quads) of the total primary energy consumption in the United States (DOE 2005). The energy used by the building sector continues to increase, primarily because new buildings are added to the national building stock faster than old buildings are retired. Energy consumption by commercial buildings will continue to increase until buildings can be designed to produce more energy than they consume. As a result, the U.S. Department of Energy's (DOE) Building Technologies Program has established a goal to create the technology and knowledge base for marketable zero-energy commercial buildings (ZEBs) by 2025.

Torcellini, P.; Pless, S.; Deru, M.; Griffith, B.; Long, N.; Judkoff, R.

2006-06-01T23:59:59.000Z

418

Energy use in office buildings  

SciTech Connect (OSTI)

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

419

Lifestyle Factors in U.S. Residential Electricity Consumption  

SciTech Connect (OSTI)

A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

2012-03-30T23:59:59.000Z

420

Sault Tribe Building Efficiency Energy Audits  

SciTech Connect (OSTI)

The Sault Ste. Marie Tribe of Chippewa Indians is working to reduce energy consumption and expense in Tribally-owned governmental buildings. The Sault Ste. Marie Tribe of Chippewa Indians will conduct energy audits of nine Tribally-owned governmental buildings in three counties in the Upper Peninsula of Michigan to provide a basis for evaluating and selecting the technical and economic viability of energy efficiency improvement options. The Sault Ste. Marie Tribe of Chippewa Indians will follow established Tribal procurement policies and procedures to secure the services of a qualified provider to conduct energy audits of nine designated buildings. The contracted provider will be required to provide a progress schedule to the Tribe prior to commencing the project and submit an updated schedule with their monthly billings. Findings and analysis reports will be required for buildings as completed, and a complete Energy Audit Summary Report will be required to be submitted with the provider?s final billing. Conducting energy audits of the nine governmental buildings will disclose building inefficiencies to prioritize and address, resulting in reduced energy consumption and expense. These savings will allow Tribal resources to be reallocated to direct services, which will benefit Tribal members and families.

Holt, Jeffrey W.

2013-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study  

SciTech Connect (OSTI)

Whole building input models for energy simulation programs are frequently created in order to evaluate specific energy savings potentials. They are also often utilized to maximize cost-effective retrofits for existing buildings as well as to estimate the impact of policy changes toward meeting energy savings goals. Traditional energy modeling suffers from several factors, including the large number of inputs required to characterize the building, the specificity required to accurately model building materials and components, simplifying assumptions made by underlying simulation algorithms, and the gap between the as-designed and as-built building. Prior works have attempted to mitigate these concerns by using sensor-based machine learning approaches to model energy consumption. However, a majority of these prior works focus only on commercial buildings. The works that focus on modeling residential buildings primarily predict monthly electrical consumption, while commercial models predict hourly consumption. This means there is not a clear indicator of which techniques best model residential consumption, since these methods are only evaluated using low-resolution data. We address this issue by testing seven different machine learning algorithms on a unique residential data set, which contains 140 different sensors measurements, collected every 15 minutes. In addition, we validate each learner's correctness on the ASHRAE Great Energy Prediction Shootout, using the original competition metrics. Our validation results confirm existing conclusions that Neural Network-based methods perform best on commercial buildings. However, the results from testing our residential data set show that Feed Forward Neural Networks, Support Vector Regression (SVR), and Linear Regression methods perform poorly, and that Hierarchical Mixture of Experts (HME) with Least Squares Support Vector Machines (LS-SVM) performs best - a technique not previously applied to this domain.

Edwards, Richard E [ORNL; New, Joshua Ryan [ORNL; Parker, Lynne Edwards [ORNL

2012-01-01T23:59:59.000Z

422

Green Buildings  

SciTech Connect (OSTI)

This award was split into five tasks, HVAC replacement, lighting retrofitting, daylight harvesting, data center virtualization, and traffic signal retrofitting. The first three tasks were combined into an Energy Performance Contract on seven City facilities. This allowed for the total cost of the project to be offset by guaranteed savings over a 14 year period. The other two projects where done by separate vendors and successfully completed. The combination of these five tasks will result in a significant reduction in our energy consumption city wide, and will also translate to savings for the taxpayer on utility costs. There were also additional financial savings to the taxpayer not related to energy reduction that added value to these projects which will be discussed below.

Ruppert, Benjamin; Elliot, Phillip

2012-08-15T23:59:59.000Z

423

Uncalibrated Building Energy Simulation Modeling Results  

E-Print Network [OSTI]

for the Level 1 and Level 2 models with measured data for WERC (2004 post-commissioning data). ESL-PA-06-10-01 VOLUME 12, NUMBER 4, OCTOBER 2006 1151 Figure 6. Comparison of simulated daily total energy consumption for the Level 1 and Level 2 models with 1999...,450 m2]), the simulation using 1999 data underestimates the energy use in all categories except the whole building electrical usage. Table 3 identifies the magnitude of these discrepancies for a full years consumption. The Level 1 model actually per...

Ahmad, M.; Culp, C.H.

424

Manufacturing consumption of energy 1994  

SciTech Connect (OSTI)

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

425

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference

426

3Building a Business Building a Business  

E-Print Network [OSTI]

15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

Arnold, Jonathan

427

Essays on aggregate and individual consumption fluctuations  

E-Print Network [OSTI]

This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

Hwang, Youngjin

2006-01-01T23:59:59.000Z

428

The electricity consumption impacts of commercial energy management systems  

SciTech Connect (OSTI)

An investigation of energy management systems (EMS) in large commercial and institutional buildings in North Carolina was undertaken to determine how EMS currently affect electricity consumption and what their potential is for being used to reduce on-peak electricity demand. A survey was mailed to 5000 commercial customers; the 430 responses were tabulated and analyzed; EMS vendors were interviewed, and 30 sites were investigated in detail. The detailed assessments included a site interview and reconstruction of historic billing data to evaluate EMS impact, if any. The results indicate that well-tuned EMS can result in a 10 to 40 percent reduction in billed demand, and smaller reductions in energy.

Buchanan, S.; Taylor, R.; Paulos, S.; Warren, W.; Hay, J.

1989-02-01T23:59:59.000Z

429

Real-Time Building Energy Simulation Using EnergyPlus and the Building Controls Test Bed  

SciTech Connect (OSTI)

Most commercial buildings do not perform as well in practice as intended by the design and their performances often deteriorate over time. Reasons include faulty construction, malfunctioning equipment, incorrectly configured control systems and inappropriate operating procedures (Haves et al., 2001, Lee et al., 2007). To address this problem, the paper presents a simulation-based whole building performance monitoring tool that allows a comparison of building actual performance and expected performance in real time. The tool continuously acquires relevant building model input variables from existing Energy Management and Control System (EMCS). It then reports expected energy consumption as simulated of EnergyPlus. The Building Control Virtual Test Bed (BCVTB) is used as the software platform to provide data linkage between the EMCS, an EnergyPlus model, and a database. This paper describes the integrated real-time simulation environment. A proof-of-concept demonstration is also presented in the paper.

Pang, Xiufeng; Bhattachayra, Prajesh; O'Neill, Zheng; Haves, Philip; Wetter, Michael; Bailey, Trevor

2011-11-01T23:59:59.000Z

430

Energy conservation in commercial and residential buildings  

SciTech Connect (OSTI)

Energy experts have indicated that we can, by exploiting currently available technology, cut energy consumption by 30 to 50% in new buildings and 10 to 30% in existing buildings, with no significant loss in standard of living, comfort, or convenience. This book surveys the many architectural/engineering techniques for combating energy waste in residential and commercial buildings. The experts in these 10 chapters acquaint us with what is being done and with what can be done in the design, construction, and maintenance of buildings in order to foster energy efficiency; they emphasize life-cycle costing as the only sound approach toward energy conservation. A separate abstract was prepared for each chapter; all abstracts will appear in Energy Abstracts for Policy Analysis (EAPA), with 5 appearing in Energy Research Abstracts (ERA).

Chiogioji, M.H.; Oura, E.N.

1982-01-01T23:59:59.000Z

431

Reimagining Building Sensing and Control (Presentation)  

SciTech Connect (OSTI)

Buildings are responsible for 40% of US energy consumption, and sensing and control technologies are an important element in creating a truly sustainable built environment. Motion-based occupancy sensors are often part of these control systems, but are usually altered or disabled in response to occupants' complaints, at the expense of energy savings. Can we leverage commodity hardware developed for other sectors and embedded software to produce more capable sensors for robust building controls? The National Renewable Energy Laboratory's (NREL) 'Image Processing Occupancy Sensor (IPOS)' is one example of leveraging embedded systems to create smarter, more reliable, multi-function sensors that open the door to new control strategies for building heating, cooling, ventilation, and lighting control. In this keynote, we will discuss how cost-effective embedded systems are changing the state-of-the-art of building sensing and control.

Polese, L.

2014-06-01T23:59:59.000Z

432

Building America Building Science Translator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1,Energy ForBryanR BUILDING AMERICA

433

State energy data report 1992: Consumption estimates  

SciTech Connect (OSTI)

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

434

The Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale  

E-Print Network [OSTI]

of Energy (DOE) estimates that 73% of the electricity usage and 39% of the CO2 emissions in the US come from, Experimentation, Measurement, Human Factors Keywords Energy, Power, Buildings 1 Introduction The US DepartmentThe Energy Dashboard: Improving the Visibility of Energy Consumption at a Campus-Wide Scale Yuvraj

Gupta, Rajesh

435

MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1  

E-Print Network [OSTI]

MODELICA LIBRARY FOR SIMULATING ENERGY CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1 Niklas, a model library is developed in the modelling language Modelica. The library contains a mixture of models library are presented. The Modelica language is used to build models with a modular structure. Figure 1

Johansson, Karl Henrik

436

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

437

Energy Consumption of Personal Computing Including Portable  

E-Print Network [OSTI]

Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

Namboodiri, Vinod

438

Ethanol Consumption by Rat Dams During Gestation,  

E-Print Network [OSTI]

Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

Galef Jr., Bennett G.

439

Mathematical models of natural gas consumption  

E-Print Network [OSTI]

Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

Scitovski, Rudolf

440

Building and Buildings, Scotland: Draft Building Standards (Scotland) Regulations, 1961  

E-Print Network [OSTI]

These regulations, made under the Building (Scotland) Act, 1959, prescribe standards for buildings for the purposes of Part II of that Act. The matters in relation to which standards have been prescribed are described in ...

Her Majesty's Stationary Office

1961-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials  

E-Print Network [OSTI]

Experimental and Simulation Approaches for Optimizing the Thermal Performance of Building Enclosures Containing Phase Change Materials By Kyoung Ok Lee M.S., The University of Kansas, Lawrence, Kansas, 2013 M.Eng., Chung-Ang University... those for buildings (EIA, 2013). In the U.S., buildings consume about 40% of total energy used in the country (EIA, 2012) and about 40% of greenhouse gas emissions are attributed to building energy consumption (EIA, 2011). Space cooling and heating...

Lee, Kyoung Ok

2014-05-31T23:59:59.000Z

442

Considering the Energy Consumption of Mobile Storage Alternatives Fengzhou Zheng # Nitin Garg # Sumeet Sobti # Chi Zhang # Russell E. Joseph +  

E-Print Network [OSTI]

Considering the Energy Consumption of Mobile Storage Alternatives Fengzhou Zheng # Nitin Garg it is true that a logstructured storage system can translate its performance benefits into energy savings This paper is motivated by a simple question: what are the energy consumption characteristics of mobile

Krishnamurthy, Arvind

443

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

444

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

445

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

446

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

447

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network [OSTI]

Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

448

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

a forecast for total energy consumption in network standbyconsiderable impact on total energy consumption from TVs.factors affecting total energy consumption. Although further

Park, Won Young

2011-01-01T23:59:59.000Z

449

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

450

TV Energy Consumption Trends and Energy-Efficiency Improvement Options  

E-Print Network [OSTI]

and Low Power Mode Energy Consumption, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

Park, Won Young

2011-01-01T23:59:59.000Z

451

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

452

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings...

453

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings ......

454

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT  

E-Print Network [OSTI]

BUILDING EFFECTIVENESS COMMUNICATION RATIOS FOR IMPROVED BUILDING LIFE CYCLE MANAGEMENT Elmer building energy performance assessment frameworks, quantifying and categorising buildings post occupancy a performance-based strategy utilising building effectiveness communication ratios stored in Building

455

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2008-09-02T23:59:59.000Z

456

Electrical appliance energy consumption control methods and electrical energy consumption systems  

DOE Patents [OSTI]

Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

2006-03-07T23:59:59.000Z

457

US ENC IL Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousandIL Site Consumption million

458

US ENC MI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousandIL Site Consumption

459

US ENC WI Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousandIL Site Consumption120 US

460

US ESC TN Site Consumption  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,CoalThousandIL Site Consumption120 USESC

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference case,A5.On-HighwayDAD

462

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, Reference case,A5.On-HighwayDADE

463

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region, ReferenceG (2005) - Household

464

Pitfalls in Building and HVAC Systems  

E-Print Network [OSTI]

the summer savings. ? Consider all forms of savings, not just en ergy. Opportunities are often missed be cause only energy savings are consideted. For example, the installation of extetior wall insulation or aluminum thermopane win dows result in a...PITFALLS IN BUILDING AND HVAC SYSTEMS B. N. Gidwani, P.E. Roy F. Weston, Inc. West Chester, Pennsylvania ABSTRACT The purpose of an energy audit is to identify and analyze areas of energy consumption and to pro pose methods of conservation...

Gidwani, B. N.

465

Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review  

E-Print Network [OSTI]

Portuguese Buildings represent 35% of primary energy consumption in 2006, with non-residential sector representing almost half of this number globally and around 65% in Lisbon city. Expected to grow 5% yearly in this period, non...

Pereira, N. C.

466

Development of Graphical Indices for Displaying Large Scale Building Energy Data Sets  

E-Print Network [OSTI]

analyst view large amounts of hourly building energy consumption data in order to quickly and efficiently analyze the data, check for errors, or establish time and temperature related trends over a large period of time. The objective is to demonstrate...

Abbas, M.; Haberl, J. S.

1994-01-01T23:59:59.000Z

467

Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong  

E-Print Network [OSTI]

Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

Yang, J.; Chan, K.; Wu, X.

2006-01-01T23:59:59.000Z

468

Recommendations for 15% Above-Code Energy Efficiency Measures for Commercial Office Buildings  

E-Print Network [OSTI]

This report presents detailed information about the recommendations for achieving 15% above-code energy performance for commercial office buildings complying with ASHRAE Standard 90.1-19991. To accomplish the 15% annual energy consumption reductions...

Montgomery, C.; Yazdani, B.; Haberl, J. S.; Culp, C.; Liu, Z.; Mukhopadhyay, J.; Cho, S.

469

Solar energy dehumidification experiment on the Citicorp Center building : final report  

E-Print Network [OSTI]

The technical and economic feasibility of using solar energy to reduce conventional energy consumption of a large urban commercial building were studied in depth. Specifically, solar assisted dehumidification of ventillation ...

Unknown author

470

Assessing methods for predicting retrofit energy savings in buildings : case study of a Norwegian school  

E-Print Network [OSTI]

This work investigates methods for predicting retrofit energy savings in existing Norwegian buildings. A case study is performed on a 30 year old primary school in Trondheim, Norway. The energy consumption in the school ...

Ricker, Elizabeth, S.M. (Elizabeth Ann). Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

471

The Framework of an Optimization Model for the Thermal Design of Building Envelopes  

E-Print Network [OSTI]

Careful long term decisions in the design and operation of buildings can significantly improve the thermal performance and thus reduce the consumption of energy. The availability and ease of use of today's computers can be a sigruficant benefit...

Al-Homoud, M. S.; Degelman, L. O.; Boyer, L. L.

1994-01-01T23:59:59.000Z

472

Development and evaluation of a building energy model integrated in the TEB scheme  

E-Print Network [OSTI]

The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the ...

Bueno Unzeta, Bruno

473

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network [OSTI]

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

474

Evaluating the performance of natural ventilation in buildings through simulation and on-site monitoring  

E-Print Network [OSTI]

Natural ventilation in buildings is capable of reducing energy consumption while maintaining a comfortable indoor at the same time. It is important that natural ventilation is taken into consideration in the early design ...

Cheng, Haofan

2013-01-01T23:59:59.000Z

475

Sociotechnical complexities associated with the development of Building Integrated Photovoltaic fac?ade systems  

E-Print Network [OSTI]

Significant opportunities to improve the energy use in buildings open remarkable possibilities for innovation over the next two decades. Particularly in the United States, 41% of primary energy consumption in 2010 went ...

Moreno, Jorge (Jorge Alejandro Moreno de la Carrera)

2013-01-01T23:59:59.000Z

476

A large-scale study on predicting and contextualizing building energy usage  

E-Print Network [OSTI]

In this paper we present a data-driven approach to modeling end user energy consumption in residential and commercial buildings. Our model is based upon a data set of monthly electricity and gas bills, collected by a utility ...

Kolter, Jeremy Z.

477

Lodging Buildings  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370JapanLodging Characteristics

478

Reducing power consumption while performing collective operations on a plurality of compute nodes  

DOE Patents [OSTI]

Methods, apparatus, and products are disclosed for reducing power consumption while performing collective operations on a plurality of compute nodes that include: receiving, by each compute node, instructions to perform a type of collective operation; selecting, by each compute node from a plurality of collective operations for the collective operation type, a particular collective operation in dependence upon power consumption characteristics for each of the plurality of collective operations; and executing, by each compute node, the selected collective operation.

Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

2011-10-18T23:59:59.000Z

479

Academic Buildings Student & Admin.  

E-Print Network [OSTI]

Academic Buildings Student & Admin. Services Residence Public Parking Permit Parking GatheringCampusRoad Shrum Science Centre South Sciences Building Technology & Science Complex 2 Greenhouses Science Research AnnexBee Research BuildingAlcan Aquatic Research Technology & Science Complex 1 C Building B Building P

480

and Pollutant Safeguarding Buildings  

E-Print Network [OSTI]

commercial buildings, these flows are driven primarily by the building's ventilation system, but natural2004 Airflow and Pollutant Transport Group Safeguarding Buildings Against Chemical and Biological research since 1998 to protect buildings and building occupants from threats posed by airborne chemical

Note: This page contains sample records for the topic "building characteristics consumption" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Models for estimation of car fuel consumption in urban traffic  

SciTech Connect (OSTI)

This article describes four fuel-consumption models. The models are interrelated and form part of the same modeling framework. A simpler model is derived from a more complicated model keeping the vehicle characteristic such as mass, drag function, and energy efficiency as explicit parameters at all model levels. Because vehicle characteristics are likely to change over time and from country to country, this is a particularly useful model property. For simplicity here, only the instantaneous fuel-consumption model is described in any detail. However, because of the derivation procedure, many of the features and properties of this model are present in the more aggregate models. Easy-to-use functions and graphs are given for the more aggregate models based on a ''default car'' in urban driving conditions. All parameters related to the speed profile and driving environment were calibrated using on-road data collected in Sydney, Australia. Use of the models is illustrated by estimating the fuel consumption for the microtrip.

Biggs, D.C.; Akcelik

1986-07-01T23:59:59.000Z

482

Building Science-Based Climate Maps - Building America Top Innovation...  

Energy Savers [EERE]

Building Science-Based Climate Maps - Building America Top Innovation Building Science-Based Climate Maps - Building America Top Innovation Photo showing climate zone maps based on...

483

Building America Top Innovations Hall of Fame Profile - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building America Top Innovations Hall of Fame Profile - Building America's Top Innovations Propel the Home Building Industry toward Higher Performance Building America Top...

484

Building America Webinar: Building America Research Tools | Department...  

Energy Savers [EERE]

Building America Research Tools Building America Webinar: Building America Research Tools This webinar was held on March 18, 2015, and reviewed Building America research tools,...

485

Building America  

SciTech Connect (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

486

Reducing Building Energy Costs Using Optimized Operation Strategies for Constant Volume Air Handling Systems  

E-Print Network [OSTI]

SDCVP 67.380 $153.200 $41.800 $195.000 $2.89 measured energy consumption for each building. The horizontal axis is the ambient temperature. The venical axis is the average daily energy consumption in MMBtulhr. Figure 5 compares the predicted...REDUCING BUILDING ENERGY COSTS USING OPTIMIZED OPERATION STRATEGIES FOR CONSTANT VOLUME AIR HANDLING SYSTEMS Mingsheng Liu, her Atha, Agarni Reddy Ed White David Claridge and Jeff Haberl Department of Physical Plant Texas A&M University...

Liu, M.; Athar, A.; Reddy, A.; Claridge, D. E.; Haberl, J. S.; White, E.

1994-01-01T23:59:59.000Z

487

Global Energy, Environmental Trends and Challenges: The Need for Best Building Practices  

E-Print Network [OSTI]

Dynamic Facades Example 3: Commerzbank Frankfurt, Germany Architect: Norman Foster Dr. Ing. Fritz Gartner, Josef Gartner& Co Peter Muschelknautz, Commerzbank + Double-skin fa?ade - Unnecessary HVAC back-up (redundant system) Center... * Germany average practice is calculated based on the energy consumption measurements of 15 German office buildings built between 1990 and 2002 (with primary energy consumption ranging from 180kWh/m2 to 1,000kWh/m2). Annual Site/Primary Energy Consumption...

Hartkopf, V.

2011-01-01T23:59:59.000Z

488

Final Report on Retrospective Testing and Application of an Automated Building Commissioning Analysis Tool (ABCAT)  

E-Print Network [OSTI]

simulation model used was calibrated to the building energy consumption data in a baseline period. Then, the model was used to predict the optimal cooling and heating consumption in the following days. A cumulative energy difference plot is the primary fault...

Bynum, John; Lin, Guanjing; Claridge, David

489

Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida  

E-Print Network [OSTI]

consumption, 39 percent of all energy use, and 38 percent of the carbon dioxide emissions in the United States (U.S. DOE 2008). Building energy codes (hereafter "energy codes") are the primary policy instrument energy codes affect residential energy consumption in practice. Evaluations are typically based

Kotchen, Matthew J.

490

The cost-effectiveness of retrofitting sanitary fixtures in restrooms of a university building  

E-Print Network [OSTI]

Architecture building A at Texas A&M University. The researcher directly measured the actual water-volume per flush of as-is, tune-up, low-consumption manual, and low-consumption automatic water closets and urinals. The data collected by these observations...

Hwang, Byoung Hoon

2004-09-30T23:59:59.000Z

491

Energy and Buildings 82 (2014) 310321 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

Clustering algorithm a b s t r a c t Energy consumption and air quality index (AQI) prediction is important clustering method. © 2014 Elsevier B.V. All rights reserved. 1. Introduction The huge energy consumption 50% of the energy consumed of office buildings in the US [1,2]. The modeling and short

Kusiak, Andrew

492

Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies  

E-Print Network [OSTI]

in energy consumption when the compressor is operating and when the refrigerator doors are opened. · Data inefficient buildings with new and innovative technologies that help to curb energy consumption will reduce, humidity, pressure, and liquid flow data. · Refrigerator energy is harder to predict due to large spikes

Wang, Xiaorui "Ray"

493

Optimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency  

E-Print Network [OSTI]

. INTRODUCTION The continuous rising of energy consumption is a current and global concern. On the one hand for the most important energy consumption rate, estimated at around 40% of the total energy used worldwideOptimizing Architectural and Structural Aspects of Buildings towards Higher Energy Efficiency

Boyer, Edmond

494

Thick Buildings [Standards  

E-Print Network [OSTI]

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

495

Analysis of Innovative HVAC System Technologies and Their Application for Office Buildings in Hot and Humid Climates  

E-Print Network [OSTI]

The commercial buildings sector in the United States used 18 percent (17.93 Quads) of the U.S. primary energy in 2006. Office buildings are the largest single energy consumption category in the commercial buildings sector of the United States...

Tanskyi, Oleksandr

2012-02-14T23:59:59.000Z

496

Web-based energy information systems for energy management and demand response in commercial buildings  

SciTech Connect (OSTI)

Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

2003-04-18T23:59:59.000Z

497

BUILDING PROCTOR rev. April 2014  

E-Print Network [OSTI]

BUILDING PROCTOR MANUAL rev. April 2014 #12;Building Proctor Manual rev. April 2014 2 TABLE.........................................................................................................................................5 Role of a Building Proctor ..............................................................................................................5 Authority of Building Proctor

498

Building a Molecule Building Structures in Moe  

E-Print Network [OSTI]

14 Chapter 3 Building a Molecule #12;15 Building Structures in Moe Dorzolamide Exercise 1 #12;16 Open the Molecule Builder · Open the Molecule Builder panel using MOE | Edit | Build | Molecule, the chiral center will be either R or S, and one of the two will be highlighted in green. The green

Fischer, Wolfgang

499

A work bibliography on native food consumption, demography and lifestyle  

SciTech Connect (OSTI)

The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project's primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

Murray, C.E.; Lee, W.J.

1992-12-01T23:59:59.000Z

500

Methodology to Achieve Safety and Energy Savings in Laboratory Buildings  

E-Print Network [OSTI]

ESL-IC-08-10-53 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 PROPOSED SYSTEM TO REDUCE ENERGY CONSUMPTION Recently, it is strongly...-10-53 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Figure7 is the graph of ?probabilty of simultaneous use? (i.e. demand factor) of fume hoods in laboratory...

Odajima, T.; Numanaka, S.