National Library of Energy BETA

Sample records for building biomass daylighting

  1. The elusive challenge of daylighted buildings

    SciTech Connect (OSTI)

    Selkowitz, Steve

    1998-02-01

    As we approach the end of the decade of the 1990s, daylighting is increasingly promoted as a design strategy and building solution that can save energy and improve human performance and satisfaction in indoor spaces. Similar claims were made in the 1970s in the aftermath of the oil embargo. Twenty-five years later, in a world newly concerned about carbon emissions, global warming, and sustainable design, daylighted buildings are again proposed as a ''solution.'' While it is possible to find some examples of well daylighted buildings that have been built in the last 25 years, the fact that there are so few suggests that the optimistic outlook for daylighting needs to be critically (re)examined. In 1978 and again in 1986 the author examined [Selkowitz 1979, Selkowitz 1986] the gap between the potential benefits claimed for daylighted buildings and the actual achievements in building practice. That gap remains in 1998. The first challenge is to define performance expectations for a daylighted space. Many definitions of daylighted buildings and the associated performance expectations are used interchangeably: Architectural definition: the interplay of natural light and building form to provide a visually stimulating, healthful, and productive interior environment; Lighting Energy Savings definition: the replacement of indoor electric illumination needs by daylight, resulting in reduced annual energy consumption for lighting; Building Energy Consumption definition: the use of fenestration systems and responsive electric lighting controls to reduce overall building energy requirements (heating, cooling, lighting); Load Management definition: dynamic control of fenestration and lighting to manage and control building peak electric demand and load shape; Cost definition: the use of daylighting strategies to minimize operating costs and maximize output, sales, or productivity. Each of these (and others) is a legitimate perspective, but it is important to be clear about which is being referenced. In this assessment we focus on the energy-related savings definitions, recognizing that there are overlapping elements in each definition.

  2. OpenStudio Enhancements for Whole-Building Daylighting, Airflow, and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Leveraging Interoperable Building Information Modeling Data - 2014 BTO Peer Review | Department of Energy Enhancements for Whole-Building Daylighting, Airflow, and Energy Modeling Leveraging Interoperable Building Information Modeling Data - 2014 BTO Peer Review OpenStudio Enhancements for Whole-Building Daylighting, Airflow, and Energy Modeling Leveraging Interoperable Building Information Modeling Data - 2014 BTO Peer Review Presenter: John Messner, the Pennsylvania State

  3. Capturing the Daylight Dividend

    SciTech Connect (OSTI)

    Peter Boyce; Claudia Hunter; Owen Howlett

    2006-04-30

    Capturing the Daylight Dividend conducted activities to build market demand for daylight as a means of improving indoor environmental quality, overcoming technological barriers to effective daylighting, and informing and assisting state and regional market transformation and resource acquisition program implementation efforts. The program clarified the benefits of daylight by examining whole building systems energy interactions between windows, lighting, heating, and air conditioning in daylit buildings, and daylighting's effect on the human circadian system and productivity. The project undertook work to advance photosensors, dimming systems, and ballasts, and provided technical training in specifying and operating daylighting controls in buildings. Future daylighting work is recommended in metric development, technology development, testing, training, education, and outreach.

  4. OpenStudio Enhancements for Whole-building Daylighting, Airflow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Building Information Model Server Adopted a BIMserver approach toward the storage and ... funds have been expended to date. Budget History Feb. 1, 2013 to April 30, 2014 (current) ...

  5. OpenStudio Enhancements for Whole-Building Daylighting, Airflow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    working to enhance the functionality of OpenStudio, which is a cross-platform (Windows, Mac, and Linux) collection of software tools that support whole-building energy modeling. ...

  6. Advanced Facades, Daylighting, and Complex Fenestration Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facades, Daylighting, and Complex Fenestration Systems Advanced Facades, Daylighting, and Complex Fenestration Systems Emerging Technologies Project for the 2013 Building ...

  7. Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting & Daylighting » Daylighting Basics Daylighting Basics August 16, 2013 - 11:24am Addthis Energy 101: Daylighting Basics This video explains how homeowners and businesses can use highly efficient, strategically placed windows to save money. Text Version Daylighting is the use of windows and skylights to bring sunlight into buildings. Daylighting in businesses and commercial buildings can result in substantial savings on electric bills, and not only provides a higher quality of light

  8. Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    windows or skylights for natural lighting and temperature regulation-is one building strategy that can save money for homeowners and businesses. Daylighting is the use of windows ...

  9. daylight | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  10. Energy 101: Daylighting

    ScienceCinema (OSTI)

    None

    2013-05-29

    Daylighting?the use of windows or skylights for natural lighting and temperature regulation?is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems.

  11. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    SciTech Connect (OSTI)

    Guglielmetti , R.; Scheib, J.; Pless, S. D.; Torcellini , P.; Petro, R.

    2011-03-01

    Net-zero energy buildings generate as much energy as they consume and are significant in the sustainable future of building design and construction. The role of daylighting (and its simulation) in the design process becomes critical. In this paper we present the process the National Renewable Energy Laboratory embarked on in the procurement, design, and construction of its newest building, the Research Support Facility (RSF) - particularly the roles of daylighting, electric lighting, and simulation. With a rapid construction schedule, the procurement, design, and construction had to be tightly integrated; with low energy use. We outline the process and measures required to manage a building design that could expect to operate at an efficiency previously unheard of for a building of this type, size, and density. Rigorous simulation of the daylighting and the electric lighting control response was a given, but the oft-ignored disconnect between lighting simulation and whole-building energy use simulation had to be addressed. The RSF project will be thoroughly evaluated for its performance for one year; preliminary data from the postoccupancy monitoring efforts will also be presented with an eye toward the current efficacy of building energy and lighting simulation.

  12. List of Daylighting Incentives | Open Energy Information

    Open Energy Info (EERE)

    Loan Program Michigan Agricultural Agricultural Equipment Heat pumps Anaerobic Digestion Biodiesel Biomass CHPCogeneration Daylighting Ethanol Fuel Cells Fuel Cells using...

  13. Lighting and Daylighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting and Daylighting Basics Lighting and Daylighting Basics August 15, 2013 - 5:05pm Addthis Buildings can be lit in two ways: by using artificial lighting, or by using daylighting, or the process of using natural sunlight, windows, and skylights to provide lighting. Learn more about: Lighting Daylighting Addthis Related Articles Daylighting Basics Energy 101: Daylighting The Biggest, Brightest Star of Energy Efficiency Energy Basics Home Renewable Energy Homes &

  14. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    DOE Patents [OSTI]

    Sanders, William J.; Snyder, Marvin K.; Harter, James W.

    1983-01-01

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  15. Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting

    SciTech Connect (OSTI)

    Sanders, W.J.; Harter, J.W.; Snyder, M.K.

    1983-12-06

    The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

  16. Energy 101: Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting Energy 101: Daylighting Addthis Description Daylighting-the use of windows or skylights for natural lighting and temperature regulation-is one building strategy that can save money for homeowners and businesses. Highly efficient, strategically placed windows maximize the use of natural daylight in a building, lowering the need for artificial lighting without causing heating or cooling problems. Text Version Below is the text version for the Energy 101: Daylighting video. The video

  17. Building envelope thermal and daylighting analysis in support of recommendations to upgrade ASHRAE/IES Standard 90. Final report

    SciTech Connect (OSTI)

    Johnson, R.; Sullivan, R.; Nozaki, S.; Selkowitz, S.; Conner, C.; Arasteh, D.

    1983-09-01

    Fenestration design can greatly affect the energy requirements for space conditioning and electric lighting in buildings. The net annual effect greatly depends on the effectiveness of daylight utilization with specific results being a complex function of the interaction among building design features, building operating characteristics, and climate. The object of this study was to isolate the energy effects of fenestration and electric lighting design, quantify these effects, and develop simplified analysis tools for compliance use in the building envelopes section of ASHRAE/IES Standard 90. Envelope thermal conductivity, fenestration design, and electric lighting characteristics are parametrically varied through a wide range of values and in a diversity of climates. For these parametric variations, annual energy consumption is calculated with the DOE-2.1B energy analysis program. The numerical results are collected and stored on tape. From this data base statistical analysis is performed using multiple regression techniques leading to simplified correlation expressions characterize annual energy performance trends for cooling, heating, and cooling peak so that users can easily ascertain the energy implications of design options for fenestration, daylighting, and electric lighting.

  18. City of Austin - Residential and Commercial Green Building Requirement...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Solar Water Heat Solar Space Heat Solar Photovoltaics Wind (All) Biomass Geothermal Heat Pumps Daylighting Comprehensive MeasuresWhole Building Wind (Small)...

  19. Daylighting | Open Energy Information

    Open Energy Info (EERE)

    Daylighting Jump to: navigation, search TODO: Add description List of Daylighting Incentives Retrieved from "http:en.openei.orgwindex.php?titleDaylighting&oldid267157...

  20. Advanced Facades, Daylighting, and Complex Fenestration Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Facades, Daylighting, and Complex Fenestration Systems Advanced Facades, Daylighting, and Complex Fenestration Systems Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech21_lee_040413.pdf More Documents & Publications Window Daylighting Demo High Performance Window Attachments Fenestration Software Tools

  1. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanolens Window Coatings for Daylighting Nanolens Window Coatings for Daylighting Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech18_alvine_040413.pdf More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  2. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daylighting Demo Window Daylighting Demo Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review PDF icon commlbldgs20_selkowitz_040413.pdf More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling tiles made of new phase change materials in test bed, in naturally ventilated and forced ventilation modes. Source: LBNL. CBERD:

  3. On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    522 August 2010 On the Use of Integrated Daylighting and Energy Simulations To Drive the Design of a Large Net-Zero Energy Office Building Preprint Rob Guglielmetti, Shanti Pless, and Paul Torcellini Presented at SimBuild 2010 New York, New York August 15-19, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance

  4. Daylight Savings Time Starts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daylight Savings Time Starts Daylight Savings Time Starts WHEN: Mar 08, 2015 3:00 AM - 11:59 PM WHERE: World Time Zones CATEGORY: Holiday INTERNAL: Calendar Login Daylight Savings...

  5. Daylighting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity & Fuel Lighting Daylighting Daylighting An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in your browser....

  6. Fort Carson Building 1860 Biomass Heating Analysis Report

    SciTech Connect (OSTI)

    Hunsberger, Randolph; Tomberlin, Gregg; Gaul, Chris

    2015-09-01

    As part of the Army Net-Zero Energy Installation program, the Fort Carson Army Base requested that NREL evaluate the feasibility of adding a biomass boiler to the district heating system served by Building 1860. We have also developed an Excel-spreadsheet-based decision support tool--specific to the historic loads served by Building 1860--with which users can perform what-if analysis on gas costs, biomass costs, and other parameters. For economic reasons, we do not recommend adding a biomass system at this time.

  7. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  8. Feasibility Analysis For Heating Tribal Buildings with Biomass

    SciTech Connect (OSTI)

    Steve Clairmont; Micky Bourdon; Tom Roche; Colene Frye

    2009-03-03

    This report provides a feasibility study for the heating of Tribal buildings using woody biomass. The study was conducted for the Confederated Salish and Kootenai Tribes of the Flathead Reservation in western Montana. S&K Holding Company and TP Roche Company completed the study and worked together to provide the final report. This project was funded by the DOE's Tribal Energy Program.

  9. Port Graham Community Building Biomass Heating Design Project

    SciTech Connect (OSTI)

    Norman, Patrick; Sink, Charles

    2015-04-30

    Native Village of Port Graham completed preconstruction activities to prepare for construction and operations of a cord wood biomass heating system to five or more community buildings in Port Graham, Alaska. Project Description Native Village of Port Graham (NVPG) completed preconstruction activities that pave the way towards reduced local energy costs through the construction and operations of a cord wood biomass heating system. NVPG plans include installation of a GARN WHS 3200 Boiler that uses cord wood as fuel source. Implementation of the 700,000 Btu per hour output biomass community building heat utility would heat 5-community buildings in Port Graham, Alaska. Heating system is estimated to displace 85% of the heating fuel oil or 5365 gallons of fuel on an annual basis with an estimated peak output of 600,000 Btu per hour. Estimated savings is $15,112.00 per year. The construction cost estimate made to install the new biomass boiler system is estimated $251,693.47 with an additional Boiler Building expansion cost estimated at $97,828.40. Total installed cost is estimated $349,521.87. The WHS 3200 Boiler would be placed inside a new structure at the old community Water Plant Building site that is controlled by NVPG. Design of the new biomass heat plant and hot water loop system was completed by Richmond Engineering, NVPG contractor for the project. A hot water heat loop system running off the boiler is designed to be placed underground on lands controlled by NVPG and stubbed to feed hot water to existing base board heating system in the following community buildings: 1. Anesia Anahonak Moonin Health and Dental Clinic 2. Native Village of Port Graham offices 3. Port Graham Public Safety Building/Fire Department 4. Port Graham Corporation Office Building which also houses the Port Graham Museum and Head Start Center 5. North Pacific Rim Housing Authority Workshop/Old Fire Hall Existing community buildings fuel oil heating systems are to be retro-fitted to accommodate hot water from the proposed wood-burning GARN Boiler, once installed, and rely on the existing fuel oil-fired hot water heating equipment for backup. The boiler would use an estimated 125 bone dry tons, equivalent to 100 cords, woody biomass feedstock obtained from local lands per year. Project would use local labor as described in the Port Graham Biomass Project, report completed by Chena Power, Inc. and Winters and Associates as part of the in-kind support to the U. S. Department of Energy (DOE) project for work on a project for State of Alaska’s Alaska Energy Authority (AEA). NVPG will likely initiate operations of the biomass boiler system even though several operational variations were studied. Obtaining the fuel source could be done by contractors, PGVC employees, or NVPG employees. Feeding the system would likely be done by NVPG employees. A majority of the buildings heated would be owned by NVPG. The PGVC office would be heated as well as the Old Fire Hall used as a workshop and storage area for North Pacific Rim Housing Authority. One methodology studied to charge for cost of utilizing the community building biomass system would use a percentage of use of hot water generated by the biomass hot water system based on past heating oil usage in relation to all buildings heated by biomass hot water. The method is better described in the Port Graham Biomass Project report. Fuel source agreements have been drafted to enter into agreements with area landowners. One Native allotment owner has asked Chugachmiut Forestry to begin a timber sale process to sell timber off her lands, specifically wind thrown timber that was determined to be of sufficient quantity to supply to the proposed biomass heating system for approximately 5-years. On NVPG’s behalf, Chugachmiut has presented to PGVC three different documents, attached, that could lead to a sale of woody biomass fuel for the project for up to 25-years, the expected life of the project. PGVC has signed a letter of intent to negotiate a sale of woody biomass material April 30, 2015. Chugachmiut Forestry has conducted two different field forest measurements of Native allotment lands and PGVC forest and timber lands. Lands deemed road accessible for biomass harvest were analyzed for this project. Forestry then conducted three different analyses and developed two reports to determine forest biomass on a tons per acre basis in addition to timber volume measurements taken for forest management purposes. Permits required were limited. For the biomass building, the Kenai Peninsula Borough did not require a permit. State of Alaska, Department of Public Safety, Division of Fire and Life Safety requires a plan review for fire and life safety requirements called an application for Fire and Life Safety Plan Review that would require a registered design professional to sign the document. State of Alaska State Forest Practices Act is required to be followed for any timber sale or harvest. This Act also requires consultation with Alaska Department of Fish and Game when operations are in close proximity or cross anadromous waters. Native allotment lands require following U. S. Bureau of Indian Affairs timber sale contracting process and approval.

  10. Lighting system combining daylight concentrators and an artificial source

    DOE Patents [OSTI]

    Bornstein, Jonathan G.; Friedman, Peter S.

    1985-01-01

    A combined lighting system for a building interior includes a stack of luminescent solar concentrators (LSC), an optical conduit made of preferably optical fibers for transmitting daylight from the LSC stack, a collimating lens set at an angle, a fixture for receiving the daylight at one end and for distributing the daylight as illumination inside the building, an artificial light source at the other end of the fixture for directing artifical light into the fixture for distribution as illumination inside the building, an automatic dimmer/brightener for the artificial light source, and a daylight sensor positioned near to the LSC stack for controlling the automatic dimmer/brightener in response to the daylight sensed. The system also has a reflector positioned behind the artificial light source and a fan for exhausting heated air out of the fixture during summer and for forcing heated air into the fixture for passage into the building interior during winter.

  11. CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review Presenter: John Messner, PSU View the Presentation PDF icon CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review More Documents & Publications OpenStudio Enhancements for Whole-Building Daylighting, Airflow, and Energy Modeling Leveraging Interoperable Building Information

  12. Advanced fenestration systems for improved daylight performance

    SciTech Connect (OSTI)

    Lee, E S; Selkowitz, S

    1998-03-01

    The use of daylight to replace or supplement electric lighting in commercial buildings can result in significant energy and demand savings. High performance fenestration systems area necessary, but not sufficient, element of any successful daylighting design that reduces lighting energy use. However, these savings may be reduced if the fenestration systems impose adverse thermal loads. In this paper, we review the state of the art of several advanced fenestration systems which are designed to maximize the energy-saving potential of daylighting, while improving comfort and visual performance at an "affordable" cost. We first review the key performance issues that successful fenestration systems must address, and then review several classes of fenestration systems intended to meet those performance needs. The systems are reviewed in two categories: static and dynamic. Static systems include not only glazings, such as spectrally-selective and holographic glazings, but specialized designs of light-shelves and light-pipes, while dynamic systems cover automatically-operated Venetian blinds and electrochromic glazings. We include a discussion of the research directions in this area, and how these efforts might lead to static and dynamic hardware and system solutions that fulfill the multiple roles that these systems must play in terms of energy efficiency, comfort, visual performance, health, and amenity in future buildings.

  13. Window Daylighting Demo

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Scenario comparisons - Rapid analysis of faade options ... WINDOW 6) Strong positive response from early adopters ... and Collaborators Website team: Univ of Minnesota Building ...

  14. Daylighting simulation: methods, algorithms, and resources

    SciTech Connect (OSTI)

    Carroll, William L.

    1999-12-01

    This document presents work conducted as part of Subtask C, ''Daylighting Design Tools'', Subgroup C2, ''New Daylight Algorithms'', of the IEA SHC Task 21 and the ECBCS Program Annex 29 ''Daylight in Buildings''. The search for and collection of daylighting analysis methods and algorithms led to two important observations. First, there is a wide range of needs for different types of methods to produce a complete analysis tool. These include: Geometry; Light modeling; Characterization of the natural illumination resource; Materials and components properties, representations; and Usability issues (interfaces, interoperability, representation of analysis results, etc). Second, very advantageously, there have been rapid advances in many basic methods in these areas, due to other forces. They are in part driven by: The commercial computer graphics community (commerce, entertainment); The lighting industry; Architectural rendering and visualization for projects; and Academia: Course materials, research. This has led to a very rich set of information resources that have direct applicability to the small daylighting analysis community. Furthermore, much of this information is in fact available online. Because much of the information about methods and algorithms is now online, an innovative reporting strategy was used: the core formats are electronic, and used to produce a printed form only secondarily. The electronic forms include both online WWW pages and a downloadable .PDF file with the same appearance and content. Both electronic forms include live primary and indirect links to actual information sources on the WWW. In most cases, little additional commentary is provided regarding the information links or citations that are provided. This in turn allows the report to be very concise. The links are expected speak for themselves. The report consists of only about 10+ pages, with about 100+ primary links, but with potentially thousands of indirect links. For purposes of the printed version, a list of the links is explicitly provided. This document exists in HTML form at the URL address: http://eande.lbl.gov/Task21/dlalgorithms.html. An equivalent downloadable PDF version, also with live links, at the URL address: http://eande.lbl.gov/Task21/dlalgorithms.pdf. A printed report can be derived directly from either of the electronic versions by simply printing either of them. In addition to the live links in the electronic forms, all report forms, electronic and paper, also have explicitly listed link addresses so that they can be followed up or referenced manually.

  15. Energy 101: Daylighting

    Broader source: Energy.gov [DOE]

    Daylighting—the use of windows or skylights for natural lighting and temperature regulation—is one building strategy that can save money for homeowners and businesses. Highly efficient,...

  16. Buildings | OpenEI Community

    Open Energy Info (EERE)

    Buildings > Posts by term Content Group Activity By term Q & A Feeds ancient building system (1) architect (1) biomimicry (1) building technology (1) cooling (1) cu (1) daylight...

  17. Daylighting and Electric Lighting Analysis for Complex Spaces

    Energy Science and Technology Software Center (OSTI)

    1995-06-07

    SUPERLITE is a powerful lighting analysis program designed to accurately predict interior illuminance in complex building spaces due to daylight and electric lighting systems. The program enables users to model interior daylight levels for any sun and sky condition in spaces having windows, skylights or other standard fenestration systems. SUPERLITE Version 2.0 includes the capability to calculate electric lighting levels in addition to the daylighting prediction, allowing lighting performance simulation for integrated lighting systems. Themore » program calculates lighting levels on all interior surfaces, as well as on planes that can be arbitrarily positioned to represent work surfaces or other locations of interest. SUPERLITE is intended to be used by researchers and lighting designers who require detailed analysis of the illuminance distribution in architecturally complex spaces.« less

  18. Analysis of Daylighting Requirements within ASHRAE Standard 90.1

    SciTech Connect (OSTI)

    Athalye, Rahul A.; Xie, YuLong; Liu, Bing; Rosenberg, Michael I.

    2013-08-01

    Pacific Northwest National Laboratory (PNNL), under the Building Energy Codes Program (BECP) funded by U.S. Department of Energy (DOE), provides support to the ASHRAE/IES/IESNA Standard 90.1(Standard 90.1) Standing Standards Project Committee (SSPC 90.1) and its subcommittees. In an effort to provide the ASHRAE SSPC 90.1 with data that will improve the daylighting and fenestration requirements in the Standard, PNNL collaborated with Heschong Mahone Group (HMG), now part of TRC Solutions. Combining EnergyPlus, a whole-building energy simulation software developed by DOE, with Radiance, a highly accurate illumination modeling software (Ward 1994), the daylighting requirements within Standard 90.1 were analyzed in greater detail. The initial scope of the study was to evaluate the impact of the fraction of window area compared to exterior wall area (window-to-wall ratio (WWR)) on energy consumption when daylighting controls are implemented. This scope was expanded to study the impact of fenestration visible transmittance (VT), electric lighting controls and daylighted area on building energy consumption.

  19. Delight2 Daylighting Analysis in Energy Plus: Integration and Preliminary User Results

    SciTech Connect (OSTI)

    Carroll, William L.; Hitchcock, Robert J.

    2005-04-26

    DElight is a simulation engine for daylight and electric lighting system analysis in buildings. DElight calculates interior illuminance levels from daylight, and the subsequent contribution required from electric lighting to meet a desired interior illuminance. DElight has been specifically designed to integrate with building thermal simulation tools. This paper updates the DElight capability set, the status of integration into the simulation tool EnergyPlus, and describes a sample analysis of a simple model from the user perspective.

  20. Impact of Extended Daylight Saving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extended Daylight Saving Time on National Energy Consumption TECHNICAL DOCUMENTATION FOR REPORT TO CONGRESS Energy Policy Act of 2005, Section 110 Prepared for U.S. Department of Energy Office of Energy Efficiency and Renewable Energy By David B. Belzer (Pacific Northwest National Laboratory), Stanton W. Hadley (Oak Ridge National Laboratory), and Shih-Miao Chin (Oak Ridge National Laboratory) October 2008 U.S. Department of Energy Energy Efficiency and Renewable Energy Page Intentionally Left

  1. ancient building system | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  2. building technology | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  3. Obstacles to the use of exterior fenestration and daylighting control systems in the US

    SciTech Connect (OSTI)

    Sweitzer, G.; Johnson, R.

    1984-03-01

    Exterior fenestration and daylighting control systems can provide excellent control of solar gain and glare and still be visually satisfying elements in the design of building envelopes. However, US building industry experience with exterior fenestration and daylighting control systems suggests that durability and proper function of these systems is often unsatisfactory. Yet in Western Europe, exterior systems are a proven, cost-effective, and aesthetically accepted fenestration design element. It is suggested that these contrasting operating experiences reflect differences in prevailing US/Western European approaches to building design, construction, and operation. Three representative US building case studies are examined, each describing the application of exterior fenestration/daylighting control components previously untested as a system, and some unsatisfactory consequences. Several changes that may assist in increasing the acceptance and success of these systems in the US building industry are suggested.

  4. CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review CBEI: Enhancing OpenStudio for Airflow and Daylight Modeling - 2015 Peer Review Presenter: John Messner, ...

  5. Daylighter Daily Solar Roof Light | Open Energy Information

    Open Energy Info (EERE)

    Daylighter Daily Solar Roof Light Jump to: navigation, search Name: Daylighter Daily Solar Roof Light Address: 1991 Crocker Road, Suite 600 Place: Cleveland, Ohio Zip: 44145...

  6. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Documentation Impact of Extended Daylight Saving Time on National Energy ... of Extended Daylight Saving Time on the national energy consumption in the United States. ...

  7. Wood Pellet-Fired Biomass Boiler Project at the Ketchikan Federal Building

    SciTech Connect (OSTI)

    Tomberlin, G.

    2014-06-01

    Biomass boiler systems have existed for many years, but the technology has advanced in recent decades and can now provide automated and efficient operation for a relatively modest investment. Key advances in system monitoring and control allow for lower operating costs, since the control systems run all aspects of the boiler, including feed, load reduction and even tube cleaning. These advances have made such systems economical on a small scale in situations where inexpensive fuels like natural gas are not available. This creates an opportunity for building operators in remote, cold-climate locations to reduce the use of expensive fuels for heating buildings. GSA Region 10 installed the system at the federal building in Ketchikan, Alaska and submitted the project to the Green Proving Ground (GPG) program. GSA's GPG program contracted with the National Renewable Energy Laboratory (NREL) to assess the installation and the technology. The system serves as a demonstration to assess actual system efficiencies, as well as operating characteristics and financial benefits. In addition to installation and operational issues, the project team/researchers examined other issues, including fuel transportation costs, building energy savings, and overall economics.

  8. green building | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Dc(266) Contributor 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy...

  9. Daylighting Digital Dimmer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    daylighting, the RiteBrite architecture works with any personal device running iOS, Android, or Windows 8, using a special bridge that also allows analog products - such as ...

  10. Energy 101: Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    101. Through strategic placement of windows and skylights, daylighting maximizes the ... For example, south-facing windows work best in the U.S. to let in the most sun during ...

  11. Prototype simplified daylighting design tool

    SciTech Connect (OSTI)

    Treado, S.J.; Goodin, P.J.

    1992-07-01

    The report describes a prototype simplified design tool which has been developed to provide information for developing effective building fenestration systems. A computer software system was developed to search through and select the best available fenestration designs from a large database of previously simulated buildings. Fenestration designs can be selected based on energy usage, energy cost or peak loads. The determination of fenestration energy costs is discussed. The design tool is primarily intended for commercial, industrial or institutional buildings of any type.

  12. Tips for Daylighting with Windows

    SciTech Connect (OSTI)

    Robinson, Alastair; Selkowitz, Stephen

    2013-10-01

    These guidelines provide an integrated approach to the cost-effective design of perimeter zones in new commercial buildings and existing building retrofits. They function as a quick reference for building designers, through a set of easy steps and rules-of-thumb, emphasizing “how-to” practical details. References are given to more detailed sources of information, should the reader wish to go further. The design method used in this document emphasizes that building decisions should be made within the context of the whole building as a single functioning system rather than as an assembly of distinct parts. This integrated design approach looks at the ramifications of each individual system decision on the whole building. For example, the decision on glazing selection will have an effect on lighting, mechanical systems, and interior design. Therefore, the entire design team should participate and influence this glazing decision—which typically rests with the architect alone. The benefit of an integrated design approach is a greater chance of success towards long-term comfort and sustained energy savings in the building.

  13. Acceleration of the matrix multiplication of Radiance three phase daylighting simulations with parallel computing on heterogeneous hardware of personal computer

    SciTech Connect (OSTI)

    Zuo, Wangda; McNeil, Andrew; Wetter, Michael; Lee, Eleanor S.

    2013-05-23

    Building designers are increasingly relying on complex fenestration systems to reduce energy consumed for lighting and HVAC in low energy buildings. Radiance, a lighting simulation program, has been used to conduct daylighting simulations for complex fenestration systems. Depending on the configurations, the simulation can take hours or even days using a personal computer. This paper describes how to accelerate the matrix multiplication portion of a Radiance three-phase daylight simulation by conducting parallel computing on heterogeneous hardware of a personal computer. The algorithm was optimized and the computational part was implemented in parallel using OpenCL. The speed of new approach was evaluated using various daylighting simulation cases on a multicore central processing unit and a graphics processing unit. Based on the measurements and analysis of the time usage for the Radiance daylighting simulation, further speedups can be achieved by using fast I/O devices and storing the data in a binary format.

  14. Performance of Integrated Systems of Automated Roller Shade Systems and Daylight Responsive Dimming Systems

    SciTech Connect (OSTI)

    Park, Byoung-Chul; Choi, An-Seop; Jeong, Jae-Weon; Lee, Eleanor S.

    2010-07-08

    Daylight responsive dimming systems have been used in few buildings to date because they require improvements to improve reliability. The key underlying factor contributing to poor performance is the variability of the ratio of the photosensor signal to daylight workplane illuminance in accordance with sun position, sky condition, and fenestration condition. Therefore, this paper describes the integrated systems between automated roller shade systems and daylight responsive dimming systems with an improved closed-loop proportional control algorithm, and the relative performance of the integrated systems and single systems. The concept of the improved closed-loop proportional control algorithm for the integrated systems is to predict the varying correlation of photosensor signal to daylight workplane illuminance according to roller shade height and sky conditions for improvement of the system accuracy. In this study, the performance of the integrated systems with two improved closed-loop proportional control algorithms was compared with that of the current (modified) closed-loop proportional control algorithm. In the results, the average maintenance percentage and the average discrepancies of the target illuminance, as well as the average time under 90percent of target illuminance for the integrated systems significantly improved in comparison with the current closed-loop proportional control algorithm for daylight responsive dimming systems as a single system.

  15. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, ... on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. ...

  16. Lighting and Daylighting Products and Services | Department of Energy

    Energy Savers [EERE]

    Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Use the following links to get product information and locate professional services for lighting and daylighting. Product Information Advanced Lighting Package ENERGY STAR® Information on the ENERGY STAR Advanced Lighting Project, which allows homeowners to upgrade their light fixtures to more energy efficient products. ENERGY STAR Lightbulbs ENERGY STAR®

  17. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to Congress | Department of Energy Report to Congress Impact of Extended Daylight Saving Time on National Energy Consumption, Report to Congress This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption. PDF icon Report to Congress More Documents & Publications Impact of Extended Daylight Saving Time on National Energy Consumption, Technical

  18. Impact of Extended Daylight Saving Time on National Energy Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Documentation | Department of Energy Technical Documentation Impact of Extended Daylight Saving Time on National Energy Consumption, Technical Documentation This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption in the United States. PDF icon Technical Documentation for Report to Congress More Documents & Publications Impact of Extended Daylight

  19. Measured daylighting potential of a static optical louver system under real sun and sky conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Konis, Kyle; Lee, Eleanor S.

    2015-05-04

    Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than themore » Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.« less

  20. Measured daylighting potential of a static optical louver system under real sun and sky conditions

    SciTech Connect (OSTI)

    Konis, Kyle; Lee, Eleanor S.

    2015-05-04

    Side-by-side comparisons were made over solstice-to-solstice changes in sun and sky conditions between an optical louver system (OLS) and a conventional Venetian blind set at a horizontal slat angle and located inboard of a south-facing, small-area, clerestory window in a full-scale office testbed. Daylight autonomy (DA), window luminance, and ceiling luminance uniformity were used to assess performance. The performance of both systems was found to have significant seasonal variation, where performance under clear sky conditions improved as maximum solar altitude angles transitioned from solstice to equinox. Although the OLS produced fewer hours per day of DA on average than the Venetian blind, the OLS never exceeded the designated 2000 cd/m2 threshold for window glare. In contrast, the Venetian blind was found to exceed the visual discomfort threshold over a large fraction of the day during equinox conditions. Notably, these peak periods of visual discomfort occurred during the best periods of daylighting performance. Luminance uniformity was analyzed using calibrated high dynamic range luminance images. Under clear sky conditions, the OLS was found to increase the luminance of the ceiling as well as produce a more uniform distribution. Furthermore, compared to conventional venetian blinds, the static optical sunlight redirecting system studied has the potential to significantly reduce the annual electrical lighting energy demand of a daylit space and improve the quality from the perspective of building occupants by consistently transmitting useful daylight while eliminating window glare.

  1. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  2. Impact of Extended Daylight Saving Time on national energy consumption

    SciTech Connect (OSTI)

    Belzer, David B.; Hadley, Stanton W.; Chin, Shih -Miao

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the national energy consumption.

  3. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is allowing Commercial Buildings (ISO 50003 - Buildings and Building Complexes) ... SEP program, including associated standards, protocols, and application may be used ...

  4. Deriving daylight frequency distribution curves from solar radiation data to be used to implement energy saving policies in Palermo, Italy

    SciTech Connect (OSTI)

    Fanchiotti, A.; Cristofalo, S. di

    1999-07-01

    The paper presents proposed guidelines for developing a simplified tool to be used for assessing the compliance of proposed projects with city regulations, with reference to the daylighting aspects. First, the algorithms proposed for calculating the internal illuminance in a point, based on the assumption of perfectly diffusing glazings, are discussed. The result is a light transmission factor, which is a function of the position of the point and of the geometrical and physical characteristics of the room. Then, the daylight input data to be used for such calculations are presented. In order to provide designers with easy to handle data, this information is presented as frequency curves, showing the illuminance cumulative frequency distribution for a year relative to eight fundamental vertical orientations. There are different curves depending on the building type. These curves are obtained by considering only the data relative to hours and days consistent with the profile of use typical of that type of building.

  5. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, ... to burn Summary: Students build a simple digester to generate a quantity of gas to burn. ...

  6. Discomfort glare with complex fenestration systems and the impact on energy use when using daylighting control

    SciTech Connect (OSTI)

    Hoffmann, Sabine; McNeil, Andrew; Lee, Eleanor S.; Kalyanam, Raghuram

    2015-11-03

    Glare is a frequent issue in highly glazed buildings. A modelling approach is presented that uses discomfort glare probability and discomfort glare index as metrics to determine occupants’ behaviour. A glare control algorithm that actuated an interior shade for glare protection based on the predicted perception was implemented in a building simulation program. A reference case with a state-of-the-art base glazing was compared to the same glazing but with five different complex fenestration systems, i.e., exterior shades. The windows with exterior shades showed significant variations in glare frequencies. Energy use intensity in a prototypical office building with daylighting controls was greatly influenced for the systems with frequent glare occurrence. While the base glazing could benefit from glare control, some of the exterior shades showed significantly greater energy use when discomfort glare-based operation of interior shades was considered.

  7. How Do You Use Daylighting While Reducing Excess Heat from Windows...

    Office of Environmental Management (EM)

    Use Daylighting While Reducing Excess Heat from Windows? How Do You Use Daylighting While Reducing Excess Heat from Windows? June 16, 2011 - 7:30am Addthis On Monday, Elizabeth ...

  8. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Cooling Equipment, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  9. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  10. Building biomass into the utility fuel mix at NYSEG: System conversion and testing results for Greenidge Station

    SciTech Connect (OSTI)

    Benjamin, W.

    1996-12-31

    NYSEG is in the second phase of developing resources and systems for cofiring biomass with coal. In the first phase, stoker boilers were fired with biomass (typically wood waste products). Encouraged by positive results at the older stokers, NYSEG decided to develop the process for its pulverized coal boilers beginning with Greenidge Station, a 108-MW pulverized coal (PC) unit with a General Electric turbine generator and a 665,000-lb Combustion Engineering, tangentially fired boiler. Greenidge Station is in the center of New York, surrounded by farms, forests, vineyards, and orchards. The test bums at Greenidge Station demonstrated that a parallel fuel feed system can effectively provide wood products to a PC unit. Emission results were promising but inconclusive. Additional testing, for longer durations, at varied loads and with different woods needs to be conducted to clarify and establish relationships between the percent wood fired at varying moisture contents. Loads need to be varied to develop continuous emission monitor emission data that can be compared to coal-only data. Economic analysis indicates that it will be beneficial to further refine the equipment and systems. Refinements may include chipping and drying equipment, plus installation of fuel storage and feed systems with permanent boiler penetration. NYSEG will attempt to identify the problems associated with cofiring by direct injection, compared to cofiring a biomass/coal mixture through the existing fuel handling system. Specifically, an examination will be made of fuel size criteria and the system modifications necessary for minimal impacts on coal-fired operation.

  11. Port Graham Biomass Community Heat Project

    Energy Savers [EERE]

    force; Median household income 18,942 Heat 5-community buildings with cord wood ... Port Graham Community Building Biomass Heat Project 2015 BIA and other studies ...

  12. Build-

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Cooling Equipment, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Build- ings*","Cooled Build- ings","Cooling Equipment (more than one may apply)" ,,,"Resid- ential- Type Central Air Condi- tioners","Heat Pumps","Indiv- idual Air Condi- tioners","District Chilled Water","Central Chillers","Pack- aged Air Condi- tioning Units","Swamp

  13. Biomass Production and Nitrogen Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Compute Additional Parameter Values Multiple Linear ... Need: to determine how biomass harvesting and transport from ... build Interest in farm energy self-sufficiency ...

  14. Top 8 Things You Didn't Know About Daylight Saving Time | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Daylight Saving Time Top 8 Things You Didn't Know About Daylight Saving Time March 6, 2014 - 4:06pm Addthis This Sunday, people across the country will spring forward an hour, marking the start to Daylight Saving Time. | Photo courtesy of iStock Photo, WoodyUpstate. This Sunday, people across the country will spring forward an hour, marking the start to Daylight Saving Time. | Photo courtesy of iStock Photo, WoodyUpstate. Rebecca Matulka Rebecca Matulka Former Digital Communications

  15. Dow and NREL Partner to Convert Biomass to Ethanol and Other...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dow and NREL Partner to Convert Biomass to Ethanol and Other Chemical Building Blocks July ... a process that will convert biomass to ethanol and other chemical building blocks. ...

  16. Forest Carbon and Biomass Energy - LCA Issues and Challenges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forest Carbon and Biomass Energy - LCA Issues and Challenges Forest Carbon and Biomass Energy - LCA Issues and Challenges Breakout Session 2D-Building Market Confidence and ...

  17. National Bio Energy Co Ltd formerly Guoneng Biomass Power Ltd...

    Open Energy Info (EERE)

    Ltd.) Place: Beijing, Beijing Municipality, China Zip: 100005 Sector: Biomass Product: Invest in, build and run biomass power plants. Coordinates: 39.90601, 116.387909 Show Map...

  18. Warehouse and Service Building Renovations

    Broader source: Energy.gov [DOE]

    Many Federal facilities include warehouses or other buildings used for storage service such as motor pools or groundskeeping, hangars, or other spaces that are frequently open to the outside and have only semi-conditioned spaces. Use of daylighting and solar ventilation preheat are prime technologies for these type of spaces, but other technologies may also warrant consideration.

  19. Simulating the daylight performance of fenestration systems and spaces of arbitrary complexity: The IDC method. Revision

    SciTech Connect (OSTI)

    Papamichael, K.; Beltran, L.

    1993-04-01

    A new method to simulate the daylight performance of fenestration systems and spaces is presented. This new method, named IDC (Integration of Directional Coefficients), allows the simulation of the daylight performance of fenestration systems and spaces of arbitrary complexity, under any sun, sky and ground conditions. The IDC method is based on the combination of scale model photometry and computer-based simulation. Physical scale models are used to experimentally determine a comprehensive set of {open_quotes}directional illuminance coefficients{close_quotes} at reference points of interest, which are then used in analytical, computer-based routines, to determine daylight factors or actual daylight illuminance values under any sun, sky and ground conditions. The main advantage of the IDC method is its applicability to any optically complex environment. Moreover, the computer-based analytical routines are fast enough to allow for hourly simulation of the daylight performance over the course of an entire year. However, the method requires appropriate experimental facilities for the determination of the Directional Coefficients. The IDC method has been implemented and used successfully in inter-validation procedures with various daylight simulation computer programs. Currently, it is used to simulate the daylight performance of fenestration systems that incorporate optically complex components, such as Venetian blinds, optically treated light shelves and light pipes.

  20. Simulating the daylight performance of fenestration systems and spaces of arbitrary complexity: The IDC method

    SciTech Connect (OSTI)

    Papamichael, K.; Beltran, L.

    1993-04-01

    A new method to simulate the daylight performance of fenestration systems and spaces is presented. This new method, named IDC (Integration of Directional Coefficients), allows the simulation of the daylight performance of fenestration systems and spaces of arbitrary complexity, under any sun, sky and ground conditions. The IDC method is based on the combination of scale model photometry and computer-based simulation. Physical scale models are used to experimentally determine a comprehensive set of ``directional illuminance coefficients`` at reference points of interest, which are then used in analytical, computer-based routines, to determine daylight factors or actual daylight illuminance values under any sun, sky and ground conditions. The main advantage of the IDC method is its applicability to any optically complex environment. Moreover, the computer-based analytical routines are fast enough to allow for hourly simulation of the daylight performance over the course of an entire year. However, the method requires appropriate experimental facilities for the determination of the Directional Coefficients. The IDC method has been implemented and used successfully in inter-validation procedures with various daylight simulation computer programs. Currently, it is used to simulate the daylight performance of fenestration systems that incorporate optically comp1ex components, such as Venetian blinds, optically treated light shelves and light pipes.

  1. Major Biomass Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Scientists, Industry and Government Leaders to Gather for Major Biomass Conference International gathering to focus on business successes, technology updates, facility tours For more information contact: e:mail: Public Affairs Golden, Colo., Aug. 6, 1997 -- Media are invited to cover the conference in Montreal, Canada. What: Scientists, financiers and industry and government leaders from North America, South America and Europe will focus on building a sustainable, profitable biomass business

  2. Impact of Extended Daylight Saving Time on national energy consumption: Report to Congress

    SciTech Connect (OSTI)

    None, None

    2008-10-01

    This report presents the detailed results, data, and analytical methods used in the DOE Report to Congress on the impacts of Extended Daylight Saving Time on the U.S. national energy consumption.

  3. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect (OSTI)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

  4. Federal Biomass Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass Activities ...

  5. Home and Building Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home and Building Technology Basics Home and Building Technology Basics Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for appliances and electronics. Today's buildings consume more energy than any other sector of the U.S. economy, including transportation and industry. Learn more about: Heating and Cooling Passive Solar Design Water Heating Lighting and Daylighting Energy Basics Home Renewable Energy Homes & Buildings Lighting

  6. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  7. Biomass Logistics

    SciTech Connect (OSTI)

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  8. DOE 2014 Biomass Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Biomass Conference DOE 2014 Biomass Conference Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute PDF icon williams_biomass_2014.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Underground Storage Tanks: New Fuels and Compatibility A Vehicle Manufacturer's Perspective on Higher-Octane

  9. AGCO Biomass Solutions: Biomass 2014 Presentation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation PDF icon ...

  10. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBiomassOneBiomassFacility&oldid397204" Feedback Contact needs updating Image needs...

  11. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download

  12. Methods for pretreating biomass

    DOE Patents [OSTI]

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2015-03-03

    A method of alkaline pretreatment of biomass, in particular, pretreating biomass with gaseous ammonia.

  13. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Windows and Building Envelope » Windows and Building Envelope Facilities Windows and Building Envelope Facilities LBNL's Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a

  14. Pharmacia Building Q, Skokie, Illinois

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    This case study was prepared as one in a series for the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new and retrofit laboratory buildings in both the public and the private sectors. The energy-efficient elements of the laboratory featured in this case study-Pharmacia Corporation's new Building Q in Skokie, Illinois-include sustainable design, light-filled interior spaces for daylighting, energy-efficient fume hoods and other equipment, occupancy sensors to reduce lighting loads, and spectrally selective glazing to allow more light and less heat into the building. Water-saving fixtures are used, as well. Building Q has been certified Gold (the second highest rating) through the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) system.

  15. An Improved Daylight Correction for IR Loss in ARM Diffuse SW Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Improved Daylight Correction for IR Loss in ARM Diffuse SW Measurements C. N. Long, K. Younkin, and K. L. Gaustad Pacific Northwest National Laboratory Richland, Washington J. A. Augustine National Oceanic and Atmospheric Administration Air Resources Laboratory Surface Radiation Research Branch Boulder, Colorado Introduction A paper by Cess et al. (2000) notes that some clear-sky diffuse shortwave (SW) measurements they were using from the Atmospheric Radiation Measurement (ARM) Southern

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Space Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Combined Heat & Power, Daylighting, Comprehensive MeasuresWhole Building, CustomOthers pending...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Photovoltaics, Wind (All), Biomass, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Daylighting, Lighting, Energy Mgmt. SystemsBuilding Controls, Caulking...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Daylighting, Comprehensive MeasuresWhole Building, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels City of Scottsdale-...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Photovoltaics, Wind (All), Biomass, Daylighting, Comprehensive MeasuresWhole Building, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels City of Greensburg-...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass, Geothermal Heat Pumps, Daylighting, Comprehensive MeasuresWhole Building, Wind (Small), Hydroelectric (Small) Local Option- Property Tax Credit for High Performance...

  1. Energy Efficiency & Renewable Energy Bond Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Solar Photovoltaics Wind (All) Biomass Combined Heat & Power Fuel Cells using Non-Renewable Fuels Daylighting Lighting Energy Mgmt. SystemsBuilding Controls Caulking...

  2. Biomass and Biofuels Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology that has led companies such as DuPont, POET, and Abengoa to open ... DuPont National Renewable Energy Laboratory 02232015 Biomass and Biofuels Building ...

  3. Control of solar radiation in buildings: a selected bibliography. [Over 70 references on fenestration design

    SciTech Connect (OSTI)

    Harmon, R.B.

    1982-01-01

    Fenestration design synthesizes many factors, including solar radiation control, daylight illumination, direct and reflected glare, the view out of the building, services, and the structure and fabric of the building in terms of energy conservation and costs. This bibliography includes books and articles related to these aspects of fenestration design in various types of structures.

  4. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    1.1 Buildings Sector Energy Consumption 1.2 Building Sector Expenditures 1.3 Value of Construction and Research 1.4 Environmental Data 1.5 Generic Fuel Quad and Comparison 1.6 Embodied Energy of Building Assemblies 2The Residential Sector 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy

  5. Lyonsdale Biomass LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LLC Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York...

  6. Biomass One LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535,...

  7. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    A separate law (Minn. Stat. 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  8. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the feeding and conversion of biomass and coal-biomass mixtures as essential upstream ... Activities support research for handling and processing of coal-biomass mixtures, ensuring ...

  9. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  10. Building technologies program. 1995 annual report

    SciTech Connect (OSTI)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  11. Star Biomass | Open Energy Information

    Open Energy Info (EERE)

    Biomass Jump to: navigation, search Name: Star Biomass Place: India Sector: Biomass Product: Plans to set up biomass projects in Rajasthan. References: Star Biomass1 This article...

  12. Demonstration with Energy and Daylighting Assessment of Sunlight Responsive Thermochromic (SRT) Window Systems

    SciTech Connect (OSTI)

    Broekhuis, Michael; Liposcak, Curtis; Witte, Michael; Henninger, Robert; Zhou, Xiaohui; Petzen, George; Buchanan, Michael; Kumar, Sneh

    2012-03-31

    Pleotint, LLC was able to successfully extrude thermochromic interlayer for use in the fenestration industry. Pleotint has developed a thermochromic sytem that requires two thermochromic colors to make a neutral color when in the tinted state. These two colors were assembled into a single interlayer called a tri-layer prelam by Crown Operations for use in the glass lamination industry. Various locations, orientations, and constructions of thermochromic windows were studied with funds from this contract. Locations included Australia, California, Costa Rica, Indiana, Iowa, Mexico. Installed orientations included vertical and skylight glazing applications. Various constructions included monolithic, double pane, triple pane constructions. A daylighting study was conducted at LinEl Signature. LinEl Signature has a conference room with a sylight roof system that has a west orientation. The existing LinEl Signature conference room had constant tint 40% VLT transparent skylights. Irradiance meters were installed on the interior and exterior sides of a constant tint skylight. After a month and a half of data collection, the irradiance meters were removed and the constant tint skylights were replaced with Pleotint thermochromic skylight windows. The irradiance meters were reinstalled in the same locations and irradiance data was collected. Both data sets were compared. The data showed that there was a linear relationship with exterior and interior irradiance for the existing constant tint skylights. The thermochromic skylights have a non-linear relationship. The thermochromic skylights were able to limit the amount of irradiance that passed through the thermochromic skylight. A second study of the LinEl Signature conference was performed using EnergyPlus to calculate the amount of Illuminance that passed through constant tint skylights as compared to thermochromic skylights. The constant tint skylights transmitted Illuminance is 2.8 times higher than the thermochromic skylights during the months of May, June, July, August and 1.9 times higher than the thermochromic skylight during the months of March, April, September, October. Calculated illuminance levels were much more consistent as compared to the existing constant tint skylights installed at LinEl Signature. This allows for a more comfortable interior space in regard to glare discomfort and interior lighting control. Lawrence Berkeley National Laboratory was contracted to characterize the performance of the thermochromic interlayer and thermochromic window systems. Thermochromic interlayer was characterized with spectrometer equipment. The thermochromic window systems were characterized using LBNL’s Advanced Window Test Facility. A copy of the report can be found in the Appendix. Iowa State University was contracted to compare thermochromic window technology to constant tint technology. Iowa State University conducted the testing at the Energy Resource Station (ERS). The ERS has the ability to simultaneously test side-by-side competing building technologies. The building is equipped with two identical air handling units, each with its own dedicated and identical chiller. One air handling unit supplies the four test rooms designated as the A rooms and the other unit serves the four test rooms designated as the B rooms. There is one A test room and one B test rooms arranged as pairs in a side-by-side design with each pair having a different exposure. There is a pair of test rooms that face the south, an east and west facing pair. Each of the test rooms is a mirror image of its match with identical construction. The rooms are unoccupied; however, the capability to impose false loads on the rooms exists. The false loads and room lighting can be scheduled to simulate various usage patterns. A copy of the report can be found in the Appendix. GARD Analytics was contracted to compare EnergyPlus building simulations to the data recorded at the Iowa ERS. The goal of this research was to validate the building simulation software developed by the US Department of Energy. EnergyPlus is a whole building software package that includes thermochromic window system algorithms. The accuracy of these thermochromic window system algorithms were of special interest for this research.

  13. Highlighting High Performance: Department of Environmental Protection; Cambria Office Building, Ebensburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    The 36,000-square-foot Cambria Office building in Ebensbug, Pennsylvania houses the Pennsylvania Department of Environmental Protection. Designers of the energy-efficient building used integrated design to minimize energy use and pollution created in the production of the materials they used, and reduced the overall pollution and environmental impact the building will create over its lifetime. The building also employs daylighting and renewable energy technologies.

  14. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    NEEDS 2006 Database Retrieved from "http:en.openei.orgwindex.php?titleTracyBiomassBiomassFacility&oldid398234" Feedback Contact needs updating Image needs...

  15. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  16. Lignocellulosic biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  17. Chapter 4: The Building Architectural Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: The Building Architectural Design Chapter 4: The Building Architectural Design Chapter 4 of the LANL Sustainable Design Guide featuring schematic design, designing using computer simulations, design of high performance featurea and systems, daylighting, passive and active solar systems, and accommodating recycling activities. PDF icon sustainable_guide_ch4.pdf More Documents & Publications LANL Sustainable Design Guide - Appendices Chapter 5: Lighting, HVAC, and Plumbing National Best

  18. Windows and Building Envelope Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Facilities Windows and Building Envelope Facilities Addthis LBNL's Advanced Windows Testbed 1 of 2 LBNL's Advanced Windows Testbed This outdoor test facility contains three, thermally-isolated chambers that have been instrumented to measure thermal, daylighting, and occupant impacts of advanced window technologies. In this setup, LBNL staff are evaluating a heat recovery/ ventilation unit (left), a switchable electrochromic window (middle), and a

  19. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    SciTech Connect (OSTI)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

    2011-01-21

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  20. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of ``intelligent` buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  1. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of intelligent' buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  2. Building Energy Efficiency Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Biomass and Biofuels Building Energy Efficiency Marketing Summaries (81) Success Stories (3) Electricity Transmission Energy Analysis Energy Storage Geothermal ...

  3. Final Scientific and Technical Report State and Regional Biomass Partnerships

    SciTech Connect (OSTI)

    Handley, Rick; Stubbs, Anne D.

    2008-12-29

    The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

  4. Utility Promoters for Biomass Feedstock Biotechnology - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search Utility Promoters for Biomass Feedstock Biotechnology Inventors: Kyung-Hwan Han, Jae-Heung Ko Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Genetic optimization of biomass is necessary to improve the rates and final yields of sugar release from woody biomass. Areas that would benefit from genetic optimization include growth rate,

  5. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    8.1 Buildings Sector Water Consumption 8.2 Residential Sector Water Consumption 8.3 Commercial Sector Water Consumption 8.4 WaterSense 8.5 Federal Government Water Usage 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter includes data on water use in commercial and residential buildings and the energy

  6. Biomass Renewable Energy Opportunities and Strategies Forum | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biomass Renewable Energy Opportunities and Strategies Forum Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Bonneville Power Administration Building 905 NE 11th Ave Portland, Oregon 97232 The ninth in a series of planned DOE Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on biomass development opportunities, technology updates, resource assessment, the unique aspects of biomass project development, and

  7. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of windows in buildings similar to the typical buildings. (author)

  8. Challenges in Commercial Buildings | Buildings Research | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Occupancy Sensor (IPOS), a next generation sensing solution that combines occupancy detection and classification, daylight harvesting, and security in one low-cost device. ...

  9. Light-scattering properties of a Venetian blind slat used for daylighting applications

    SciTech Connect (OSTI)

    Nilsson, Annica M.; Jonsson, Jacob C.

    2010-12-15

    The low cost, simplicity, and aesthetic appearance of external and internal shading devices, make them commonly used for daylighting and glare-control applications. Shading devices, such as Venetian blinds, screens, and roller shades, generally exhibit light scattering and/or light redirecting properties. This requires the bi-directional scattering distribution function (BSDF) of the material to be known in order to accurately predict the daylight distribution and energy flow through the fenestration system. Acquiring the complete BSDF is not a straightforward task, and to complete the process it is often required that a model is used to complement the measured data. In this project, a Venetian blind slat with a white top surface and a brushed aluminum bottom surface was optically characterized. A goniophotometer and an integrating sphere spectrophotometer were used to determine the angle resolved and hemispherical reflectance of the sample, respectively. The acquired data were fitted to a scattering model providing one Lambertian and one angle dependent description of the surface properties. These were used in combination with raytracing to obtain the complete BSDFs of the Venetian blind system. (author)

  10. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    SciTech Connect (OSTI)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the redirected light spreading it within a small range of outgoing angles. This solution was found to reduce glare to imperceptible levels while retaining for the most part the illuminance levels achieved solely by the daylighting film.

  11. Biomass Characterization | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization NREL provides high-quality analytical characterization of biomass feedstocks, intermediates, and products, a critical step in optimizing biomass conversion processes. woman working with sampling equipment in a lab Capabilities man looking at test tubes containing clear, amber liquid Standard Biomass Laboratory Analytical Procedures We maintain a library of analytical methods for biomass characterization available for downloading. View the Biomass Compositional Analysis Lab

  12. Biomass torrefaction mill

    DOE Patents [OSTI]

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  13. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concern plant growth and the environment, byproducts of biomass, and energy contained in different types of biomass. Provided by the Department of Energy's National Renewable...

  14. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  15. NREL: Biomass Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

  16. NREL: Biomass Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  17. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Social Media at Biomass 2013 * Live social media coverage of Biomass 2013 via the Bioenergy Knowledge Discovery Framework's (KDF) Facebook and Twitter accounts. ...

  18. NREL: Biomass Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biofuels Biomass process and sustainability analyses. ... For information on biomass policy, read congressional ... on the Yield and Product Distribution of Fast ...

  19. Potential energy savings with exterior shades in large office buildings and the impact of discomfort glare

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor

    2015-04-01

    Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems. While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption

  20. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  1. Biomass 2012: Confronting Challenges, Creating Opportunities | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: Confronting Challenges, Creating Opportunities Biomass 2012: Confronting Challenges, Creating Opportunities Sustaining a Commitment to Bioenergy Biomass 2012 Logo. Image consists of a curved leaf and green and yellow circles surrounding a silhouette of the US Capitol building. The text 'U.S. Department of Energy Biomass 2012' is overlayed on the image. July 10-11, 2012 Washington, D.C. Convention Center 801 Mt. Vernon Place, NW Washington, D.C. 20001 On July 10-11, 2012, the

  2. Sustainable Building in China -- A Green Leap Forward?

    SciTech Connect (OSTI)

    Diamond, Richard; Ye, Qing; Feng, Wei; Yan, Tao; Mao, Hongwei; Li, Yutong; Guo, Yongcong; Wang, Jialiang

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m2 (20 kBtu/ft2), which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  3. New tools for the analysis and design of building envelopes

    SciTech Connect (OSTI)

    Papamichael, K.; Winkelmann, F.C.; Buhl, W.F.; Chauvet, H.

    1994-08-01

    We describe the integrated development of PowerDOE, a new version of the DOE-2 building energy analysis program, and the Building Design Advisor (BDA), a multimedia-based design tool that assists building designers with the concurrent consideration of multiple design solutions with respect to multiple design criteria. PowerDOE has a windows-based Graphical User Interface (GUI) that makes it easier to use than DOE-2, while retaining DOE-2`s calculation power and accuracy. BDA, with a similar GUI, is designed to link to multiple analytical models and databases. In its first release it is linked to PowerDOE and a Daylighting Analysis Module, as well as to a Case Studies Database and a Schematic Graphic Editor. These allow building designers to set performance goals and address key building envelope parameters from the initial, schematic phases of building design to the detailed specification of building components and systems required by PowerDOE. The consideration of the thermal performance of building envelopes through PowerDOE and BDA is integrated with non-thermal envelope performance aspects, such as daylighting, as well as with the performance of non-envelope building components and systems, such as electric lighting and HVAC. Future versions of BDA will support links to CAD and electronic product catalogs, as well as provide context-dependent design advice to improve performance.

  4. Biomass Webinar Presentation Slides

    Broader source: Energy.gov [DOE]

    Download presentation slides for the DOE Office of Indian Energy webinar on biomass renewable energy.

  5. Biomass Program Overview

    SciTech Connect (OSTI)

    2010-01-01

    This document provides an overview of the Biomass Program's mission, strategic goals, and research approach.

  6. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  7. Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Feed and Gasification The Biomass Feed and Gasification Key Technology will advance scientific knowledge of the feeding and conversion of biomass and coal-biomass mixtures as essential upstream steps for production of liquid transportation fuels with a lower net GHG emissions than conventional oil refining. Activities support research for handling and processing of coal-biomass mixtures, ensuring those mixtures are compatible with feed delivery systems, identifying potential impacts on

  8. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    7.1 National Legislation 7.2 Federal Tax Incentives 7.3 Efficiency Standards for Residential HVAC 7.4 Efficiency Standards for Commercial HVAC 7.5 Efficiency Standards for Residential Appliances 7.6 Efficiency Standards for Lighting 7.7 Water Use Standards 7.8 State Building Energy Codes 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire

  9. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    9Market Transformation 9.1 ENERGY STAR 9.2 LEED 9.3 Certification Programs 9.4 High Performance Buildings Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter contains data on two market transformation programs that reach across the United States and to other countries: the ENERGY STAR program, jointly administered by the U.S.

  10. Energy Use Intensity and its Influence on the Integrated Daylighting Design of a Large Net Zero Energy Building: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Credits: Stay Warm and Save MORE Money! Energy Tax Credits: Stay Warm and Save MORE Money! October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of the news this month about the Emergency Economic Stabilization Act of 2008, you may have heard about the energy tax incentives that were included for both consumers and for business, utilities, and governments. If you are already preparing for winter and working to make your home more efficient, this is good news. The

  11. NREL Sets the Bar for Office Building Energy Use - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sets the Bar for Office Building Energy Use December 7, 2009 Photo of a truck delivering materials to an office building under construction. Enlarge image Designers met NREL's aggressive energy use requirement for the Research Support Facility by taking advantage Colorado's sunny climate. Large windows for daylighting and thermally sophisticated wall systems for solar heating are crucial to the net-zero energy design. Credit: Pat Corkery Technology - from sophisticated computer modeling to

  12. Forest Carbon and Biomass Energy – LCA Issues and Challenges

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon and Biomass Energy – LCA Issues and Challenges Reid Miner, Vice President, NCASI

  13. Russell Biomass | Open Energy Information

    Open Energy Info (EERE)

    Place: Massachusetts Sector: Biomass Product: Russell Biomass, LLC is developing a 50MW biomass to energy project at the former Westfield Paper Company site in Russell,...

  14. Biomass 2014 Draft Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Draft Agenda All topics and times are tentative and subject to change. Page | 1 BIOMASS 2014: Growing the Future Bioeconomy July 29-30, 2014, Washington Convention ...

  15. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  16. Pretreated densified biomass products

    DOE Patents [OSTI]

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  17. Biomass Program Biopower Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  18. Buildings | Buildings | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results

  19. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Laurens, L. M. L.

    2013-12-01

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  20. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  1. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  2. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  3. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. April 14, 2016 A before-and-after image of the OpenStudio Measure "AEDG K-12 school daylighting package" demonstrates the surgical power of Measures. Source: NREL. There's a Measure for That! OpenStudio Measures are short programs that can be used to transform models, create custom visualizations and

  4. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  5. Biomass: Potato Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POTATO POWER Curriculum: Biomass Power (organic chemistry, chemicalcarbon cycles, plants, energy resourcestransformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time:...

  6. Biomass Feasibility Analysis Report

    SciTech Connect (OSTI)

    Lipscomb, Brian

    2015-03-30

    Feasibility study to determine technical and economic viability of a co-generation biomass fuel power plant for the Confederated Salish and Kootenai Tribes.

  7. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D.

    2009-11-15

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  9. NREL: Biomass Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reply. Your name: Your email address: Your message: Send Message Printable Version Biomass Research Home Capabilities Projects Facilities Research Staff Working with Us Data &...

  10. NREL: Biomass Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

  11. Biomass | Open Energy Information

    Open Energy Info (EERE)

    technologies that are used for biomass thermal and combined heat and power (CHP) plants are direct combustion and gasification systems. Direct combustion systems are the...

  12. Gasification-based biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  13. Direct-fired biomass

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The direct-fired biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  14. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  15. Process for treating biomass

    DOE Patents [OSTI]

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  16. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  17. AGCO Biomass Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    partnerships - Participated in DOE programs Addressing Potential Barriers or AGCO's Philosophy for Biomass Tackling this market takes a different mindset * In many cases the ...

  18. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    6.1 Electric Utility Energy Consumption 6.2 Electricity Generation, Transmission, and Distribution 6.3 Natural Gas Production and Distribution 6.4 Electric and Generic Quad Carbon Emissions 6.5 Public Benefit Funds/System Benefit Funds 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to

  19. Wheelabrator Westchester Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Westchester Biomass Facility Jump to: navigation, search Name Wheelabrator Westchester Biomass Facility Facility Wheelabrator Westchester Sector Biomass Facility Type Municipal...

  20. Buildings Energy Data Book

    Buildings Energy Data Book [EERE]

    5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the

  1. A Retrofit Tool for Improving Energy Efficiency of Commercial Buildings

    SciTech Connect (OSTI)

    Levine, Mark; Feng, Wei; Ke, Jing; Hong, Tianzhen; Zhou, Nan

    2013-06-06

    Existing buildings will dominate energy use in commercial buildings in the United States for three decades or longer and even in China for the about two decades. Retrofitting these buildings to improve energy efficiency and reduce energy use is thus critical to achieving the target of reducing energy use in the buildings sector. However there are few evaluation tools that can quickly identify and evaluate energy savings and cost effectiveness of energy conservation measures (ECMs) for retrofits, especially for buildings in China. This paper discusses methods used to develop such a tool and demonstrates an application of the tool for a retrofit analysis. The tool builds on a building performance database with pre-calculated energy consumption of ECMs for selected commercial prototype buildings using the EnergyPlus program. The tool allows users to evaluate individual ECMs or a package of ECMs. It covers building envelope, lighting and daylighting, HVAC, plug loads, service hot water, and renewable energy. The prototype building can be customized to represent an actual building with some limitations. Energy consumption from utility bills can be entered into the tool to compare and calibrate the energy use of the prototype building. The tool currently can evaluate energy savings and payback of ECMs for shopping malls in China. We have used the tool to assess energy and cost savings for retrofit of the prototype shopping mall in Shanghai. Future work on the tool will simplify its use and expand it to cover other commercial building types and other countries.

  2. Florida Biomass Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Jump to: navigation, search Name: Florida Biomass Energy, LLC Place: Florida Sector: Biomass Product: Florida-based biomass project developer. References: Florida Biomass...

  3. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  4. Biomass Power Association (BPA) | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Biomass Power Association (BPA) AgencyCompany Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, -...

  5. Colusa Biomass Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Biomass Energy Corporation Jump to: navigation, search Name: Colusa Biomass Energy Corporation Place: Colusa, California Zip: 95932 Sector: Biomass Product: Colusa Biomass Energy...

  6. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  7. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  8. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global ...

  9. NREL: Biomass Research - Capabilities in Biomass Process and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four ... A team of NREL researchers uses biomass process and sustainability analyses to bridge the ...

  10. February 2012 Biomass Program News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2012 President Obama Announces $14 Million Funding Opportunity to Develop Transportation Fuels from Algae To build upon current research and development activities, the Biomass Program recently announced the availability of funding for two topic areas in the Advancements in Sustainable Algal Production (ASAP) Funding Opportunity Announcement (DE-FOA-0000615). Topic Area 1 will support the development and demonstration of integrated cultivation and recycling technologies for algal

  11. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Feedstock National User Facility Kevin L. Kenney July 29, 2014 Mission: Engage ... risk and guide industrial technologies Biomass Feedstock Process Demonstration Unit (aka ...

  12. NREL: Biomass Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of a technician completing a laboratory procedure Biomass Compositional Analysis Find laboratory analytical procedures for standard biomass analysis. Photo of the Integrated...

  13. NREL: Biomass Research - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas.Foust@nrel.gov Bratis, Adam Management, Biomass Laboratory Program Manager Adam.Bratis@nrel.gov Chum, Helena Management, Biomass Fellow Helena.Chum@nrel.gov Pienkos,...

  14. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  15. Biomass Basics Webinar

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting a Biomass Basics Webinar on August 27, 2015, from 4:00-4:40pm EDT. This webinar will provide high school students and teachers with background...

  16. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  17. State Biomass Contacts

    Broader source: Energy.gov [DOE]

    Most state governments have designated contacts for biomass conversion programs. The following contacts used by the Bioenergy Technologies Office may also be good contacts for you to find out about...

  18. NREL: Biomass Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Below are news stories related to NREL biomass research. Subscribe to the RSS feed RSS . Learn about RSS. June 3, 2015 NREL Cyanobacteria Ramps Up Photosynthesis-and New...

  19. The ultimate biomass refinery

    SciTech Connect (OSTI)

    Bungay, H.R. )

    1988-01-01

    Bits and pieces of refining schemes and both old and new technology have been integrated into a complete biomass harvesting, processing, waste recycle, and marketing complex. These choices are justified with economic estimates and technology assessments.

  20. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  1. Algae Biomass Summit

    Broader source: Energy.gov [DOE]

    The 9th annual Algae Biomass Summit will be hosted at the Washington Marriot Wardman Park in Washington D.C., September 29 – October 2, 2015. The event will gather leaders in algae biomass from all sectors. U.S. Department of Energy Undersecretary Franklin Orr will give a keynote address at the conference, and Bioenergy Technologies Office (BETO) Director Jonathan, Algae Program Manager Alison Goss Eng, and the BETO Algae Team will be in attendance.

  2. Biomass Basics Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 27, 2015 Biomass Basics Alexis Martin Fellow, Bioenergy Technologies Office Department of Energy 2 | Bioenergy Technologies Office Agenda * Overview of Bioenergy * Biomass to Biofuels Life Cycle * Importance of Bioenergy * 2016 BioenergizeME Infographic Challenge 3 | Bioenergy Technologies Office Questions and Comments Please record any questions and comments you may have during the webinar and send them to BioenergizeME@ee.doe.gov As a follow-up to the webinar, the presenter(s) will

  3. 2007 Biomass Program Overview

    SciTech Connect (OSTI)

    none,

    2009-10-27

    The Biomass Program is actively working with public and private partners to meet production and technology needs. With the corn ethanol market growing steadily, researchers are unlocking the potential of non-food biomass sources, such as switchgrass and forest and agricultural residues. In this way, the Program is helping to ensure that cost-effective technologies will be ready to support production goals for advanced biofuels.

  4. Biomass: Wood as Energy

    Energy Savers [EERE]

    Technical Feasibility of a Billion-Ton Annual Supply | Department of Energy as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30% or more of

  5. Flash hydrogenation of biomass

    SciTech Connect (OSTI)

    Steinberg, M

    1980-01-01

    It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

  6. Biomass 2011 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Conference Agenda Biomass 2011 Conference Agenda Biomass 2011 Conference Agenda PDF icon bio2011_full_agenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2010 Conference Agenda Biomass 2012

  7. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  8. Biomass cogeneration. A business assessment

    SciTech Connect (OSTI)

    Skelton, J.C.

    1981-11-01

    This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  9. Green Buildings

    SciTech Connect (OSTI)

    Ruppert, Benjamin; Elliot, Phillip

    2012-08-15

    This award was split into five tasks, HVAC replacement, lighting retrofitting, daylight harvesting, data center virtualization, and traffic signal retrofitting. The first three tasks were combined into an Energy Performance Contract on seven City facilities. This allowed for the total cost of the project to be offset by guaranteed savings over a 14 year period. The other two projects where done by separate vendors and successfully completed. The combination of these five tasks will result in a significant reduction in our energy consumption city wide, and will also translate to savings for the taxpayer on utility costs. There were also additional financial savings to the taxpayer not related to energy reduction that added value to these projects which will be discussed below.

  10. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  11. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  12. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  13. Biomass Crop Assistance Program (BCAP) | Open Energy Information

    Open Energy Info (EERE)

    United States Department of Agriculture Partner: Farm Service Agency Sector: Energy, Land Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass...

  14. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  15. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  16. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  17. Biomass Program Review

    Broader source: Energy.gov [DOE]

    This document summarizes the comments provided by our panels of expert reviewers at the Office of the Biomass Program Biennial Program Peer Review, held November 14-16, 2005 in Arlington, VA. The work evaluated in this document supports Department of Energy Biomass Program and the results of the review are major inputs used by the Program in making programmatic and funding decisions for the future. The recommendations of the panels have been taken into consideration by our Program Manager and our Technology Managers in the development of work plans for FY 2006 and future years.

  18. Fixed Bed Biomass Gasifier

    SciTech Connect (OSTI)

    Carl Bielenberg

    2006-03-31

    The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

  19. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  20. Method for pretreating lignocellulosic biomass

    DOE Patents [OSTI]

    Kuzhiyil, Najeeb M.; Brown, Robert C.; Dalluge, Dustin Lee

    2015-08-18

    The present invention relates to a method for pretreating lignocellulosic biomass containing alkali and/or alkaline earth metal (AAEM). The method comprises providing a lignocellulosic biomass containing AAEM; determining the amount of the AAEM present in the lignocellulosic biomass; identifying, based on said determining, the amount of a mineral acid sufficient to completely convert the AAEM in the lignocellulosic biomass to thermally-stable, catalytically-inert salts; and treating the lignocellulosic biomass with the identified amount of the mineral acid, wherein the treated lignocellulosic biomass contains thermally-stable, catalytically inert AAEM salts.

  1. Fundamentals of thermochemical biomass conversion

    SciTech Connect (OSTI)

    Overend, R.P.; Milne, T.A.; Mudge, L.

    1985-01-01

    The contents of this book are: Wood and biomass ultrastructure; Cellulose, hemicellulose and extractives; Lignin; Pretreatment of biomass for thermochemical biomass conversion; A kinetic isotope effect in the thermal dehydration of cellobiose; Gasification and liquefaction of forest products in supercritical water; Thermochemical fractionation and liquefaction of wood; The pyrolysis and gasification of wood in molten hydroxide eutectics; Influence of alkali carbonates on biomass volatilization; Flash pyrolysis of biomass with reactive and non-reactive gases; Pyrolytic reactions and biomass; Product formation in the pyrolysis of large wood particles; The pyrolysis under vacuum of aspen poplar; Simulation of kraft lignin pyrolysis; and Kinetics of wood gasification by carbon dioxide and steam.

  2. Biomass Boiler for Food Processing Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the ...

  3. Randolph Electric Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Randolph Electric Biomass Facility Facility Randolph Electric Sector Biomass Facility Type Landfill Gas Location Norfolk County,...

  4. Berlin Gorham Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gorham Biomass Facility Jump to: navigation, search Name Berlin Gorham Biomass Facility Facility Berlin Gorham Sector Biomass Location Coos County, New Hampshire Coordinates...

  5. Westchester Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location...

  6. Shasta 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2 Biomass Facility Jump to: navigation, search Name Shasta 2 Biomass Facility Facility Shasta 2 Sector Biomass Owner Wheelabrator Location Anderson, California Coordinates...

  7. Biodyne Pontiac Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Pontiac Biomass Facility Jump to: navigation, search Name Biodyne Pontiac Biomass Facility Facility Biodyne Pontiac Sector Biomass Facility Type Non-Fossil Waste Location...

  8. San Marcos Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Marcos Biomass Facility Jump to: navigation, search Name San Marcos Biomass Facility Facility San Marcos Sector Biomass Facility Type Landfill Gas Location San Diego County,...

  9. Hebei Jiantou Biomass Power | Open Energy Information

    Open Energy Info (EERE)

    Jiantou Biomass Power Jump to: navigation, search Name: Hebei Jiantou Biomass Power Place: Jinzhou, Hebei Province, China Zip: 50000 Sector: Biomass Product: A company engages in...

  10. Okeelanta 2 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2 Biomass Facility Jump to: navigation, search Name Okeelanta 2 Biomass Facility Facility Okeelanta 2 Sector Biomass Owner Florida Crystals Location South Bay, Florida Coordinates...

  11. Florida Biomass Energy Consortium | Open Energy Information

    Open Energy Info (EERE)

    Consortium Jump to: navigation, search Name: Florida Biomass Energy Consortium Place: Florida Sector: Biomass Product: Association of biomass energy companies. References: Florida...

  12. Sunset Farms Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Farms Biomass Facility Jump to: navigation, search Name Sunset Farms Biomass Facility Facility Sunset Farms Sector Biomass Facility Type Landfill Gas Location Travis County, Texas...

  13. East Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bridgewater Biomass Facility Jump to: navigation, search Name East Bridgewater Biomass Facility Facility East Bridgewater Sector Biomass Facility Type Landfill Gas Location...

  14. Biodyne Lyons Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Lyons Biomass Facility Jump to: navigation, search Name Biodyne Lyons Biomass Facility Facility Biodyne Lyons Sector Biomass Facility Type Landfill Gas Location Cook County,...

  15. Reliant Conroe Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Conroe Biomass Facility Jump to: navigation, search Name Reliant Conroe Biomass Facility Facility Reliant Conroe Sector Biomass Facility Type Landfill Gas Location Montgomery...

  16. Plummer Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plummer Biomass Facility Jump to: navigation, search Name Plummer Biomass Facility Facility Plummer Sector Biomass Owner Wood Power Location Plummer, Idaho Coordinates...

  17. Otay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Otay Biomass Facility Jump to: navigation, search Name Otay Biomass Facility Facility Otay Sector Biomass Facility Type Landfill Gas Location San Diego County, California...

  18. Florida Biomass Energy Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Florida Biomass Energy Group Place: Gulf Breeze, Florida Zip: 32561 Sector: Biomass Product: Florida Biomass Energy Group is a Florida...

  19. SPI Sonora Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  20. Wheelabrator Saugus Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid Waste...

  1. Biodyne Peoria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoria Biomass Facility Jump to: navigation, search Name Biodyne Peoria Biomass Facility Facility Biodyne Peoria Sector Biomass Facility Type Landfill Gas Location Peoria County,...

  2. Zilkha Biomass Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name: Zilkha Biomass Energy LLC Address: 1001 McKinney Place: Houston, Texas Zip: 77002...

  3. Mecca Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Plant Biomass Facility Jump to: navigation, search Name Mecca Plant Biomass Facility Facility Mecca Plant Sector Biomass Location Riverside County, California Coordinates...

  4. Biodyne Springfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Springfield Biomass Facility Jump to: navigation, search Name Biodyne Springfield Biomass Facility Facility Biodyne Springfield Sector Biomass Facility Type Landfill Gas Location...

  5. Kiefer Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location...

  6. Biomass Feedstock Composition and Property Database () | Data...

    Office of Scientific and Technical Information (OSTI)

    Biomass Feedstock Composition and Property Database Title: Biomass Feedstock Composition and Property Database The Office of Energy Efficiency and Renewable Energy's Biomass ...

  7. NREL's OpenStudio Helps Design More Efficient Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    The National Renewable Energy Laboratory (NREL) has created the OpenStudio software platform that makes it easier for architects and engineers to evaluate building energy efficiency measures throughout the design process. OpenStudio makes energy modeling more accessible and affordable, helping professionals to design structures with lower utility bills and less carbon emissions, resulting in a healthier environment. OpenStudio includes a user-friendly application suite that makes the U.S. Department of Energy's EnergyPlus and Radiance simulation engines easier to use for whole building energy and daylighting performance analysis. OpenStudio is freely available and runs on Windows, Mac, and Linux operating systems.

  8. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)"

  9. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace"

  10. Biomass Program Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The emerging U.S. bioindustry is using a range of biomass resources to provide a secure and growing supply of transportation fuels and electric power. Displacing an increasing portion of our imported oil with renewable, domestic bioenergy will provide clear benefits:Reduced greenhouse gas (GHG) emissions; A cleaner, more secure energy future; Sustainable transportation fuels; Opportunities for economic growth

  11. Biomass Scenario Model

    SciTech Connect (OSTI)

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  12. Biomass IBR Fact Sheet: POET | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET Biomass IBR Fact Sheet: POET Design, construct, build, and operate a commercial processing plant as part of an integrated biorefinery to produce lignocellulosic ethanol primarily from corn cobs. PDF icon ibr_commercial_poet.pdf More Documents & Publications Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 Bioenergy Technologies Office FY 2016 Budget At-A-Glance POET Project Liberty, LLC

  13. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  14. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development » Resources » Biomass Basics Biomass Basics Biomass is an energy resource derived from organic matter, which includes wood, agricultural waste, and other living-cell material that can be burned to produce heat energy. It also includes algae, sewage, and other organic substances that may be used to make energy through chemical processes. Biomass currently supplies about 3% of total U.S. energy consumption in the form of electricity, process heat, and

  15. Biomass Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Biomass Feedstocks Biomass Feedstocks An alternate text version of this video is available online. A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop

  16. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  17. Biomass 2009 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 Conference Agenda Biomass 2009 Conference Agenda Biomass 2009 Conference Agenda PDF icon bio2009_full_agenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2011 Conference Agenda ICAM Workshop

  18. Biomass 2010 Conference Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Agenda Biomass 2010 Conference Agenda Biomass 2010 Conference Agenda PDF icon bio2010_full_agenda.pdf More Documents & Publications Biomass 2009 Conference Agenda Biomass 2011 Conference Agenda QTR Cornerstone Workshop 2014

  19. Eccleshall Biomass Ltd | Open Energy Information

    Open Energy Info (EERE)

    Eccleshall Biomass Ltd Jump to: navigation, search Name: Eccleshall Biomass Ltd Place: Eccleshall, United Kingdom Zip: ST21 6JL Sector: Biomass Product: Developing a 2.2MW biomass...

  20. ESD Biomass Ltd | Open Energy Information

    Open Energy Info (EERE)

    ESD Biomass Ltd Jump to: navigation, search Name: ESD Biomass Ltd Place: Neston, United Kingdom Zip: SN13 9TZ Sector: Biomass Product: Acts as advisor to firms developing biomass...

  1. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  2. Advanced Interactive Facades - Critical Elements for Future GreenBuildings?

    SciTech Connect (OSTI)

    Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

    2003-11-01

    Building designers and owners have always been fascinated with the extensive use of glass in building envelopes. Today the highly glazed facade has almost become an iconic element for a 'green building' that provides daylighting and a visual connection with the natural environment. Even before the current interest in green buildings there was no shortage of highly glazed building designs. But many of these buildings either rejected sunlight, and some associated daylight and view with highly reflective glazings or used highly transmissive glass and encountered serious internal comfort problems that could only be overcome with large HVAC systems, resulting in significant energy, cost and environmental penalties. From the 1960's to the 1990's innovation in glazing made heat absorbing glass, reflective glass and double glazing commonplace, with an associated set of aesthetic features. In the last decade there has been a subtle shift from trying to optimize an ideal, static design solution using these glazings to making the facade responsive, interactive and even intelligent. More sophisticated design approaches and technologies have emerged using new high-performance glazing, improved shading and solar control systems, greater use of automated controls, and integration with other building systems. One relatively new architectural development is the double glass facade that offers a cavity that can provide improved acoustics, better solar control and enhanced ventilation. Taken to its ultimate development, an interactive facade should respond intelligently and reliably to the changing outdoor conditions and internal performance needs. It should exploit available natural energies for lighting, heating and ventilation, should be able to provide large energy savings compared to conventional technologies, and at the same time maintain optimal indoor visual and thermal comfort conditions. As photovoltaic costs decrease in the future, these onsite power systems will be integrated within the glass skin and these facades will become local, non-polluting energy suppliers to the building. The potential for facilitating sustainable building operations in the future by exploiting these concepts is therefore great. There is growing interest in highly glazed building facades, driven by a variety of architectural, aesthetic, business and environmental rationales. The environmental rationale appears plausible only if conventional glazing systems are replaced by a new generation of high performance, interactive, intelligent facade systems, that meet the comfort and performance needs of occupants while satisfying owner economic needs and broader societal environmental concerns. The challenge is that new technology, better systems integration using more capable design tools, and smarter building operation are all necessary to meet these goals. The opportunity is to create a new class of buildings that are both environmentally responsible at a regional or global level while providing the amenities and working environments that owners and occupants seek.

  3. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  4. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  5. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113

  6. FY12 Biomass Program Congressional Budget Request

    SciTech Connect (OSTI)

    none,

    2011-02-01

    FY12 budget and funding for the Biomass Program biomass and biorefinery systems research development and deployment.

  7. Metro Wastewater Reclamation District Biomass Facility | Open...

    Open Energy Info (EERE)

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  8. NREL: Biomass Research - Thermochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and commercialization of biomass gasification is the integration of the gasifier with downstream syngas processing. ... Biomass Characterization Biochemical Conversion Thermochemical ...

  9. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  10. Biomass 2012 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Agenda Biomass 2012 Agenda Detailed agenda from the July 10-11, 2012, Biomass conference--Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy. PDF icon bio2012_final_agenda.pdf More Documents & Publications Biomass 2013 Agenda Biomass 2011 Conference Agenda Biomass 2010

  11. Biomass 2013 Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Agenda Biomass 2013 Agenda This agenda outlines the sessions and events for Biomass 2013 in Washington, D.C., July 31-August 1. PDF icon biomass_2013_agenda.pdf More Documents & Publications Biomass 2010 Conference Agenda Biomass 2012 Agenda Biomass 2009

  12. Biomass Feedstocks | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feedstocks Our mission is to enable the coordinated development of biomass resources and conversion technologies by understanding the field-to-fuel impact of feedstocks on biochemical and thermochemical processes. A line graph showing the simulated distillation results of upgraded oils, divided into three sections: gasoline fraction, jet fraction, and #2 diesel fraction. The y-axis shows the mass % recovered (from 0 to 100) and the x-axis shows the distillation temperature in degrees Celsius

  13. Hydrolysis of biomass material

    DOE Patents [OSTI]

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  14. Fort Yukon Gets Fired Up Over Biomass CHP Project

    Energy Savers [EERE]

    Gets Fired Up Over Biomass CHP Project In 2005, the Native Village of Fort Yukon sought a less costly fuel than diesel to heat common buildings, as well as a water system that could operate at -60˚F. As village leaders researched the options, they investigated biomass as a potential resource and learned about sustainable forest management practices. DOE funded the Council of Athabascan Tribal Governments (CATG)-a 10-tribe consortium-to study a regional wood energy program in 2007. The following

  15. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  16. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  17. Buildings Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

  18. Vacant Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacant Characteristics by Activity... Vacant Vacant buildings are those in which more floorspace was vacant than was used for any single commercial activity at the time of the...

  19. Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic...

  20. Other Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics See also: Equipment |...

  1. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  2. Biomass process handbook

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Descriptions are given of 42 processes which use biomass to produce chemical products. Marketing and economic background, process description, flow sheets, costs, major equipment, and availability of technology are given for each of the 42 processes. Some of the chemicals discussed are: ethanol, ethylene, acetaldehyde, butanol, butadiene, acetone, citric acid, gluconates, itaconic acid, lactic acid, xanthan gum, sorbitol, starch polymers, fatty acids, fatty alcohols, glycerol, soap, azelaic acid, perlargonic acid, nylon-11, jojoba oil, furfural, furfural alcohol, tetrahydrofuran, cellulose polymers, products from pulping wastes, and methane. Processes include acid hydrolysis, enzymatic hydrolysis, fermentation, distillation, Purox process, and anaerobic digestion.

  3. NREL: Learning - Biomass Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Energy Basics Photo of a farmer standing in a field and inspecting corn crops. We have used biomass energy, or "bioenergy"-the energy from plants and plant-derived materials-since people began burning wood to cook food and keep warm. Wood is still the largest biomass energy resource today, but other sources of biomass can also be used. These include food crops, grassy and woody plants, residues from agriculture or forestry, oil-rich algae, and the organic component of municipal

  4. Biomass 2009: Fueling Our Future

    Broader source: Energy.gov [DOE]

    We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success.

  5. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  6. Biomass 2014 Breakout Speaker Biographies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and development of sustainability assessments of ... living snow fences, regional woody biomass resource ... Laboratory (INL). In this role, he is focused on ...

  7. System and process for biomass treatment

    DOE Patents [OSTI]

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  8. Daylighting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of the house. For example: South-facing windows allow most winter sunlight into the home but little direct sun during the summer, especially when properly shaded North-facing...

  9. High-performance commercial building facades

    SciTech Connect (OSTI)

    Lee, Eleanor; Selkowitz, Stephen; Bazjanac, Vladimir; Inkarojrit, Vorapat; Kohler, Christian

    2002-06-01

    This study focuses on advanced building facades that use daylighting, sun control, ventilation systems, and dynamic systems. A quick perusal of the leading architectural magazines, or a discussion in most architectural firms today will eventually lead to mention of some of the innovative new buildings that are being constructed with all-glass facades. Most of these buildings are appearing in Europe, although interestingly U.S. A/E firms often have a leading role in their design. This ''emerging technology'' of heavily glazed fagades is often associated with buildings whose design goals include energy efficiency, sustainability, and a ''green'' image. While there are a number of new books on the subject with impressive photos and drawings, there is little critical examination of the actual performance of such buildings, and a generally poor understanding as to whether they achieve their performance goals, or even what those goals might be. Even if the building ''works'' it is often dangerous to take a design solution from one climate and location and transport it to a new one without a good causal understanding of how the systems work. In addition, there is a wide range of existing and emerging glazing and fenestration technologies in use in these buildings, many of which break new ground with respect to innovative structural use of glass. It is unclear as to how well many of these designs would work as currently formulated in California locations dominated by intense sunlight and seismic events. Finally, the costs of these systems are higher than normal facades, but claims of energy and productivity savings are used to justify some of them. Once again these claims, while plausible, are largely unsupported. There have been major advances in glazing and facade technology over the past 30 years and we expect to see continued innovation and product development. It is critical in this process to be able to understand which performance goals are being met by current technology and design solutions, and which ones need further development and refinement. The primary goal of this study is to clarify the state-of-the-art of the performance of advanced building facades so that California building owners and designers can make informed decisions as to the value of these building concepts in meeting design goals for energy efficiency, ventilation, productivity and sustainability.

  10. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

  11. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  12. Hydrogen Production: Microbial Biomass Conversion

    Broader source: Energy.gov [DOE]

    Microbial biomass conversion processes take advantage of the ability of microorganisms to consume and digest biomass and release hydrogen. Depending on the pathway, this research could result in commercial-scale systems in the mid- to long-term timeframe that could be suitable for distributed, semi-central, or central hydrogen production scales, depending on the feedstock used.

  13. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  14. Intelligent Buildings

    SciTech Connect (OSTI)

    Brambley, Michael R.; Armstrong, Peter R.; Kintner-Meyer, Michael CW; Pratt, Robert G.; Katipamula, Srinivas

    2001-01-01

    The topic of "intelligent buildings" (IBs) emerged in the early 1980s. Since, the term has been used to represent a variety of related, yet differing topics, each with a slightly different focus and purpose. Wiring and networking-infrastructure companies emphasize the cabling requirements for communication in intelligent buildings and the need to accommodate future needs for higher-speed broadband. Lucent (Lucent 2000) for example, defines an IB as "...one with a completely integrated wiring architecture. A single cabling system that handles all information traffic - voice, data, video, even the big building management systems."

  15. A review on biomass classification and composition, cofiring issues and pretreatment methods

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  16. Conditioning biomass for microbial growth

    DOE Patents [OSTI]

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  17. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Tucker, Melvin; Elander, Richard; Hennessey, Susan M.

    2011-04-26

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  18. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    page, please call 202-586-8800. There were enough buildings in the responding sample to report statistics for all of these types except for research and development, which has...

  19. Lodging Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    were then asked to place the building into the following more specific categories: a hotel a motel, inn, or resort a retirement home a shelter, orphanage, or children's home a...

  20. Biomass Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resource Basics Biomass Resource Basics August 14, 2013 - 1:22pm Addthis Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks. Biomass Feedstocks Biomass feedstocks include dedicated energy crops, agricultural crops, forestry residues, aquatic crops, biomass processing residues, municipal waste, and animal waste. Dedicated energy crops Herbaceous energy crops are perennials that are

  1. Vanadium catalysts break down biomass for fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vanadium catalysts break down biomass for fuels Vanadium catalysts break down biomass into useful components Breaking down biomass could help in converting biomass to fuels. March 26, 2012 Biomass Due to diminishing petroleum reserves, non-food biomass (lignocellulose) is an attractive alternative as a feedstock for the production of renewable chemicals and fuels. Get Expertise Researcher Susan Hanson Inorganic Isotope & Actinide Chem Email Researcher Ruilian Wu Bioenergy & Environmental

  2. Building America Webinar: High Performance Building Enclosures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Building Enclosures: Part I, Existing Homes Building America Webinar: High Performance Building Enclosures: Part I, Existing Homes The webinar, presented on May ...

  3. Biomass - Energy Explained, Your Guide To Understanding Energy - Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Biomass Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come From Outlook for Future

  4. Biomass and the Environment - Energy Explained, Your Guide To Understanding

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy - Energy Information Administration Biomass & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases

  5. BSCL Use Plan: Solving Biomass Recalcitrance

    SciTech Connect (OSTI)

    Himmel, M.; Vinzant, T.; Bower, S.; Jechura, J.

    2005-08-01

    Technical report describing NREL's new Biomass Surface Characterization Laboratory (BSCL). The BSCL was constructed to provide the most modern commercial surface characterization equipment for studying biomass surfaces.

  6. Biomass Indirect Liquefaction Presentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation Biomass Indirect Liquefaction Presentation TRI Technology Update & IDL R&D ... ClearFuels-Rentech Pilot-Scale Biorefinery Biomass Indirect Liquefaction Presentation ...

  7. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. ... More Documents & Publications Tribal Renewable Energy Curriculum Foundational Course: Wind

  8. Biomass Renewable Energy Opportunities and Strategies | Department...

    Office of Environmental Management (EM)

    Biomass Renewable Energy Opportunities and Strategies Biomass Renewable Energy Opportunities and Strategies May 30, 2014 - 1:39pm Addthis July 9, 2014 Bonneville Power ...

  9. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels PDF icon federalbiomassactivities.pdf More Documents & ...

  10. ARM - Biomass Burning Observation Project (BBOP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 BNL BBOP Website Contacts Larry Kleinman, Lead Scientist Arthur Sedlacek Biomass Burning Observation Project (BBOP) Biomass Burning Plants, trees, grass, brush, and...

  11. NREL: Biomass Research - What Is a Biorefinery?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  12. Bioware Biomass Thermoconversion Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Bioware Biomass Thermoconversion Technologies Jump to: navigation, search Name: Bioware - Biomass Thermoconversion Technologies Place: Campinas, Brazil Zip: 13084-971 Product: The...

  13. Rocklin Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    References USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRocklinBiomassFacility&oldid398013" Categories: Energy Generation Facilities Stubs...

  14. California Biomass Collaborative Energy Cost Calculators | Open...

    Open Energy Info (EERE)

    Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary LAUNCH TOOL Name: California Biomass Collaborative Energy Cost Calculators AgencyCompany...

  15. Prairie City Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titlePrairieCityBiomassFacility&oldid397964" Feedback Contact needs updating Image needs updating...

  16. Chateaugay Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChateaugayBiomassFacility&oldid397318" Feedback Contact needs updating Image needs updating...

  17. Riddle Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleRiddleBiomassFacility&oldid398000" Feedback Contact needs updating Image needs updating...

  18. Bieber Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBieberPlantBiomassFacility&oldid397188" Feedback Contact needs updating Image needs updating...

  19. Bayport Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBayportBiomassFacility&oldid397176" Feedback Contact needs updating Image needs updating...

  20. Tracy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Name Tracy Biomass Facility Facility Tracy Sector Biomass Owner US Renewables Group Location Tracy, California Coordinates 37.7396513,...

  1. St. Paul Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSt.PaulBiomassFacility&oldid398161" Feedback Contact needs updating Image needs updating...

  2. SPI Anderson Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleSPIAndersonBiomassFacility&oldid398041" Feedback Contact needs updating Image needs updating...

  3. Alexandria Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAlexandriaBiomassFacility&oldid397132" Feedback Contact needs updating Image needs updating...

  4. Biomass Combustion Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  5. Mendota Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMendotaBiomassFacility&oldid397757" Feedback Contact needs updating Image needs updating...

  6. Baton Rogue Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBatonRogueBiomassFacility&oldid397172" Feedback Contact needs updating Image needs updating...

  7. Madera Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMaderaBiomassFacility&oldid397721" Feedback Contact needs updating Image needs updating...

  8. Okeelanta 1 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOkeelanta1BiomassFacility&oldid397873" Feedback Contact needs updating Image needs updating...

  9. New Meadows Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name New Meadows Biomass Facility Facility New Meadows Sector Biomass Owner Tamarack Energy Location New Meadows, Idaho Coordinates 44.9712808,...

  10. Oroville Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleOrovilleBiomassFacility&oldid397894" Feedback Contact needs updating Image needs updating...

  11. Multitrade Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleMultitradeBiomassFacility&oldid397817" Feedback Contact needs updating Image needs updating...

  12. Biomass Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Name: Biomass Energy Resources Place: Dallas, Texas Product: A start up fuel processing technology References: Biomass Energy Resources1...

  13. Ashland Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAshlandBiomassFacility&oldid397156" Feedback Contact needs updating Image needs updating...

  14. Chowchilla Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleChowchillaBiomassFacility&oldid397324" Feedback Contact needs updating Image needs updating...

  15. Biomass Scenario Model | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Partner: Department of Energy (DOE) Office of the Biomass Program Sector: Energy Focus Area: Biomass Phase: Determine Baseline Topics:...

  16. Greenville Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleGreenvilleBiomassFacility&oldid397531" Feedback Contact needs updating Image needs updating...

  17. Duluth Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDuluthBiomassFacility&oldid397416" Feedback Contact needs updating Image needs updating...

  18. Delano Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDelanoBiomassFacility&oldid397390" Feedback Contact needs updating Image needs updating...

  19. Mecca Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search Name Mecca Biomass Facility Facility Mecca Sector Biomass Owner Colmac Energy Location Mecca, California Coordinates 33.571692,...

  20. Burlington Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBurlingtonBiomassFacility&oldid397249" Feedback Contact needs updating Image needs updating...

  1. Woodland Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Woodland Biomass Facility Facility Woodland Sector Biomass Owner Xcel Energy Location Woodland, California Coordinates 38.6785157,...

  2. Williams Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleWilliamsBiomassFacility&oldid398342" Feedback Contact needs updating Image needs updating...

  3. Shasta 1 Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleShasta1BiomassFacility&oldid398090" Feedback Contact needs updating Image needs updating...

  4. Improved Biomass Cooking Stoves | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Improved Biomass Cooking Stoves AgencyCompany Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan,...

  5. Bridgewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleBridgewaterBiomassFacility&oldid397233" Feedback Contact needs updating Image needs updating...

  6. Reliant Energy Renewables Atascosita Biomass Facility | Open...

    Open Energy Info (EERE)

    Energy Renewables Atascosita Biomass Facility Jump to: navigation, search Name Reliant Energy Renewables Atascosita Biomass Facility Facility Reliant Energy Renewables Atascosita...

  7. Dinuba Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleDinubaBiomassFacility&oldid397408" Feedback Contact needs updating Image needs updating...

  8. Category:Biomass | Open Energy Information

    Open Energy Info (EERE)

    B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCategory:Biomass&oldid382520" Feedback Contact needs updating Image needs updating Reference...

  9. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  10. Lyonsdale Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Lyonsdale Biomass Facility Facility Lyonsdale Sector Biomass Owner CH Energy Group Location Lyonsdale, New York Coordinates 43.61861,...

  11. Aberdeen Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleAberdeenBiomassFacility&oldid397114" Feedback Contact needs updating Image needs updating...

  12. Jeanerette Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleJeaneretteBiomassFacility&oldid397618" Feedback Contact needs updating Image needs updating...

  13. Fresno Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    USA Biomass National Map Retrieved from "http:en.openei.orgwindex.php?titleFresnoBiomassFacility&oldid397486" Feedback Contact needs updating Image needs updating...

  14. WeBiomass Inc | Open Energy Information

    Open Energy Info (EERE)

    Zip: 05701 Region: Greater Boston Area Sector: Biomass Product: Commercial Biomass Boiler Systems Website: www.webiomass.com Coordinates: 43.58070919775, -72.971301209182...

  15. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  16. Biomass Scenario Model Scenario Library: Definitions, Construction...

    Office of Scientific and Technical Information (OSTI)

    S. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES; 29 ENERGY PLANNING, POLICY AND ECONOMY BIOMASS; BIOFUEL; BSM; SYSTEM DYNAMICS; BIOFUEL INCENTIVES; SCENARIOS; Bioenergy;...

  17. Providing the Resource: Biomass Feedstocks & Logistics

    SciTech Connect (OSTI)

    2010-03-01

    A summary of Biomass Program resource assessment activities, feedstock trials, and harvest, storage, handling, and transport activities to support biomass feedstock development and use.

  18. Biomass Resource Allocation among Competing End Uses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Scenario Model. iv List of Acronyms AEO Annual Energy Outlook BAM Biomass Allocation Model ... Today, traditional use of biomass accounts for 14% of world energy usage, which is ...

  19. Investigating and Using Biomass Gases

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

  20. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  1. Diesel fuel from biomass

    SciTech Connect (OSTI)

    Kuester, J.L.

    1984-01-01

    A project to convert various biomass materials to diesel type transportation fuel compatible with current engine designs and the existing distribution system is described. A continuous thermochemical indirect liquefaction approach is used. The system consists of a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide followed by a catalytic liquefaction step to convert the synthesis gas to liquid hydrocarbon fuel. The major emphasis on the project at the present time is to maximize product yield. A level of 60 gals of diesel type fuel per ton of feedstock (dry, ash free basis) is expected. Numerous materials have been processed through the conversion system without any significant change in product quality (essentially C/sub 7/-C/sub 17/ paraffinic hydrocarbons with cetane indicies of 50+). Other tasks in progress include factor studies, process simplification, process control and scale-up to a 10 ton/day Engineering Test Facility. 18 references, 4 figures, 9 tables.

  2. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  3. 2011 Biomass Program Peer Review

    SciTech Connect (OSTI)

    Rossmeissl, Neil P.

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Programs Peer Review meeting.

  4. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  5. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  6. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect (OSTI)

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  7. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  8. biomass briquetting machine | OpenEI Community

    Open Energy Info (EERE)

    biomass briquetting machine Home There are currently no posts in this category. Syndicate content...

  9. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  10. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass feedstocks and process intermediates for conversion to biofuels. View Publications Subscribe to email updates about revisions and additions to biomass analysis procedures, FAQs, calculation spreadsheets, and publications. Email: Subscribe Unsubscribe

  11. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  12. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  13. Residential Buildings Integration Program

    Broader source: Energy.gov [DOE]

    Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

  14. Energy Efficient Buildings Hub

    SciTech Connect (OSTI)

    2013-04-01

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  15. Building America System Research

    SciTech Connect (OSTI)

    2013-04-01

    Residential Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  16. Energy Efficient Buildings Hub

    Broader source: Energy.gov [DOE]

    Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  17. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Commercial Buildings Consortium

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  19. Biomass conversion processes for energy and fuels

    SciTech Connect (OSTI)

    Sofer, S.S.; Zaborsky, O.R.

    1981-01-01

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  20. Biomass Program Monthly News Blast: June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upcoming Program Events Biomass 2011 July 26-27, 2011, at the Gaylord National Resort and Convention Center in National Harbor, Maryland. Biomass 2011 will focus on topics surrounding the use of biomass as a replacement for petroleum to supply the energy, products, and power markets. Paul Bryan will be attending the conference for the first time as the manager of the Biomass Program: "The Biomass Program's annual conference is a great opportunity to continue spreading the word, sharing

  1. YAVAPAI APACHE NATION BIOMASS FEASIBILITY STUDY

    Energy Savers [EERE]

    OVERVIEW OVERVIEW YAN Demographics Biomass Study Team YAN Biomass Study Background Project Rationale & Outline Project Progress Future Q&A YAN DEMOGRAPHICS YAN DEMOGRAPHICS * YAN Population = 1800 Enrolled Members * YAN Geography = 650 Acres in 5 Locations * Projected location of a Biomass Facility - Located in Verde Valley of Central Arizona - Middle Verde (On reservation) - Drake (30 Miles from the Reservation) YAN BIOMASS STUDY TEAM YAN BIOMASS STUDY TEAM * YAN Energy Director- Tracy

  2. Biomass 2010 Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Conference Biomass 2010 Conference Biomass 2010 logo March 30-31, 2010 Hyatt Regency Crystal City 2799 Jefferson Davis Highway Arlington, VA 22202 Thank you to everyone who made Biomass 2010 a success, including the speakers, moderators, sponsors, and exhibitors! More than 600 attendees were able to discuss some of the most pressing issues in the biomass community as well as recent accomplishments and the challenges that lie ahead. We were able to focus on the role of biomass in our nation's

  3. Hydrogen Production: Biomass Gasification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Gasification Hydrogen Production: Biomass Gasification Photo of a man standing near a pilot-scale gasification system. Biomass gasification is a mature technology pathway that uses a controlled process involving heat, steam, and oxygen to convert biomass to hydrogen and other products, without combustion. Because growing biomass removes carbon dioxide from the atmosphere, the net carbon emissions of this method can be low, especially if coupled with carbon capture, utilization, and

  4. Biomass Indirect Liquefaction Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Indirect Liquefaction Workshop Biomass Indirect Liquefaction Workshop To support research and development (R&D) planning efforts within the Thermochemical Conversion Program, the Bioenergy Technologies Office hosted the Biomass Indirect Liquefaction (IDL) Workshop. This workshop discussed and detailed the R&D needs for biomass IDL. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols

  5. Building for the Pacific Rim Countries. Energy-efficient building strategies for hot, humid climates

    SciTech Connect (OSTI)

    Sheinkopf, K.

    1991-09-01

    This book has been published by the Solar Energy Industries Association (SEIA), the US trade association of the solar thermal, photovoltaic, and passive solar manufacturers, distributors, and component suppliers. Its purpose is to help architects, builders, and developers construct energy-efficient homes in hot humid climates like the Pacific Rim Countries, and to allow occupants of these homes to enjoy enhanced comfort without reliance on mechanical air-conditioning systems. Two important factors are addressed in this book. First, the past few years have seen a tremendous increase in practical applications of new research. The current popularity of ceiling paddle fans, attic radiant barriers and natural daylighting attest to the importance of keeping up with the latest concepts in energy-reduction and comfort-awareness. Professionals who have been in the field for the past few years may be unaware of the latest research findings--some of which dramatically alter prior thinking on such subjects as natural ventilation or mechanical air conditioning. The second factor is the importance of site-specific characteristics, which greatly affect building strategies and designs. A thorough understanding of the climate is a prerequisite to good building design. Such factors as temperature, humidity, wind speed and direction, and solar radiation must be understood and properly integrated into the design for the home to be truly energy-efficient.

  6. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  7. Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL...

    Office of Scientific and Technical Information (OSTI)

    Investment on the Growth of the Biofuels Industry Vimmerstedt, L. J.; Bush, B. W. 09 BIOMASS FUELS BIOMASS; BIOFUEL; DEMONSTRATION; DEPLOYMENT; LEARNING; POLICY; SYSTEM DYNAMICS;...

  8. Biomass Energy Production in California 2002: Update of the California Biomass Database

    SciTech Connect (OSTI)

    Morris, G.

    2002-12-01

    An updated version of the California Biomass Energy Database, which summarizes California's biomass energy industry using data from 2000 and 2001.

  9. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  11. Residential Buildings Integration (RBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Lee Program Manager Residential Buildings Integration (RBI) April 22, 2014 Residential Buildings Integration (RBI) MissionVision The Residential Buildings ...

  12. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arah Schuur Program Manager Commercial Buildings Integration (CBI) April 22, 2014 Commercial Buildings Integration (CBI) 2 Commercial Buildings Integration (CBI) Mission...

  13. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  14. Building America Building Science Translator

    Energy Savers [EERE]

    Building Science Translator February 2015 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affliated partners, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use

  15. Buildings Interoperability Planning: Connected Buildings Interoperabil...

    Broader source: Energy.gov (indexed) [DOE]

    Vision Context Steve Widergren PNNL 11 March 2015 Topics Purpose of meeting Buildings automation in the transformative time of connectivity Interoperability - a connected buildings...

  16. Building America Expert Meeting: Transforming Existing Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon exptmtgideaexchange.pdf More Documents & Publications Valuing Green in the Appraisal Process - Building America Top Innovation Building America Residential Energy ...

  17. Building America Building Science Education Roadmap

    Broader source: Energy.gov [DOE]

    This roadmap outlines steps that U.S. Department of Energy Building America program must take to develop a robust building science education curriculum in coming years.

  18. Office Buildings - Types of Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    administration building Insurance company headquarters building Local insurance agency Social services office Attorney's office Real estate sales office Government office State...

  19. 1999 Commercial Buildings Characteristics--Building Size

    U.S. Energy Information Administration (EIA) Indexed Site

    (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Top Return to: "1999 CBECS-Commercial Buildings Characteristics" Specific questions...

  20. Building Technologies Program: Building America Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and existing homes provided by the Building America Program.You may also visit the new Solution Center to find expert building science and energy efficiency resources. RSS...

  1. Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Byxbee Park Sanitary Landfill Biomass Facility Jump to: navigation, search Name Byxbee Park Sanitary Landfill Biomass Facility Facility Byxbee Park Sanitary Landfill Sector Biomass...

  2. American Ref-Fuel of Hempstead Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Hempstead Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type...

  3. Bay Resource Management Center Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Resource Management Center Biomass Facility Jump to: navigation, search Name Bay Resource Management Center Biomass Facility Facility Bay Resource Management Center Sector Biomass...

  4. Sauder Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sauder Power Plant Biomass Facility Jump to: navigation, search Name Sauder Power Plant Biomass Facility Facility Sauder Power Plant Sector Biomass Location Fulton County, Ohio...

  5. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  6. Settlers Hill Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Settlers Hill Gas Recovery Biomass Facility Jump to: navigation, search Name Settlers Hill Gas Recovery Biomass Facility Facility Settlers Hill Gas Recovery Sector Biomass Facility...

  7. DFW Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    DFW Gas Recovery Biomass Facility Jump to: navigation, search Name DFW Gas Recovery Biomass Facility Facility DFW Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  8. Lake Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Recovery Biomass Facility Jump to: navigation, search Name Lake Gas Recovery Biomass Facility Facility Lake Gas Recovery Sector Biomass Facility Type Landfill Gas Location Cook...

  9. Prairie View Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    View Gas Recovery Biomass Facility Jump to: navigation, search Name Prairie View Gas Recovery Biomass Facility Facility Prairie View Gas Recovery Sector Biomass Facility Type...

  10. Woodland Landfill Gas Recovery Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass...

  11. Greene Valley Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Valley Gas Recovery Biomass Facility Jump to: navigation, search Name Greene Valley Gas Recovery Biomass Facility Facility Greene Valley Gas Recovery Sector Biomass Facility Type...

  12. CID Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CID Gas Recovery Biomass Facility Jump to: navigation, search Name CID Gas Recovery Biomass Facility Facility CID Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  13. Suite of Cellulase Enzyme Technologies for Biomass Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Suite of Cellulase Enzyme Technologies for Biomass Conversion National Renewable Energy Laboratory...

  14. Biomass Scenario Model Documentation: Data and References Lin...

    Office of Scientific and Technical Information (OSTI)

    Documentation: Data and References Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D. 09 BIOMASS FUELS BIOMASS SCENARIO MODEL; BSM; BIOMASS; BIOFUEL; MODEL; DATA; REFERENCES;...

  15. M L Hibbard Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    L Hibbard Biomass Facility Jump to: navigation, search Name M L Hibbard Biomass Facility Facility M L Hibbard Sector Biomass Location St. Louis County, Minnesota Coordinates...

  16. Johnston LFG (MA RPS Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    LFG (MA RPS Biomass Facility Jump to: navigation, search Name Johnston LFG (MA RPS Biomass Facility Facility Johnston LFG (MA RPS Sector Biomass Facility Type Landfill Gas Location...

  17. Biomass IBR Fact Sheet: Abengoa Bioenergy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass IBR Fact Sheet: Abengoa Bioenergy Biomass IBR Fact Sheet: Abengoa Bioenergy Integrated Biorefinery for Conversion of Biomass to Ethanol, Power, and Heat PDF icon ...

  18. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  19. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  20. Ocean County Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas...

  1. Boralex Fort Fairfield Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fort Fairfield Biomass Facility Jump to: navigation, search Name Boralex Fort Fairfield Biomass Facility Facility Boralex Fort Fairfield Sector Biomass Location Aroostook County,...

  2. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  3. Jiangsu Guoxin Rudong Biomass Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guoxin Rudong Biomass Power Co Ltd Jump to: navigation, search Name: Jiangsu Guoxin Rudong Biomass Power Co Ltd Place: Rudong, Jiangsu Province, China Sector: Biomass Product: The...

  4. Liuzhou Xinneng Biomass Power Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Xinneng Biomass Power Co Ltd Jump to: navigation, search Name: Liuzhou Xinneng Biomass Power Co Ltd Place: Guangxi Autonomous Region, China Sector: Biomass Product: China-based...

  5. Pearl Hollow Landfil Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas...

  6. Sri Balaji Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sri Balaji Biomass Power Pvt Ltd Jump to: navigation, search Name: Sri Balaji Biomass Power Pvt Ltd Place: Secunderabad, Andhra Pradesh, India Zip: 500003 Sector: Biomass Product:...

  7. Rhodia Houston Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Rhodia Houston Plant Biomass Facility Jump to: navigation, search Name Rhodia Houston Plant Biomass Facility Facility Rhodia Houston Plant Sector Biomass Facility Type Non-Fossil...

  8. Sinewave Biomass Power Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Sinewave Biomass Power Pvt Ltd Jump to: navigation, search Name: Sinewave Biomass Power Pvt. Ltd. Place: Kolhapur, Maharashtra, India Zip: 416 012 Sector: Biomass Product:...

  9. Newby Island I Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Newby Island I Biomass Facility Jump to: navigation, search Name Newby Island I Biomass Facility Facility Newby Island I Sector Biomass Facility Type Landfill Gas Location Santa...

  10. EERC Center for Biomass Utilization | Open Energy Information

    Open Energy Info (EERE)

    Center for Biomass Utilization Jump to: navigation, search Name: EERC Center for Biomass Utilization Place: Grand Forks, North Dakota Sector: Biofuels, Biomass Product: The mission...

  11. CSL Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    CSL Gas Recovery Biomass Facility Jump to: navigation, search Name CSL Gas Recovery Biomass Facility Facility CSL Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  12. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  13. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  14. Yantai Tianli Biomass CHP Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianli Biomass CHP Co Ltd Jump to: navigation, search Name: Yantai Tianli Biomass CHP Co Ltd Place: Yantai, Shandong Province, China Zip: 265300 Sector: Biomass Product:...

  15. BJ Gas Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    BJ Gas Recovery Biomass Facility Jump to: navigation, search Name BJ Gas Recovery Biomass Facility Facility BJ Gas Recovery Sector Biomass Facility Type Landfill Gas Location...

  16. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  17. Lianyungang Baoxin Biomass Cogeneration Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Lianyungang Baoxin Biomass Cogeneration Co Ltd Jump to: navigation, search Name: Lianyungang Baoxin Biomass Cogeneration Co Ltd Place: Jiangsu Province, China Sector: Biomass...

  18. American Canyon Power Plant Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Canyon Power Plant Biomass Facility Jump to: navigation, search Name American Canyon Power Plant Biomass Facility Facility American Canyon Power Plant Sector Biomass Facility Type...

  19. Blue Spruce Farm Ana Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Spruce Farm Ana Biomass Facility Jump to: navigation, search Name Blue Spruce Farm Ana Biomass Facility Facility Blue Spruce Farm Ana Sector Biomass Location Vermont Coordinates...

  20. Bridgewater Power LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Power LP Biomass Facility Jump to: navigation, search Name Bridgewater Power LP Biomass Facility Facility Bridgewater Power LP Sector Biomass Location Grafton County, New Hampshire...

  1. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  2. Penobscot Energy Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Recovery Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type...

  3. Huaian Huapeng Biomass Electricity Co | Open Energy Information

    Open Energy Info (EERE)

    Huaian Huapeng Biomass Electricity Co Jump to: navigation, search Name: Huaian Huapeng Biomass Electricity Co. Place: Jiangsu Province, China Sector: Biomass Product: China-based...

  4. Covanta Hennepin Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Hennepin Energy Biomass Facility Jump to: navigation, search Name Covanta Hennepin Energy Biomass Facility Facility Covanta Hennepin Energy Sector Biomass Facility Type Municipal...

  5. Dunbarton Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Dunbarton Energy Partners LP Biomass Facility Jump to: navigation, search Name Dunbarton Energy Partners LP Biomass Facility Facility Dunbarton Energy Partners LP Sector Biomass...

  6. Smithtown Energy Partners LP Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Smithtown Energy Partners LP Biomass Facility Jump to: navigation, search Name Smithtown Energy Partners LP Biomass Facility Facility Smithtown Energy Partners LP Sector Biomass...

  7. Covanta Babylon Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Babylon Energy Biomass Facility Jump to: navigation, search Name Covanta Babylon Energy Biomass Facility Facility Covanta Babylon Energy Sector Biomass Facility Type Municipal...

  8. Adrian Energy Associates LLC Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Adrian Energy Associates LLC Biomass Facility Jump to: navigation, search Name Adrian Energy Associates LLC Biomass Facility Facility Adrian Energy Associates LLC Sector Biomass...

  9. Boralex Stratton Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stratton Energy Biomass Facility Jump to: navigation, search Name Boralex Stratton Energy Biomass Facility Facility Boralex Stratton Energy Sector Biomass Location Franklin County,...

  10. USA Biomass Power Producers Alliance | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power Producers Alliance Jump to: navigation, search Name: USA Biomass Power Producers Alliance Place: Sacramento, California Sector: Biomass Product: National trade...

  11. Covanta Bristol Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Bristol Energy Biomass Facility Jump to: navigation, search Name Covanta Bristol Energy Biomass Facility Facility Covanta Bristol Energy Sector Biomass Facility Type Municipal...

  12. Covanta Mid-Connecticut Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Mid-Connecticut Energy Biomass Facility Jump to: navigation, search Name Covanta Mid-Connecticut Energy Biomass Facility Facility Covanta Mid-Connecticut Energy Sector Biomass...

  13. Spadra Landfill Gas to Energy Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass...

  14. Covanta Fairfax Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fairfax Energy Biomass Facility Jump to: navigation, search Name Covanta Fairfax Energy Biomass Facility Facility Covanta Fairfax Energy Sector Biomass Facility Type Municipal...

  15. Covanta Stanislaus Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Stanislaus Energy Biomass Facility Jump to: navigation, search Name Covanta Stanislaus Energy Biomass Facility Facility Covanta Stanislaus Energy Sector Biomass Facility Type...

  16. Commerce Refuse To Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Refuse To Energy Biomass Facility Jump to: navigation, search Name Commerce Refuse To Energy Biomass Facility Facility Commerce Refuse To Energy Sector Biomass Facility Type...

  17. Zhulu Huada Biomass Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zhulu Huada Biomass Co Ltd Jump to: navigation, search Name: Zhulu Huada Biomass Co Ltd Place: Shijiazhuang, Hebei Province, China Sector: Biomass Product: Zhangjiakou-based...

  18. Buena Vista Biomass Power LCC | Open Energy Information

    Open Energy Info (EERE)

    Biomass Power LCC Jump to: navigation, search Name: Buena Vista Biomass Power LCC Place: California Sector: Biomass Product: California-based firm developing and operating an 18MW...

  19. Avon Energy Partners LLC Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Avon Energy Partners LLC Biomass Facility Jump to: navigation, search Name Avon Energy Partners LLC Biomass Facility Facility Avon Energy Partners LLC Sector Biomass Facility Type...

  20. Brickyard Energy Partners LLC Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Brickyard Energy Partners LLC Biomass Facility Jump to: navigation, search Name Brickyard Energy Partners LLC Biomass Facility Facility Brickyard Energy Partners LLC Sector Biomass...

  1. Tamarack Energy Partnership Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Partnership Biomass Facility Jump to: navigation, search Name Tamarack Energy Partnership Biomass Facility Facility Tamarack Energy Partnership Sector Biomass Location Adams...

  2. Taylor Biomass Energy LLC TBE | Open Energy Information

    Open Energy Info (EERE)

    Biomass Energy LLC TBE Jump to: navigation, search Name: Taylor Biomass Energy, LLC (TBE) Place: Montgomery, New York Zip: 12549-9900 Sector: Biomass Product: Montgomery-based...

  3. Suffolk Energy Partners LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Partners LP Biomass Facility Jump to: navigation, search Name Suffolk Energy Partners LP Biomass Facility Facility Suffolk Energy Partners LP Sector Biomass Facility Type...

  4. Hebei Milestone Biomass Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Milestone Biomass Energy Co Ltd Jump to: navigation, search Name: Hebei Milestone Biomass Energy Co Ltd Place: Hebei Province, China Zip: 50051 Sector: Biomass Product: China-based...

  5. Shanxi Milestone Biomass Energy Development Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Milestone Biomass Energy Development Co Ltd Jump to: navigation, search Name: Shanxi Milestone Biomass Energy Development Co Ltd Place: China Sector: Biomass Product: China-based...

  6. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  7. Puente Hills Energy Recovery Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass...

  8. Pretreatment Methods for Biomass Conversion into Biofuels and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Pretreatment Methods for Biomass Conversion into Biofuels and Biopolymers National Renewable Energy...

  9. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  10. S D Warren Somerset Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    D Warren Somerset Biomass Facility Jump to: navigation, search Name S D Warren Somerset Biomass Facility Facility S D Warren Somerset Sector Biomass Location Cumberland County,...

  11. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Waste Systems Biomass Facility Jump to: navigation, search Name Regional Waste Systems Biomass Facility Facility Regional Waste Systems Sector Biomass Facility Type Municipal Solid...

  12. Prima Desheha Landfill Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type...

  13. Montenay Montgomery LP Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Montenay Montgomery LP Biomass Facility Jump to: navigation, search Name Montenay Montgomery LP Biomass Facility Facility Montenay Montgomery LP Sector Biomass Facility Type...

  14. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-firedboilers.pdf More Documents & ...

  15. Fourche Creek Wastewater Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Fourche Creek Wastewater Biomass Facility Jump to: navigation, search Name Fourche Creek Wastewater Biomass Facility Facility Fourche Creek Wastewater Sector Biomass Facility Type...

  16. 1999 Commercial Building Characteristics--Building Activity Comparison

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity Comparison Percentage of Floorspace and Buildings by Principal Building Activity, 1999 Percentage of Floorspace and Buildings by Principal Building Activity,...

  17. BSC: Building America, Building Science Consortium - 2015 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BSC: Building America, Building Science Consortium - 2015 Peer Review BSC: Building America, Building Science Consortium - 2015 Peer Review Presenter: Joe Lstiburek, Building ...

  18. Biomass Program Recovery Act Factsheet

    SciTech Connect (OSTI)

    2010-03-01

    The Biomass Program has awarded about $718 million in American Recovery and Reinvestment Act (Recovery Act) funds. The projects the Program is supporting are intended to: Accelerate advanced biofuels research, development, and demonstration; Speed the deployment and commercialization of advanced biofuels and bioproducts; Further the U.S. bioindustry through market transformation and creating or saving a range of jobs.

  19. Biomass Program Partners Fact Sheet

    SciTech Connect (OSTI)

    None

    2009-10-27

    Meeting ambitious national targets for biofuels requires a radically accelerated level of technology research and infrastructure development. To expedite progress, the U.S. Department of Energys Biomass Program is forging collaborative partnerships with industry, academia, state governments, and diverse stakeholder groups.

  20. Biomass energies: resources, links, constraints

    SciTech Connect (OSTI)

    Smil, V.

    1983-01-01

    This book presents information on the following topics: radiation and photosynthesis; primary production and biomass; resources; wood for energy; silviculture; requirements and effects; crop residues; residues for energy conversion; sugar crops and grain; cassava; fuel crops; aquatic plants; freshwater plants; ocean algae; animal wastes; Chinese biogas generation; and ecodisasters.

  1. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and refused-feed. The ability of the dairy to produce silage in excess of on-site feed requirements limited power production. The availability of biomass energy crops and alternative feedstocks, such as agricultural and food wastes, will be a major determinant to the economic and environmental sustainability of biomass based electricity production.

  2. Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels Forest Carbon – Sustaining an Important Climate Service: Roles of Biomass Use and Markets David Cleaves, Climate Change Advisor to the Chief, U.S. Forest Service, U.S. Department of Agriculture

  3. Commercial Building Toplighting: Energy Saving Potential and Potential Paths Forward

    SciTech Connect (OSTI)

    Lawrence, Tyson; Roth, Kurt W.

    2008-06-01

    This report documents the energy-saving potential of toplighting, a form of daylighting that combines skylights and electric lighting controls.

  4. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  5. Biomass Equipment & Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005, New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels, or biobased products in...

  6. Biomass Oil Analysis: Research Needs and Recommendations

    SciTech Connect (OSTI)

    2004-06-01

    Report analyzing the use of biomass oils to help meet Office of the Biomass Program goals of establishing a commercial biorefinery by 2010 and commercilizing at least four biobased products.

  7. New market potential: Torrefaction of Woody Biomass

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; J. Richard Hess

    2015-07-01

    According to researchers in Idaho National Laboratorys Bioenergy Program, torrefaction of woody biomass could reduce variability in biomass feedstock and enable development of a commodity-type product for green energy generation and usage.

  8. Biomass One LP | Open Energy Information

    Open Energy Info (EERE)

    LP Jump to: navigation, search Name: Biomass One LP Place: White City, Oregon Product: Owner and operator of a 25MW wood fired cogeneration plant in Oregon. References: Biomass One...

  9. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B.; Elander, Richard T.; Tucker, III, Melvin P.; Hennessey, Susan Marie

    2011-08-16

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  10. Biomass Webinar Text Version | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Text Version Biomass Webinar Text Version Dowload the text version of the audio from the DOE Office of Indian Energy webinar on biomass. PDF icon DOE Office of Indian Energy ...

  11. Building Envelope Stakeholder Workshop

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory is hosting a building envelope stakeholder workshop on behalf of the DOE Building Technologies Office.

  12. Residential Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2, 2013 Residential Buildings Integration Program Building Technologies Office ... Overview of the Residential Integration Program Research Implementation tools ...

  13. Buildings | Open Energy Information

    Open Energy Info (EERE)

    influence a building, including incentives, utilities, weather, climate, and locationground temperature. Municipalities and Renewable Energy Opportunities Building...

  14. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  15. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  16. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  17. Biomass Program September 2012 News Blast

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2012 Bioenergy YouTube Channel Features Biomass 2012 Videos On July 10-11, 2012, the Energy Department's Biomass Program hosted its fifth annual conference, Biomass 2012: Confronting Challenges, Creating Opportunities - Sustaining a Commitment to Bioenergy, at the Washington, D.C., Convention Center. The Biomass Program created several videos to archive the event, including an interview with Energy Secretary Steven Chu, clips from keynote speakers, an image documentary, as well as

  18. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in a given area. Biomass resources include agricultural crops and residues; dedicated energy crops; forestry products and residues; animal wastes; residues and byproducts from food, feed, fiber, wood, and materials processing plants; as well as post-consumer residues and wastes, such as municipal solid wastes and

  19. Quinault Indian Nation - Comprehensive Biomass Strategy Project

    Energy Savers [EERE]

    Status Report Quinault Indian Nation Comprehensive Biomass Strategy Project In Partnership With: US Department of Energy Columbia-Pacific RC&EDD (ColPac) Project Overview * Identify and confirm Tribal energy needs * Comprehensive review of recent inventory of QIN biomass availability * Develop a biomass energy vision statement, goals and objectives * Identify and assess viable biomass energy options, both demand-side (those that reduce energy consumption) and supply-side (those that generate

  20. Biomass Basics: The Facts About Bioenergy

    SciTech Connect (OSTI)

    2015-04-01

    Biomass Basics: The Facts About Bioenergy. This document provides general information about bioenergy and its creation and potential uses.