National Library of Energy BETA

Sample records for building benchmark models

  1. Building Energy Use Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Use Benchmarking Building Energy Use Benchmarking Benchmarking is the practice of comparing the measured performance of a device, process, facility, or organization to itself, its peers, or established norms, with the goal of informing and motivating performance improvement. When applied to building energy use, benchmarking serves as a mechanism to measure energy performance of a single building over time, relative to other similar buildings, or to modeled simulations of a

  2. Commercial and Multifamily Building Benchmarking and Disclosure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Multifamily Building Benchmarking and Disclosure Commercial and Multifamily Building Benchmarking and Disclosure Better Buildings Residential Network Peer Exchange Call: ...

  3. California commercial building energy benchmarking

    SciTech Connect (OSTI)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the identities of building owners might be revealed and hence are reluctant to share their data. The California Commercial End Use Survey (CEUS), the primary source of data for Cal-Arch, is a unique source of information on commercial buildings in California. It has not been made public; however, it was made available by CEC to LBNL for the purpose of developing a public benchmarking tool.

  4. Commercial and Multifamily Building Benchmarking and Disclosure

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call: Commercial and Multifamily Building Benchmarking and Disclosure, Call Slides, July 25, 2013.

  5. Federal Building Benchmarking Guidance - August 2014 Update

    Office of Environmental Management (EM)

    Federal Building Energy Use Benchmarking Guidance August 2014 Update Use of Energy and Water Efficiency Measures in Federal Buildings (42 U.S.C. § 8253[f]) United States Department of Energy Washington, DC 20585 1 I. Background A. Authority - Benchmarking Requirements Section 432 of the Energy Independence and Security Act of 2007 (EISA) requires the Secretary of the United States Department of Energy (DOE) to select or develop a building energy use benchmarking system and to issue guidance

  6. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  7. DOE Resources Help Measure Building Energy Benchmarking Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness DOE Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness May 21,...

  8. Federal Building Energy Use Benchmarking Guidance, August 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use Benchmarking Guidance, August 2014 Update Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance describes the Energy Independence and Security ...

  9. House Simulation Protocols (Building America Benchmark) - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    profile for House Simulation Protocols. See an example of this Top Innovation in action. Find more case studies of Building America projects across the country that ...

  10. Federal Building Energy Use Benchmarking Guidance, August 2014 Update |

    Office of Environmental Management (EM)

    Department of Energy Energy Use Benchmarking Guidance, August 2014 Update Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance describes the Energy Independence and Security Act of 2007 Section 432 requirement for benchmarking federal facilities. PDF icon benchmarking_guidance08-2014.pdf

  11. Benchmarking Buildings to Prioritize Sites for Emissions Analysis

    Broader source: Energy.gov [DOE]

    When actual energy use by building type is known, benchmarking the performance of those buildings to industry averages can help establish those with greatest opportunities for GHG reduction. Energy intensity can be used as a basis for benchmarking by building type and can be calculated using actual energy use, representative buildings, or available average estimates from agency energy records. Energy intensity should be compared to industry averages, such as the Commercial Buildings Energy Consumption Survey (CBECS) or an agency specific metered sample by location.

  12. Building America Research Benchmark Definition: Updated December 2009

    SciTech Connect (OSTI)

    Hendron, R.; Engebrecht, C.

    2010-01-01

    The Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without chasing a 'moving target.'

  13. Building America Research Benchmark Definition, Updated December 2009

    SciTech Connect (OSTI)

    Hendron, Robert; Engebrecht, Cheryn

    2010-01-01

    To track progress toward aggressive multi-year, whole-house energy savings goals of 40%70% and on-site power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America (BA) Research Benchmark in consultation with the Building America industry teams.

  14. Department of Energy Commercial Building Benchmarks (New Construction): Energy Use Intensities, May 5, 2009

    Broader source: Energy.gov [DOE]

    This file contains the energy use intensities (EUIs) for the benchmark building files by building type and climate zone.

  15. Building America Research Benchmark Definition, Updated December 19, 2008

    SciTech Connect (OSTI)

    Hendron, R.

    2008-12-19

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Bui

  16. Building America Research Benchmark Definition, Updated December 15, 2006

    SciTech Connect (OSTI)

    Hendron, R.

    2007-01-01

    To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

  17. House Simulation Protocols (Building America Benchmark)- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes the DOE-sponsored House Simulation Protocols, which have helped ensure consistent and accurate energy-efficiency assessments for tens of thousands of new and retrofit homes supported by the Building America program.

  18. A framework for benchmarking land models

    SciTech Connect (OSTI)

    Luo, Yiqi; Randerson, J.; Abramowitz, G.; Bacour, C.; Blyth, E.; Carvalhais, N.; Ciais, Philippe; Dalmonech, D.; Fisher, J.B.; Fisher, R.; Friedlingstein, P.; Hibbard, Kathleen A.; Hoffman, F. M.; Huntzinger, Deborah; Jones, C.; Koven, C.; Lawrence, David M.; Li, D.J.; Mahecha, M.; Niu, S.L.; Norby, Richard J.; Piao, S.L.; Qi, X.; Peylin, P.; Prentice, I.C.; Riley, William; Reichstein, M.; Schwalm, C.; Wang, Y.; Xia, J. Y.; Zaehle, S.; Zhou, X. H.

    2012-10-09

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine datamodel mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models to improve their prediction performance skills.

  19. A framework for benchmarking land models

    SciTech Connect (OSTI)

    Luo, Yiqi; Randerson, James T.; Hoffman, Forrest; Norby, Richard J

    2012-01-01

    Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1) targeted aspects of model performance to be evaluated, (2) a set of benchmarks as defined references to test model performance, (3) metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4) model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1) a priori thresholds of acceptable model performance and (2) a scoring system to combine data model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties of land models to improve their prediction performance skills.

  20. A Utility Regulators Guide to Data Access for Commercial Building Energy Performance Benchmarking

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2013-05-23

    Offers policy options and considerations to state utility commissions in providing access to energy use data to help commercial customers manage energy costs through building energy benchmarking.

  1. A Utility Regulator’s Guide to Data Access for Commercial Building Energy Performance Benchmarking

    Broader source: Energy.gov [DOE]

    A Utility Regulator’s Guide to Data Access for Commercial Building Energy Performance Benchmarking offers policy options and considerations to state utility commissions in providing access to energy use data to help commercial customers manage energy costs through building energy benchmarking.

  2. Benchmarking the LAHET fission models

    SciTech Connect (OSTI)

    Prael, R.E.

    1995-12-31

    There has been considerable interest in improving the fission models in the LAHET Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons. Although subactinide fission contributes little to neutron production in lead or tungsten targets, it can be significant for simulation of target activation and fission product contamination. The availability of new data permits new comparisons to be made between experiment and calculation.

  3. High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building

    SciTech Connect (OSTI)

    Christian, J.

    2011-01-01

    This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

  4. DOE Resources Help Measure Building Energy Benchmarking Policy & Program Effectiveness

    Broader source: Energy.gov [DOE]

    The DOE Benchmarking & Transparency Policy and Program Impact Evaluation Handbook provides cost-effective, standardized analytic methods for determining gross and net energy reduction, greenhouse gas (GHG) emissions mitigation, job creation and economic growth impacts.

  5. Advanced Commercial Buildings Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Year 1: Building and Program Benchmarking 2. Year 2: Program Development and ... monitoring Performance testing Benchmarking Energy modeling 4 Approach Approach: ...

  6. Building Energy Modeling Library

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge ... Links within modeling process for informing design Terms Methods Project Phase Key ...

  7. Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure, Call Slides, July 25, 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25, 2013 Better Buildings Residential Network Peer Exchange Call: Commercial and Multi-family Building Benchmarking and Disclosure Call Slides Agenda * Call Logistics and Introductions * Introducing the Better Buildings Residential Network * Discussion:  What energy benchmarking policies/requirements/ordinances are in place across the country?  Are policies on building disclosure of energy use creating momentum/driving demand in the marketplace for energy audits and retrofits?  How are

  8. Autotune Building Energy Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and

  9. Building America Top Innovations Hall of Fame Profile … House Simulation Protocols (the Building America Benchmark

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insight Homes of Delaware worked with Building America research partner IBACOS to design and analyze multiple iterations of prototype homes until an optimum combination of efficiency measures was derived. Building America has proven to be a world-class research program that has delivered transformative innovations to the housing industry. A solid technical underpinning has been critical to this success, and that has been provided by simulation protocols that ensure a consistent framework for

  10. The NERSC CAM Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAM The NERSC CAM Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:32:4

  11. The NERSC GAMESS Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAMESS The NERSC GAMESS Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2016-02-01 08:07:2

  12. The NERSC GTC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GTC The NERSC GTC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2016-02-01 08:06:07

  13. The NERSC MADBench Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MADBench The NERSC MADBench Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2016-02-01 08:07:38

  14. The NERSC MILC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MILC The NERSC MILC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:12:32

  15. The NERSC PARATEC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARATEC The NERSC PARATEC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:16:06

  16. The NERSC PMEMD Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PMEMD The NERSC PMEMD Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2016-02-01 08:07:09

  17. The NERSC GTC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GTC The NERSC GTC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:04:18...

  18. The NERSC MADBench Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MADBench The NERSC MADBench Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:10:14...

  19. The NERSC GAMESS Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GAMESS The NERSC GAMESS Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:48:10...

  20. The NERSC CAM Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CAM The NERSC CAM Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 14:32:44...

  1. The NERSC PMEMD Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PMEMD The NERSC PMEMD Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:55:50...

  2. The NERSC PARATEC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PARATEC The NERSC PARATEC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:16:06...

  3. The NERSC MILC Benchmark

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MILC The NERSC MILC Benchmark Complete Readme Overview Building and Optimization Running and Timing Performance Data Download Benchmark Last edited: 2015-01-06 15:12:32...

  4. Department of Energy Commercial Building Benchmarks (New Construction): Summary of Changes from v1.0_3.0 to v1.1_3.1, May 5, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This file contains the changes to the new construction building benchmark files from version 1.0_3.0 to version 1.1_3.1.

  5. Benchmarking analysis of three multimedia models: RESRAD, MMSOILS, and MEPAS

    SciTech Connect (OSTI)

    Cheng, J.J.; Faillace, E.R.; Gnanapragasam, E.K.

    1995-11-01

    Multimedia modelers from the United States Environmental Protection Agency (EPA) and the United States Department of Energy (DOE) collaborated to conduct a comprehensive and quantitative benchmarking analysis of three multimedia models. The three models-RESRAD (DOE), MMSOILS (EPA), and MEPAS (DOE)-represent analytically based tools that are used by the respective agencies for performing human exposure and health risk assessments. The study is performed by individuals who participate directly in the ongoing design, development, and application of the models. A list of physical/chemical/biological processes related to multimedia-based exposure and risk assessment is first presented as a basis for comparing the overall capabilities of RESRAD, MMSOILS, and MEPAS. Model design, formulation, and function are then examined by applying the models to a series of hypothetical problems. Major components of the models (e.g., atmospheric, surface water, groundwater) are evaluated separately and then studied as part of an integrated system for the assessment of a multimedia release scenario to determine effects due to linking components of the models. Seven modeling scenarios are used in the conduct of this benchmarking study: (1) direct biosphere exposure, (2) direct release to the air, (3) direct release to the vadose zone, (4) direct release to the saturated zone, (5) direct release to surface water, (6) surface water hydrology, and (7) multimedia release. Study results show that the models differ with respect to (1) environmental processes included (i.e., model features) and (2) the mathematical formulation and assumptions related to the implementation of solutions (i.e., parameterization).

  6. A Programming Model Performance Study Using the NAS Parallel Benchmarks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shan, Hongzhang; Blagojević, Filip; Min, Seung-Jai; Hargrove, Paul; Jin, Haoqiang; Fuerlinger, Karl; Koniges, Alice; Wright, Nicholas J.

    2010-01-01

    Harnessing the power of multicore platforms is challenging due to the additional levels of parallelism present. In this paper we use the NAS Parallel Benchmarks to study three programming models, MPI, OpenMP and PGAS to understand their performance and memory usage characteristics on current multicore architectures. To understand these characteristics we use the Integrated Performance Monitoring tool and other ways to measure communication versus computation time, as well as the fraction of the run time spent in OpenMP. The benchmarks are run on two different Cray XT5 systems and an Infiniband cluster. Our results show that in general the threemore » programming models exhibit very similar performance characteristics. In a few cases, OpenMP is significantly faster because it explicitly avoids communication. For these particular cases, we were able to re-write the UPC versions and achieve equal performance to OpenMP. Using OpenMP was also the most advantageous in terms of memory usage. Also we compare performance differences between the two Cray systems, which have quad-core and hex-core processors. We show that at scale the performance is almost always slower on the hex-core system because of increased contention for network resources.« less

  7. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Building Performance Standards (EEBPS) are statewide minimum requirements that all new construction and additions to existing buildings must satisfy. Exceptions include...

  8. Verification and validation benchmarks.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

  9. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional ...

  10. Better Buildings Neighborhood Program Business Models Guide:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models ...

  11. Property:Buildings/ModelBuildingType | Open Energy Information

    Open Energy Info (EERE)

    Religious Worship Service Warehouse and Storage Other Vacant Pages using the property "BuildingsModelBuildingType" Showing 12 pages using this property. G General Merchandise...

  12. Generation IV benchmarking of TRISO fuel performance models under accident conditions. Modeling input data

    SciTech Connect (OSTI)

    Blaise Collin

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary.

  13. Better Buildings Neighborhood Program Business Models Guide:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Utility Program Administrator Business Model Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model Better Buildings...

  14. Results of the 2013 UT modeling benchmark obtained with models implemented in CIVA

    SciTech Connect (OSTI)

    Toullelan, Gwnal; Raillon, Raphale; Chatillon, Sylvain; Lonne, Sbastien

    2014-02-18

    The 2013 Ultrasonic Testing (UT) modeling benchmark concerns direct echoes from side drilled holes (SDH), flat bottom holes (FBH) and corner echoes from backwall breaking artificial notches inspected with a matrix phased array probe. This communication presents the results obtained with the models implemented in the CIVA software: the pencilmodel is used to compute the field radiated by the probe, the Kirchhoff approximation is applied to predict the response of FBH and notches and the SOV (Separation Of Variables) model is used for the SDH responses. The comparison between simulated and experimental results are presented and discussed.

  15. About Building Energy Modeling | Department of Energy

    Office of Environmental Management (EM)

    Emerging Technologies » Building Energy Modeling » About Building Energy Modeling About Building Energy Modeling Building energy modeling (BEM)-physics-based calculation of building energy consumption-is a multi-use tool for building energy efficiency. Established use cases include design of new buildings and deep retrofits, development of whole-building energy-efficiency codes and standards (e.g., ASHRAE 90.1) and performance-path compliance with those codes (e.g., ASHRAE 90.1 "Appendix

  16. Property:Buildings/Models | Open Energy Information

    Open Energy Info (EERE)

    It links to pages that use the form Buildings Publication. Pages using the property "BuildingsModels" Showing 2 pages using this property. G General Merchandise 50% Energy...

  17. Optional Residential Program Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optional Residential Program Benchmarking Optional Residential Program Benchmarking Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking, Call Slides and Discussion Summary, January 23, 2014. PDF icon Call Slides and Discussion Summary More Documents & Publications Guide to Benchmarking Residential Program Progress Webcast Slides Lessons Learned: Measuring Program Outcomes and Using Benchmarks Guide for Benchmarking

  18. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    SciTech Connect (OSTI)

    Hu Renyu; Seager, Sara; Bains, William

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.

  19. pMSSM Benchmark Models for Snowmass 2013 (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Journal Article: pMSSM Benchmark Models for Snowmass 2013 Citation Details In-Document Search Title: pMSSM Benchmark Models for Snowmass 2013 Authors: Cahill-Rowley, Matthew W. ; Hewett, JoAnne L. ; Ismail, Ahmed ; Peskin, Michael E. ; Rizzo, Thomas G. Publication Date: 2013-07-01 OSTI Identifier: 1086969 Report Number(s): SLAC-PUB-15458 arXiv:1305.2419 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: arXiv:1305.2419 Research Org:

  20. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling (BEM) Overview 2014 Building Technologies Office Peer Review Amir Roth, Ph.D. amir.roth@ee.doe.gov BEM is a Fundamental Energy-Efficiency Technology BEM calculates energy use from description of assets & operations * Predictive if all major inputs are certain; comparative when they are not * Complements measured data: isolates effects, supports optimization & "what if" Target Setting Concept Detailed Arch HVAC Cx VE Deep retrofit Retrofit New construction

  1. Building Energy Modeling Library - 2013 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building...

  2. Building Energy Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Building Energy Modeling Building Energy Modeling About the portfolio Building energy modeling (BEM)-physics-based calculation of building energy consumption-is a multi-use tool for building energy efficiency. Established use cases include design of new buildings and deep retrofits, development of whole-building energy efficiency codes and standards (e.g., ASHRAE 90.1) and performance-path compliance with those codes (e.g., ASHRAE 90.1 "Appendix G" Performance

  3. Comparison of practical vertical ground heat exchanger sizing methods to a Fort Polk data/model benchmark

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Hughes, P.J.

    1997-09-01

    The results of five practical vertical ground heat exchanger sizing programs are compared against a detailed simulation model that has been calibrated to monitored data taken from one military family housing unit at Fort Polk, Louisiana. The calibration of the detailed model to data is described in a companion paper. The assertion that the data/detailed model is a useful benchmark for practical sizing methods is based on this calibration. The results from the comparisons demonstrate the current level of agreement between vertical ground heat exchanger sizing methods in common use. It is recommended that the calibration and comparison exercise be repeated with data sets from additional sites in order to build confidence in the practical sizing methods.

  4. Benchmarks used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benchmarks used Benchmarks used Using a set of benchmarks described below, different optimization options for the different compilers on Edison. The compilers are also compared against one another on the benchmarks. NERSC6 Benchmarks We used these benchmarks from the NERSC6 procurement: Nersc 6 procurement mpi benchmarks Benchmark Science Area Algorithms Concurrency Languages GTC Fusion PIC, finite difference 2048 (weak scaling) f90 IMPACT-T Accelerator Physics PIC, FFT 1024 (strong scaling) f90

  5. Energy Performance Benchmarking and Disclosure Policies for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings ...

  6. MPI Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPI Benchmarks MPI Benchmarks The APEX RFP calls out several MPI related requirements that can be categorized as two-sided or one-sided and the respective measures of message rate, bandwidth and latency for each. In addition, collective operations are called out. The general philosophy for MPI benchmarking is to use publicly available micro-benchmarks were appropriate and to develop new micro-benchmarks where there are gaps in the public benchmark suites. Unless a benchmark is explicitly called

  7. Summary of FY15 results of benchmark modeling activities

    SciTech Connect (OSTI)

    Arguello, J. Guadalupe

    2015-08-01

    Sandia is participating in the third phase of an is a contributing partner to a U.S.-German "Joint Project" entitled "Comparison of current constitutive models and simulation procedures on the basis of model calculations of the thermo-mechanical behavior and healing of rock salt." The first goal of the project is to check the ability of numerical modeling tools to correctly describe the relevant deformation phenomena in rock salt under various influences. Achieving this goal will lead to increased confidence in the results of numerical simulations related to the secure storage of radioactive wastes in rock salt, thereby enhancing the acceptance of the results. These results may ultimately be used to make various assertions regarding both the stability analysis of an underground repository in salt, during the operating phase, and the long-term integrity of the geological barrier against the release of harmful substances into the biosphere, in the post-operating phase.

  8. Computer Model Buildings Contaminated with Radioactive Material

    Energy Science and Technology Software Center (OSTI)

    1998-05-19

    The RESRAD-BUILD computer code is a pathway analysis model designed to evaluate the potential radiological dose incurred by an individual who works or lives in a building contaminated with radioactive material.

  9. NERSC-5 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Benchmarks NERSC-5 Benchmarks The NERSC-5 application benchmarks were used in the acquisition process that resulted in the NERSC Cray XT4 system ("Franklin"). CAM: CCSM Community Climate Model GAMESS: Computational Chemistry GTC: 3D Gyrokinetic Toroidal Code MADBench: Microwave Anisotropy Dataset Computational Analysis Benchmark MILC: MIMD Lattice Computation PARATEC: Parallel Total Energy Code PMEMD: Particle Mesh Ewald Molecular Dynamics Last edited: 2016-02-01 08:07:0

  10. Benchmarks used

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benchmarks were run, all at a concurrency of 1024 processes. They are all written in Fortran. NAS PARALLEL MPI BENCHMARKS - VERSION 3.3.1 Benchmark Full Name Description Level BT...

  11. CASL - Initial Validation and Benchmark Study of new 3D CRUD Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Validation and Benchmark Study of new 3D CRUD Model A new 3D CRUD model, known as "MAMBA" (for "MPO Advanced Model for Boron Analysis"), is being developed by the Crud Group within the MPO focus area of CASL. The 3D MAMBA v2.0 computer code was released to CASL on Feb. 28, 2012 and is capable of being run in "stand-alone" mode or in coupled mode with a thermal hydraulics computational fluid dynamics model (e.g., STAR-CCM+) and/or a neutron transport

  12. Better Buildings Neighborhood Program Business Models Guide

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  13. Category:Building Models | Open Energy Information

    Open Energy Info (EERE)

    category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General...

  14. Measuring Program Outcomes and Using Benchmarks Webinar

    Broader source: Energy.gov [DOE]

    Measuring Program Outcomes and Using Benchmarks, a webinar from the U.S. Department of Energy's Better Buildings program.

  15. Better Buildings Residential Network Data & Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking Call Slides and Discussion Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Evaluation Peer Exchange Call Series: Optional Residential Program Benchmarking Call Slides and Discussion Summary January 23, 2014 Agenda  Call Logistics and Introductions  Peer Exchange Call Overview and Announcements  Featured Speakers  Program Experience: Tim Miller and Jessica Hughes, Clean Energy Works Oregon  DOE Optional Residential Program Benchmarking Guide Project: Dale Hoffmeyer, U.S. DOE, and Cheryl Jenkins, Vermont Energy Investment Corporation (VEIC) 

  16. Guide for Benchmarking Residential Program Progress with Examples

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network: Guide for Benchmarking Residential Program Progress with Examples.

  17. An international land-biosphere model benchmarking activity for the IPCC Fifth Assessment Report (AR5)

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, James T [ORNL; Thornton, Peter E [ORNL; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Erickson III, David J [ORNL; Fung, Inez [University of California, Berkeley

    2009-12-01

    The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, called Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006). This work suggests that a more rigorous set of global offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are needed. The Carbon-Land Model Intercomparison Project (C-LAMP) was designed to meet this need by providing a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). Recently, a similar effort in Europe, called the International Land Model Benchmark (ILAMB) Project, was begun to assess the performance of European land surface models. These two projects will now serve as prototypes for a proposed international land-biosphere model benchmarking activity for those models participating in the IPCC Fifth Assessment Report (AR5). Initially used for model validation for terrestrial biogeochemistry models in the NCAR Community Land Model (CLM), C-LAMP incorporates a simulation protocol for both offline and partially coupled simulations using a prescribed historical trajectory of atmospheric CO2 concentrations. Models are confronted with data through comparisons against AmeriFlux site measurements, MODIS satellite observations, NOAA Globalview flask records, TRANSCOM inversions, and Free Air CO2 Enrichment (FACE) site measurements. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the CLM version 3 in the Community Climate System Model version 3 (CCSM3): the CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons of the CLM3 offline results against observational datasets have been performed and are described in Randerson et al. (2009). CLM version 4 has been evaluated using C-LAMP, showing improvement in many of the metrics. Efforts are now underway to initiate a Nitrogen-Land Model Intercomparison Project (N-LAMP) to better constrain the effects of the nitrogen cycle in biosphere models. Presented will be new results from C-LAMP for CLM4, initial N-LAMP developments, and the proposed land-biosphere model benchmarking activity.

  18. CBEI - Improving Benchmarking Data Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Benchmarking Data Quality 2015 Building Technologies Office Peer Review Scott Wagner, swagner@engr.psu.edu CBEI - Pennsylvania State University Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones: 1. Analysis of 2013 Philadelphia benchmarking data; Evaluation of Proficiency in Benchmarking Certificate program; Draft engagement strategy for Baltimore; 6/30/2014 2. Final Guide to Community-Wide Benchmarking Analysis, facts sheets and web content;

  19. Guide for Benchmarking Residential Energy Efficiency Program Progress |

    Office of Environmental Management (EM)

    Department of Energy for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as part of the DOE Better Buildings Program. PDF icon Guide for Benchmarking Residential Energy Efficiency Program Progress More Documents & Publications Optional Residential Program Benchmarking Guide to Benchmarking Residential Program Progress Webcast Slides

  20. Better Buildings Neighborhood Program Business Models Guide: HVAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Business Model | Department of Energy HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model. PDF icon HVAC Contractor Business Model More Documents & Publications Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion Better Buildings Neighborhood Program Business Models

  1. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amir Roth, Ph.D. amir.roth@ee.doe.gov Building Energy Modeling (BEM) Program Overview http://energy.gov/eere/buildings/building-energy-modeling/ 2 BEM: An Energy-Efficiency Technology BEM is physics calculation of energy use from description of assets & operations * Multiple uses in the energy-efficiency space "Integrative" design: minimize energy consumption under constraints, e.g., first cost * AIA 2030 Commitment-2013 (1,100 projects) performance over CBECS - Non-modeled: +29%,

  2. Molecular replacement and model-building using distant homology...

    Office of Scientific and Technical Information (OSTI)

    Molecular replacement and model-building using distant homology models as templates Citation Details In-Document Search Title: Molecular replacement and model-building using...

  3. Better Buildings Neighborhood Program Business Models Guide: Program Administrator Description

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Program Administrator Business Models, Program Administrator Description.

  4. Guide for Benchmarking Residential Program Progress with Examples...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Progress with Examples Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network: Guide for Benchmarking Residential Program ...

  5. Form:Buildings Model | Open Energy Information

    Open Energy Info (EERE)

    with that name already exists, you will be sent to a form to edit that page. Create or edit Retrieved from "http:en.openei.orgwindex.php?titleForm:BuildingsModel&oldid270041...

  6. Modeling distributed generation in the buildings sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any

  7. Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Buildings Commercial Reference Buildings The U.S. Department of Energy (DOE), in conjunction with three of its national laboratories, developed commercial reference buildings, formerly known as commercial building benchmark models. These reference buildings play a critical role in the program's energy modeling software research by providing complete descriptions for whole building energy analysis using EnergyPlus simulation software. There are 16 building types that represent

  8. Building Energy Modeling (BEM) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of assets & operations * Predictive if all major inputs are ... fault diagnosis, dynamic control & demand response * ... & easier to get Logic Model-BTO Role in BEM Ecosystem ...

  9. Benchmarking Help Center Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Center Guide Benchmarking Help Center Guide This guide provides recommendations for establishing a benchmarking help center based on experiences and lessons learned in New York City and Seattle. PDF icon Benchmarking Help Center Guide More Documents & Publications Energy Disclosure and Leasing Standards: Best Practices Benchmarking Outreach and Data Collection Techniques for External Portfolios Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings

  10. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Ganguly, Srirupa; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in data centers. This guide is primarily intended for personnel who have responsibility for managing energy use in existing data centers - including facilities managers, energy managers, and their engineering consultants. Additionally, data center designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior data center benchmarking studies supported by the California Energy Commission. Much of the benchmarking data are drawn from the LBNL data center benchmarking database that was developed from these studies. Additional benchmark data were obtained from engineering experts including facility designers and energy managers. This guide also builds on recent research supported by the U.S. Department of Energy's Save Energy Now program.

  11. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    SciTech Connect (OSTI)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as canonical,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  12. Energy Performance Benchmarking and Disclosure Policies for Public and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings | Department of Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings This presentation is part of the SEE Action Series and provides information on Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications

  13. Designing a Benchmarking Plan

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Solution Center document about how state and local governments, Indian tribes, and overseas U.S. territories can design a plan to benchmark the energy consumption in public buildings.

  14. Self-benchmarking Guide for Cleanrooms: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; Tschudi, William

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  15. Building Energy Modeling 0017-1505

    Energy Savers [EERE]

    Building Energy Modeling 0017-1505 Edwin Lee, Ph.D., NREL (channeling Luigi Polese) Ron Judkoff, M.Arch., NREL Michael Wetter, Ph.D., LBNL Tianzhen Hong, Ph.D., LBNL Joshua New, Ph.D., ORNL And a cast of dozens TM: Amir Roth, Ph.D., DOE 2 Mission Statements Mission I: "Develop, maintain, and support a BEM engine for fair and accurate assessment of different energy efficiency measures for all types of buildings projects."  Project I: EnergyPlus Mission II: "Develop and maintain

  16. Building the RHIC tracking lattice model

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Tepikian, S.

    2010-01-27

    In this note we outline the procedure to build a realistic lattice model for the RHIC beam-beam tracking simulation. We will install multipole field errors in the arc main dipoles, arc main quadrupols and interaction region magnets (DX, D0, and triplets) and introduce a residual closed orbit, tune ripples, and physical apertures in the tracking lattice model. Nonlinearities such as local IR multipoles, second order chromaticies and third order resonance driving terms are also corrected before tracking.

  17. BTO Seeks Comments on Draft Building Energy Modeling Roadmap | Department

    Energy Savers [EERE]

    of Energy BTO Seeks Comments on Draft Building Energy Modeling Roadmap BTO Seeks Comments on Draft Building Energy Modeling Roadmap The Department of Energy's Building Technologies Office (BTO) seeks input from stakeholders on a draft Building Energy Modeling Roadmap. The draft Roadmap provides background and context, then outlines steps that BTO's contractor recommends to help increase the use of BEM tools for the design and operation of energy-efficient buildings. The draft Roadmap is

  18. Scripted Building Energy Modeling and Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  19. Energy Benchmarking, Rating, and Disclosure for Local Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides information on how access to energy use data can help local governments create policies for benchmarking and disclosing building energy performance for public and private sector buildings.

  20. Better Buildings Neighborhood Program Business Models Guide: Non-Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Administrator Business Model | Department of Energy Non-Utility Program Administrator Business Model Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model. PDF icon Non-Utility Program Administrator Business Model More Documents & Publications Better Buildings Neighborhood Program Business Models Guide: Non-Utility

  1. Southface Advanced Commercial Buildings Initiative (ABCI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Year 1: Building and Program Benchmarking 2. Year 2: Program Development and ... City of Atlanta * Commercial Building Benchmarking * Commercial Energy Asset Rating Tool ...

  2. Commercial Buildings Sector Agent-Based Model | Open Energy Informatio...

    Open Energy Info (EERE)

    OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US...

  3. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction.

  4. Better Buildings Neighborhood Program Business Models Guide: Retailer Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Retailer Business Model Conclusion, Summary of Retailer Insights.

  5. Better Buildings Neighborhood Program Business Models Guide: Remodeler Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Remodeler Business Model Conclusion, Summary of Remodeler Insights.

  6. Energy Benchmarking and Disclosure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking and Disclosure Energy Benchmarking and Disclosure Energy benchmarking and disclosure is a market-based policy tool used to increase building energy performance awareness and transparency among key stakeholders and create demand for energy efficiency improvements. Such improvements may be offered through voluntary programs or take the form of mandated policies for private and/or public sector buildings. It represents an effort by policymakers to overcome barriers that prevent the

  7. Energy Benchmarking, Rating, and Disclosure for Local Governments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Local Governments Energy Benchmarking, Rating, and Disclosure for Local Governments Existing Commercial Buildings Working Group fact sheet about energy benchmarking. Energy Benchmarking, Rating, and Disclosure for Local Governments More Documents & Publications Energy Benchmarking, Rating, and Disclosure for State

  8. Energy Benchmarking, Rating, and Disclosure for State Governments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy State Governments Energy Benchmarking, Rating, and Disclosure for State Governments Existing Commercial Buildings Working Group fact sheet about energy benchmarking for state governments. Energy Benchmarking, Rating, and Disclosure for State Governments More Documents & Publications Energy Benchmarking, Rating, and Disclosure for Local

  9. Peer Exchange Call Series: Guide for Benchmarking Residential Program

    Energy Savers [EERE]

    Progress with Examples | Department of Energy Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples Better Buildings Residential Network Peer Exchange Call Series: Guide for Benchmarking Residential Program Progress with Examples. PDF icon Guide for Benchmarking Residential Program Progress with Examples More Documents & Publications Optional Residential

  10. Monte Carlo Benchmark

    Energy Science and Technology Software Center (OSTI)

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  11. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  12. Commercial Buildings Integration Program Logic Model

    Energy Savers [EERE]

    Array of building stakeholders use building energy performance data & tools to incorporate energy efficiency into appraisal, underwriting, & other financial transactions The Commercial Integration Program accelerates the adoption of energy saving technologies and solutions in existing and new commercial buildings of all types by reducing specific technical and market barriers to spur investment in building energy performance. External Influences: DOE budget, Construction industry, Energy

  13. DOE TAP Webinar: Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking Journey

    Broader source: Energy.gov [DOE]

    A growing number of local governments and states are collecting building benchmarking data from thousands of public and private building owners. Data cleansing is a critical step prior to analysis...

  14. Concrete Model Descriptions and Summary of Benchmark Studies for Blast Effects Simulations

    SciTech Connect (OSTI)

    Noble, C; Kokko, E; Darnell, I; Dunn, T; Hagler, L; Leininger, L

    2005-07-21

    Concrete is perhaps one of the most widely used construction materials in the world. Engineers use it to build massive concrete dams, concrete waterways, highways, bridges, and even nuclear reactors. The advantages of using concrete is that it can be cast into any desired shape, it is durable, and very economical compared to structural steel. The disadvantages are its low tensile strength, low ductility, and low strength-to-weight ratio. Concrete is a composite material that consists of a coarse granular material, or aggregate, embedded in a hard matrix of material, or cement, which fills the gaps between the aggregates and binds them together. Concrete properties, however, vary widely. The properties depend on the choice of materials used and the proportions for a particular application, as well as differences in fabrication techniques. Table 1 provides a listing of typical engineering properties for structural concrete. Properties also depend on the level of concrete confinement, or hydrostatic pressure, the material is being subjected to. In general, concrete is rarely subjected to a single axial stress. The material may experience a combination of stresses all acting simultaneously. The behavior of concrete under these combined stresses are, however, extremely difficult to characterize. In addition to the type of loading, one must also consider the stress history of the material. Failure is determined not only by the ultimate stresses, but also by the rate of loading and the order in which these stresses were applied. The concrete model described herein accounts for this complex behavior of concrete. It was developed by Javier Malvar, Jim Wesevich, and John Crawford of Karagozian and Case, and Don Simon of Logicon RDA in support of the Defense Threat Reduction Agency's programs. The model is an enhanced version of the Concrete/Geological Material Model 16 in the Lagrangian finite element code DYNA3D. The modifications that were made to the original model ensured that the material response followed experimental observations for standard uniaxial, biaxial, and triaxial tests for both tension and compression type loading. A disadvantage of using this material model, however, is the overwhelming amount of input that is required from the user. Therefore, the goal of this report is to provide future users with the tools necessary for successfully using this model.

  15. Better Buildings Neighborhood Program Business Models Guide: Executive Summary

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  16. Better Buildings Neighborhood Program: Business Models and Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin 5102012 3 Better Buildings Business Model Effort 5102012 4 5 DRAFT - Not for ... * Contractor Training and Management for Utility Home Performance Program ...

  17. Better Buildings Neighborhood Program Business Models Guide: Introduction

    Broader source: Energy.gov [DOE]

    Uses lessons learned from Better Buildings grantees, existing data, and private sector insights to highlight business models that can help develop a sustainable residential energy efficiency market.

  18. Building America Top Innovations Hall of Fame Profile … Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot ...

  19. The BEAM Project: Building Efficient Architectural Models

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This activity allows students the opportunity to explore materials used in architectural engineering and gain an understanding of their insolating properties. Students will research, design, build, test and improve a structure as to achieve the highest energy efficiency possible. Structures will be tested outside on a sunny day for eight hours with temperature changes being recorded each hour. Students will gain an understanding of how the combination of building location and orientation along with building design and materials can greatly affect the energy efficiency of a building.

  20. State and Local Energy Benchmarking and Disclosure Policy | Department of

    Energy Savers [EERE]

    Energy State and Local Energy Benchmarking and Disclosure Policy State and Local Energy Benchmarking and Disclosure Policy State and local governments are expanding the practice of benchmarking energy use beyond their own facilities to include nongovernment buildings. Benchmarking and disclosure is a market-based policy tool to increase building energy performance awareness among key stakeholders and create demand for energy efficiency improvements. It represents an effort by policymakers to

  1. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Conclusion, Summary of HVAC Contractor Insights.

  2. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  3. Building Component Library: An Online Repository to Facilitate Building Energy Model Creation: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Component Library: An Online Repository to Facilitate Building Energy Model Creation Preprint Katherine Fleming, Nicholas Long, and Alex Swindler To be presented at the ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, California August 12-17, 2012 Conference Paper NREL/CP-5500-54710 May 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No.

  4. Building Energy Model Development for Retrofit Homes

    SciTech Connect (OSTI)

    Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

    2012-09-30

    Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

  5. City and State Partners Announced in the Better Buildings SEED...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manage incoming building energy data for their second benchmarking compliance deadline. ... Montgomery County, Maryland will help implement their Building Energy Benchmarking Law and ...

  6. Algebraic Multigrid Benchmark

    Energy Science and Technology Software Center (OSTI)

    2013-05-06

    AMG2013 is a parallel algebraic multigrid solver for linear systems arising from problems on unstructured grids. It has been derived directly from the Boomer AMG solver in the hypre library, a large linear solvers library that is being developed in the Center for Applied Scientific Computing (CASC) at LLNL. The driver provided in the benchmark can build various test problems. The default problem is a Laplace type problem on an unstructured domain with various jumpsmore » and an anisotropy in one part.« less

  7. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    SciTech Connect (OSTI)

    Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

  8. Building Energy Codes Program Logic Model

    Energy Savers [EERE]

    provide funding to help measure & improve code compliance The Building Energy Codes Program aims to "lock in" savings from energy codes by participating in code development processes and supporting local and state governments in the adoption and implementation of progressively more advanced building energy codes across the country. External Influences: DOE budget, Construction industry, Real estate market, State/local policies & budget Objectives Activities / Partners Outputs

  9. Introduction to Benchmarking: Starting a Benchmarking Plan

    Broader source: Energy.gov [DOE]

    Presentation for the Introduction to Benchmarking: Starting a Benchmarking Plan webinar, presented on February 21, 2013 as part of the U.S. Department of Energy's Technical Assistance Program (TAP).

  10. Benchmarking & Workload Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC-8 Benchmarks NERSC-6/7 Benchmarks NERSC-5 Benchmarks Application Readiness Across DOE Labs Data Analytics Energy Aware Computing Exascale Computing Partnerships Shifter: User Defined Images Archive APEX Home » R & D » Benchmarking & Workload Characterization Benchmarking & Workload Characterization NERSC assess available HPC system solutions using a combination of application benchmarks and microbenchmarks. By understanding the requirements of the NERSC workload we drive

  11. Lessons Learned: Measuring Program Outcomes and Using Benchmarks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learned presentation More Documents & Publications Better Buildings Residential Network Orientation How Can the Network Meet Your Needs? Optional Residential Program Benchmarking

  12. Characterizing Indoor Airflow and Pollutant Transport using Simulation Modeling for Prototypical Buildings. I. Office Buildings

    SciTech Connect (OSTI)

    Sohn, M.D.; Daisey, J.M.; Feustel, H.E.

    1999-06-01

    This paper describes the first efforts at developing a set of prototypical buildings defined to capture the key features affecting airflow and pollutant transport in buildings. These buildings will be used to model airflow and pollutant transport for emergency response scenarios when limited site-specific information is available and immediate decisions must be made, and to better understand key features of buildings controlling occupant exposures to indoor pollutant sources. This paper presents an example of this approach for a prototypical intermediate-sized, open style, commercial building. Interzonal transport due to a short-term source release, e.g., accidental chemical spill, in the bottom and the upper floors is predicted and corresponding HVAC system operation effects and potential responses are considered. Three-hour average exposure estimates are used to compare effects of source location and HVAC operation.

  13. Residential Buildings Integration Program Logic Model

    Energy Savers [EERE]

    widely promote value of energy efficiency in products, services, & typical market transactions with homeowners The Residential Integration Program accelerates energy improvements in existing and new residential buildings by reducing technical and market barriers to spur investment and achieve high performance homes. External Influences: DOE budget, Construction industry, Energy prices, Real estate market, Market incentives, State/local policies, Regulation Objectives Activities / Partners

  14. Energy Savings Modeling of Standard Commercial Building Re-tuning Measures: Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2012-06-01

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BAS's capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This report investigates the energy savings potential of several common HVAC system retuning measures on a typical large office building prototype model, using the Department of Energy's building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated - each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All of these measures and combinations were simulated in 16 cities representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the retuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  15. Energy Benchmarking, Rating, and Disclosure for Regulators of Ratepayer-Funded Programs

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides information on how supporting access to building benchmarking data can help utilities increase efficiency and drive down energy demand.

  16. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model Introduction.

  17. Comparison of Homogeneous and Heterogeneous CFD Fuel Models for Phase I of the IAEA CRP on HTR Uncertainties Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom; Su-Jong Yoon

    2014-04-01

    Computational Fluid Dynamics (CFD) evaluation of homogeneous and heterogeneous fuel models was performed as part of the Phase I calculations of the International Atomic Energy Agency (IAEA) Coordinate Research Program (CRP) on High Temperature Reactor (HTR) Uncertainties in Modeling (UAM). This study was focused on the nominal localized stand-alone fuel thermal response, as defined in Ex. I-3 and I-4 of the HTR UAM. The aim of the stand-alone thermal unit-cell simulation is to isolate the effect of material and boundary input uncertainties on a very simplified problem, before propagation of these uncertainties are performed in subsequent coupled neutronics/thermal fluids phases on the benchmark. In many of the previous studies for high temperature gas cooled reactors, the volume-averaged homogeneous mixture model of a single fuel compact has been applied. In the homogeneous model, the Tristructural Isotropic (TRISO) fuel particles in the fuel compact were not modeled directly and an effective thermal conductivity was employed for the thermo-physical properties of the fuel compact. On the contrary, in the heterogeneous model, the uranium carbide (UCO), inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers of the TRISO fuel particles are explicitly modeled. The fuel compact is modeled as a heterogeneous mixture of TRISO fuel kernels embedded in H-451 matrix graphite. In this study, a steady-state and transient CFD simulations were performed with both homogeneous and heterogeneous models to compare the thermal characteristics. The nominal values of the input parameters are used for this CFD analysis. In a future study, the effects of input uncertainties in the material properties and boundary parameters will be investigated and reported.

  18. Property:Buildings/ModelName | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsModelName" Showing 12 pages using this property. G General Merchandise 2009 TSD...

  19. Property:Buildings/ModelType | Open Energy Information

    Open Energy Info (EERE)

    Minimum Cost Max Tech PV Takeoff Cost Neutral 30% Energy Savings 50% Energy Savings 70% Energy Savings Other Pages using the property "BuildingsModelType" Showing 12 pages using...

  20. Property:Buildings/ModelTargetType | Open Energy Information

    Open Energy Info (EERE)

    are: ASHRAE 90.1 2007 ASHRAE 90.1 2004 ASHRAE 189.1 LEED Pages using the property "BuildingsModelTargetType" Showing 12 pages using this property. G General Merchandise...

  1. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "BuildingsModelClimateZone" Showing 12 pages using this property. G General Merchandise...

  2. Property:Buildings/ModelYear | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Date. Pages using the property "BuildingsModelYear" Showing 12 pages using this property. G General Merchandise 2009 TSD...

  3. NERSC-8 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Benchmarks NERSC-8 Benchmarks The NERSC-8 micro- and application benchmarks that were used in the acquisition process that will be the NERSC Cray XC40 ("Cori") system. All of the benchmarks used for this procurement may be found here Last edited: 2016-02-01 08:06:19

  4. STEP Program Benchmark Report

    Broader source: Energy.gov [DOE]

    STEP Program Benchmark Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  5. Model Car Race, Building Competition Illuminate Solar Energy - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Model Car Race, Building Competition Illuminate Solar Energy Golden, CO. - Media Advisory Attention: Photo Editors / Assignment Editors May 7, 2003 Tapping the power of the sun will be the theme of the U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) Junior Solar Sprint Solarbrate event on May 10. Visitors will see participating students race solar cars and build solar models using K'NEX construction toys. Sponsored by NREL, Kaiser-Hill, BP America,

  6. Guide to Benchmarking Residential Program Progress Webcast Slides |

    Office of Environmental Management (EM)

    Department of Energy to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential Program Progress - Call for Public Review", a webcast from the U.S. Department of Energy's (DOE's) Better Buildings Neighborhood Program, presented by Dale Hoffmeyer and Cheryl Jenkins. PDF icon Guide to Benchmarking Residential Program Progress Webcast Slides More Documents &

  7. Designing a Benchmarking Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing a Benchmarking Plan 1 DRAFT -- February 2013 DESIGNING A BENCHMARKING PLAN Introduction This guide provides a framework for developing an internal benchmarking plan. The outline walks through the various stages of the benchmarking planning process, providing tips and resources to help support organizations at each stage. Not all organizations will choose to implement each stage; however, each section is useful for consideration. 1. Establish the Goal for Benchmarking 2. Secure Buy-in

  8. Modeling and Analysis of Solar Radiation Potentials on Building Rooftops

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Kodysh, Jeffrey B; Bhaduri, Budhendra L

    2012-01-01

    The active application of photovoltaic for electricity generation could effectively transform neighborhoods and commercial districts into small, localized power plants. This application, however, relies heavily on an accurate estimation of the amount of solar radiation that is available on individual building rooftops. While many solar energy maps exist at higher spatial resolution for concentrated solar energy applications, the data from these maps are not suitable for roof-mounted photovoltaic for several reasons, including lack of data at the appropriate spatial resolution and lack of integration of building-specific characteristics into the models used to generate the maps. To address this problem, we have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic systems. The resulting data has helped us to identify the so-called solar panel sweet spots on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  9. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  10. Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing

    SciTech Connect (OSTI)

    Price, Phillip N.; Granderson, Jessica; Sohn, Michael; Addy, Nathan; Jump, David

    2013-09-01

    The overarching goal of this work is to advance the capabilities of technology evaluators in evaluating the building-level baseline modeling capabilities of Energy Management and Information System (EMIS) software. Through their customer engagement platforms and products, EMIS software products have the potential to produce whole-building energy savings through multiple strategies: building system operation improvements, equipment efficiency upgrades and replacements, and inducement of behavioral change among the occupants and operations personnel. Some offerings may also automate the quantification of whole-building energy savings, relative to a baseline period, using empirical models that relate energy consumption to key influencing parameters, such as ambient weather conditions and building operation schedule. These automated baseline models can be used to streamline the whole-building measurement and verification (M&V) process, and therefore are of critical importance in the context of multi-measure whole-building focused utility efficiency programs. This report documents the findings of a study that was conducted to begin answering critical questions regarding quantification of savings at the whole-building level, and the use of automated and commercial software tools. To evaluate the modeling capabilities of EMIS software particular to the use case of whole-building savings estimation, four research questions were addressed: 1. What is a general methodology that can be used to evaluate baseline model performance, both in terms of a) overall robustness, and b) relative to other models? 2. How can that general methodology be applied to evaluate proprietary models that are embedded in commercial EMIS tools? How might one handle practical issues associated with data security, intellectual property, appropriate testing blinds, and large data sets? 3. How can buildings be pre-screened to identify those that are the most model-predictable, and therefore those whose savings can be calculated with least error? 4. What is the state of public domain models, that is, how well do they perform, and what are the associated implications for whole-building measurement and verification (M&V)? Additional project objectives that were addressed as part of this study include: (1) clarification of the use cases and conditions for baseline modeling performance metrics, benchmarks and evaluation criteria, (2) providing guidance for determining customer suitability for baseline modeling, (3) describing the portfolio level effects of baseline model estimation errors, (4) informing PG&Es development of EMIS technology product specifications, and (5) providing the analytical foundation for future studies about baseline modeling and saving effects of EMIS technologies. A final objective of this project was to demonstrate the application of the methodology, performance metrics, and test protocols with participating EMIS product vendors.

  11. Duct thermal performance models for large commercial buildings

    SciTech Connect (OSTI)

    Wray, Craig P.

    2003-10-01

    Despite the potential for significant energy savings by reducing duct leakage or other thermal losses from duct systems in large commercial buildings, California Title 24 has no provisions to credit energy-efficient duct systems in these buildings. A substantial reason is the lack of readily available simulation tools to demonstrate the energy-saving benefits associated with efficient duct systems in large commercial buildings. The overall goal of the Efficient Distribution Systems (EDS) project within the PIER High Performance Commercial Building Systems Program is to bridge the gaps in current duct thermal performance modeling capabilities, and to expand our understanding of duct thermal performance in California large commercial buildings. As steps toward this goal, our strategy in the EDS project involves two parts: (1) developing a whole-building energy simulation approach for analyzing duct thermal performance in large commercial buildings, and (2) using the tool to identify the energy impacts of duct leakage in California large commercial buildings, in support of future recommendations to address duct performance in the Title 24 Energy Efficiency Standards for Nonresidential Buildings. The specific technical objectives for the EDS project were to: (1) Identify a near-term whole-building energy simulation approach that can be used in the impacts analysis task of this project (see Objective 3), with little or no modification. A secondary objective is to recommend how to proceed with long-term development of an improved compliance tool for Title 24 that addresses duct thermal performance. (2) Develop an Alternative Calculation Method (ACM) change proposal to include a new metric for thermal distribution system efficiency in the reporting requirements for the 2005 Title 24 Standards. The metric will facilitate future comparisons of different system types using a common ''yardstick''. (3) Using the selected near-term simulation approach, assess the impacts of duct system improvements in California large commercial buildings, over a range of building vintages and climates. This assessment will provide a solid foundation for future efforts that address the energy efficiency of large commercial duct systems in Title 24. This report describes our work to address Objective 1, which includes a review of past modeling efforts related to duct thermal performance, and recommends near- and long-term modeling approaches for analyzing duct thermal performance in large commercial buildings.

  12. Building Energy Modeling (BEM) Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC fault diagnosis, dynamic control & demand response * QCoefficient model-predictive control Mission: increase effective application of advanced BEM 3 DOE's Role BEM ...

  13. Building Energy Modeling Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    User-Oriented Modeling Tools for Advanced Hybrid and Climate-Appropriate Rooftop Air Conditioners Center-Led Projects CERC: Human Behavior, Standards and Tools to Improve Design & ...

  14. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energys comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  15. NREL's Building Component Library for Use with Energy Models

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Building Component Library (BCL) is the U.S. Department of Energy’s comprehensive online searchable library of energy modeling building blocks and descriptive metadata. Novice users and seasoned practitioners can use the freely available and uniquely identifiable components to create energy models and cite the sources of input data, which will increase the credibility and reproducibility of their simulations. The BCL contains components which are the building blocks of an energy model. They can represent physical characteristics of the building such as roofs, walls, and windows, or can refer to related operational information such as occupancy and equipment schedules and weather information. Each component is identified through a set of attributes that are specific to its type, as well as other metadata such as provenance information and associated files. The BCL also contains energy conservation measures (ECM), referred to as measures, which describe a change to a building and its associated model. For the BCL, this description attempts to define a measure for reproducible application, either to compare it to a baseline model, to estimate potential energy savings, or to examine the effects of a particular implementation. The BCL currently contains more than 30,000 components and measures. A faceted search mechanism has been implemented on the BCL that allows users to filter through the search results using various facets. Facet categories include component and measure types, data source, and energy modeling software type. All attributes of a component or measure can also be used to filter the results.

  16. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth's weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  17. A toolkit for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1993-03-01

    An earth system model is a computer code designed to simulate the interrelated processes that determine the earth`s weather and climate, such as atmospheric circulation, atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. I propose a toolkit that would support a modular, or object-oriented, approach to the implementation of such models.

  18. Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Cleansing: A Rite of Passage Along the Benchmarking Journey Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking Journey Hosted by the Technical Assistance ...

  19. Solutions of the two-dimensional Hubbard model: Benchmarks and results from a wide range of numerical algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeBlanc, J. P. F.; Antipov, Andrey E.; Becca, Federico; Bulik, Ireneusz W.; Chan, Garnet Kin-Lic; Chung, Chia -Min; Deng, Youjin; Ferrero, Michel; Henderson, Thomas M.; Jiménez-Hoyos, Carlos A.; et al

    2015-12-14

    Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification ofmore » uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Furthermore, cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.« less

  20. Understanding Building Infrastructure and Building Operation through DOE Asset Score Model: Lessons Learned from a Pilot Project

    SciTech Connect (OSTI)

    Wang, Na; Goel, Supriya; Gorrissen, Willy J.; Makhmalbaf, Atefe

    2013-06-24

    The U.S. Department of Energy (DOE) is developing a national voluntary energy asset score system to help building owners to evaluate the as-built physical characteristics (including building envelope, the mechanical and electrical systems) and overall building energy efficiency, independent of occupancy and operational choices. The energy asset score breaks down building energy use information by simulating building performance under typical operating and occupancy conditions for a given use type. A web-based modeling tool, the energy asset score tool facilitates the implementation of the asset score system. The tool consists of a simplified user interface built on a centralized simulation engine (EnergyPlus). It is intended to reduce both the implementation cost for the users and increase modeling standardization compared with an approach that requires users to build their own energy models. A pilot project with forty-two buildings (consisting mostly offices and schools) was conducted in 2012. This paper reports the findings. Participants were asked to collect a minimum set of building data and enter it into the asset score tool. Participants also provided their utility bills, existing ENERGY STAR scores, and previous energy audit/modeling results if available. The results from the asset score tool were compared with the building energy use data provided by the pilot participants. Three comparisons were performed. First, the actual building energy use, either from the utility bills or via ENERGY STAR Portfolio Manager, was compared with the modeled energy use. It was intended to examine how well the energy asset score represents a buildings system efficiencies, and how well it is correlated to a buildings actual energy consumption. Second, calibrated building energy models (where they exist) were used to examine any discrepancies between the asset score model and the pilot participant buildings [known] energy use pattern. This comparison examined the end use breakdowns and more detailed time series data. Third, ASHRAE 90.1 prototype buildings were also used as an industry standard modeling approach to test the accuracy level of the asset score tool. Our analysis showed that the asset score tool, which uses simplified building simulation, could provide results comparable to a more detailed energy model. The buildings as-built efficiency can be reflected in the energy asset score. An analysis between the modeled energy use through the asset score tool and the actual energy use from the utility bills can further inform building owners about the effectiveness of their buildings operation and maintenance.

  1. NERSC-8 / Trinity Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benchmarks NERSC-8 / Trinity Benchmarks These benchmark programs are for use as part of the joint NERSC / ACES NERSC-8/Trinity system procurement. There are two basic kinds of benchmarks: MiniApplications: miniFE, miniGhost, AMG, UMT, GTC, MILC, SNAP, and miniDFT MicroBenchmarks: Pynamic, STREAM, OMB, SMB, ZiaTest, IOR, Metabench, PSNAP, FSTest, mpimemu, and UPC_FT The SSP is an aggregate measure based on selected runs of the MiniApplications. The benchmark run rules are available here (PDF,

  2. BTO Publishes Two Important Building Energy Modeling Documents

    Broader source: Energy.gov [DOE]

    This week, BTO published two important and related documents regarding its Building Energy Modeling (BEM) program. The first is the final revision of the BTO multi-year program plan (MYPP). In conjunction with the MYPP, BTO also published a set of program logic models that trace BTO activities to outputs and market outcomes.

  3. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Conclusion

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Conclusion, Summary of Non-utility Program Administrator Insights.

  4. Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Market

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Market.

  5. Building Energy Modeling Library- 2013 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

  6. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance Policy Interpretation providing a certification pathway for Commercial Buildings May 7, 2015 Question: As a hotel or university campus, can I use the ...

  7. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  8. Research on Very Low-Energy Building Operations and Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a national building energy database, benchmarking tool, and policy framework in China. ... in Chinese policy, such as inclusion of benchmarking in China's 13th Five-Year Plan. ...

  9. SEE Action Series: Local Strategies for Whole-Building Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings Energy Benchmarking, Rating, and Disclosure for Local Governments Energy Performance Benchmarking ...

  10. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    participate in a benchmarking and disclosure program. Guide to Energy Efficiency Competitions for Buildings & Plants More Documents & Publications Benchmarking Outreach and Data ...

  11. Enhancements to ASHRAE Standard 90.1 Prototype Building Models

    SciTech Connect (OSTI)

    Goel, Supriya; Athalye, Rahul A.; Wang, Weimin; Zhang, Jian; Rosenberg, Michael I.; Xie, YuLong; Hart, Philip R.; Mendon, Vrushali V.

    2014-04-16

    This report focuses on enhancements to prototype building models used to determine the energy impact of various versions of ANSI/ASHRAE/IES Standard 90.1. Since the last publication of the prototype building models, PNNL has made numerous enhancements to the original prototype models compliant with the 2004, 2007, and 2010 editions of Standard 90.1. Those enhancements are described here and were made for several reasons: (1) to change or improve prototype design assumptions; (2) to improve the simulation accuracy; (3) to improve the simulation infrastructure; and (4) to add additional detail to the models needed to capture certain energy impacts from Standard 90.1 improvements. These enhancements impact simulated prototype energy use, and consequently impact the savings estimated from edition to edition of Standard 90.1.

  12. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for compilation. This is a report describing the details of the selected Benchmarks and results from various transport codes.

  13. Building Energy Simulation & Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulation & Modeling Building Energy Simulation & Modeling Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partners: -- International Institute of Information Technology, Hyderabad - India -- Center for Environmental Planning and Technology - India -- University of California, Berkeley -- HOK Architects - Washington, D.C. -- Autodesk - Mill Valley, CA -- Schneider Electric - Palatine, IL DOE Funding: $1,552,000 Cost Share: $1,100,000 Project Term: Oct. 2012 - Sept.

  14. Windows and Building Envelope Sub-Program Logic Model

    Energy Savers [EERE]

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  15. Building America Top Innovations 2012: Model Simulating Real Domestic Hot Water Use

    SciTech Connect (OSTI)

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  16. Model Simulating Real Domestic Hot Water Use- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes Building America research that is improving domestic hot water modeling capabilities to more effectively address one of the largest energy uses in residential buildings.

  17. Building Energy Transparency Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transparency Report Building Energy Transparency Report This report discusses best practices in implementing benchmarking policies. It includes policy profiles from several cities and states. PDF icon Building Energy Transparency Report More Documents & Publications New York City Benchmarking and Transparency Policy Impact Evaluation Report Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language Building Energy Rating and Disclosure Policies

  18. Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance® Policy Interpretation providing a certification pathway for Commercial Buildings May 7, 2015 Question: As a hotel or university campus, can I use the supporting standards and protocols developed for SEP- Industry to apply for SEP certification? Response: The SEP Administrator is providing this interpretation regarding the types of facilities that can be certified to Superior Energy Performance (SEP). Background: A number of owners/operators of buildings and complex

  19. Molecular replacement and model-building using distant homology models as

    Office of Scientific and Technical Information (OSTI)

    templates (Technical Report) | SciTech Connect Molecular replacement and model-building using distant homology models as templates Citation Details In-Document Search Title: Molecular replacement and model-building using distant homology models as templates Authors: Terwilliger, Thomas C. [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2013-11-26 OSTI Identifier: 1107986 Report Number(s): LA-UR-13-29025 DOE Contract Number:

  20. Building 235-F Goldsim Fate And Transport Model

    SciTech Connect (OSTI)

    Taylor, G. A.; Phifer, M. A.

    2012-09-14

    Savannah River National Laboratory (SRNL) personnel, at the request of Area Completion Projects (ACP), evaluated In-Situ Disposal (ISD) alternatives that are under consideration for deactivation and decommissioning (D&D) of Building 235-F and the Building 294-2F Sand Filter. SRNL personnel developed and used a GoldSim fate and transport model, which is consistent with Musall 2012, to evaluate relative to groundwater protection, ISD alternatives that involve either source removal and/or the grouting of portions or all of 235-F. This evaluation was conducted through the development and use of a Building 235-F GoldSim fate and transport model. The model simulates contaminant release from four 235-F process areas and the 294-2F Sand Filter. In addition, it simulates the fate and transport through the vadose zone, the Upper Three Runs (UTR) aquifer, and the Upper Three Runs (UTR) creek. The model is designed as a stochastic model, and as such it can provide both deterministic and stochastic (probabilistic) results. The results show that the median radium activity concentrations exceed the 5 ?Ci/L radium MCL at the edge of the building for all ISD alternatives after 10,000 years, except those with a sufficient amount of inventory removed. A very interesting result was that grouting was shown to basically have minimal effect on the radium activity concentration. During the first 1,000 years grouting may have some small positive benefit relative to radium, however after that it may have a slightly deleterious effect. The Pb-210 results, relative to its 0.06 ?Ci/L PRG, are essentially identical to the radium results, but the Pb-210 results exhibit a lesser degree of exceedance. In summary, some level of inventory removal will be required to ensure that groundwater standards are met.

  1. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect (OSTI)

    Ward, Richard C; Sjoreen, Andrea L; Eckerman, Keith F

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7 Radiation dose was calculated assuming complete release of the building inventory as information was lacking regarding the portion of the building inventory expected to be released. Thus the results are derived using an extremely conservative release as documented in the Preliminary Hazard Screening report.7 To more closely approximate the result of a release, one must estimate the fraction of the total inventory released and multiply the results described above by that fraction. An example of how this calculation is accomplished is provided. Should an actual uncontrolled release occur, the results of this modeling effort could only be used to establish a rough order-of-magnitude for the event.

  2. Guide for Benchmarking Residential Energy Efficiency Program Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Program Benchmarking Guide 1 DRAFT - November 14, 2014 Guide for Benchmarking Residential Energy Efficiency Program Progress Prepared for the Building Technologies Office Energy Efficiency and Renewable Energy U.S. Department of Energy by Vermont Energy Investment Corporation Under contract to Eastern Research Group REVIEW OPPORTUNITY Home energy upgrade programs are being sought to review this draft Guide for Benchmarking Residential Energy Efficiency Program Progress. Your

  3. Benchmarking Database - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ©bobpaz.com0121.JPG Benchmarking Database Research Why Solar Fuels Goals & Objectives Thrust 1 Thrust 2 Thrust 3 Thrust 4 Publications Research Highlights Videos Innovations User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device

  4. Benchmarks & Workflows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » R & D » APEX » Benchmarks & Workflows Benchmarks & Workflows For the Crossroads/NERSC-9 procurement: NERSC conducted a workload analysis on the Hopper and Edison systems analyzing algorithmic diversity, MPI and OpenMP concurrency, memory utilization, and I/O and storage needs. Benchmarks will be used to measure the sustained performance of proposed systems. Example workflows are being provided to give prospective offerors a better understanding of the current I/O usage

  5. Energy Efficiency Program for State Government Buildings

    Broader source: Energy.gov [DOE]

    The High-Performance Buildings Advisory Committee assisted the Finance and Administration Cabinet with setting out the standards and benchmarks by which to evaluate buildings. Leadership in Energ...

  6. NERSC-5 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Analysis Benchmark MILC: MIMD Lattice Computation PARATEC: Parallel Total Energy Code PMEMD: Particle Mesh Ewald Molecular Dynamics Last edited: 2015-01-06 15:38:33...

  7. TAP Webinar: Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking Journey

    Broader source: Energy.gov [DOE]

    This webinar will train analysts, energy planners and community officials on the principles used for identifying potential problems associated with benchmarking data, and a methodology for cleaning the data prior to analysis. This training session is intended for cities, communities, schools, and states that have implemented an internal or community-wide building benchmarking program and are working to better understand energy use trends and design targeted and effective energy efficiency programs.

  8. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-01-01

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  9. FORTRAN M as a language for building earth system models

    SciTech Connect (OSTI)

    Foster, I.

    1992-12-31

    FORTRAN M is a small set of extensions to FORTRAN 77 that supports a modular or object-oriented approach to the development of parallel programs. In this paper, I discuss the use of FORTRAN M as a tool for building earth system models on massively parallel computers. I hypothesize that the use of FORTRAN M has software engineering advantages and outline experiments that we are conducting to investigate this hypothesis.

  10. PyMPI Dynamic Benchmark

    Energy Science and Technology Software Center (OSTI)

    2007-02-16

    Pynamic is a benchmark designed to test a system's ability to handle the Dynamic Linking and Loading (DLL) requirements of Python-based scientific applications. This benchmark is developed to add a workload to our testing environment, a workload that represents a newly emerging class of DLL behaviors. Pynamic buildins on pyMPI, and MPI extension to Python C-extension dummy codes and a glue layer that facilitates linking and loading of the generated dynamic modules into the resultingmore » pyMPI. Pynamic is configurable, enabling modeling the static properties of a specific code as described in section 5. It does not, however, model any significant computationss of the target and hence, it is not subjected to the same level of control as the target code. In fact, HPC computer vendors and tool developers will be encouraged to add it to their tesitn suite once the code release is completed. an ability to produce and run this benchmark is an effective test for valifating the capability of a compiler and linker/loader as well as an OS kernel and other runtime system of HPC computer vendors. In addition, the benchmark is designed as a test case for stressing code development tools. Though Python has recently gained popularity in the HPC community, it heavy DLL operations have hindered certain HPC code development tools, notably parallel debuggers, from performing optimally.« less

  11. Contam airflow models of three large buildings: Model descriptions and validation

    SciTech Connect (OSTI)

    Black, Douglas R.; Price, Phillip N.

    2009-09-30

    Airflow and pollutant transport models are useful for several reasons, including protection from or response to biological terrorism. In recent years they have been used for deciding how many biological agent samplers are needed in a given building to detect the release of an agent; to figure out where those samplers should be located; to predict the number of people at risk in the event of a release of a given size and location; to devise response strategies in the event of a release; to determine optimal trade-offs between sampler characteristics (such as detection limit and response time); and so on. For some of these purposes it is necessary to model a specific building of interest: if you are trying to determine optimal sampling locations, you must have a model of your building and not some different building. But for many purposes generic or 'prototypical' building models would suffice. For example, for determining trade-offs between sampler characteristics, results from one building will carry over other, similar buildings. Prototypical building models are also useful for comparing or testing different algorithms or computational pproaches: different researchers can use the same models, thus allowing direct comparison of results in a way that is not otherwise possible. This document discusses prototypical building models developed by the Airflow and Pollutant Transport Group at Lawrence Berkeley National Laboratory. The models are implemented in the Contam v2.4c modeling program, available from the National Institutes for Standards and Technology. We present Contam airflow models of three virtual buildings: a convention center, an airport terminal, and a multi-story office building. All of the models are based to some extent on specific real buildings. Our goal is to produce models that are realistic, in terms of approximate magnitudes, directions, and speeds of airflow and pollutant transport. The three models vary substantially in detail. The airport model is the simplest; the onvention center model is more detailed; and the large office building model is quite complicated. We give several simplified floor plans in this document, to explain basic features of the buildings. The actual models are somewhat more complicated; for instance, spaces that are represented as rectangles in this document sometimes have more complicated shapes in the models. (However, note that the shape of a zone is irrelevant in Contam). Consult the Contam models themselves for detailed floor plans. Each building model is provided with three ventilation conditions, representing mechanical systems in which 20%, 50%, or 80% of the building air is recirculated and the rest is provided from outdoors. Please see the section on 'Use of the models' for important information about issues to consider if you wish to modify the models to provide no mechanical ventilation or eliminate provision of outdoor air.

  12. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. Scalable Tuning of Building Models to Hourly Data

    SciTech Connect (OSTI)

    Garrett, Aaron; New, Joshua Ryan

    2015-01-01

    Energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Manual tuning requires a skilled professional, is prohibitively expensive for small projects, imperfect, non-repeatable, non-transferable, and not scalable to the dozens of sensor channels that smart meters, smart appliances, and cheap/ubiquitous sensors are beginning to make available today. A scalable, automated methodology is needed to quickly and intelligently calibrate building energy models to all available data, increase the usefulness of those models, and facilitate speed-and-scale penetration of simulation-based capabilities into the marketplace for actualized energy savings. The ``Autotune'' project is a novel, model-agnostic methodology which leverages supercomputing, large simulation ensembles, and big data mining with multiple machine learning algorithms to allow automatic calibration of simulations that match measured experimental data in a way that is deployable on commodity hardware. This paper shares several methodologies employed to reduce the combinatorial complexity to a computationally tractable search problem for hundreds of input parameters. Accuracy metrics are provided which quantify model error to measured data for either monthly or hourly electrical usage from a highly-instrumented, emulated-occupancy research home.

  14. Better Buildings Neighborhood Program Business Models Guide: Utility Program Administrator Introduction

    Broader source: Energy.gov [DOE]

    Introduction to the Utility Program Administrator Business Model, as posted on the Better Buildings Neighborhood Program website.

  15. Building.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plant in ITER refers to plant systems located outside the Tokamak Building. A thick wall of concrete surrounding the main tokamak cryostat and designed to absorb the bulk of any remaining radiation from the plasma or from activated components inside the cryostat. This shields the region outside so that it can be accessed after shutdown for major hands-on repairs. The structure surrounding the plasma in a fusion reactor, within which the fusion-produced neutrons are slowed down, heat is

  16. Functional Testing Protocols for Commercial Building Efficiency Baseline Modeling Software

    SciTech Connect (OSTI)

    Jump, David; Price, Phillip N.; Granderson, Jessica; Sohn, Michael

    2013-09-06

    This document describes procedures for testing and validating proprietary baseline energy modeling software accuracy in predicting energy use over the period of interest, such as a month or a year. The procedures are designed according to the methodology used for public domain baselining software in another LBNL report that was (like the present report) prepared for Pacific Gas and Electric Company: ?Commercial Building Energy Baseline Modeling Software: Performance Metrics and Method Testing with Open Source Models and Implications for Proprietary Software Testing Protocols? (referred to here as the ?Model Analysis Report?). The test procedure focuses on the quality of the software?s predictions rather than on the specific algorithms used to predict energy use. In this way the software vendor is not required to divulge or share proprietary information about how their software works, while enabling stakeholders to assess its performance.

  17. OpenStudio Enhancements for Whole-Building Daylighting, Airflow, and Energy Modeling Leveraging Interoperable Building Information Modeling Data- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: John Messner, the Pennsylvania State University Consortium for Building Energy Innovation Energy modeling often is inconsistently applied in the small- and medium-sized commercial building (SMSCB) market, in part because existing models are either too complex relative to the project size or because models are not interoperable with other retrofit design tools.

  18. Vehicle Technologies Office: Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling, Testing, Data & Results » Vehicle Technologies Office: Benchmarking Vehicle Technologies Office: Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development

  19. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom

    2014-04-01

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D ring model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

  20. NERSC-8 / Trinity Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computation. NPB UPC-FT This is the NAS Parallel Benchmark FFT program written in the UPC language. Pynamic Pynamic tests dynamic loading subsystem design and the ability to handle...

  1. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Environmental Management (EM)

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. February 19, 2016 Trimble's recent acquisition of Sefaira and its pairing with SketchUp is a good sign for the BEM industry. Image credit: Sefaira. DOE. A Good Sign for the Building Energy Modeling Industry If you are a BEM professional, know a BEM professional, or even follow one on LinkedIn or Twitter, you've

  2. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  3. Building Simulation Modelers are we big-data ready?

    SciTech Connect (OSTI)

    Sanyal, Jibonananda; New, Joshua Ryan

    2014-01-01

    Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical aspects of managing big data, the paper details design of experiments in anticipation of large volumes of data. The cost of re-reading output into an analysis program is elaborated and analysis techniques that perform analysis in-situ with the simulations as they are run are discussed. The paper concludes with an example and elaboration of the tipping point where it becomes more expensive to store the output than re-running a set of simulations.

  4. From the Building to the Grid: An Energy Revolution and Modeling Challenge;

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Proceedings (Technical Report) | SciTech Connect From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings Citation Details In-Document Search Title: From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings This report summarizes the workshop entitled: From the Building to the Grid: An Energy Revolution and Modeling Challenge. The first workshop was held May 1-2, 2012 on NREL's campus in Golden, Colorado.

  5. A Utility Regulator's Guide to Data Access for Commercial Building...

    Broader source: Energy.gov (indexed) [DOE]

    use data to help commercial customers manage energy costs through building energy benchmarking. A Utility Regulator's Guide to Data Access for Commercial Building Energy...

  6. Vol. 9: Building America Best Practices Series - Builders Challenge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    achieve homes that have whole house energy savings of 40% over the Building America benchmark. PDF icon 18899.pdf More Documents & Publications Vol. 9: Building America Best...

  7. Building America Case Study: Lancaster County Career and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America New Construction B10 Benchmark, DOE Zero Energy Ready Home (formerly Challenge Home) certifcation, and National Green Building Standard Gold-level certifcation. ...

  8. From the Building to the Grid: An Energy Revolution and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these questions) Is there value to integrating the existing models in building energy management systems with those of the grid? a. If so, what are the particular research...

  9. Better Buildings Neighborhood Program Business Models Guide: Utility Program Administrator Conclusion

    Broader source: Energy.gov [DOE]

    Conclusion of the Utility Program Administrator Business Model Guide, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  10. Tips for Planning, Building, and Testing a Model Car

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tips for Planning, Building, and Testing Your Lithium- Ion Battery Powered Car CONTENTS: Teacher Overview What Teachers Can Do To Help Student Design Plan ...

  11. Model Simulating Real Domestic Hot Water Use - Building America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestic hot water becomes an increasingly important energy use in high-performance homes. This Top Innovation describes Building America research by Alliance for ...

  12. Modeling and Simulation of Human Behavior in Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Private Offices * Assumed three lifework styles: Austerity, Norm, and Wasteful * ... Energy and Buildings, 2015. 6. S. D'Oca, T. Hong. Occupancy schedules learning process ...

  13. Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Journey | Department of Energy Data Cleansing: A Rite of Passage Along the Benchmarking Journey Benchmarking Data Cleansing: A Rite of Passage Along the Benchmarking Journey Hosted by the Technical Assistance Program (TAP), this webinar, held on April 30, 2015, trained analysts, energy planners, and community officials on the principles used for identifying potential problems associated with benchmarking data, and a methodology for cleaning the data prior to analysis. Transcript File

  14. Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.

    SciTech Connect (OSTI)

    Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

    2011-03-02

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU fuel to the use of UMo LEU fuel.

  15. Post Secondary Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG & SEP TEChniCal aSSiSTanCE ProGram Energy Service Company (ESCO) Benchmarking ... TEChniCal aSSiSTanCE ProGram - ESCo BEnChmarkinG ProjECT EERE Information Center ...

  16. Public Housing Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG & SEP TEChniCal aSSiSTanCE ProGram Energy Service Company (ESCO) Benchmarking ... TEChniCal aSSiSTanCE ProGram - ESCo BEnChmarkinG ProjECT EERE Information Center ...

  17. Monitoring and Benchmarking for Energy Information Systems | Department of

    Energy Savers [EERE]

    Energy Monitoring and Benchmarking for Energy Information Systems Monitoring and Benchmarking for Energy Information Systems Lead Performer: U.S. India Joint Center for Building Energy Research and Development (CBERD) Project Partners: -- Center for Environmental Planning and Technology (CEPT) - India -- Synpasense - Folsom, CA -- Schenider Electric - India -- Wipro Eco-energy - India DOE Funding: $750,000 Cost Share: $1,350,000 Project Term: Oct. 2012 - Sept. 2017 Project Objective The

  18. NERSC-6/7 Benchmarks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/7 Benchmarks NERSC-6/7 Benchmarks The NERSC-6/7 application benchmarks were used in the acquisition process that resulted in the NERSC Cray XE6 ("Hopper") system and the follow on Cray XC30 system ("Edison") . A technical report describing the benchmark programs used in the NERSC-6 acquisition and the science drivers behind them is available here. Last edited: 2016-02-01 08:06:3

  19. Benchmark Distribution & Run Rules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rules Benchmark Distribution & Run Rules Applications and micro-benchmarks for the Crossroads/NERSC-9 procurement. You can find more information by clicking on the header for each of the topics listed below. Change Log Change and update notes for the benchmark suite. Application Benchmarks The following applications will be used by the Sustained System Improvement metric in measuring the performance improvement of proposed systems relative to NERSC's Edison platform. General Run Rules

  20. Building Restoration Operations Optimization Model Beta Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2007-05-31

    The Building Restoration Operations Optimization Model (BROOM), developed by Sandia National Laboratories, is a software product designed to aid in the restoration of large facilities contaminated by a biological material. BROOM’s integrated data collection, data management, and visualization software improves the efficiency of cleanup operations, minimizes facility downtime, and provides a transparent basis for reopening the facility. Secure remote access to building floor plans Floor plan drawings and knowledge of the HVAC system are criticalmore » to the design and implementation of effective sampling plans. In large facilities, access to these data may be complicated by the sheer abundance and disorganized state they are often stored in. BROOM avoids potentially costly delays by providing a means of organizing and storing mechanical and floor plan drawings in a secure remote database that is easily accessed. Sampling design tools BROOM provides an array of tools to answer the question of where to sample and how many samples to take. In addition to simple judgmental and random sampling plans, the software includes two sophisticated methods of adaptively developing a sampling strategy. Both tools strive to choose sampling locations that best satisfy a specified objective (i.e. minimizing kriging variance) but use numerically different strategies to do so. Surface samples are collected early in the restoration process to characterize the extent of contamination and then again later to verify that the facility is safe to reenter. BROOM supports sample collection using a ruggedized PDA equipped with a barcode scanner and laser range finder. The PDA displays building floor drawings, sampling plans, and electronic forms for data entry. Barcodes are placed on sample containers for the purpose of tracking the specimen and linking acquisition data (i.e. location, surface type, texture) to laboratory results. Sample location is determined by activating the integrated laser range finder which uses the PDA drawings to accurately measure position relative to nearby walls or other interior structures. The PDA and desktop application exchange information over a secure wireless network, Through this network, the progress of sampling activities may be monitored in real-time. PDA-acquired data is ultimately transferred over the network to the desktop where it is stored permanently in the project database. Once in the database, the data may be viewed, analyzed, or reported from the desktop. Mapping A picture is worth a thousand words. BROOM includes both inverse distance and kriging interpolation algorithms which are used to generate continuous contamination maps and display underlying confidence. Such maps greatly assist in interpreting discrete sample data and communicating results to others. Data Management The BROOM database provides a streamlined means of storing. retrieving, viewing, and analyzing the various data associated with recovery operations. Critical floor plan drawings and other pertinent images may be organized and stored in the database before an event occurs. History indicates that thousands of samples will need to be collected and analyzed by contractors, laboratories, government agencies. and other stakeholders. The BROOM database provides a secure, easy to use plafform, where these data may be centrally stored and shared among all concerned parties.« less

  1. Model for Naturally Ventilated Cavities on the Exteriors of Opaque Building Thermal Envelopes

    SciTech Connect (OSTI)

    Griffith, B.

    2006-11-01

    This paper describes a model for naturally ventilated cavities on the exterior of opaque building thermal envelopes that are formed by the presence of a lightweight baffle. The model can be used for building components that are slightly detached from the main envelope (but do not connect to the interior).

  2. Building Energy Modeling Overview - 2015 BTO Peer Review | Department...

    Energy Savers [EERE]

    The building has an advanced ventilated double facade and uses low-energy underfloor air distribution and is designed to achieve energy savings of 30% below code.
    Image ...

  3. Building Energy Modeling Overview - 2014 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The building has an advanced ventilated double facade and uses low-energy underfloor air distribution and is designed to achieve energy savings of 30% below code.
    Image ...

  4. MPI Multicore Linktest Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-01-25

    The MPI Multicore Linktest (LinkTest) measures the aggregate bandwidth from/to a multicore node in a parallel system. It allows the user to specify a variety of different node layout and communication routine variations and reports the maximal observed bandwidth across all specified options. In particular, this benchmark is able to vary the number of tasks on the root node and thereby allows users to study the impact of multicore architectures on MPI communication performance.

  5. Dark Matter Benchmark Models for Early LHC Run-2 Searches. Report of the ATLAS/CMS Dark Matter Forum

    SciTech Connect (OSTI)

    Abercrombie, Daniel

    2015-07-06

    One of the guiding principles of this report is to channel the efforts of the ATLAS and CMS collaborations towards a minimal basis of dark matter models that should influence the design of the early Run-2 searches. At the same time, a thorough survey of realistic collider signals of Dark Matter is a crucial input to the overall design of the search program.

  6. Benchmarking the New RESRAD-OFFSITE Source Term Model with DUST-MS and GoldSim - 13377

    SciTech Connect (OSTI)

    Cheng, J.J.; Kamboj, S.; Gnanapragasam, E.; Yu, C.

    2013-07-01

    RESRAD-OFFSITE is a computer code developed by Argonne National Laboratory under the sponsorship of U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC). It is designed on the basis of RESRAD (onsite) code, a computer code designated by DOE and NRC for evaluating soil-contaminated sites for compliance with human health protection requirements pertaining to license termination or environmental remediation. RESRAD-OFFSITE has enhanced capabilities of modeling radionuclide transport to offsite locations and calculating potential radiation exposure to offsite receptors. Recently, a new source term model was incorporated into RESRAD-OFFSITE to enhance its capability further. This new source term model allows simulation of radionuclide releases from different waste forms, in addition to the soil sources originally considered in RESRAD (onsite) and RESRAD-OFFSITE codes. With this new source term model, a variety of applications can be achieved by using RESRAD-OFFSITE, including but not limited to, assessing the performance of radioactive waste disposal facilities. This paper presents the comparison of radionuclide release rates calculated by the new source term model of RESRAD-OFFSITE versus those calculated by DUST-MS and GoldSim, respectively. The focus of comparison is on the release rates of radionuclides from the bottom of the contaminated zone that was assumed to contain radioactive source materials buried in soil. The transport of released contaminants outside of the primary contaminated zone is beyond the scope of this paper. Overall, the agreement between the RESRAD-OFFSITE results and the DUST-MS and GoldSim results is fairly good, with all three codes predicting identical or similar radionuclide release profiles over time. Numerical dispersion in the DUST-MS and GoldSim results was identified as potentially contributing to the disagreement in the release rates. In general, greater discrepancy in the release rates was found for short-lived, fast-moving radionuclides than for long-lived, slow-moving radionuclides. (authors)

  7. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect (OSTI)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  8. A strict test of stellar evolution models: The absolute dimensions of the massive benchmark eclipsing binary V578 Mon

    SciTech Connect (OSTI)

    Garcia, E. V.; Stassun, Keivan G.; Pavlovski, K.; Hensberge, H.; Chew, Y. Gmez Maqueo; Claret, A.

    2014-09-01

    We determine the absolute dimensions of the eclipsing binary V578 Mon, a detached system of two early B-type stars (B0V + B1V, P = 2.40848 days) in the star-forming region NGC 2244 of the Rosette Nebula. From the light curve analysis of 40 yr of photometry and the analysis of HERMES spectra, we find radii of 5.41 0.04 R{sub ?} and 4.29 0.05 R{sub ?}, and temperatures of 30,000 500 K and 25,750 435 K, respectively. We find that our disentangled component spectra for V578 Mon agree well with previous spectral disentangling from the literature. We also reconfirm the previous spectroscopic orbit of V578 Mon finding that masses of 14.54 0.08 M{sub ?} and 10.29 0.06 M{sub ?} are fully compatible with the new analysis. We compare the absolute dimensions to the rotating models of the Geneva and Utrecht groups and the models of the Granada group. We find that all three sets of models marginally reproduce the absolute dimensions of both stars with a common age within the uncertainty for gravity-effective temperature isochrones. However, there are some apparent age discrepancies for the corresponding mass-radius isochrones. Models with larger convective overshoot, >0.35, worked best. Combined with our previously determined apsidal motion of 0.07089{sub ?0.00013}{sup +0.00021} deg cycle{sup 1}, we compute the internal structure constants (tidal Love number) for the Newtonian and general relativistic contribution to the apsidal motion as log k {sub 2} = 1.975 0.017 and log k {sub 2} = 3.412 0.018, respectively. We find the relativistic contribution to the apsidal motion to be small, <4%. We find that the prediction of log k {sub 2,theo} = 2.005 0.025 of the Granada models fully agrees with our observed log k {sub 2}.

  9. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss031_rask_2011_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology Vehicle Benchmark and Assessment

  10. Benchmark field study of deep neutron penetration

    SciTech Connect (OSTI)

    Morgan, J.F.; Sale, K. ); Gold, R.; Roberts, J.H.; Preston, C.C. )

    1991-06-10

    A unique benchmark neutron field has been established at the Lawrence Livermore National Laboratory (LLNL) to study deep penetration neutron transport. At LLNL, a tandem accelerator is used to generate a monoenergetic neutron source that permits investigation of deep neutron penetration under conditions that are virtually ideal to model, namely the transport of mono-energetic neutrons through a single material in a simple geometry. General features of the Lawrence Tandem (LATAN) benchmark field are described with emphasis on neutron source characteristics and room return background. The single material chosen for the first benchmark, LATAN-1, is a steel representative of Light Water Reactor (LWR) Pressure Vessels (PV). Also included is a brief description of the Little Boy replica, a critical reactor assembly designed to mimic the radiation doses from the atomic bomb dropped on Hiroshima, and its us in neutron spectrometry. 18 refs.

  11. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    SciTech Connect (OSTI)

    Sun, Kaiyu; Yan , Da; Hong , Tianzhen; Guo, Siyue

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an office building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.

  12. Object-Oriented Database for Managing Building Modeling Components and Metadata: Preprint

    SciTech Connect (OSTI)

    Long, N.; Fleming, K.; Brackney, L.

    2011-12-01

    Building simulation enables users to explore and evaluate multiple building designs. When tools for optimization, parametrics, and uncertainty analysis are combined with analysis engines, the sheer number of discrete simulation datasets makes it difficult to keep track of the inputs. The integrity of the input data is critical to designers, engineers, and researchers for code compliance, validation, and building commissioning long after the simulations are finished. This paper discusses an application that stores inputs needed for building energy modeling in a searchable, indexable, flexible, and scalable database to help address the problem of managing simulation input data.

  13. Benchmarking and Disclosure: State and Local Policy Design Guide and Sample

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Language | Department of Energy Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language State and local policy design guide PDF icon commercialbuildings_benchmarking_policy.pdf More Documents & Publications SEE Action Series: Local Strategies for Whole-Building Energy Savings High Performance Leasing Strategies for State and Local Governments Energy

  14. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.

    2013-01-01

    This study examines the effective moisture penetration depth (EMPD) model, and its suitability for building simulations. The EMPD model is a compromise between the simple, inaccurate effective capacitance approach and the complex, yet accurate, finite-difference approach. Two formulations of the EMPD model were examined, including the model used in the EnergyPlus building simulation software. An error in the EMPD model we uncovered was fixed with the release of EnergyPlus version 7.2, and the EMPD model in earlier versions of EnergyPlus should not be used.

  15. Decommissioning Benchmarking Study Final Report

    Broader source: Energy.gov [DOE]

    DOE's former Office of Environmental Restoration (EM-40) conducted a benchmarking study of its decommissioning program to analyze physical activities in facility decommissioning and to determine...

  16. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    SciTech Connect (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specific characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.

  17. Visual-SOLAR: Modeling and Visualization of Solar Radiation Potential on Individual Building Rooftops

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    We have developed a modeling framework for estimating solar radiation potentials on individual building rooftops that is suitable for utility-scale applications as well as building-specific applications. The framework uses light detection and ranging (LIDAR) data at approximately 1-meter horizontal resolution and 0.3-meter vertical resolution as input for modeling a large number of buildings quickly. One of the strengths of this framework is the ability to parallelize its implementation. Furthermore, the framework accounts for building specificmore » characteristics, such as roof slope, roof aspect, and shadowing effects, that are critical to roof-mounted photovoltaic system. The resulting data has helped us to identify the so-called "solar panel sweet spots" on individual building rooftops and obtain accurate statistics of the variation in solar radiation as a function of time of year and geographical location.« less

  18. Junior Solar Sprint - So.. You Want To Build A Model Solar Car

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Revised 8/23/01 So... You Want To Build A Model Solar Car 2 TABLE OF CONTENTS TOPIC PAGE SOLAR ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Teacher Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Activity One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Activity Two . . . . . . . . . . . . . . . . .

  19. Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy held a webcast titled "Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce" on Monday, October 22, 2012. The Renewable Energy Competency...

  20. Building a next-generation community ice sheet model: meeting summary

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet model: meeting summary No abstract prepared. Authors: Lipscomb, William [1] ; Price, Stephen [1] ; Bueler, Ed [2] ; Holland, David [3] ; Johnson, Jesse [4] + Show Author Affiliations Los Alamos National Laboratory UNIV OF ALASKA NEW YORK UNIV UNIV OF MONTANA Publication Date:

  1. Building a next-generation community ice sheet model: meeting summary

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Building a next-generation community ice sheet model: meeting summary Citation Details In-Document Search Title: Building a next-generation community ice sheet model: meeting summary × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  2. A Good Sign for the Building Energy Modeling Industry | Department of

    Energy Savers [EERE]

    Energy A Good Sign for the Building Energy Modeling Industry A Good Sign for the Building Energy Modeling Industry February 19, 2016 - 12:00pm Addthis Trimble’s recent acquisition of Sefaira and its pairing with SketchUp is a good sign for the BEM industry. Image credit: Sefaira. DOE. Trimble's recent acquisition of Sefaira and its pairing with SketchUp is a good sign for the BEM industry. Image credit: Sefaira. DOE. Amir Roth, Ph.D. Amir Roth, Ph.D. Technology Manager, Building

  3. Healthcare Project Performance Benchmarks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Project Performance Benchmarks Healthcare Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the healthcare industry, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon healthcareprojectperformancebenchmarks.pdf More Documents & Publications Public Housing Project Performance Benchmarks Federal Government Project Performance Benchmarks

  4. Benchmarking foreign electronics technologies

    SciTech Connect (OSTI)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  5. Guide to Benchmarking Residential Program Progress - CALL FOR PUBLIC REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5/2014 1 Guide to Benchmarking Residential Program Progress - CALL FOR PUBLIC REVIEW Dale Hoffmeyer, DOE and Cheryl Jenkins, VEIC How to Participate Today Open and close your control panel Raise your hand Submit text questions 2 Better Buildings Residential Network  Better Buildings Residential Network: Connects energy efficiency programs and partners to share best practices to dramatically increase the number of American homes that are energy efficient.  Membership: Open to organizations

  6. Buildings Performance Metrics Terminology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Performance Metrics Terminology Buildings Performance Metrics Terminology This document provides the terms and definitions used in the Department of Energys Performance Metrics Research Project. PDF icon metrics_terminology_20090203.pdf More Documents & Publications Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability Transmittal Letter for the Statewide Benchmarking Process Evaluation Guide for Benchmarking Residential Energy Efficiency

  7. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    SciTech Connect (OSTI)

    Bess, John D.; Montierth, Leland; Kberl, Oliver; Snoj, Luka

    2014-10-09

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ?U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of keff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3? uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of keff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3?) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4?. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3? of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  8. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Montierth, Leland; Köberl, Oliver; Snoj, Luka

    2014-10-09

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of keff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greatermore » than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of keff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  9. FireHose Streaming Benchmarks

    Energy Science and Technology Software Center (OSTI)

    2015-01-27

    The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the streammore » of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created in the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less

  10. Federal Building Metering Guidance (Per U.S.C. 8253(e), Metering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Federal Building Metering Implementation Plan Template Federal Building Energy Use Benchmarking Guidance, August 2014 Update Guidance for the ...

  11. Sustainability in Existing Federal Buildings

    Broader source: Energy.gov [DOE]

    For meeting federal sustainability requirements, agencies can use evaluation methods, such as benchmarking and energy audits, and planning to make existing buildings energy efficient. Agencies can follow these steps to comply with energy reduction requirements.

  12. Measuring the Impact of Benchmarking & Transparency- Methodologies and the NYC Example

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar, held on June 18, 2015, covered two DOE resources that help stakeholders analyze the energy, non-energy, and market transformation impacts of building energy benchmarking policies and programs.

  13. TAP Webinar: Measuring the Impact of Benchmarking & Transparency- Methodologies and the NYC Example

    Broader source: Energy.gov [DOE]

    Hosted by the Technical Assistance Program (TAP), this webinar will cover two DOE resources that help stakeholders analyze the energy, non-energy, and market transformation impacts of building energy benchmarking policies and programs.

  14. A proposed benchmark for simulation in radiographic testing

    SciTech Connect (OSTI)

    Jaenisch, G.-R.; Deresch, A.; Bellon, C.; Schumm, A.; Guerin, P.

    2014-02-18

    The purpose of this benchmark study is to compare simulation results predicted by various models of radiographic testing, in particular those that are capable of separately predicting primary and scatter radiation for specimens of arbitrary geometry.

  15. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  16. Interactive graphical model building using telepresence and virtual reality

    SciTech Connect (OSTI)

    Cooke, C.; Stansfield, S.

    1993-10-01

    This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.

  17. Energy Savings Modelling of Re-tuning Energy Conservation Measures in Large Office Buildings

    SciTech Connect (OSTI)

    Fernandez, Nicholas; Katipamula, Srinivas; Wang, Weimin; Huang, Yunzhi; Liu, Guopeng

    2014-10-20

    Today, many large commercial buildings use sophisticated building automation systems (BASs) to manage a wide range of building equipment. While the capabilities of BASs have increased over time, many buildings still do not fully use the BASs capabilities and are not properly commissioned, operated or maintained, which leads to inefficient operation, increased energy use, and reduced lifetimes of the equipment. This paper investigates the energy savings potential of several common HVAC system re-tuning measures on a typical large office building, using the Department of Energys building energy modeling software, EnergyPlus. The baseline prototype model uses roughly as much energy as an average large office building in existing building stock, but does not utilize any re-tuning measures. Individual re-tuning measures simulated against this baseline include automatic schedule adjustments, damper minimum flow adjustments, thermostat adjustments, as well as dynamic resets (set points that change continuously with building and/or outdoor conditions) to static pressure, supply-air temperature, condenser water temperature, chilled and hot water temperature, and chilled and hot water differential pressure set points. Six combinations of these individual measures have been formulated each designed to conform to limitations to implementation of certain individual measures that might exist in typical buildings. All the individual measures and combinations were simulated in 16 climate locations representative of specific U.S. climate zones. The modeling results suggest that the most effective energy savings measures are those that affect the demand-side of the building (air-systems and schedules). Many of the demand-side individual measures were capable of reducing annual total HVAC system energy consumption by over 20% in most cities that were modeled. Supply side measures affecting HVAC plant conditions were only modestly successful (less than 5% annual HVAC energy savings for most cities for all measures). Combining many of the re-tuning measures revealed deep savings potential. Some of the more aggressive combinations revealed 35-75% reductions in annual HVAC energy consumption, depending on climate and building vintage.

  18. Measuring the Impact of Benchmarking & Transparency - Methodologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measuring the Impact of Benchmarking & Transparency - Methodologies and the NYC Example Measuring the Impact of Benchmarking & Transparency - Methodologies and the NYC Example ...

  19. Benchmarking ESCO Projects in Public Sector Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results from LBNLNAESCO Database Benchmarking Toolsinformation to assist State ... results can be used to support BENCHMARKING projects in institutional and public ...

  20. Guide for Benchmarking Residential Energy Efficiency Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress Guide for Benchmarking Residential Energy Efficiency Program Progress as ...

  1. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EUI 30% by 2020 Impact Dec. 2015 Develop next-gen tech Improve modeling tools Cost reduction R&D Next-gen prototypes Tools enable incentives and codes Develop test protocols ...

  2. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating ...

  3. A caveat on building nonlocal models of cosmology

    SciTech Connect (OSTI)

    Tsamis, N.C.; Woodard, R.P. E-mail: woodard@phys.ufl.edu

    2014-09-01

    Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.

  4. Data and Analytics to Inform Energy Retrofit of High Performance Buildings

    SciTech Connect (OSTI)

    Hong , Tianzhen; Yang, Le; Hill, David; Feng , Wei

    2014-01-25

    Buildings consume more than one-third of the world?s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis ? energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20percent of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

  5. Development of a Model Specification for Performance MonitoringSystems for Commercial Buildings

    SciTech Connect (OSTI)

    Haves, Philip; Hitchcock, Robert J.; Gillespie, Kenneth L.; Brook, Martha; Shockman, Christine; Deringer, Joseph J.; Kinney,Kristopher L.

    2006-08-01

    The paper describes the development of a model specification for performance monitoring systems for commercial buildings. The specification focuses on four key aspects of performance monitoring: (1) performance metrics; (2) measurement system requirements; (3) data acquisition and archiving; and (4) data visualization and reporting. The aim is to assist building owners in specifying the extensions to their control systems that are required to provide building operators with the information needed to operate their buildings more efficiently and to provide automated diagnostic tools with the information required to detect and diagnose faults and problems that degrade energy performance. The paper reviews the potential benefits of performance monitoring, describes the specification guide and discusses briefly the ways in which it could be implemented. A prototype advanced visualization tool is also described, along with its application to performance monitoring. The paper concludes with a description of the ways in which the specification and the visualization tool are being disseminated and deployed.

  6. Data-Intensive Benchmarking Suite

    Energy Science and Technology Software Center (OSTI)

    2008-11-26

    The Data-Intensive Benchmark Suite is a set of programs written for the study of data-or storage-intensive science and engineering problems, The benchmark sets cover: general graph searching (basic and Hadoop Map/Reduce breadth-first search), genome sequence searching, HTTP request classification (basic and Hadoop Map/Reduce), low-level data communication, and storage device micro-beachmarking

  7. Moving Multifamily Buildings From Assessments to Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for Your Program? Shared Space vs. In-Unit ...

  8. Better Buildings Challenge Accelerator Support - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engagement Support for the Better Buildings Energy Data Accelerator - 2015 Peer Review Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language

  9. Modelling Residential-Scale Combustion-Based Cogeneration in Building Simulation

    SciTech Connect (OSTI)

    Ferguson, A.; Kelly, N.; Weber, A.; Griffith, B.

    2009-03-01

    This article describes the development, calibration and validation of a combustion-cogeneration model for whole-building simulation. As part of IEA Annex 42, we proposed a parametric model for studying residentialscale cogeneration systems based on both Stirling and internal combustion engines. The model can predict the fuel use, thermal output and electrical generation of a cogeneration device in response to changing loads, coolant temperatures and flow rates, and control strategies. The model is now implemented in the publicly-available EnergyPlus, ESP-r and TRNSYS building simulation programs. We vetted all three implementations using a comprehensive comparative testing suite, and validated the model's theoretical basis through comparison to measured data. The results demonstrate acceptable-to-excellent agreement, and suggest the model can be used with confidence when studying the energy performance of cogeneration equipment in non-condensing operation.

  10. Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps Benchmark Reaction Mechanisms and Kinetics for Lean NOx Traps 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon acep_01_larson.pdf More Documents & Publications Development of Chemical Kinetic Models for Lean NOx Traps Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled

  11. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jon; Marnay, Chris; Lai, Judy; Mendes, Goncalo; Appen, Jan von; Mé gel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-18

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.

  12. Application of the Software as a Service Model to the Control of Complex Building Systems

    SciTech Connect (OSTI)

    Stadler, Michael; Donadee, Jonathan; Marnay, Chris; Mendes, Goncalo; Appen, Jan von; Megel, Oliver; Bhattacharya, Prajesh; DeForest, Nicholas; Lai, Judy

    2011-03-17

    In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building. The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.

  13. From the Building to the Grid: An Energy Revolution and Modeling Challenge; Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Komomua, C.; O'Malley, M.

    2013-01-01

    This report summarizes the workshop entitled: From the Building to the Grid: An Energy Revolution and Modeling Challenge. The first workshop was held May 1-2, 2012 on NREL's campus in Golden, Colorado. The second was held June 6-7, 2012 at the University College Dublin, in Dublin, Ireland.

  14. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  15. A Bayesian Machine Learning Model for Estimating Building Occupancy from Open Source Data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stewart, Robert N.; Urban, Marie L.; Duchscherer, Samantha E.; Kaufman, Jason; Morton, April M.; Thakur, Gautam; Piburn, Jesse; Moehl, Jessica

    2016-01-01

    Understanding building occupancy is critical to a wide array of applications including natural hazards loss analysis, green building technologies, and population distribution modeling. Due to the expense of directly monitoring buildings, scientists rely in addition on a wide and disparate array of ancillary and open source information including subject matter expertise, survey data, and remote sensing information. These data are fused using data harmonization methods which refer to a loose collection of formal and informal techniques for fusing data together to create viable content for building occupancy estimation. In this paper, we add to the current state of the artmore » by introducing the Population Data Tables (PDT), a Bayesian based informatics system for systematically arranging data and harmonization techniques into a consistent, transparent, knowledge learning framework that retains in the final estimation uncertainty emerging from data, expert judgment, and model parameterization. PDT probabilistically estimates ambient occupancy in units of people/1000ft2 for over 50 building types at the national and sub-national level with the goal of providing global coverage. The challenge of global coverage led to the development of an interdisciplinary geospatial informatics system tool that provides the framework for capturing, storing, and managing open source data, handling subject matter expertise, carrying out Bayesian analytics as well as visualizing and exporting occupancy estimation results. We present the PDT project, situate the work within the larger community, and report on the progress of this multi-year project.Understanding building occupancy is critical to a wide array of applications including natural hazards loss analysis, green building technologies, and population distribution modeling. Due to the expense of directly monitoring buildings, scientists rely in addition on a wide and disparate array of ancillary and open source information including subject matter expertise, survey data, and remote sensing information. These data are fused using data harmonization methods which refer to a loose collection of formal and informal techniques for fusing data together to create viable content for building occupancy estimation. In this paper, we add to the current state of the art by introducing the Population Data Tables (PDT), a Bayesian model and informatics system for systematically arranging data and harmonization techniques into a consistent, transparent, knowledge learning framework that retains in the final estimation uncertainty emerging from data, expert judgment, and model parameterization. PDT probabilistically estimates ambient occupancy in units of people/1000 ft2 for over 50 building types at the national and sub-national level with the goal of providing global coverage. The challenge of global coverage led to the development of an interdisciplinary geospatial informatics system tool that provides the framework for capturing, storing, and managing open source data, handling subject matter expertise, carrying out Bayesian analytics as well as visualizing and exporting occupancy estimation results. We present the PDT project, situate the work within the larger community, and report on the progress of this multi-year project.« less

  16. PRISMATIC CORE COUPLED TRANSIENT BENCHMARK

    SciTech Connect (OSTI)

    J. Ortensi; M.A. Pope; G. Strydom; R.S. Sen; M.D. DeHart; H.D. Gougar; C. Ellis; A. Baxter; V. Seker; T.J. Downar; K. Vierow; K. Ivanov

    2011-06-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  17. Processor Emulator with Benchmark Applications

    Energy Science and Technology Software Center (OSTI)

    2015-11-13

    A processor emulator and a suite of benchmark applications have been developed to assist in characterizing the performance of data-centric workloads on current and future computer architectures. Some of the applications have been collected from other open source projects. For more details on the emulator and an example of its usage, see reference [1].

  18. Real-Time Benchmark Suite

    Energy Science and Technology Software Center (OSTI)

    1992-01-17

    This software provides a portable benchmark suite for real time kernels. It tests the performance of many of the system calls, as well as the interrupt response time and task response time to interrupts. These numbers provide a baseline for comparing various real-time kernels and hardware platforms.

  19. Benchmarking nuclear fission theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  20. Guide to Benchmarking Residential Program Progress Webcast Slides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Benchmarking Residential Program Progress Webcast Slides Guide to Benchmarking Residential Program Progress Webcast Slides Slides from "Guide to Benchmarking Residential ...

  1. K…12 Schools Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG & SEP TEChniCal aSSiSTanCE ProGram Energy Service Company (ESCO) Benchmarking ... TEChniCal aSSiSTanCE ProGram - ESCo BEnChmarkinG ProjECT EERE Information Center ...

  2. Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of the Effective Moisture Penetration Depth Model for Estimating Moisture Buffering in Buildings J. Woods, J. Winkler, and D. Christensen National Renewable Energy Laboratory Technical Report NREL/TP-5500-57441 January 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401

  3. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR CLEERS Coordination & Development of Catalyst Process Kinetic...

  4. NREL: Transportation Research - Thermal Performance Benchmarking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Performance Benchmarking A photo of the internal components of an automotive inverter. NREL thermal performance benchmarking of state-of-the-art power electronics and electric motors helps guide future R&D efforts as well as industry product-development efforts. Photo by Scot Waye, NREL NREL's thermal performance benchmarking research focuses on state-of-the-art technologies used in electric-drive vehicle (EDV) systems. Benchmarks are shared with industry so that systems can be

  5. Data Collection Handbook to Support Modeling Impacts of Radioactive Material in Soil and Building Structures

    SciTech Connect (OSTI)

    Yu, Charley; Kamboj, Sunita; Wang, Cheng; Cheng, Jing-Jy

    2015-09-01

    This handbook is an update of the 1993 version of the Data Collection Handbook and the Radionuclide Transfer Factors Report to support modeling the impact of radioactive material in soil. Many new parameters have been added to the RESRAD Family of Codes, and new measurement methodologies are available. A detailed review of available parameter databases was conducted in preparation of this new handbook. This handbook is a companion document to the user manuals when using the RESRAD (onsite) and RESRAD-OFFSITE code. It can also be used for RESRAD-BUILD code because some of the building-related parameters are included in this handbook. The RESRAD (onsite) has been developed for implementing U.S. Department of Energy Residual Radioactive Material Guidelines. Hydrogeological, meteorological, geochemical, geometrical (size, area, depth), crops and livestock, human intake, source characteristic, and building characteristic parameters are used in the RESRAD (onsite) code. The RESRAD-OFFSITE code is an extension of the RESRAD (onsite) code and can also model the transport of radionuclides to locations outside the footprint of the primary contamination. This handbook discusses parameter definitions, typical ranges, variations, and measurement methodologies. It also provides references for sources of additional information. Although this handbook was developed primarily to support the application of RESRAD Family of Codes, the discussions and values are valid for use of other pathway analysis models and codes.

  6. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect (OSTI)

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  7. Benchmarking of Competitive Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape006_burress_2011_o.pdf More Documents & Publications Benchmarking of Competitive Technologies Benchmarking of Competitive Technologies Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV Technologies

  8. A model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data.

  9. Model for thermally driven heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.; Otis, D.R.

    1985-01-01

    A model for transient interzone heat and air flow transport in passive solar buildings is presented incorporating wall boundary layers in stratified zones, and with interzone transport via apertures (doors and windows). The model includes features that have been observed in measurements taken in more than a dozen passive solar buildings. The model includes integral formulations of the laminar and turbulent boundary layer equations for the vertical walls which are then coupled to a one-dimensional core model for each zone. The cores in each zone exchange mass and energy through apertures that are modeled by an orifice type equation. The procedure is transient in that time dependence is retained only in the core equations which are solved by an explicit method. The model predicts room stratification of about 2/sup 0/C/m (1.1/sup 0/F/ft) for a room-to-room temperature difference of 0.56/sup 0/C(1/sup 0/F) which is in general agreement with the data. 38 references, 10 figures, 1 table.

  10. Junior Solar Sprint - An Introduction to Building a Model Solar Car

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Revised 8/23/01 An Introduction to Building a Model Solar Car Student Guide for the Junior Solar Sprint Competition Produced by: Krisztina Holly and Akhil Madhani 2 Introduction Welcome to Junior Solar Sprint! By competing in Junior Solar Sprint, you will learn how to make your own model solar car that will run entirely from the power of the sun. Design You will experience first-hand the process of design. When you design your car, you will start with some ideas in your head and turn then into

  11. Better Buildings Network View, March 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From the Field Better Buildings Network View | March 2014 March 2014 Network Members Invited to Review Optional Program Benchmarking Guide The first Better Buildings Residential Network Next Steps voluntary initiative will Winter 2014: DOE finalizes benchmark programs so guide and pilots it with up to members can see how they nine Residential Network compare to others, and you members are invited to provide DOE evaluates feedback on a draft Guide Spring 2014: pilot and starts defining for

  12. MPI Multicore Torus Communication Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-02-05

    The MPI Multicore Torus Communications Benchmark (TorusTest) measues the aggegate bandwidth across all six links from/to any multicore node in a logical torus. It can run in wo modi: using a static or a random mapping of tasks to torus locations. The former can be used to achieve optimal mappings and aggregate bandwidths that can be achieved with varying node mappings.

  13. Federal Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper

  14. Better Buildings Neighborhood Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Business Models Guide, October 27, 2011.

  15. IDAHO NATIONAL LABORATORY PROGRAM TO OBTAIN BENCHMARK DATA ON THE FLOW PHENOMENA IN A SCALED MODEL OF A PRISMATIC GAS-COOLED REACTOR LOWER PLENUM FOR THE VALIDATION OF CFD CODES

    SciTech Connect (OSTI)

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2008-09-01

    The experimental program that is being conducted at the Matched Index-of-Refraction (MIR) Flow Facility at Idaho National Laboratory (INL) to obtain benchmark data on measurements of flow phenomena in a scaled model of a typical prismatic gas-cooled (GCR) reactor lower plenum using 3-D Particle Image Velocimetry (PIV) is presented. A detailed description of the model, scaling, the experimental facility, 3-D PIV system, measurement uncertainties and analysis, experimental procedures and samples of the data sets that have been obtained are included. Samples of the data set that are presented include mean-velocity-field and turbulence data in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic GCR design. This experiment has been selected as the first Standard Problem endorsed by the Generation IV International Forum. Results concentrate on the region of the lower plenum near its far reflector wall (away from the outlet duct). Inlet jet Reynolds numbers (based on the jet diameter and the time-mean average flow rate) are approximately 4,300 and 12,400. The measurements reveal undeveloped, non-uniform flow in the inlet jets and complicated flow patterns in the model lower plenum. Data include three-dimensional vector plots, data displays along the coordinate planes (slices) and charts that describe the component flows at specific regions in the model. Information on inlet flow is also presented.

  16. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect (OSTI)

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  17. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    SciTech Connect (OSTI)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR06 are highlighted, and the future of the two projects is discussed.

  18. Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus

    SciTech Connect (OSTI)

    Raustad, Richard

    2013-06-01

    Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

  19. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in themore » experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less

  20. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    SciTech Connect (OSTI)

    Bess, John D.; Fujimoto, Nozomu

    2014-10-09

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.

  1. Advanced Benchmarking: Benchmark Building Energy Use Quickly and Accurately Using EPA's ENERGY STAR Portfolio Manager

    Broader source: Energy.gov [DOE]

    Before we jump into today’s presentations I would like to take a few moments to describe the DOE Technical Assistance Program (TAP) a little further. TAP is managed by a team in DOE’s Weatherization and Intergovernmental Program - Office of Energy Efficiency and Renewable Energy.

  2. Better Buildings Neighborhood Program Business Models Guide: Contractor/Retailer Business Models

    Broader source: Energy.gov [DOE]

    Business models information focused on remodelers, HVAC (heating, ventilation, and air conditioning) contractors, home performance contractors, or retailers.

  3. Building Energy Information Systems: User Case Studies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

    2010-03-22

    Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

  4. Better Buildings Neighborhood Program Business Models Guide: Home Performance Contractor Business Model

    Broader source: Energy.gov [DOE]

    The home performance contractor model walks through the “one-stop-shop” model for home energy upgrades. It illustrates both the opportunities and barriers for starting as a home performance contractor company from the beginning, rather than expanding from an existing model, such as a remodeler.

  5. Micro Kernel Benchmark for Evaluating Computer Performance

    Energy Science and Technology Software Center (OSTI)

    2007-04-06

    Crystal_mk is a micro benchmark that LLNL will use to evaluate vendor's software(e.g. compiler) and hardware(e.g. processor speed, memory design).

  6. Benchmark the Fuel Cost of Steam Generation

    Broader source: Energy.gov [DOE]

    This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  7. Method and system for benchmarking computers

    DOE Patents [OSTI]

    Gustafson, John L.

    1993-09-14

    A testing system and method for benchmarking computer systems. The system includes a store containing a scalable set of tasks to be performed to produce a solution in ever-increasing degrees of resolution as a larger number of the tasks are performed. A timing and control module allots to each computer a fixed benchmarking interval in which to perform the stored tasks. Means are provided for determining, after completion of the benchmarking interval, the degree of progress through the scalable set of tasks and for producing a benchmarking rating relating to the degree of progress for each computer.

  8. VERA Core Physics Benchmark Progression Problems Specifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VERA Core Physics Benchmark Progression Problem Specifications Revision 4 August 29, 2014 Andrew T. Godfrey Physics Integration Oak Ridge National Laboratory CASL-U-2012-0131-004 ...

  9. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Emissions Control for Lean Gasoline Engines NH3 generation...

  10. CLEERS Coordination & Joint Development of Benchmark Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Catalyst Process Kinetic Data CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Functionality of Commercial NOx Storage-Reduction Catalysts...

  11. Comparing Apples to Apples: Benchmarking Electrocatalysts for...

    Office of Science (SC) Website

    Comparing Apples to Apples: Benchmarking Electrocatalysts for Solar Water-Splitting Devices Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights ...

  12. Manufacturers' View on Benchmarking and Disclosure

    U.S. Energy Information Administration (EIA) Indexed Site

    Benchmarking and Disclosure Data Source: http:www.nyc.govhtmldofdownloadspdf12pdf2012nonresidentialproperties.xls The Association of Electrical Equipment and ...

  13. Comparison of Demand Response Performance with an EnergyPlus Model in a Low Energy Campus Building

    SciTech Connect (OSTI)

    Dudley, Junqiao Han; Black, Doug; Apte, Mike; Piette, Mary Ann; Berkeley, Pam

    2010-05-14

    We have studied a low energy building on a campus of the University of California. It has efficient heating, ventilation, and air conditioning (HVAC) systems, consisting of a dual-fan/dual-duct variable air volume (VAV) system. As a major building on the campus, it was included in two demand response (DR) events in the summers of 2008 and 2009. With chilled water supplied by thermal energy storage in the central plant, cooling fans played a critical role during DR events. In this paper, an EnergyPlus model of the building was developed and calibrated. We compared both whole-building and HVAC fan energy consumption with model predictions to understand why demand savings in 2009 were much lower than in 2008. We also used model simulations of the study building to assess pre-cooling, a strategy that has been shown to improve demand saving and thermal comfort in many types of building. This study indicates a properly calibrated EnergyPlus model can reasonably predict demand savings from DR events and can be useful for designing or optimizing DR strategies.

  14. Buildings*","Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Buildings with Cooling ......",3625,3469,1188,1794,161,52 "Buildings with Water Heating .",3472,3337,999,1765,226,57 "Buildings with Cooking ......",801,764,223,397,68,8 ...

  15. A Benchmark Study on Casting Residual Stress

    SciTech Connect (OSTI)

    Johnson, Eric M. [John Deere -- Moline Tech Center; Watkins, Thomas R [ORNL; Schmidlin, Joshua E [ORNL; Dutler, S. A. [MAGMA Foundry Technologies, Inc.

    2012-01-01

    Stringent regulatory requirements, such as Tier IV norms, have pushed the cast iron for automotive applications to its limit. The castings need to be designed with closer tolerances by incorporating hitherto unknowns, such as residual stresses arising due to thermal gradients, phase and microstructural changes during solidification phenomenon. Residual stresses were earlier neglected in the casting designs by incorporating large factors of safety. Experimental measurement of residual stress in a casting through neutron or X-ray diffraction, sectioning or hole drilling, magnetic, electric or photoelastic measurements is very difficult and time consuming exercise. A detailed multi-physics model, incorporating thermo-mechanical and phase transformation phenomenon, provides an attractive alternative to assess the residual stresses generated during casting. However, before relying on the simulation methodology, it is important to rigorously validate the prediction capability by comparing it to experimental measurements. In the present work, a benchmark study was undertaken for casting residual stress measurements through neutron diffraction, which was subsequently used to validate the accuracy of simulation prediction. The stress lattice specimen geometry was designed such that subsequent castings would generate adequate residual stresses during solidification and cooling, without any cracks. The residual stresses in the cast specimen were measured using neutron diffraction. Considering the difficulty in accessing the neutron diffraction facility, these measurements can be considered as benchmark for casting simulation validations. Simulations were performed using the identical specimen geometry and casting conditions for predictions of residual stresses. The simulation predictions were found to agree well with the experimentally measured residual stresses. The experimentally validated model can be subsequently used to predict residual stresses in different cast components. This enables incorporation of the residual stresses at the design phase along with external loads for accurate predictions of fatigue and fracture performance of the cast components.

  16. Buildings","Building Size"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Cooling ......",58474,4879,6212,9530,8116,9401,7609,6345,6382 "Buildings with Water Heating .",56115,4280,5748,9000,8088,8887,7527,6258,6327 "Buildings with Cooking ...

  17. Better Buildings Neighborhood Program Business Models Guide: Utility Program Administrator Business Model

    Broader source: Energy.gov [DOE]

    The following sections focus on the five core components of a utility’s business model, highlighting the critical elements of how utilities function within the market and how other organizations within the market can best collaborate with them.

  18. Benchmarking and Self-Assessment in the Wine Industry

    SciTech Connect (OSTI)

    Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst; Healy,Patrick; Zechiel, Susanne

    2005-12-01

    Not all industrial facilities have the staff or theopportunity to perform a detailed audit of their operations. The lack ofknowledge of energy efficiency opportunities provides an importantbarrier to improving efficiency. Benchmarking programs in the U.S. andabroad have shown to improve knowledge of the energy performance ofindustrial facilities and buildings and to fuel energy managementpractices. Benchmarking provides a fair way to compare the energyintensity of plants, while accounting for structural differences (e.g.,the mix of products produced, climate conditions) between differentfacilities. In California, the winemaking industry is not only one of theeconomic pillars of the economy; it is also a large energy consumer, witha considerable potential for energy-efficiency improvement. LawrenceBerkeley National Laboratory and Fetzer Vineyards developed the firstbenchmarking tool for the California wine industry called "BEST(Benchmarking and Energy and water Savings Tool) Winery". BEST Wineryenables a winery to compare its energy efficiency to a best practicereference winery. Besides overall performance, the tool enables the userto evaluate the impact of implementing efficiency measures. The toolfacilitates strategic planning of efficiency measures, based on theestimated impact of the measures, their costs and savings. The tool willraise awareness of current energy intensities and offer an efficient wayto evaluate the impact of future efficiency measures.

  19. HPC Analytics Support. Requirements for Uncertainty Quantification Benchmarks

    SciTech Connect (OSTI)

    Paulson, Patrick R.; Purohit, Sumit; Rodriguez, Luke R.

    2015-05-01

    This report outlines techniques for extending benchmark generation products so they support uncertainty quantification by benchmarked systems. We describe how uncertainty quantification requirements can be presented to candidate analytical tools supporting SPARQL. We describe benchmark data sets for evaluating uncertainty quantification, as well as an approach for using our benchmark generator to produce data sets for generating benchmark data sets.

  20. Better Buildings Neighborhood Program Business Models Guide: Utility Program Administrator Market

    Broader source: Energy.gov [DOE]

    Utility Program Administrator Market, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  1. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Barnett, J. M.; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle dispersion. The results of these simulations suggest the air blender should be included in the stack system to ensure qualification of the stack.

  2. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions

    SciTech Connect (OSTI)

    Brown, Alan; Long, Fei; Nicholls, Robert A.; Toots, Jaan; Emsley, Paul; Murshudov, Garib, E-mail: garib@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom)

    2015-01-01

    A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions. The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 . Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

  3. Building America Expert Meeting: Transitioning Traditional HVAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Building America Expert Meeting: Simplified Space Conditioning Strategies...

  4. Preliminary Benchmarking Efforts and MCNP Simulation Results for Homeland Security

    SciTech Connect (OSTI)

    Robert Hayes

    2008-04-18

    It is shown in this work that basic measurements made from well defined source detector configurations can be readily converted in to benchmark quality results by which Monte Carlo N-Particle (MCNP) input stacks can be validated. Specifically, a recent measurement made in support of national security at the Nevada Test Site (NTS) is described with sufficient detail to be submitted to the American Nuclear Societys (ANS) Joint Benchmark Committee (JBC) for consideration as a radiation measurement benchmark. From this very basic measurement, MCNP input stacks are generated and validated both in predicted signal amplitude and spectral shape. Not modeled at this time are those perturbations from the more recent pulse height light (PHL) tally feature, although what spectral deviations are seen can be largely attributed to not including this small correction. The value of this work is as a proof-of-concept demonstration that with well documented historical testing can be converted into formal radiation measurement benchmarks. This effort would support virtual testing of algorithms and new detector configurations.

  5. Buildings Performance Database Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses

  6. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  7. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    SciTech Connect (OSTI)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAE 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.

  8. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  9. Public Housing Project Performance Benchmarks | Department of Energy

    Energy Savers [EERE]

    Public Housing Project Performance Benchmarks Public Housing Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within public housing, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon Public Housing Project Performance Benchmarks More Documents & Publications Healthcare Project Performance Benchmarks Federal Government Project Performance Benchmarks K-12

  10. Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

    2011-09-01

    This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  11. Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

    2011-09-01

    This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  12. Energy Benchmarking, Rating, and Disclosure for State Governments

    SciTech Connect (OSTI)

    Existing Commercial Buildings Working Group

    2012-05-23

    Provides information on how energy use data access can help state governments lead by example through benchmarking and disclosing results and implement benchmarking policies for the private sector.

  13. Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TAP webinar titled Internal Benchmarking Outreach and Data Collection Techniques Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking Outreach and Data ...

  14. CBEI: Improving Benchmarking Data Quality - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking Data Quality - 2015 Peer Review CBEI: Improving Benchmarking Data Quality - 2015 Peer Review Presenter: Scott Wagner, PSU View the Presentation PDF icon CBEI: ...

  15. EISA Federal Covered Facility Management and Benchmarking Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Independence & Security Act, Section 432 EISA Federal Covered Facility Management and Benchmarking Data EISA Federal Covered Facility Management and Benchmarking Data The ...

  16. Vehicle Technologies Office Merit Review 2015: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2015: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2015 ...

  17. Benchmarking / Crosschecking DFS in the ILC Main Linac (Technical...

    Office of Scientific and Technical Information (OSTI)

    Benchmarking Crosschecking DFS in the ILC Main Linac Citation Details In-Document Search Title: Benchmarking Crosschecking DFS in the ILC Main Linac In an effort to compare ...

  18. Asking the right questions: benchmarking fault-tolerant extreme...

    Office of Scientific and Technical Information (OSTI)

    Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Citation Details In-Document Search Title: Asking the right questions: benchmarking fault-tolerant ...

  19. Benchmarking of measurement and simulation of transverse rms...

    Office of Scientific and Technical Information (OSTI)

    Benchmarking of measurement and simulation of transverse rms-emittance growth Citation Details In-Document Search Title: Benchmarking of measurement and simulation of transverse ...

  20. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2014 ...

  1. Benchmarking and Disclosure: State and Local Policy Design Guide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language State and local policy design guide. Benchmarking and Disclosure: State and Local Policy ...

  2. CBEI: Benchmarking Analytics Tools - 2015 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking Analytics Tools - 2015 Peer Review CBEI: Benchmarking Analytics Tools - 2015 Peer Review Presenter: Clinton Andrews, Rutgers University View the Presentation PDF icon ...

  3. POLICY FLASH 2014-15 Determination of Benchmark Compensation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Determination of Benchmark Compensation Amount for Certain Executives and Employees POLICY FLASH 2014-15 Determination of Benchmark Compensation Amount for Certain Executives and...

  4. POLICY FLASH 2014-15 Determination of Benchmark Compensation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Determination of Benchmark Compensation Amount for Certain Executives and Employees (Update) POLICY FLASH 2014-15 Determination of Benchmark Compensation Amount for Certain...

  5. Guide to Benchmarking Residential Program Progress - CALL FOR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BBNP Peer Group Benchmarking Examples Step 7 Recommended Benchmarking Metrics ... should review and approve of the methodology used by contractors to estimate ...

  6. Benchmarking and Energy Saving Tool | Open Energy Information

    Open Energy Info (EERE)

    User Interface: Spreadsheet Website: industrial-energy.lbl.govnode100 Cost: Free Language: English References: Benchmarking and Energy Saving Tool 1 Logo: Benchmarking and...

  7. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using Energy Plus

    SciTech Connect (OSTI)

    Kamph, Jerome Henri; Robinson, Darren; Wetter, Michael

    2009-09-01

    There is an increasing interest in the use of computer algorithms to identify combinations of parameters which optimise the energy performance of buildings. For such problems, the objective function can be multi-modal and needs to be approximated numerically using building energy simulation programs. As these programs contain iterative solution algorithms, they introduce discontinuities in the numerical approximation to the objective function. Metaheuristics often work well for such problems, but their convergence to a global optimum cannot be established formally. Moreover, different algorithms tend to be suited to particular classes of optimization problems. To shed light on this issue we compared the performance of two metaheuristics, the hybrid CMA-ES/HDE and the hybrid PSO/HJ, in minimizing standard benchmark functions and real-world building energy optimization problems of varying complexity. From this we find that the CMA-ES/HDE performs well on more complex objective functions, but that the PSO/HJ more consistently identifies the global minimum for simpler objective functions. Both identified similar values in the objective functions arising from energy simulations, but with different combinations of model parameters. This may suggest that the objective function is multi-modal. The algorithms also correctly identified some non-intuitive parameter combinations that were caused by a simplified control sequence of the building energy system that does not represent actual practice, further reinforcing their utility.

  8. Developing integrated benchmarks for DOE performance measurement

    SciTech Connect (OSTI)

    Barancik, J.I.; Kramer, C.F.; Thode, Jr. H.C.

    1992-09-30

    The objectives of this task were to describe and evaluate selected existing sources of information on occupational safety and health with emphasis on hazard and exposure assessment, abatement, training, reporting, and control identifying for exposure and outcome in preparation for developing DOE performance benchmarks. Existing resources and methodologies were assessed for their potential use as practical performance benchmarks. Strengths and limitations of current data resources were identified. Guidelines were outlined for developing new or improved performance factors, which then could become the basis for selecting performance benchmarks. Data bases for non-DOE comparison populations were identified so that DOE performance could be assessed relative to non-DOE occupational and industrial groups. Systems approaches were described which can be used to link hazards and exposure, event occurrence, and adverse outcome factors, as needed to generate valid, reliable, and predictive performance benchmarks. Data bases were identified which contain information relevant to one or more performance assessment categories . A list of 72 potential performance benchmarks was prepared to illustrate the kinds of information that can be produced through a benchmark development program. Current information resources which may be used to develop potential performance benchmarks are limited. There is need to develop an occupational safety and health information and data system in DOE, which is capable of incorporating demonstrated and documented performance benchmarks prior to, or concurrent with the development of hardware and software. A key to the success of this systems approach is rigorous development and demonstration of performance benchmark equivalents to users of such data before system hardware and software commitments are institutionalized.

  9. Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  10. SEE Action Series: Local Strategies for Whole-Building Energy Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SEE Action Series: Local Strategies for Whole-Building Energy Savings SEE Action Series: Local Strategies for Whole-Building Energy Savings This presentation provides information on Local Strategies for Whole-Building Energy Savings. PDF icon Presentation More Documents & Publications Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings Energy Benchmarking, Rating, and Disclosure for Local Governments Energy Performance Benchmarking and

  11. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  12. Internal Benchmarking Outreach and Data Collection Techniques

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with internal benchmarking outreach and data collection techniques.

  13. Description and preliminary validation of a model for natural convection heat and air transport in passive solar buildings

    SciTech Connect (OSTI)

    Jones, G.F.; Balcomb, J.D.

    1985-01-01

    We have proposed a transient, quasi-two-dimensional, numerical model for interzone heat flow and airflow in passive solar buildings. The paths for heat flow and airflow are through connecting apertures such as doorways, hallways, and stairways. The model includes the major features that influence interzone convection as determined from the results of our flow visualization tests and temperature and airflow measurements taken in more than a dozen passive solar buildings. The model includes laminar and turbulent quasi-steady boundary-layer equations at vertical heated or cooled walls which are coupled to a one-dimensional core model for each zone. The cores in each zone exchange air and energy through the aperture which is modelled by a Bernoulli equation. Preliminary results from the model are in general agreement with data obtained in full-scale buildings and laboratory experiments. The model predicts room-core temperature stratification of about 2/sup 0/C/m (1.1/sup 0/ F/ft) and maximum aperture velocities of 0.08 m/s (15 ft/min.) for a room-to-room temperature difference of 1/sup 0/F.

  14. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Vehicle Lab Benchmarking - Level 1 2014 U.S. DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Kevin Stutenberg - Principal Investigator Argonne National Laboratory June 17, 2014 Project ID # VSS030 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Overview  Timeline - Benchmarking at ANL started in 1998 - FY13 & FY14 Completed Testing: * 10 vehicles tested in FY13, 4 in FY14 * Thermal impact

  15. Moving Multifamily Buildings From Assessments to Upgrades | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Moving Multifamily Buildings From Assessments to Upgrades Moving Multifamily Buildings From Assessments to Upgrades Better Buildings Neighborhood Program Multifamily Peer Exchange Call: Moving Multifamily Buildings from Assessments to Upgrades, call slides and discussion summary, January 24, 2013. PDF icon Call Slides and Discussion Summary More Documents & Publications Commercial and Multifamily Building Benchmarking and Disclosure Assessing Revenue Streams: What Is Right for

  16. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  17. Buildings Energy Data Book: 3.6 Office Building Markets and Companies

    Buildings Energy Data Book [EERE]

    9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones.

  18. Benchmarking for Cost Improvement. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The US Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management (EM) conducted the Benchmarking for Cost Improvement initiative with three objectives: Pilot test benchmarking as an EM cost improvement tool; identify areas for cost improvement and recommend actions to address these areas; provide a framework for future cost improvement. The benchmarking initiative featured the use of four principal methods (program classification, nationwide cost improvement survey, paired cost comparison and component benchmarking). Interested parties contributed during both the design and execution phases. The benchmarking initiative was conducted on an accelerated basis. Of necessity, it considered only a limited set of data that may not be fully representative of the diverse and complex conditions found at the many DOE installations. The initiative generated preliminary data about cost differences and it found a high degree of convergence on several issues. Based on this convergence, the report recommends cost improvement strategies and actions. This report describes the steps taken as part of the benchmarking initiative and discusses the findings and recommended actions for achieving cost improvement. The results and summary recommendations, reported below, are organized by the study objectives.

  19. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings with Uncertainty in an Integrated Assessment Model

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2015-10-01

    In this paper, an integrated assessment model (IAM) uses a newly-developed Monte Carlo analysis capability to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The paper finds that aggressive building-energy codes and equipment standards are an effective, cost-saving way to reduce energy consumption in buildings and greenhouse gas emissions in U.S. states. This conclusion is robust to significant uncertainties in population, economic activity, climate, carbon prices, and technology performance and costs.

  20. Advanced Technology Vehicle Benchmark and Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark and Assessment Advanced Technology Vehicle Benchmark and Assessment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss016_lohsebusch_2010_o.pdf More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 1 Advanced Technology Vehicle Lab Benchmarking - Level 1

  1. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This presentation contains information on Benchmarking Outreach and Data Collection Techniques for External Portfolios.

  2. K-12 Schools Project Performance Benchmarks | Department of Energy

    Energy Savers [EERE]

    K-12 Schools Project Performance Benchmarks K-12 Schools Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within K-12 schools, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon K-12 Schools Project Performance Benchmarks More Documents & Publications Post Secondary

  3. Post Secondary Project Performance Benchmarks | Department of Energy

    Energy Savers [EERE]

    Post Secondary Project Performance Benchmarks Post Secondary Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within post secondary education facilities, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon Post Secondary Project Performance Benchmarks More Documents & Publications K-12 Schools

  4. Transmittal Letter for the Statewide Benchmarking Process Evaluation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transmittal Letter for the Statewide Benchmarking Process Evaluation Transmittal Letter for the Statewide Benchmarking Process Evaluation This report by the California Public Utilities Commission examines the value of benchmarking as a tool to encourage energy efficiency, including a discussion of analysis tools. PDF icon Transmittal Letter for the Statewide Benchmarking Process Evaluation More Documents & Publications Designing a Benchmarking Plan Efficiency Data

  5. Federal Government Project Performance Benchmarks | Department of Energy

    Energy Savers [EERE]

    Federal Government Project Performance Benchmarks Federal Government Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within the federal government, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon Federal Government Project Performance Benchmarks More Documents & Publications State/Local Government Project Performance Benchmarks K-12 Schools Project

  6. On Variations of Space-heating Energy Use in Office Buildings

    SciTech Connect (OSTI)

    Lin, Hung-Wen; Hong, Tianzhen

    2013-05-01

    Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

  7. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  8. Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

    2011-02-01

    This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energy’s Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building America’s research teams. Building America brings together the nation’s leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

  9. Better Buildings Neighborhood Program: Business Models and Case Examples for Working with the Real Estate Sector, May 10, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 10, 2012 Better Buildings Neighborhood Program Financing Peer Exchange Call: Business Models and Case Examples for Working with the Real Estate Sector Agenda * Call Logistics and Attendance  Is your program currently working with real estate sector (or are you thinking about doing so), and if so, how? * Program Experience and Lessons:  Cynthia Gunn, DOE  San Diego, CA: Jeremy Hutman, CCSE * Discussion:  What are some key strategies for engaging this sector?  How can the value

  10. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-10-01

    Developments in passive solar buildings that took place from the early 1970`s through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  11. Passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D. )

    1992-01-01

    Developments in passive solar buildings that took place from the early 1970's through 1989 are described. Much of the work covered was federally sponsored during the period 1975 through 1986. About half the volume is devoted to quantitative methods for modeling, simulation, and design analysis of passive buildings; the other half summarizes the quantitative results of testing and monitoring of models and buildings. The following are covered: building solar gain modeling, simulation analysis, simplified methods, materials and components, analytical results for specific systems, test modules, building integration, performance monitoring and results, and design tools. (MHR)

  12. Energy Efficient Buildings Hub | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Buildings Hub Energy Efficient Buildings Hub August 1, 2010 - 4:27pm Addthis This model of a renovated historic building -- Building 661 -- in Philadelphia will house the Energy Efficient Buildings Hub. The facility’s renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. This model of a renovated historic building -- Building 661 -- in Philadelphia will house the

  13. US-India Center for Building Energy R&D (CBERD)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mathew, pamathew@lbl.gov Lawrence Berkeley National Laboratory US-India Center for Building Energy R&D (CBERD) Monitoring and Benchmarking 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: Oct 2012; Planned end date: Sep 2017 Key Milestones 1. Technical specifications for cost-effective Energy Information Systems packages for hotels and hospitals. (Sep 2015) 2. New techniques to increase flexibility and applicability of whole-building benchmarking needs.

  14. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  15. Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking and Disclosure: State and Local Policy Design Guide and Sample Policy Language Existing Commercial Buildings Working Group May 2012 The State and Local Energy Efficiency Action Network is a state and local effort facilitated by the federal government that helps states, utilities, and other local stakeholders take energy efficiency to scale and achieve all cost-effective energy efficiency by 2020. Learn more at www.seeaction.energy.gov DOE/EE-0733 May 2012 www.seeaction.energy.gov ii

  16. Transaction-based building controls framework, Volume 2: Platform descriptive model and requirements

    SciTech Connect (OSTI)

    Akyol, Bora A.; Haack, Jereme N.; Carpenter, Brandon J.; Katipamula, Srinivas; Lutes, Robert G.; Hernandez, George

    2015-07-31

    Transaction-based Building Controls (TBC) offer a control systems platform that provides an agent execution environment that meets the growing requirements for security, resource utilization, and reliability. This report outlines the requirements for a platform to meet these needs and describes an illustrative/exemplary implementation.

  17. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework

    SciTech Connect (OSTI)

    Zhou, Yuyu; Clarke, Leon E.; Eom, Jiyong; Kyle, G. Page; Patel, Pralit L.; Kim, Son H.; Dirks, James A.; Jensen, Erik A.; Liu, Ying; Rice, Jennie S.; Schmidt, Laurel C.; Seiple, Timothy E.

    2014-01-01

    As long-term socioeconomic transformation and energy service expansion show large spatial heterogeneity, advanced understanding of climate impact on building energy use at the sub-national level will offer useful insights into climate policy and regional energy system planning. In this study, we presented a detailed building energy model with a U.S. state-level representation, nested in the GCAM integrated assessment framework. We projected state-level building energy demand and its spatial pattern over the century, considering the impact of climate change based on the estimates of heating and cooling degree days derived from downscaled USGS CASCaDE temperature data. The result indicates that climate change has a large impact on heating and cooling building energy and fuel use at the state level, exhibiting large spatial heterogeneity across states (ranges from -10% to +10%). The sensitivity analysis reveals that the building energy demand is subject to multiple key factors, such as the magnitude of climate change, the choice of climate models, and the growth of population and GDP, and that their relative contributions vary greatly across the space. The scale impact in building energy use modeling highlights the importance of constructing a building energy model with the spatially-explicit representation of socioeconomics, energy system development, and climate change. These findings will help the climate-based policy decision and energy system, especially utility planning related to building sector at the U.S. state and regional level facing the potential climate change.

  18. From the Building to the Grid: An Energy Revolution and Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    important. * If we model a whole country, no need for detailed response, but need to know dynamic response. Sophisticated models are not required. * Models should be optimized for...

  19. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  20. National Energy Software Center: benchmark problem book. Revision

    SciTech Connect (OSTI)

    none,

    1985-12-01

    Computational benchmarks are given for the following problems: (1) Finite-difference, diffusion theory calculation of a highly nonseparable reactor, (2) Iterative solutions for multigroup two-dimensional neutron diffusion HTGR problem, (3) Reference solution to the two-group diffusion equation, (4) One-dimensional neutron transport transient solutions, (5) To provide a test of the capabilities of multi-group multidimensional kinetics codes in a heavy water reactor, (6) Test of capabilities of multigroup neutron diffusion in LMFBR, and (7) Two-dimensional PWR models.

  1. Benchmark enclosure fire suppression experiments - phase 1 test report.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  2. Midwest Building Energy Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Use in Existing Construction (Benchmarking) Objectives * Technical Assistance to ... Major Municipalities & States to Adopt Benchmarking Ordinances * Identify One State or ...

  3. Whole Building Energy Simulation

    Broader source: Energy.gov [DOE]

    Whole building energy simulation, also referred to as energy modeling, can and should be incorporated early during project planning to provide energy impact feedback for which design considerations...

  4. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Benchmarking Outreach and Data Collection Techniques webinar, held on April 25, 2013.

  5. State/Local Government Project Performance Benchmarks | Department of

    Energy Savers [EERE]

    Energy State/Local Government Project Performance Benchmarks State/Local Government Project Performance Benchmarks Reports five major performance metrics that can be used to benchmark proposed energy service company projects within state and local government facilities, disaggregated and reported by major retrofit strategy. Author: U.S. Department of Energy PDF icon State/Local Government Project Performance Benchmarks More Documents & Publications Federal Government Project Performance

  6. Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Benchmarking EV and HEV Technologies Vehicle Technologies Office Merit Review 2014: Benchmarking EV and HEV Technologies Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about benchmarking EV and HEV technologies. PDF icon ape006_burress_2014_p.pdf More Documents & Publications Benchmarking State-of-the-Art Technologies Vehicle

  7. Greensburg, Kansas: Building a Model Green Community, How Would You Rebuild a Town- Green? April 2009 (Brochure)

    Broader source: Energy.gov [DOE]

    This brochure describes the rebuilding of Greensburg, Kansas, highlighting the Greensburg High Performance Buildings Database as a source of information for energy-efficient building techniques.

  8. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect (OSTI)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  9. A solar thermal cooling and heating system for a building: Experimental and model based performance analysis and design

    SciTech Connect (OSTI)

    Qu, Ming; Yin, Hongxi; Archer, David H.

    2010-02-15

    A solar thermal cooling and heating system at Carnegie Mellon University was studied through its design, installation, modeling, and evaluation to deal with the question of how solar energy might most effectively be used in supplying energy for the operation of a building. This solar cooling and heating system incorporates 52 m{sup 2} of linear parabolic trough solar collectors; a 16 kW double effect, water-lithium bromide (LiBr) absorption chiller, and a heat recovery heat exchanger with their circulation pumps and control valves. It generates chilled and heated water, dependent on the season, for space cooling and heating. This system is the smallest high temperature solar cooling system in the world. Till now, only this system of the kind has been successfully operated for more than one year. Performance of the system has been tested and the measured data were used to verify system performance models developed in the TRaNsient SYstem Simulation program (TRNSYS). On the basis of the installed solar system, base case performance models were programmed; and then they were modified and extended to investigate measures for improving system performance. The measures included changes in the area and orientation of the solar collectors, the inclusion of thermal storage in the system, changes in the pipe diameter and length, and various system operational control strategies. It was found that this solar thermal system could potentially supply 39% of cooling and 20% of heating energy for this building space in Pittsburgh, PA, if it included a properly sized storage tank and short, low diameter connecting pipes. Guidelines for the design and operation of an efficient and effective solar cooling and heating system for a given building space have been provided. (author)

  10. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  11. Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris; Wang, Juan

    2005-08-10

    This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

  12. State/Local Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State/Local Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in

  13. Building America Best Practices Series: Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate (Volume 11)

    SciTech Connect (OSTI)

    Pacific Northwest National Laboratory

    2010-09-01

    With the measures described in this guide, builders in the marine climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers.

  14. Mercantile Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are...

  15. Education Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high...

  16. Better Buildings

    Broader source: Energy.gov [DOE]

    The Better Buildings Initiative aims to make commercial and industrial buildings 20% more energy efficient by 2020 and accelerate private sector investment in energy efficiency.

  17. Benchmarking Of Improved DPAC Transient Deflagration Analysis Code

    SciTech Connect (OSTI)

    Laurinat, James E.; Hensel, Steve J.

    2013-03-21

    The transient deflagration code DPAC (Deflagration Pressure Analysis Code) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak deflagration pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vessel walls. In addition, DPAC has been coupled with CEA, a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. The improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.

  18. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  19. Weighting Factors for the Commercial Building Prototypes Used in the Development of ANSI/ASHRAE/IESNA Standard 90.1-2010

    SciTech Connect (OSTI)

    Jarnagin, Ronald E.; Bandyopadhyay, Gopal K.

    2010-01-21

    Detailed construction data from the McGraw Hill Construction Database was used to develop construction weights by climate zones for use with DOE Benchmark Buildings and for the ASHRAE Standard 90.1-2010 development. These construction weights were applied to energy savings estimates from simulation of the benchmark buildings to establish weighted national energy savings.

  20. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  1. Archived Reference Building Type: Hospital

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  2. N = 4 supersymmetric mechanics: Harmonic superspace as a universal tool of model-building

    SciTech Connect (OSTI)

    Ivanov, E. A.

    2013-08-15

    We overview applications of the harmonic superspace approach in models of N = 4supersymmetric mechanics, with emphasis on some recent results.

  3. Live Webinar on Better Buildings Case Competition: Energy Efficiency in the Restaurant Franchise Model Case Study

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "A Side of Savings: Energy Efficiency in the Restaurant Franchise Model Case Study."

  4. Existing Commercial Reference Buildings Constructed Before 1980 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Before 1980 Existing Commercial Reference Buildings Constructed Before 1980 The files on this page contain commercial reference building models for existing buildings constructed before 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These

  5. Thermal Performance Benchmarking; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Moreno, Gilbert

    2015-06-09

    This project proposes to seek out the SOA power electronics and motor technologies to thermally benchmark their performance. The benchmarking will focus on the thermal aspects of the system. System metrics including the junction-to-coolant thermal resistance and the parasitic power consumption (i.e., coolant flow rates and pressure drop performance) of the heat exchanger will be measured. The type of heat exchanger (i.e., channel flow, brazed, folded-fin) and any enhancement features (i.e., enhanced surfaces) will be identified and evaluated to understand their effect on performance. Additionally, the thermal resistance/conductivity of the power modules passive stack and motors laminations and copper winding bundles will also be measured. The research conducted will allow insight into the various cooling strategies to understand which heat exchangers are most effective in terms of thermal performance and efficiency. Modeling analysis and fluid-flow visualization may also be carried out to better understand the heat transfer and fluid dynamics of the systems.

  6. Experimental power density distribution benchmark in the TRIGA Mark II reactor

    SciTech Connect (OSTI)

    Snoj, L.; Stancar, Z.; Radulovic, V.; Podvratnik, M.; Zerovnik, G.; Trkov, A.; Barbot, L.; Domergue, C.; Destouches, C.

    2012-07-01

    In order to improve the power calibration process and to benchmark the existing computational model of the TRIGA Mark II reactor at the Josef Stefan Inst. (JSI), a bilateral project was started as part of the agreement between the French Commissariat a l'energie atomique et aux energies alternatives (CEA) and the Ministry of higher education, science and technology of Slovenia. One of the objectives of the project was to analyze and improve the power calibration process of the JSI TRIGA reactor (procedural improvement and uncertainty reduction) by using absolutely calibrated CEA fission chambers (FCs). This is one of the few available power density distribution benchmarks for testing not only the fission rate distribution but also the absolute values of the fission rates. Our preliminary calculations indicate that the total experimental uncertainty of the measured reaction rate is sufficiently low that the experiments could be considered as benchmark experiments. (authors)

  7. ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plants | Department of Energy ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings and Plants ENERGY STAR® Guide to Energy Efficiency Competitions for Buildings and Plants This step-by-step guide outlines the steps for planning an energy efficiency competition or challenge, which can be used to engage the community and provide motivation to participate in a benchmarking and disclosure program. Guide to Energy Efficiency Competitions for Buildings & Plants More Documents

  8. Better Buildings Neighborhood Program Business Models Guide: Home Performance Contractor Introduction

    Broader source: Energy.gov [DOE]

    The home performance contractor is a firm whose business is to deliver customized and complete home energy upgrade solutions directly to consumers. This is a relatively new contractor model; it addresses companies that provide services from the energy assessment stage of the home energy upgrade process through the installation and quality assurance stages.

  9. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  10. Building America Case Study: Community-Scale Energy Modeling (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-12-01

    IBACOS analyzed pre-retrofit daily utility data to sort homes by energy consumption, allowing for better targeting of homes for physical audits. Following ASHRAE Guideline 14 normalization procedures, electricity consumption of 1,166 all electric production-built homes' was modeled. The homes were in two communities--one built in the 1970s and the other in the mid-2000s.

  11. Benchmarking and Transparency Policy and Program Impact Evaluation Handbook

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Benchmarking and Transparency Policy and Program Impact Evaluation Handbook Benchmarking and Transparency Policy and Program Impact Evaluation Handbook Prepared for by the U.S. Department of Energy, this Handbook provides both a strategic planning framework and standard methodologies to determined the energy and non-energy benefits of benchmarking and transparency policies and programs that recently began to proliferate in jurisdiction across the United States. PDF

  12. Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach and Data Collection Techniques | Department of Energy Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking Outreach and Data Collection Techniques Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking Outreach and Data Collection Techniques U.S. Department of Energy (DOE) Technical Assistance Program (TAP) transcript of a TAP webinar held on March 28, 2013 and dealing with internal benchmarking outreach and data collection techniques. PDF icon

  13. New York City Benchmarking and Transparency Policy Impact Evaluation Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy New York City Benchmarking and Transparency Policy Impact Evaluation Report New York City Benchmarking and Transparency Policy Impact Evaluation Report Prepared for the U.S. Department of Energy, this Report provides an understanding of both the approach and methodologies used to evaluate the New York City's benchmarking and transparency policy, Local Law 84, and the results of the application of those methodologies to the early period of the policy's implementation.

  14. Los Alamos National Lab staff benchmark Y-12 sustainability programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 ... to learn about its award-winning Sustainability and Stewardship Program. "By ...

  15. Lessons Learned: Measuring Program Outcomes and Using Benchmarks

    Broader source: Energy.gov [DOE]

    Lessons Learned: Measuring Program Outcomes and Using Benchmarks, a presentation on August 21, 2013 by Dale Hoffmeyer, U.S. Department of Energy.

  16. Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking ...

  17. NASA Benchmarks Lessons Learned Assessment Plan - Developed By...

    Broader source: Energy.gov (indexed) [DOE]

    NASA BENCHMARKS LESSONS LEARNED Assessment Plan Developed By NNSANevada Site Office Facility Representative Division Performance Objective: Management should have an established...

  18. ENERGY STAR Portfolio Manager and Utility Benchmarking Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Manager and Utility Benchmarking Programs: Effectiveness as a Conduit to Utility Energy Efficiency Programs Rohit Vaidya, Nexus Market Research Arlis Reynolds, National Grid...

  19. Hospital Energy Benchmarking Guidance - Version 1.0

    SciTech Connect (OSTI)

    Singer, Brett C.

    2009-09-08

    This document describes an energy benchmarking framework for hospitals. The document is organized as follows. The introduction provides a brief primer on benchmarking and its application to hospitals. The next two sections discuss special considerations including the identification of normalizing factors. The presentation of metrics is preceded by a description of the overall framework and the rationale for the grouping of metrics. Following the presentation of metrics, a high-level protocol is provided. The next section presents draft benchmarks for some metrics; benchmarks are not available for many metrics owing to a lack of data. This document ends with a list of research needs for further development.

  20. Microsoft Word - Sandia CREW 2012 Wind Plant Reliability Benchmark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-7328 Unlimited Release September 2012 Continuous Reliability Enhancement for Wind (CREW) Database: Wind Plant Reliability Benchmark Valerie A. Peters, Alistair B. Ogilvie, Cody...

  1. Microsoft Word - Sandia CREW 2013 Wind Plant Reliability Benchmark...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-7288 Unlimited Release September 2013 Continuous Reliability Enhancement for Wind (CREW) Database: Wind Plant Reliability Benchmark Valerie A. Hines, Alistair B. Ogilvie, Cody R....

  2. Benchmarking and Transparency Policy and Program Impact Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking and Transparency Policy and Program Impact Evaluation Handbook Prepared for by the U.S. Department of Energy, this Handbook provides both a strategic planning ...

  3. New York City Benchmarking and Transparency Policy Impact Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York City's benchmarking and transparency policy, Local Law 84, and the results of the application of those methodologies to the early period of the policy's implementation. ...

  4. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  5. Buildings Energy Data Book: 3.10 Hotels/Motels

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  6. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are

  7. Buildings Energy Data Book: 3.9 Educational Facilities

    Buildings Energy Data Book [EERE]

    2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They

  8. Building America

    SciTech Connect (OSTI)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  9. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  10. Building technologies

    SciTech Connect (OSTI)

    Jackson, Roderick

    2014-07-14

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  11. Building technologies

    ScienceCinema (OSTI)

    Jackson, Roderick

    2014-07-15

    After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

  12. Building and Calibration of a FAST Model of the SWAY Prototype Floating Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Koh, J. H.; Robertson, A.; Jonkman, J.; Driscoll, F.; Ng, E. Y. K.

    2013-09-01

    Present efforts to verify and validate aero-hydro-servo-elastic numerical simulation tools that predict the dynamic response of a floating offshore wind turbine are primarily limited to code-to-code comparisons or code-to-data comparisons using data from wind-wave basin tests. In partnership with SWAY AS, the National Renewable Energy Laboratory (NREL) installed scientific wind, wave, and motion measurement equipment on the 1/6.5th-scale prototype SWAY floating wind system to collect data to validate a FAST model of the SWAY design in an open-water condition. Nanyang Technological University (NTU), through a collaboration with NREL, assisted in this validation.

  13. Calculating Impacts of Energy Standards on Energy Demand in U.S. Buildings under Uncertainty with an Integrated Assessment Model: Technical Background Data

    SciTech Connect (OSTI)

    Scott, Michael J.; Daly, Don S.; Hathaway, John E.; Lansing, Carina S.; Liu, Ying; McJeon, Haewon C.; Moss, Richard H.; Patel, Pralit L.; Peterson, Marty J.; Rice, Jennie S.; Zhou, Yuyu

    2014-12-06

    This report presents data and assumptions employed in an application of PNNLs Global Change Assessment Model with a newly-developed Monte Carlo analysis capability. The model is used to analyze the impacts of more aggressive U.S. residential and commercial building-energy codes and equipment standards on energy consumption and energy service costs at the state level, explicitly recognizing uncertainty in technology effectiveness and cost, socioeconomics, presence or absence of carbon prices, and climate impacts on energy demand. The report provides a summary of how residential and commercial buildings are modeled, together with assumptions made for the distributions of statelevel population, Gross Domestic Product (GDP) per worker, efficiency and cost of residential and commercial energy equipment by end use, and efficiency and cost of residential and commercial building shells. The cost and performance of equipment and of building shells are reported separately for current building and equipment efficiency standards and for more aggressive standards. The report also details assumptions concerning future improvements brought about by projected trends in technology.

  14. Beardmore Building

    High Performance Buildings Database

    Priest River, ID Originally built in 1922 by Charles Beardmore, the building housed offices, mercantile shops, a ballroom and a theater. After decades of neglect under outside ownership, Brian Runberg, an architect and great-grandson of Charles Beardmore, purchased the building in 2006 and began an extensive whole building historic restoration.

  15. Numerical Modeling of 90Sr and 137Cs Transport from a Spill in the B-Cell of the 324 Building, Hanford Site 300 Area

    SciTech Connect (OSTI)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Lindberg, Michael J.; Clayton, Ray E.

    2012-03-19

    To characterize the extent of contamination under the 324 Building, a pit was excavated on the north side of the building in 2010 by Washington Closure Hanford LLC (WCH). Horizontal closed-end steel access pipes were installed under the foundation of the building from this pit and were used for measuring temperatures and exposure rates under the B-Cell. The deployed sensors measured elevated temperatures of up to 61 C (142 F) and exposure rates of up to 8,900 R/hr. WCH suspended deactivation of the facility because it recognized that building safety systems and additional characterization data might be needed for remediation of the contaminated material. The characterization work included additional field sampling, laboratory measurements, and numerical flow and transport modeling. Laboratory measurements of sediment physical, hydraulic, and geochemical properties were performed by Pacific Northwest National Laboratory (PNNL) and others. Geochemical modeling and subsurface flow and transport modeling also were performed by PNNL to evaluate the possible extent of contamination in the unsaturated sand and gravel sediments underlying the building. Historical records suggest that the concentrated 137Cs- and 90Sr-bearing liquid wastes that were spilled in B-Cell were likely from a glass-waste repository testing program associated with the Federal Republic of Germany (FRG). Incomplete estimates of the aqueous chemical composition (no anion data provided) of the FRG waste solutions were entered into a geochemical speciation model and were charge balanced with nitrate to estimate waste composition. Additional geochemical modeling was performed to evaluate reactions of the waste stream with the concrete foundation of the building prior to the stream entering the subsurface.

  16. MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wurtele, Eve Syrkin; Li, Jie; Diao, Lixia; Zhang, Hailong; Foster, Carol M.; Fatland, Beth; Dickerson, Julie; Brown, Andrew; Cox, Zach; Cook, Dianne; et al

    2003-01-01

    MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html) is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis , combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB) containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA) and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted usingmore » simple fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.« less

  17. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-12-04

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ~1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer.

  18. BEopt: Software for Identifying Optimal Building Designs on the Path to Zero Net Energy; Preprint

    SciTech Connect (OSTI)

    Christensen, C.; Horowitz, S.; Givler, T.; Courtney, A.; Barker, G.

    2005-04-01

    A zero net energy (ZNE) building produces as much energy on-site as it uses on an annual basis--using a grid-tied, net-metered photovoltaic (PV) system and active solar. The optimal path to ZNE extends from a base case to the ZNE building through a series of energy-saving building designs with minimal energy-related owning and operating costs. BEopt is a computer program designed to find optimal building designs along the path to ZNE. A user selects from among predefined options in various categories to specify options to be considered in the optimization. Energy savings are calculated relative to a reference. The reference can be either a user-defined base-case building or a climate-specific Building America Benchmark building automatically generated by BEopt. The user can also review and modify detailed information on all available options and the Building America Benchmark in a linked options library spreadsheet.

  19. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect (OSTI)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5) the amount of production of cement by type and grade (in tonnes per year); (6) the electricity generated onsite; and, (7) the energy used by fuel type; and, the amount (in RMB per year) spent on energy. The tool offers the user the opportunity to do a quick assessment or a more detailed assessment--this choice will determine the level of detail of the energy input. The detailed assessment will require energy data for each stage of production while the quick assessment will require only total energy used at the entire facility (see Section 6 for more details on quick versus detailed assessments). The benchmarking tool provides two benchmarks--one for Chinese best practices and one for international best practices. Section 2 describes the differences between these two and how each benchmark was calculated. The tool also asks for a target input by the user for the user to set goals for the facility.

  20. PROGRESS IN ENERGY EFFICIENT BUILDINGS

    SciTech Connect (OSTI)

    Wall, L.W.; Rosenfeld, A.H.

    1982-12-01

    Recent accomplishments in buildings energy research by the diverse groups in the Energy Efficient Buildings Program at Lawrence Berkeley Laboratory (LBL) are summarized. We review technological progress in the areas of ventilation and indoor air quality, buildings energy performance, computer modeling, windows, and artificial lighting. The need for actual consumption data to track accurately the improving energy efficiency of buildings is being addressed by the Buildings Energy Data (BED) Group at LBL. We summarize results to date from our Building Energy Use Compilation and Analysis (BECA) studies, which include time trends in the energy consumption of new commercial and new residential buildings, the measured savings being attained by both commercial and residential retrofits, and the cost-effectiveness of buildings energy conservation measures. We also examine recent comparisons of predicted vs. actual energy usage/savings, and present the case for building energy use labels.

  1. Archived Reference Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  2. Archived Reference Building Type: Hospital

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zones is available for reference. Current versions are also available.

  3. Benchmarking and Energy Saving Tool for Low Carbon Cities (BEST Cities)

    Energy Science and Technology Software Center (OSTI)

    2014-02-01

    BEST-Cities is designed to provide city authorities with strategies they can follow to reduce city-wide carbon dioxide (CO2) and methane (CH4) emissions. The tool quickly assesses local energy use and energy-related CO2 emissions across nine sectors (i.e., industry, public and commercial buildings, residential buildings, transportation, power and heat, street lighting, water & wastewater, solid waste, and urban green space), giving officials a comprehensive perspective on their local carbon performance. Cities can also use the toolmore » to benchmark their energy and emissions performance to other cities inside and outside China, and identify those sectors with the greatest energy saving and emissions reduction potential.« less

  4. Vacant Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Vacant Characteristics by Activity... Vacant Vacant buildings are those in which more floorspace was vacant than was used for any single commercial activity at the time of the...

  5. Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic...

  6. Other Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics See also: Equipment |...

  7. Buildings Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

  8. Commercial Building Tenant Energy Usage Aggregation and Privacy

    SciTech Connect (OSTI)

    Livingston, Olga V.; Pulsipher, Trenton C.; Anderson, David M.; Wang, Na

    2014-10-31

    A growing number of building owners are benchmarking their building energy use. This requires the building owner to acquire monthly whole-building energy usage information, which can be challenging for buildings in which individual tenants have their own utility meters and accounts with the utility. Some utilities and utility regulators have turned to aggregation of customer energy use data (CEUD) as a way to give building owners whole-building energy usage data while protecting customer privacy. Meter profile aggregation adds a layer of protection that decreases the risk of revealing CEUD as the number of meters aggregated increases. The report statistically characterizes the similarity between individual energy usage patterns and whole-building totals at various levels of meter aggregation.

  9. Building America Case Study: Community-Scale Energy Modeling (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency and Renewable Energy Building Technologies Office (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community-Scale Energy Modeling Southeastern United States PROJECT INFORMATION Construction: Existing home Type: Single-family Builder: Not available Size: 1,100 ft 2 to 1,400 ft 2 Number of Homes: 1,166 Price Range: Not available Date completed: 1970s, 2000s Climate Zone: 3A, Hot-humid PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh Standard Deviation: 4,163 kWh 2.5th Percentile: 7,469 kWh 97.5th Percentile: 24,001 kWh Community-scale energy modeling and

  10. Existing Commercial Reference Buildings Constructed Before 1980 — Archive

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary of building types and...

  11. INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom; Javier Ortensi; Sonat Sen; Hans Hammer

    2013-09-01

    The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible for defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III results of all other international participants in 2014, while the remaining Phase II transient case results will be reported in 2015.

  12. Advanced Vehicle Benchmarking of HEVs and PHEVs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmarking of HEVs and PHEVs Advanced Vehicle Benchmarking of HEVs and PHEVs 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  13. Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive Driving Cycles Off-Cycle Benchmarking of PHEVs; Wide Range of Temperatures and Aggressive Driving ...

  14. Policy Flash 2014-29 Acquisition Letter 2014-07 - Benchmark Compensati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Acquisition Letter 2014-07 - Benchmark Compensation Amount for Individual Executive Salary Actions Policy Flash 2014-29 Acquisition Letter 2014-07 - Benchmark Compensation Amount...

  15. Evaluation of HEU-Beryllium Benchmark Experiments to Improve Computational Analysis of Space Reactors

    SciTech Connect (OSTI)

    John D. Bess; Keith C. Bledsoe; Bradley T. Rearden

    2011-02-01

    An assessment was previously performed to evaluate modeling capabilities and quantify preliminary biases and uncertainties associated with the modeling methods and data utilized in designing a nuclear reactor such as a beryllium-reflected, highly-enriched-uranium (HEU)-O2 fission surface power (FSP) system for space nuclear power. The conclusion of the previous study was that current capabilities could preclude the necessity of a cold critical test of the FSP; however, additional testing would reduce uncertainties in the beryllium and uranium cross-section data and the overall uncertainty in the computational models. A series of critical experiments using HEU metal were performed in the 1960s and 1970s in support of criticality safety operations at the Y-12 Plant. Of the hundreds of experiments, three were identified as fast-fission configurations reflected by beryllium metal. These experiments have been evaluated as benchmarks for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE). Further evaluation of the benchmark experiments was performed using the sensitivity and uncertainty analysis capabilities of SCALE 6. The data adjustment methods of SCALE 6 have been employed in the validation of an example FSP design model to reduce the uncertainty due to the beryllium cross section data.

  16. New Construction - Commercial Reference Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » New Construction - Commercial Reference Buildings New Construction - Commercial Reference Buildings The files on this page contain commercial reference building models for new construction, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building vintages. These

  17. Analysisi Benchmark of the Single Heater Test

    SciTech Connect (OSTI)

    H.M. Wade; H. Marr; M.J. Anderson

    2006-07-27

    The Single Heater Test (SHT) is the first of three in-situ thermal tests included in the site characterization program for the potential nuclear waste monitored geologic repository at Yucca Mountain. The heating phase of the SHT started in August 1996 and was concluded in May 1997 after 9 months of heating. Cooling continued until January 1998, at which time post-test characterization of the test block commenced. Numerous thermal, hydrological, mechanical, and chemical sensors monitored the coupled processes in the unsaturated fractured rock mass around the heater (CRWMS M&O 1999). The objective of this calculation is to benchmark a numerical simulation of the rock mass thermal behavior against the extensive data set that is available from the thermal test. The scope is limited to three-dimensional (3-D) numerical simulations of the computational domain of the Single Heater Test and surrounding rock mass. This calculation supports the waste package thermal design methodology, and is developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 0, ICN 3, BSCN 1, Calculations.

  18. European Lean Gasoline Direct Injection Vehicle Benchmark

    SciTech Connect (OSTI)

    Chambon, Paul H; Huff, Shean P; Edwards, Kevin Dean; Norman, Kevin M; Prikhodko, Vitaly Y; Thomas, John F

    2011-01-01

    Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

  19. IAEA CRP on HTGR Uncertainty Analysis: Benchmark Definition and Test Cases

    SciTech Connect (OSTI)

    Gerhard Strydom; Frederik Reitsma; Hans Gougar; Bismark Tyobeka; Kostadin Ivanov

    2012-11-01

    Uncertainty and sensitivity studies are essential elements of the reactor simulation code verification and validation process. Although several international uncertainty quantification activities have been launched in recent years in the LWR, BWR and VVER domains (e.g. the OECD/NEA BEMUSE program [1], from which the current OECD/NEA LWR Uncertainty Analysis in Modelling (UAM) benchmark [2] effort was derived), the systematic propagation of uncertainties in cross-section, manufacturing and model parameters for High Temperature Reactor (HTGR) designs has not been attempted yet. This paper summarises the scope, objectives and exercise definitions of the IAEA Coordinated Research Project (CRP) on HTGR UAM [3]. Note that no results will be included here, as the HTGR UAM benchmark was only launched formally in April 2012, and the specification is currently still under development.

  20. Building Informatics Environment

    Energy Science and Technology Software Center (OSTI)

    2008-06-02

    The Building Informatics Environment is a modeling environment based on the Modelica language. The environment allows users to create a computer model of a building and its energy systems with various time scales and physical resolutions. The environment can be used for rapid development of, e.g., demand controls algorithms, new HVAC system solutions and new operational strategies (controls, fault detection and diagnostics). Models for building energy and control systems are made available in the environment.more » The models can be used as provided, or they can be changed and/or linked with each other in order to model the effects that a particular user is interested in.« less

  1. CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ace022_daw_2010_o.pdf More Documents & Publications CLEERS Coordination & Development of Catalyst Process Kinetic Data CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model

  2. Passive solar buildings research

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1992-12-31

    This chapter covers research advances in passive solar buildings research during the time span from 1982 through 1991. These advances fall within the following categories: (1) short-term energy monitoring, (2) heat transport by natural convection within buildings, and (3) design guidelines and design tools. In short-term energy monitoring, a simulation model of the building is calibrated, based on data taken in a 3-day test. The method accurately predicts performance over an extended period. Heat transport through doorways is characterized for complex situations that arise in passive solar buildings. Simple concepts and models adequately describe the energy transport in many situations of interest. In a new approach, design guidelines are automatically generated for any specific locality. Worksheets or an accompanying computer program allow the designer to quickly and accurately evaluate performance and investigate design alternatives. 29 refs., 19 figs., 2 tabs.

  3. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  4. Buildings Energy Data Book: 3.7 Retail Markets and Companies

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Retail Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Climate Zone Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 108.9 0.1 9.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate

  5. Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities

    Buildings Energy Data Book [EERE]

    6 Energy Benchmarks for Newly Constructed Outpatient Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 99.7 8.8 1.4 17.7 Commercial building energy benchmarks are based off of the current stock of commercial buildings and are designed to provide a consistent

  6. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    SciTech Connect (OSTI)

    Zhang Xi; Shia Runlie; Yung, Yuk L.

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  7. Benchmarking / Crosschecking DFS in the ILC Main Linac (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Benchmarking / Crosschecking DFS in the ILC Main Linac Citation Details In-Document Search Title: Benchmarking / Crosschecking DFS in the ILC Main Linac × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  8. Benchmarking of measurement and simulation of transverse rms-emittance

    Office of Scientific and Technical Information (OSTI)

    growth (Journal Article) | SciTech Connect Benchmarking of measurement and simulation of transverse rms-emittance growth Citation Details In-Document Search Title: Benchmarking of measurement and simulation of transverse rms-emittance growth Transverse emittance growth along the Alvarez DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth appropriated tools to simulate the

  9. New York City Benchmarking and Transparency Policy Impact Evaluation Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City Benchmarking and Transparency Policy Impact Evaluation Report May 2015 Prepared for the U.S. Department of Energy by Navigant Consulting, Inc., Steven Winter Associates, Inc., and Newport Partners, LLC (This page intentionally left blank) i Acknowledgments The authors wish to thank and acknowledge several organizations and individuals for their contributions to this impact evaluation report. First, this evaluation of New York City's Benchmarking and Transparency policy would not have been

  10. DOE Announces Webinars on Overcoming Wind Siting Challenges, Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Transparency, and More | Department of Energy Overcoming Wind Siting Challenges, Benchmarking and Transparency, and More DOE Announces Webinars on Overcoming Wind Siting Challenges, Benchmarking and Transparency, and More June 17, 2015 - 8:38am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is

  11. The implications of spatial locality on scientific computing benchmark

    Office of Scientific and Technical Information (OSTI)

    selection and analysis. (Conference) | SciTech Connect spatial locality on scientific computing benchmark selection and analysis. Citation Details In-Document Search Title: The implications of spatial locality on scientific computing benchmark selection and analysis. No abstract prepared. Authors: Kogge, Peter [1] ; Murphy, Richard C. [1] ; Rodrigues, Arun F. [1] ; Underwood, Keith Douglas + Show Author Affiliations (University of Notre Dame, Notre Dame, IN) Publication Date: 2005-08-01 OSTI

  12. Testing USABC Deliverables/Benchmarking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USABC Deliverables/Benchmarking Testing USABC Deliverables/Benchmarking 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_10_bloom.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing Energy Storage Testing and Analysis High Power and High Energy Development Vehicle Technologies Office Merit Review 2015: Electrochemical

  13. Energy Department Helps Cities, Counties Evaluate and Improve Building Energy Performance

    Broader source: Energy.gov [DOE]

    Many states, counties, and cities are implementing their own building energy benchmarking and transparency policies to improve ways owners, tenants and others can access a building’s energy use. The main goal is to increase the awareness of energy usage to encourage businesses and communities to save energy and reduce pollution through efficiency upgrades while increasing the real estate valuation for high performing buildings. To help jurisdictions measure the impact of their benchmarking and transparency policy efforts, the Energy Department recently released the Benchmarking & Transparency Policy and Program Impact Evaluation Handbook. It walks jurisdictions through the evaluation steps, providing both a strategic planning framework and standard methodologies to measure the impacts of benchmarking programs and policies.

  14. The design of a scalable, fixed-time computer benchmark

    SciTech Connect (OSTI)

    Gustafson, J.; Rover, D.; Elbert, S.; Carter, M.

    1990-10-01

    By using the principle of fixed time benchmarking, it is possible to compare a very wide range of computers, from a small personal computer to the most powerful parallel supercomputer, an a single scale. Fixed-time benchmarks promise far greater longevity than those based on a particular problem size, and are more appropriate for grand challenge'' capability comparison. We present the design of a benchmark, SLALOM{trademark}, that scales automatically to the computing power available, and corrects several deficiencies in various existing benchmarks: it is highly scalable, it solves a real problem, it includes input and output times, and it can be run on parallel machines of all kinds, using any convenient language. The benchmark provides a reasonable estimate of the size of problem solvable on scientific computers. Results are presented that span six orders of magnitude for contemporary computers of various architectures. The benchmarks also can be used to demonstrate a new source of superlinear speedup in parallel computers. 15 refs., 14 figs., 3 tabs.

  15. Building Science

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question How do we first do no harm with high-r enclosures?Ž

  16. Lodging Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    were then asked to place the building into the following more specific categories: a hotel a motel, inn, or resort a retirement home a shelter, orphanage, or children's home a...

  17. Office Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    page, please call 202-586-8800. There were enough buildings in the responding sample to report statistics for all of these types except for research and development, which has...

  18. Building America Residential Buildings Energy Efficiency Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings ... More Documents & Publications Summary of Gaps and Barriers for Implementing Residential ...

  19. Building America Expert Meeting: Transforming Existing Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transforming Existing Buildings through New Media--An Idea Exchange Building America Expert Meeting: Transforming Existing Buildings through New Media--An Idea Exchange This report...

  20. SUMMARY OF GENERAL WORKING GROUP A+B+D: CODES BENCHMARKING.

    SciTech Connect (OSTI)

    WEI, J.; SHAPOSHNIKOVA, E.; ZIMMERMANN, F.; HOFMANN, I.

    2006-05-29

    Computer simulation is an indispensable tool in assisting the design, construction, and operation of accelerators. In particular, computer simulation complements analytical theories and experimental observations in understanding beam dynamics in accelerators. The ultimate function of computer simulation is to study mechanisms that limit the performance of frontier accelerators. There are four goals for the benchmarking of computer simulation codes, namely debugging, validation, comparison and verification: (1) Debugging--codes should calculate what they are supposed to calculate; (2) Validation--results generated by the codes should agree with established analytical results for specific cases; (3) Comparison--results from two sets of codes should agree with each other if the models used are the same; and (4) Verification--results from the codes should agree with experimental measurements. This is the summary of the joint session among working groups A, B, and D of the HI32006 Workshop on computer codes benchmarking.

  1. The OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark: The PBMR-400 core design

    SciTech Connect (OSTI)

    Reitsma, F.; Ivanov, K.; Downar, T.; De Haas, H.; Gougar, H. D.

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is a High-Temperature Gas-cooled Reactor (HTGR) concept to be built in South Africa. As part of the verification and validation program the definition and execution of code-to-code benchmark exercises are important. The Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transient benchmark problem in its program. The OECD benchmark defines steady-state and transients cases, including reactivity insertion transients. It makes use of a common set of cross sections (to eliminate uncertainties between different codes) and includes specific simplifications to the design to limit the need for participants to introduce approximations in their models. In this paper the detailed specification is explained, including the test cases to be calculated and the results required from participants. (authors)

  2. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  3. DIRECT SPECTRUM OF THE BENCHMARK T DWARF HD19467B

    SciTech Connect (OSTI)

    Crepp, Justin R.; Matthews, Christopher T.; Rice, Emily L.; Giorla, Paige; Veicht, AAron; Nilsson, Ricky; Luszcz-Cook, Statia H.; Oppenheimer, Rebecca; Brenner, Douglas; Aguilar, Jonathan; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi; Hinkley, Sasha; Hillenbrand, Lynne A.; Vasisht, Gautam; Cady, Eric; Lockhart, Thomas; Roberts, Lewis C. Jr.; Beichman, Charles A.; and others

    2015-01-10

    HD19467B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ? 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD19467B is a T5.5 1 dwarf with effective temperature T{sub eff}=978{sub ?43}{sup +20}K. Our observations reveal significant methane absorption affirming its substellar nature. HD19467B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

  4. Benchmarking of multiple preequilibrium routines in GNASH

    SciTech Connect (OSTI)

    Chadwick, M.B.; Young, P.G.

    1994-08-01

    The authors compare two different models for multiple preequilibrium emission (MPE) in GNASH: the older exciton MPE model; and a new generalized MPE model which is parameter-free. They analyze the proton-induced reactions on zirconium and lead, which were the focus of a recent NEA intermediate-energy code intercomparison, using both the MPE models. They find that the new generalized MPE model better describes the measurements.

  5. Buildings Interoperability Landscape

    SciTech Connect (OSTI)

    Hardin, Dave; Stephan, Eric G.; Wang, Weimin; Corbin, Charles D.; Widergren, Steven E.

    2015-12-31

    Through its Building Technologies Office (BTO), the United States Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE-EERE) is sponsoring an effort to advance interoperability for the integration of intelligent buildings equipment and automation systems, understanding the importance of integration frameworks and product ecosystems to this cause. This is important to BTO’s mission to enhance energy efficiency and save energy for economic and environmental purposes. For connected buildings ecosystems of products and services from various manufacturers to flourish, the ICT aspects of the equipment need to integrate and operate simply and reliably. Within the concepts of interoperability lie the specification, development, and certification of equipment with standards-based interfaces that connect and work. Beyond this, a healthy community of stakeholders that contribute to and use interoperability work products must be developed. On May 1, 2014, the DOE convened a technical meeting to take stock of the current state of interoperability of connected equipment and systems in buildings. Several insights from that meeting helped facilitate a draft description of the landscape of interoperability for connected buildings, which focuses mainly on small and medium commercial buildings. This document revises the February 2015 landscape document to address reviewer comments, incorporate important insights from the Buildings Interoperability Vision technical meeting, and capture thoughts from that meeting about the topics to be addressed in a buildings interoperability vision. In particular, greater attention is paid to the state of information modeling in buildings and the great potential for near-term benefits in this area from progress and community alignment.

  6. Archived Reference Building Type: Full service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  7. Archived Reference Building Type: Outpatient health care

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  8. Archived Reference Building Type: Midrise Apartment

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  9. Archived Reference Building Type: Small Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  10. Archived Reference Building Type: Large Hotel

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  11. Archived Reference Building Type: Strip mall

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  12. Archived Reference Building Type: Quick service restaurant

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  13. Archived Reference Building Type: Secondary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  14. Archived Reference Building Type: Medium office

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  15. Archived Reference Building Type: Primary school

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

  16. Archive Reference Buildings by Building Type: Warehouse

    Broader source: Energy.gov [DOE]

    Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

  17. Existing Commercial Reference Buildings Constructed In or After 1980 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy In or After 1980 Existing Commercial Reference Buildings Constructed In or After 1980 The files on this page contain commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. These U.S. Department of Energy (DOE) reference buildings are complete descriptions for whole building energy analysis. You can also return to a summary of building types and climate zones and information about other building

  18. Interim Final Report for the Strengthening Retrofit Markets for Comprehensive Savings in Multifamily Buildings

    SciTech Connect (OSTI)

    Meinking, Rick; Adamson, Joy M

    2013-12-20

    Energy efficiency is vitally important in Maine. Nearly 70% of Maine households rely on fuel oil as their primary energy source for home heating, a higher share than in any other state. Coupled with the state's long, cold winters, Maine's dependence on oil renders homeowners particularly vulnerable to fluctuating fuel costs. With $4.5 million in seed funding from the Energy Department's Better Buildings Neighborhood Program, the Governor's Energy Office (GEO), through Efficiency Maine Trust (the Trust), is spurring Maine landlords to lower their monthly energy bills and improve comfort for their tenants during the state's cold winter months and increasingly warmer summers. Maine's aging multifamily housing stock can be expensive to heat and costly to maintain. It is not unusual to find buildings with little or no insulation, drafty windows, and significant air leaks, making them ideal candidates for energy efficiency upgrades. Maine modeled its Multifamily Efficiency Program (MEP) after the state's highly successful Home Energy Savings Program (HESP) for single?family homes. HESP provided cash incentives and financing opportunities to owners of one? to four?unit structures, which resulted in thousands of energy assessments and whole?house energy upgrades in 225 communities. Maine's new MEP multifamily energy efficiency upgrade and weatherization initiative focuses on small to medium?sized (i.e., five to 20 units) apartment buildings. The program's energy efficiency upgrades will provide at least 20% energy savings for each upgraded multifamily unit. The Trusts MEP relies on a network of approved program partners who help move projects through the pipeline from assessment to upgrade. MEP has two components: benchmarking and development of an Energy Reduction Plan (ERP). Using the ENERGY STAR Portfolio Manager benchmarking tool, MEP provides an assessment of current energy usage in the building, establishes a baseline for future energy efficiency improvements, and enables tracking and monitoring of future energy usage at the building all at no cost to the building owner. The ERP is developed by a program partner using either the Trusts approved modeling or prescriptive tools; it provides detailed information about the current energyrelated conditions in the building and recommends energy efficiency, health, and safety improvements. The Trust's delivery contractor provides quality assurance and controls throughout the process. Through this effort, MEP's goal is to establish a self?sustaining, market?driven program, demonstrating the value of energy efficiency to other building owners. The increasing value of properties across the state will help incentivize these owners to continue upgrades after the grant period has ended. Targeting urban areas in Maine with dense clusters of multifamily unitssuch as Portland, Lewiston? Auburn, Bangor, and AugustaMEP engaged a variety of stakeholder groups early on to design its multifamily program. Through direct emails and its website, program officials invited lending institutions, building professionals, engineering firms, equipment distributors, and local property owners associations to attend open meetings around the state to learn about the goals of the multifamily program and to help define its parameters. These meetings helped program administrators understand the diversity of the customer base: some owners are individuals with a single building, while other owners are groups of people or management companies with an entire portfolio of multifamily buildings. The diversity of the customer base notwithstanding, owners see MEP as an opportunity to make gains in their respective properties. Consistently high turnouts at stakeholder meetings fueled greater customer interest as awareness of the program spread through word of mouth. The program also gained traction by utilizing the program partner networks and building on the legacy of the Trusts successful HESP for single?family residences. MEP offers significant incentives for building owners to p

  19. US India Joint Center for Building Energy Research and Development (CBERD)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    US India Joint Center for Building Energy Research and Development (CBERD) Monitoring and Benchmarking 2014 Building Technologies Office Peer Review CBERD promotes innovation in energy efficiency through collaborative research, contributing to significant reduction in building energy use in both nations. Reshma Singh, LEED AP; ReshmaSingh@lbl.gov Lawrence Berkeley National Laboratory (LBNL) 2 Project Summary Timeline: Start date: Oct 2012; Planned end date: Sep 2017 Key Milestones 1. Sample

  20. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.