Powered by Deep Web Technologies
Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

2

Building America Efficient Solutions for Existing Homes Case Study: Retrofit of 1915 Home, Dayton, Washington  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Built in 1915, this two-story, three-bedroom home with an unfinished Built in 1915, this two-story, three-bedroom home with an unfinished basement and 2,600 ft 2 of living space is typical of many older homes found in eastern Washington. Through the U.S. Department of Energy's Building America program, researchers from the Pacific Northwest National Laboratory worked with local energy rater Energy Incentives, Inc., to assist the home owners in cost-effectively reducing their energy use by over 50%. The researchers used Energy Gauge USA simulation software to model retrofit packages and predict the most cost-effective retrofit measures within the homeowner's budget. The presence of asbestos insulation on the boiler made it more cost- effective to pursue efficiency measures that left the boiler in place to avoid the additional costs of disposal. Major energy and cost savings

3

Building America Best Practices Series, Vol. 10 - Retrofit Techniques & Technologies: Air Sealing, A Guide for Contractors to Share with Homeowners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGIES PROGRAM TECHNOLOGIES PROGRAM R Retrofit Techniques & Technologies: Air Sealing A Guide for Contractors to Share with Homeowners PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory April 12, 2010 April 12, 2010 * PNNL-19284 BUILDING AMERICA BEST PRACTICES SERIES VOLUME 10. BuiLDiNG AmERiCA BEST PRACTiCES SERiES Retrofit Techniques and Technologies: Air Sealing

4

Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing  

SciTech Connect

This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-04-12T23:59:59.000Z

5

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

6

Building America Efficient Solutions for Existing Homes Case Study: Deep Energy Retrofit of 1910 House, Portland, Oregon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

one-and-a-half-story, two-bedroom home with a half-basement one-and-a-half-story, two-bedroom home with a half-basement is typical of 100-year-old homes in Portland, Oregon. The home had no insulation, an unfinished basement, old appliances and air leaks everywhere when purchased by its current owner in 2010. The owners performed a full deep energy retrofit, including air sealing and insulating exterior walls and attic and installing new, efficient appliances. Building America researchers from the Pacific Northwest National Laboratory audited the home after the retrofits had occurred and used Energy Gauge USA simulation software to predict energy savings. They also partnered with local home performance contractor Imagine Energy to meter the circuit-level electricity use and the natural gas use of the tankless hot water heater and 95% condensing gas furnace. Based on

7

How Do We Retrofit the Tough Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do We Retrofit the Tough Buildings? Do We Retrofit the Tough Buildings? Cape Cod Style and Masonry Ken Neuhauser, Building Science Corporation Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 2 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 3 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 4 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 5 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 6 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 7 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 8 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 9 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 10 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 11 Cape Cod Style - Knee Wall

8

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

9

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

10

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

11

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

12

Building America Expert Meeting Final Report: Multifamily Hydronic and Steam Heating Controls and Distribution Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydronic Hydronic Heating in Multifamily Buildings Jordan Dentz The ARIES Collaborative October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

13

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

14

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evaluation of a Multifamily Evaluation of a Multifamily Retrofit in Climate Zone 5 Boulder, Colorado PROJECT INFORMATION Project Name: Evaluation of a Low-Rise Multifamily Retrofit in Boulder, CO Location: Boulder, CO Consortium of Advanced Residential Buildings www.carb-swa.com Building Component: Building envelope, lighting, appliances, water conservation Application: Retrofit Years Tested: 2012 Applicable Climate Zone(s): Cold, very cold PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $3,300-$6,100 per unit with total complex cost estimate of ~$150,000 Projected Energy Savings: 27%-41% depending on unit location/orientation Projected Energy Cost Savings: $154-$304 utility savings per year In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent

15

Building America Analysis Spreadsheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

16

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners,

17

Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit: Annapolis, Maryland. Building America Case Study: Efficient Solutions for New and Existing Homes (Fact Sheet)  

SciTech Connect

Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

Not Available

2013-10-01T23:59:59.000Z

18

Monitoring conservative retrofits in single family buildings  

SciTech Connect

This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant's names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

Richardson, C.S.

1992-12-06T23:59:59.000Z

19

Retrofit Ventilation Strategies in Multifamily Buildings Webinar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Slides from the Building America webinar on November 30, 2011. webinarhybridinsulation20111130.pdf...

20

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

22

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

23

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

24

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

25

Building Energy Model Development for Retrofit Homes  

SciTech Connect

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

26

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

27

Advanced Energy Retrofit Guide Retail Buildings  

Science Conference Proceedings (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

28

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

29

Building America Update - May 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 9, 2013 May 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. View Sessions from Building America 2013 Technical Update Meeting The Building America program held its 4 th annual Technical Update meeting on April 29-30, 2013, in Denver, Colorado. The meeting showcased Building America's world-class building science expertise for high performance homes, and focused on eight critical questions facing the building industry today, such as: * How Do We Retrofit the Tough Buildings? * What are the Best Off-the-Shelf HVAC Solutions for Low-Load, High-Performance Homes and Apartments?

30

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

31

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

32

Ready to Retrofit: The Process of Project Team Selection, Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Ready to Retrofit: The Process of Project Team Selection, Building Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects Title Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects Publication Type Report LBNL Report Number LBNL-5893E Year of Publication 2012 Authors Sanders, Mark D., Kristen Parrish, and Paul A. Mathew Publisher LBNL Abstract This guide provides an introduction and overview to the retrofit process and then dives deeper into the key activities that an owner can influence most in the retrofit process: (1) Selecting Your Project Team, (2) Benchmarking Your Building, and (3) Financing Your Energy Efficiency Projects* Building Energy Retrofit Overview will provide you a simple explanation of the retrofit process, the project stages and the players involved.

33

Building America Update - April 5, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 5, 2013 April 5, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Learn about Top Innovations from Building America Since 1995, Building America research has resulted in more than 30 major innovations that are helping to transform our nation's home building and retrofit industry to high performance homes. In fact, Building America research teams have helped deliver more than 42,000 high performance new and existing homes, working with 300 U.S. production home builders. Learn about the Top Innovations as identified in 2012, and plans for future Top Innovations. An article in the

34

A Methodology for Identifying Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings resulting from energy conservation retrofits in commercial buildings can be used to verify the success of the retrofits, determine the payment schedule for the retrofits, and guide the selection of future retrofits. This paper presents a structured methodology, developed for buildings in the Texas LoanSTAR program, for measuring retrofit savings in commercial buildings. This methodology identifies the pre-retrofit construction and post-retrofit periods, normalizes energy consumption data, and quantifies the uncertainty associated with the measured savings. A case study from the Texas LoanSTAR program is presented as an example.

Kissock, K.; Reddy, A.; Claridge, D.

1992-05-01T23:59:59.000Z

35

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

36

Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit, Annapolis, Maryland (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bay Ridge Gardens-Mixed Bay Ridge Gardens-Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit Annapolis, Maryland PROJECT INFORMATION Construction: Existing Type: Apartment building: Bay Ridge Gardens Annapolis, MD www.bayridgegardens.com Size: 12 apartment units, 713 ft 2 and 909 ft 2 each Year of construction: 1970s Date completed: 2013 Climate Zone: Mixed-humid PERFORMANCE DATA Pre-retrofit annual energy use (normalized): 28.4 kilowatt-hour per square foot (kWh/ft 2 ) Post-retrofit annual energy use (normalized): 16.3 kWh/ft 2 Percent energy savings: 43% Incremental cost of energy efficiency measures: $85,996 Monetized annual energy savings: $6,900 Savings to Investment Ratio: 1.1 Significant energy savings-43% in this case-are possible in older multifamily

37

City of Los Angeles - Green Building Retrofit Requirement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Retrofit Requirement Green Building Retrofit Requirement City of Los Angeles - Green Building Retrofit Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Manufacturing Buying & Making Electricity Solar Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles Department of Water and Power In April 2009, Los Angeles enacted [clkrep.lacity.org/onlinedocs/2006/06-1963_ord_180633.pdf Ordinance 180636], known as the Green Building Retrofit Ordinance. This ordinance was later amended by Ordinance 182259. The law requires all city-owned

38

Building America Climate-Specific Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America » Building America America » Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America Climate-Specific Guidance Building America's Best Practices guides and case studies demonstrate real world solutions for improving the energy performance and quality of new and existing homes in five major climate regions. Find examples of proven high-performance home building and remodeling in your area by selecting a climate zone below. In addition, you may view technology-specific building solutions that work across all climates. Cold and Very Cold Climates Hot-Dry and Mixed-Dry Climates Hot-Humid Climates Marine Climates Mixed-Humid Climates All Climates For additional, updated information on hundreds of building science topics that can help you build or retrofit to the most recent high-performance

39

Retrofit of Existing Residential Building: a Case Study  

E-Print Network (OSTI)

There are about 42 billion square meters of existing buildings in China. The energy efficiency of existing buildings directly relates to the energy consumption of the building sector. The retrofit of existing residential building began in the 1990s in Heilongjiang. The Sino-Canada demonstration project and Sino-France demonstration project of retrofitting existing residential buildings were carried out in 1997 and 2004, respectively. The retrofit method and energy conservation potential of the envelope and heating system of northern existing buildings are analyzed in this paper, combining the experiences of retrofitting existing residential buildings in Heilongjiang. The software was compiled to aid the design of the envelope retrofit in Heilongjiang and to analyze the working situation in existing residential building heating systems. The imbalance of the indoor temperature and the quantity of heating loss from opening the window in different retrofit projects are presented. The emphasis on energy efficiency retrofit of the envelope of existing residential buildings should be placed on the wall in northern region. It is possible to reduce about 50 percent of energy consumption of buildings by insulating the wall. The external insulation is suitable for retrofitting existing buildings, and the moisture transfer should be considered at the same time. To insure actual reduction in energy consumption, the heating system should be retrofitted when the envelope is insulated.

Zhao, L.; Xu, W.; Li, L.; Gao, G.

2006-01-01T23:59:59.000Z

40

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Business Case for Energy Efficient Building Retrofit and Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartMarket Report Produced with support from Energy Efficient Business Case for Energy Efficient Building Retrofit and Renovation Funding provided by U.S. Department of Energy...

42

Energy Efficient Retrofits and Green Building Practices  

E-Print Network (OSTI)

According to the recent survey more and more concern being expressed throughout the Middle East regions that the power generation companies are suffering with shortage of power during the peek hours and consequently unable to meet the power demand. Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven that 65% of electricity is consumed by Air Conditioning System resulting average energy consumption by 250kWh/year/sqmeter of a residential complex.

Rahman, M.

2010-01-01T23:59:59.000Z

43

Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study of Multifamily Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model Piljae Im, Ph.D. Mini Malhotra, Ph.D. R&D Staff Oak Ridge National Laboratory Presented at Building America Technical Update Meeting April 29-30, 2013 Outline * Multifamily Energy Audit Tool - Background - Needs for MF Audit Tool - Existing MF Tools - Modeling Approach - Development Status * Case Study - Background - Pre/Post Retrofit Building characteristics - Whole Building Energy Analysis * Summary Managed by UT-Battelle for the U.S. Department of Energy Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model 2 Background * New MF Building Energy Audit Tool sponsored by U.S. DOE * Collaboration of ORNL and LBNL * National web-based

44

Monitoring conservative retrofits in single family buildings. Final technical report  

SciTech Connect

This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant`s names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

Richardson, C.S.

1992-12-06T23:59:59.000Z

45

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

46

The retrofitting of existing buildings for seismic criteria  

E-Print Network (OSTI)

This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

Besing, Christa, 1978-

2004-01-01T23:59:59.000Z

47

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

48

Building America Expert Meeting Report: Hydronic Heating in Multifamily Buildings  

SciTech Connect

The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multi-family buildings with the goals of reducing energy waste and improving occupant comfort. The U.S. Department of Energy's Building America program develops technologies with the goal of reducing energy use by 30% to 50% in residential buildings. Toward this goal, the program sponsors 'Expert Meetings' focused on specific building technology topics. The meetings are intended to sharpen Building America research priorities, create a forum for sharing information among industry leaders and build partnerships with professionals and others that can help support the program's research needs and objectives. The topic of this expert meeting was cost-effective controls and distribution retrofit options for hot water and steam space heating systems in multifamily buildings with the goals of reducing energy waste and improving occupant comfort. The objectives of the meeting were to: (1) Share knowledge and experience on new and existing solutions: what works, what doesn't and why, and what's new; (2) Understand the market barriers to currently offered solutions: what disconnects exist in the market and what is needed to overcome or bridge these gaps; and (3) Identify research needs.

Dentz, J.

2011-10-01T23:59:59.000Z

49

Retrofit of a Multifamily Mass Masonry Building in New England  

SciTech Connect

Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-08-01T23:59:59.000Z

50

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

51

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

52

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

53

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

54

A Methodology to Measure Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings promote and sustain energy conservation retrofits by verifying the success of retrofits, determining pay-back schedules, guiding the selection of future retrofits and identifying opportunities for further savings. This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering analysis of constant-air-volume and variable-air-volume HVAC systems. One, two, three and four parameter, temperature-dependent regression models are proposed to model baseline energy use. Retrofit savings are measured as the difference between the baseline energy use project by the models and the measured post-retrofit energy use. A hybrid ordinary least squares/autoregressive method is developed to determine the uncertainty of the predicated energy use and savings. The annual predictive ability of models based on pre-retrofit data sets of less than a full year is investigated. The energy delivery efficiency is introduced to measure the efficiency of air-side systems at meeting the net building load. A preliminary investigation of the use of artificial neural network models to measure savings is presented. The methodology is demonstrated on case study examples using software specifically developed for the analysis of commercial building energy use.

Kissock, John Kelly

2008-01-16T23:59:59.000Z

55

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

56

Building America Top Innovations Hall of Fame Profile … House Simulation Protocols (the Building America Benchmark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insight Homes of Delaware worked Insight Homes of Delaware worked with Building America research partner IBACOS to design and analyze multiple iterations of prototype homes until an optimum combination of efficiency measures was derived. Building America has proven to be a world-class research program that has delivered transformative innovations to the housing industry. A solid technical underpinning has been critical to this success, and that has been provided by simulation protocols that ensure a consistent framework for technical analysis. The U.S. Department of Energy's Building America program sponsors projects conducted by its research teams working in the field with home builders and contractors. These teams use a systems engineering process to perform cost and performance assessments relative to each builder or retrofit

57

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

58

Addendum to the Building America House Simulation Protocols  

SciTech Connect

As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

2012-12-01T23:59:59.000Z

59

Addendum to the Building America House Simulation Protocols  

SciTech Connect

As Building America (BA) has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocols (HSP) provides guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Engebrecht-Metzger, C.; Wilson, E.; Horowitz, S.

2012-12-01T23:59:59.000Z

60

Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Philadelphia-area Building Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings Hub is one of the U.S. Department of Energy’s research centers called Energy Innovation Hubs. | Photo courtesy of EEB Hub This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transcript for Building America Video  

NLE Websites -- All DOE Office Websites (Extended Search)

Transcript for Building America Video "Think about a bridge. A bridge between two places. One is the world we've been living in ... ... a place of homes with high energy costs;...

62

Measuring retrofit savings in commercial buildings with pre-retrofit utility billing data and post-retrofit sub-metered data  

E-Print Network (OSTI)

Methodologies to measure energy and dollar savings resulting from energy conserving retrofits in commercial buildings when both pre-retrofit and post-retrofit monitored data are available at an hourly or daily level have already been developed by several researchers. However there are many occasions when hourly or daily energy consumption data are available only for the post-retrofit period. This thesis presents a methodology for measuring retrofit savings on such occasions by establishing a pre-retrofit baseline model of energy consumption based on pre-retrofit monthly utility billing data and sub-metered daily or hourly post-retrofit data. The procedure consists of two basic parts. The first part normalizes energy use for temperature dependency using post-retrofit sub-metered hourly data, the second part accounts for scheduling effects and develops a pre-retrofit baseline model using pre-retrofit utility bills. In this way, the method explicitly accounts for both scheduling and weather effects in developing a baseline for pre-retrofit energy consumption. The methodology is first tested with data from a LoanSTAR site where both pre- and post-retrofit data are available. It is then illustrated with two other LoanSTAR sites where only post-retrofit sub-metered data and pre-retrofit monthly utility billing data are available. This thesis also employs the direct utility bill comparison method to measure retrofit savings, and extends it to include a simple temperature comparison and compares results on a monthly and annual basis with the method developed herein.

Liu, Yue

1993-01-01T23:59:59.000Z

63

Building America Top Innovations Hall of Fame Profile … Building Energy Optimization Analysis Method (BEopt)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House geometries are among the many House geometries are among the many options users can enter in BEopt. Results shown here are rendered in SketchUp and show neighboring houses for shading analysis. To achieve Building America's ambitious energy-efficiency goals, it becomes increasingly important that researchers can identify the most cost-effective, high-performance improvements. BEopt has proven to be an invaluable analysis tool enabling Building America and its research partners to progress to zero net-energy new homes and deep energy retrofits. There are many energy analysis software tools out there-some do optimization, some do residential analysis, some do retrofit analysis, some come pre-packaged with options and costs, etc. With support from DOE's Building America program, researchers at the National Renewable Energy

64

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

65

Forrestal Building Lighting Retrofit Second Live Test Demonstration (LTD)  

SciTech Connect

This report describes and summarizes the Forrestal Building Lighting Retrofit Live Test demonstration (LTD) performed by Pacific Northwest Laboratory (PNL) in Room 5E-080 of the DOE Forrestal Building in Washington, D.C. The purpose of the LTD was to evaluate proposed lighting retrofits for compliance with the requirements laid out in the request for proposal (RFP) for the Shared Energy Savings (SES) Lighting Retrofit Project for the Forrestal Building, Washington, D.C. Testing was conducted from March 9 through March 18, 1992, and again on August 3 through August 6, 1992. Four contractors were initially tested in March. Then, two contractors were retested in August due to changes in the rebate schedule for electronic ballasts being offered by the Potomac Electric Power Company (PEPCO), the utility servicing the Forrestal Building. The two contractors tested in March were retested with different ballasts, tubes, and reflectors. The results from these new tests are reported here and compared with those from the earlier tests.

Halverson, M.A.; Schmelzer, J.R.; Parker, G.B.

1993-02-01T23:59:59.000Z

66

Combining Energy Efficiency Building Retrofits and Onsite Generation: An  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Energy Efficiency Building Retrofits and Onsite Generation: An Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Title Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Publication Type Conference Paper Year of Publication 2011 Authors Satchwell, Andrew, Peter H. Larsen, and Charles A. Goldman Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 2011 Publisher ACEEE Conference Location Niagara Falls, New York Abstract The U.S. energy service company (ESCO) industry is an example of a private-sector business model where energy efficiency savings are delivered to customers primarily through the use of performance-based contracts. Despite the onset of a severe economic recession, we estimate that the U.S. ESCO industry grew about 7% per year from 2006 to 2008 with annual revenues of about $4.1 billion in 2008. About 75% of industry revenues are directly related to the installation of energy efficiency measures at existing buildings in the institutional, commercial, and industrial sectors.

67

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

68

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Conference Proceedings (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

69

The evaluation of retrofit measures in a tall residential building  

SciTech Connect

As part of a joint demonstration effort involving the US Department of Energy (DOE), the US Department of Housing and Urban Development (HUD), Boston Edison Company (BECo), and the Chelsea Housing Authority, Oak Ridge National Laboratory (ORNL) participated in the evaluation of energy and demand saving retrofits for a tall residential building located in Boston. The thirteen story all-electric building underwent window, lighting, and control renovations in December, 1992. annual energy consumption was reduced by 15% and peak demand fell by 17%. Hourly should building consumption data were available for the comparison of pre- and post- conditions and for calibration of a DOE-2.1D simulation model. The analysis found the window retrofit accounted for 90% of total energy savings and 95% of average demand savings, due to reductions in both conduction and infiltration. Benefits from lighting retrofits were low in cooling months and negligible in winter months due to the increase in the demand for electric resistance heating which was proportional to the reduction in lighting capacity. Finally, the simulation model verified that heating system controls had not been used as intended, and that the utility rate structure would not allow cost savings from the original control strategy. These results and other interesting lessons learned are presented.

Abraham, M.M.; McLain, H.A.

1995-07-01T23:59:59.000Z

70

Building America Top Innovations Hall of Fame Profile - Basement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basement Insulation Systems Building America Top Innovations Hall of Fame Profile - Basement Insulation Systems This Building America Innovations profile describes Building America...

71

Building Technologies Office: Building America Solution Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Solution Center Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR® checklists, alphabetical lists, a house diagram with selectable components, and an information map. Logged-in users can quickly save any of these elements into their personal Field Kit.

72

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

73

Business Case for Energy Efficient Building Retrofit and Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartMarket Report SmartMarket Report Produced with support from Energy Efficient Business Case for Energy Efficient Building Retrofit and Renovation Funding provided by U.S. Department of Energy through the Pacific Northwest National Laboratory McGraw-Hill Construction President Keith Fox Vice President, Product Development Kathryn E. Cassino McGraw-Hill Construction Research & Analytics/Alliances Vice President, Industry Insights & Alliances Harvey M. Bernstein, F. ASCE, LEED AP Senior Director, Research & Analytics Burleigh Morton Director, Partnerships & Alliances John Gudgel Director, Green Content & Research Communications Michele A. Russo, LEED AP Business Case for Energy Effi cient Building Retrofi

74

An Overview of the Building Energy Retrofit Research Program  

E-Print Network (OSTI)

A relatively new program of the U.S. Department of Energy has been established to focus on the technical, financial, and behavioral barriers to improving the energy efficiency of existing buildings through retrofit. The program is organized by the three building sectors (single-family, multi-family, and commercial) and is implemented with expertise from four national laboratories, Princeton University, and the Alliance to Save Energy in cooperation with a large number of state, utility, and local agencies. This paper summarizes the objectives, approach, and accomplishments of the program.

Mixon, W. R.

1987-01-01T23:59:59.000Z

75

Building America Expert Meeting Report: Transitioning Traditional...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to...

76

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

1980-09-01T23:59:59.000Z

77

Building America Systems Integration Research Annual Report:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration Research Annual Report: FY 2012 Prepared for: Building America Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S....

78

Building America Update - February 8, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

you to fast, free, and expert building science and energy efficiency information based on Building America research results. The user-friendly interface delivers a variety of...

79

An Overview of the Building Energy Retrofit Research Program  

E-Print Network (OSTI)

This research update presents the status of a U.S. Department of Energy program that addresses the technical, financial, and behavioral barriers to improving the energy efficiency of existing buildings. The program is implemented with expertise from four national laboratories, Princeton University, and the Alliance to Save Energy in cooperation with a large number of state, utility, and local agencies. The remaining potential for energy savings from cost effective retrofit measures in existing buildings is impressive, but a variety of barriers have been identified that reduce conservation investment. One significant barrier that the program can address is the large uncertainty about savings. Average savings for a large sample of retrofit hones is generally lower than expected, and savings in individual buildings varies unpredictably from negative to very high positive values. Our approach has been to provide reliable information on the performance and cost effectiveness of energy conserving technologies and practices. Field performance monitoring is in progress in each building sector and development of diagnostic techniques and monitoring protocols is in progress.

Mixon, W. R.

1988-01-01T23:59:59.000Z

80

Retrofitting existing commercial buildings in the desert southwest to be energy efficient.  

E-Print Network (OSTI)

??This research proposes recommendations specific to the desert southwest for retrofitting existing commercial buildings. A dry, arid region such as Las Vegas, Nevada must contend (more)

Wilkins, Andrea Lee

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

82

Hammer Award Honors a Federal Building's Energy-Efficient Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hammer Award Honors a Federal Building's Energy-Efficient Retrofit Figure 1: Each floor of the 21-story Phillip Burton Federal Office Building in San Francisco is more than 60,000 square feet. The lighting controls testbed occupies the third, fourth and fifth floors. Vice President Al Gore's National Performance Review has given a Hammer Award to a team of private and public entities, including several Center researchers. The team is working to turn San Francisco's Federal Building at 450 Golden Gate Avenue into a showcase of energy-efficient technologies that could cut the federal government's annual energy bill by a billion dollars. The Hammer Award recognizes teams of federal, state, and local employees and private citizens who have made government more efficient and

83

Building America Top Innovations Hall of Fame Profile - Building...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science-Based Climate Maps Building America Top Innovations Hall of Fame Profile - Building Science-Based Climate Maps 43abainnovbuildingscienceclimatemaps...

84

Building Technologies Office: Building America 2013 Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

and why? What looks promising? High-Performance Enclosure Retrofit for Cold Climate Cape Cod Houses and Occupied Masonry Structures Foundation Insulation for Existing Homes in Cold...

85

Building America Solution Center | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America America Solution Center Building America Solution Center World-Class Research At Your Fingertips The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more. Explore the Building America Solution Center. The user-friendly interface delivers a variety of resources for each topic, including: Contracting documents and specifications Installation guidance Energy codes and labeling program compliance CAD drawings "Right and wrong" photographs Training videos Climate-specific case studies Technical reports. Users can access content in several ways, including the ENERGY STAR®

86

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top Innovations Advance High Performance Homes America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently awarded by selecting a category or award recipient below.

87

Evaluation of Retrofit Delivery Packages  

SciTech Connect

Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

Berman, M.; Smith, P.; Porse, E.

2013-07-01T23:59:59.000Z

88

Building America Update - July 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 9, 2013 July 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Join Us at the Building America Track at EEBA Conference The Energy & Environmental Building Alliance (EEBA) Excellence in Building Conference will take place on September 24-26, 2013, in Phoenix, Arizona. The EEBA conference offers educational seminars, expert presenters, and hands-on demonstrations to help builders tap into the most up-to-date building science and home performance best practices and profit-building possibilities. While there, plan to attend the Building America track, Zero Net-Energy Ready Homes with Building America

89

Building America Meetings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meetings Meetings Building America Meetings Photo of people watching a presentation on a screen the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 Building America 2012 Technical Update Meeting: July 2012

90

Hydronic Controls Retrofits for Low-Rise Multi-Famiy Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Integrated Energy Solutions Residential Integrated Energy Solutions Building America Stakeholder Meeting Austin, Texas February 29 to March 2, 2012 Hugh Henderson, CDH Energy Corp. Jordan Dentz, The Levy Partnership, Inc. Hydronic Controls Retrofits for Low-Rise Multi-Family Buildings Research Objective * Determine the impact of control strategies that use apartment temperatures for central boiler control on energy consumption, comfort and cost. * Compare energy performance, comfort and cost to individual radiator valve controls in each apartment. Background * Most multi-family boiler systems have: - No zone/apartment level control, or - Non-electric thermostats on radiator valves * Central boiler system resets hot water based on outdoor temperature * Problem: - apartments are often too hot or too cold.

91

Building America Expert Meeting: Combustion Safety | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting: Combustion Safety Building America Expert Meeting: Combustion Safety This is a meeting overview of "The Best Approach to Combustion Safety in a Direct Vent World, held...

92

Building America Performance Analysis Procedures for Existing Homes  

Science Conference Proceedings (OSTI)

Because there are more than 101 million residential households in the United States today, it is not surprising that existing residential buildings represent an extremely large source of potential energy savings. Because thousands of these homes are renovated each year, Building America is investigating the best ways to make existing homes more energy-efficient, based on lessons learned from research in new homes. The Building America program is aiming for a 20%-30% reduction in energy use in existing homes by 2020. The strategy for the existing homes project of Building America is to establish technology pathways that reduce energy consumption cost-effectively in American homes. The existing buildings project focuses on finding ways to adapt the results from the new homes research to retrofit applications in existing homes. Research activities include a combination of computer modeling, field demonstrations, and long-term monitoring to support the development of integrated approaches to reduce energy use in existing residential buildings. Analytical tools are being developed to guide designers and builders in selecting the best approaches for each application. Also, DOE partners with the U.S. Environmental Protection Agency (EPA) to increase energy efficiency in existing homes through the Home Performance with ENERGY STAR program.

Hendron, R.

2006-05-01T23:59:59.000Z

93

Building America Industrialized Housing Partnership (BAIHP)  

DOE Green Energy (OSTI)

This final report summarizes the work conducted by the Building America Industrialized Housing Partnership (www.baihp.org) for the period 9/1/99-6/30/06. BAIHP is led by the Florida Solar Energy Center of the University of Central Florida and focuses on factory built housing. In partnership with over 50 factory and site builders, work was performed in two main areas--research and technical assistance. In the research area--through site visits in over 75 problem homes, we discovered the prime causes of moisture problems in some manufactured homes and our industry partners adopted our solutions to nearly eliminate this vexing problem. Through testing conducted in over two dozen housing factories of six factory builders we documented the value of leak free duct design and construction which was embraced by our industry partners and implemented in all the thousands of homes they built. Through laboratory test facilities and measurements in real homes we documented the merits of 'cool roof' technologies and developed an innovative night sky radiative cooling concept currently being tested. We patented an energy efficient condenser fan design, documented energy efficient home retrofit strategies after hurricane damage, developed improved specifications for federal procurement for future temporary housing, compared the Building America benchmark to HERS Index and IECC 2006, developed a toolkit for improving the accuracy and speed of benchmark calculations, monitored the field performance of over a dozen prototype homes and initiated research on the effectiveness of occupancy feedback in reducing household energy use. In the technical assistance area we provided systems engineering analysis, conducted training, testing and commissioning that have resulted in over 128,000 factory built and over 5,000 site built homes which are saving their owners over $17,000,000 annually in energy bills. These include homes built by Palm Harbor Homes, Fleetwood, Southern Energy Homes, Cavalier and the manufacturers participating in the Northwest Energy Efficient Manufactured Home program. We worked with over two dozen Habitat for Humanity affiliates and helped them build over 700 Energy Star or near Energy Star homes. We have provided technical assistance to several show homes constructed for the International builders show in Orlando, FL and assisted with other prototype homes in cold climates that save 40% over the benchmark reference. In the Gainesville Fl area we have several builders that are consistently producing 15 to 30 homes per month in several subdivisions that meet the 30% benchmark savings goal. We have contributed to the 2006 DOE Joule goals by providing two community case studies meeting the 30% benchmark goal in marine climates.

McIlvaine, Janet; Chandra, Subrato; Barkaszi, Stephen; Beal, David; Chasar, David; Colon, Carlos; Fonorow, Ken; Gordon, Andrew; Hoak, David; Hutchinson, Stephanie; Lubliner, Mike; Martin, Eric; McCluney, Ross; McGinley, Mark; McSorley, Mike; Moyer, Neil; Mullens, Mike; Parker, Danny; Sherwin, John; Vieira, Rob; Wichers, Susan

2006-06-30T23:59:59.000Z

94

Building America: Bringing Building Innovations to Market | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America: Bringing Building America: Bringing Building Innovations to Market Building America: Bringing Building Innovations to Market INNOVATIONS Advanced technologies and whole-house solutions for saving energy and costs. Read more SOLUTION CENTER Solutions for improving the energy performance and quality of new and existing homes. Read more RESEARCH TOOLS Tools to ensure consistent research results for new and existing homes. Read more MARKET PARTNERSHIPS Resources and partnering opportunities for the U.S. building industry. Read more Learn about how this world-class research program can help the U.S. building industry promote and construct homes that are better for business, homeowners, and the nation. Building America logo The U.S. Department of Energy's (DOE) Building America program has been a

95

Building America Update - June 7, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2013 June 7, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Test Your Skills: "What's Wrong With These Roof Details?" View the latest entry of Building America's ongoing series, "What's Wrong With This Picture?," in the new issue of Green Building Advisor online newsletter. In this installment, readers are invited to spot as many errors as they can in the photo of the roof of a multifamily building in Minneapolis. Members of the NorthernSTAR Building America Partnership team developed this entry, and will provide answers based on their research on

96

Building America Update - September 10, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 10, 2013 September 10, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Spotlight on 2013 Technical Update Meeting See the August issue of Green Builder magazine for the article, "Taking Control"-a recap of the Spring 2013 Building America Technical Update meeting, which brought together some of the world's foremost building scientists to discuss the latest research on building and remodeling challenges facing the industry today. The article outlines Building America recommendations for high impact issues such as: insulation challenges, optimal strategies

97

Building America Spring 2012 Stakeholder Meeting Report: Austin...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012 Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February...

98

Building America Roadmap to High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Name or Ancillary Text Program Name or Ancillary Text eere.energy.gov Building America Technical Update Meeting - April 29, 2013 Building America Roadmap to High Performance Homes Eric Werling Building America Coordinator Denver, CO April 29, 2013 Building Technology Office U.S. Department of Energy EERE's National Mission Mission: To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 2 | Building Technologies Office eere.energy.gov Why It Matters to America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation

99

Building America Update - March 11, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 11, 2013 March 11, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Plan to Attend the 2013 Technical Update Meeting If you haven't already registered for Building America's 2013 Technical Update Meeting scheduled for April 29-30, 2013, in Denver, Colorado, there is still time! This meeting will showcase Building America's world-class building science expertise for high performance homes, presented in a dynamic format of expert presentations, panel discussions, and audience participation. This meeting is free and open to the public. Space is limited, so please register soon!

100

Assessing methods for predicting retrofit energy savings in buildings : case study of a Norwegian school  

E-Print Network (OSTI)

This work investigates methods for predicting retrofit energy savings in existing Norwegian buildings. A case study is performed on a 30 year old primary school in Trondheim, Norway. The energy consumption in the school ...

Ricker, Elizabeth, S.M. (Elizabeth Ann). Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building America Research Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tools Tools Building America Research Tools Building America provides technical tools to support researchers and building industry professionals in ensuring consistent research results for new and existing homes. The following resources can be used to evaluate optimal building designs, access performance and cost data, execute field tests, and track research progress. Image is a rendering of a two-story residential building with an entrance on the front. To the right of this building is another large building shaded in gray, and to the left is a smaller structure shaded in gray. Building Energy Optimization Software (BEopt): This software provides capabilities to evaluate residential building designs and identify cost-optimal efficiency packages at various levels of whole-house energy

102

Building America Update - August 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 9, 2013 August 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Building America Supports Home for Life * As the nation's baby boomers are entering retirement age, a recent AARP survey shows that nearly 70% would like to remain in their homes. Hanley Wood's Home for Life website and virtual tour uses universal design principles to help aging boomers transform a classic family home into a convenient, energy-efficient, and low-maintenance home. An all-star team of experts-including Building America- contributes expertise in remodeling design, construction;

103

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

104

Lighting retrofit monitoring for the Federal sector-strategies and results at the DOE Forrestal Building  

SciTech Connect

Pacific Northwest Laboratory (PNL), the US Department of Energy (DOE) Federal Energy Management Program (FEMP), and Potomac Electric Power Company (PEPCO) have been conducting short-term monitoring studies at the Forrestal Building, headquarters of the DOE, since 1990. These studies were an integral part of the Shared Energy Savings (SES) lighting retrofit project completed in 1993. The overall goal of the project was to reduce electricity consumption at the Forrestal Building. One objective of the project was to use the building as a model for other federal SES lighting retrofit efforts. A complete short-term monitoring strategy in support of the SES project was developed. The strategy included baseline measurements of electrical consumption, performance measurements of proposed retrofits, and post-retrofit measurements of electricity consumption. Measurements included power consumption, power harmonics, and lighting levels. The results show a 56% reduction in electrical power consumed for lighting, as well as improved power quality and increased lighting levels.

Halverson, M.A.; Schmelzer, J.R.; Keller, J.M.; Stoops, J.L.; Chvala, W.D.

1994-08-01T23:59:59.000Z

105

Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract  

E-Print Network (OSTI)

Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit, which means that the reduction of energy expenditure is used to pay the retrofit cost. The EMC program has a short payback period, high interior return rate and remarkable energy savings. This paper present the specialties and difficulties of existing building energy conservation in China and the development, service items and commercial patterns of EMC. We discuss the main methods and ways that EMC is applied to existing building energy retrofit at the original stage of building energy efficiency by analyzing the difference of EMC and other traditional energy efficiency patterns. Based on the analysis of three commercial patterns of EMC including guaranteed savings contract, shared savings contract and chauffage contract, we propose that the guaranteed savings contract is the main development direction of building energy efficiency service in China. At the same time, new financing methods and energy-saving measurement and verification standards should be established to ensure that EMC plays an important role in the process of existing building energy retrofit in China.

Han, Z.; Liu, C.; Sun, J.

2006-01-01T23:59:59.000Z

106

Building America Research Teams | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teams Teams Building America Research Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions

107

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network (OSTI)

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied. Because there is a lack of empirical evidence documenting the performance of these systems, this paper uses electric consumption data collected from buildings before and after retrofits were performed, and analyzes the cost and consumption savings achieved through installation of Bi-Level Lighting systems. The results of this report demonstrate that common areas that are currently not making use of Bi-Level lighting systems would achieve significant financial and environmental benefits from Bi-Level focused retrofits. This project concludes that building codes should be updated to reflect improvements in Bi-Level Lighting technologies, and that government-sponsored energy efficiency programs should explicitly encourage or mandate Bi-Level Lighting installation components of subsidized retrofit projects.

Ackley, J.

2010-01-01T23:59:59.000Z

108

Building America Update - November 4, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2013 4, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Housing Innovation Awards Recognize Champions of High- Performance Homes The inaugural DOE Housing Innovation Awards were presented on October 4, 2013, to recognize the very best in innovation on the path to net-zero energy ready homes. The ceremony, held in conjunction with the Solar Decathlon 2013, recognized winners for DOE Challenge Home Builders, Home Performance with ENERGY STAR Participating Contractors, Building America Top Innovations, and Excellence in Building Science Education.

109

Building America Update - December 7, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Register Now for the 2013 Technical Update Meeting Join the U.S. Department of Energy's Building America program at the 2013 Technical Update Meeting scheduled for April 29-30, 2013, in Denver, Colorado. This meeting will showcase Building America's world-class building science expertise for high performance homes, presented in a dynamic format. This Technical Update Meeting will use a mix of expert presentations, panel discussions, and audience participation to update the industry on the latest technologies and practices. This meeting is free and open to the public. Space is limited, so please register as soon as possible!

110

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

111

Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings  

Science Conference Proceedings (OSTI)

This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

2012-08-03T23:59:59.000Z

112

Building America Update - January 4, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 4, 2013 January 4, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Building America Sessions at International Builders Show If you are planning to attend the International Builders' Show on January 22-24, 2013, don't miss these dynamic Building America presentations taking place there: Date/Time/Location Title/Speaker Summary Jan. 22-24; 3:15-4:00 PM each day DuPont Booth Home of the Future Sam Rashkin, U.S. Department of Energy The DOE Challenge Home-an ambitious successor to the Builders Challenge program-represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability

113

Building Retrofits: Energy Conservation and Employee Retention Considerations in Medium-Size Commercial Buildings  

E-Print Network (OSTI)

Commercial buildings are among the largest consumers of energy. In an attempt to control and reduce operating expenses, building owners and organizations leasing commercial space are pursuing energy efficiency measures to generate a higher return on investment. In this study, an extensive literature review is used to identify and discuss energy efficiency considerations for medium-size building owners and how savings from these measures may benefit organizations through employee satisfaction and retention. For the purpose of this study, the specific topics related to commercial building energy efficiency that were investigated include (1) outcomes of building retrofits (2) corporate social responsibility and performance; (3) performance of energy efficient buildings; (4) employee commitment, satisfaction productivity and organizational profitability; (5) green companies and employee attraction; (6) the cost of turnover. There is little literature specifically focused on the impact that energy efficient buildings have on medium-sized building owners and no literature that quantifies the financial benefits through a reduction in employee turnover or attrition. Facility managers of all building sizes will benefit from gaining (1) a broad understanding of the impact of energy efficiency measures on employees (2) the ability to articulate the impact of the buildings role on employee productivity, turnover and other HR related issues (3) the insight needed to contribute to strategic discussions within their organization about how facilities can benefit organizational profitability. This research does not attempt to claim or determine a causal relationship between energy efficiency and employee turnover however it does discuss issues that that could affect employee attrition.. Further research to determine this causality would benefit the study of energy efficiency and its total impact on organizations.

Freeman, Janice

2013-05-01T23:59:59.000Z

114

Building America Industrialized Housing Partnership (BAIHP II)  

Science Conference Proceedings (OSTI)

This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

2010-11-30T23:59:59.000Z

115

Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates  

SciTech Connect

This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

Frozyna, K.; Badger, L.

2013-04-01T23:59:59.000Z

116

The live test demonstration (LTD) of lighting retrofit technologies at the DOE Forrestal Building  

SciTech Connect

DOE`s Forrestal Building in Washington, DC, has successfully awarded a performance-based shared energy savings contract for retrofit of office and hallway lighting systems. The winning contractor estimates that the retrofit (and associated occupancy sensors) will lead to savings of up to 62% of the power currently used for lighting, with an estimated annual cost savings of $340,000. The retrofit will also increase lighting levels to required levels, while reducing total harmonic distortion on the lighting circuits. The performance-based shared energy savings approach to lighting retrofits will result in a guaranteed contract to maintain lighting levels and savings for the next seven years. Over the life of the contract, the shared energy savings approach will provide $1 million each for DOE and the contractor.

Halverson, M.A.; Schmelzer, J.R. [Pacific Northwest Lab., Richland, WA (United States); Harris, L.G. [USDOE, Washington, DC (United States)

1993-08-01T23:59:59.000Z

117

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Partnerships Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home. ENERGY STAR for Homes Version 3

118

Building America Efficient Solutions for Existing Homes Case Study: Habitat for Humanity South Sarasota County, Venice, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description Building America researchers provided technical assistance to Habitat for Humanity (HFH) of South Sarasota County, Florida, to achieve a deep energy retrofit featuring an innovative way to air seal an entire home, which also moved its ducts and air handler inside the thermal boundary. This home (a 1978, single-story, three-bedroom, two-bath with attached-garage) is typical of many in central and south Florida, and Building America plans to use monitored utility data from the home to analyze the effectiveness of the energy retrofit measures. Construction funding for this retrofit in Venice, Florida, was provided by the U.S. Department of Housing and Urban Development's State Housing Initiatives Partnership program. Technical assistance was

119

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home for the American Home The U.S. Department of Energy's (DOE) Building America program is helping to engineer American homes for better energy performance, durability, quality, affordability, and comfort. Loading the player ... Watch the video to learn more about how DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient. View the text version of the audio. Building America is a cost-shared industry partnership research program working with national laboratories and building science research teams to accelerate the development and adoption of advanced building energy technologies and practices in new and existing homes. The program works closely with industry partners to develop innovative, real-world solutions that achieve significant energy and cost savings for homeowners, builders, and contractors. Research is conducted on individual measures and systems, test houses, and community-scale housing in order to validate the reliability, cost-effectiveness, and marketability of technologies in new construction and home improvement projects. Find expert building science information based on Building America research in the Solution Center.

120

Identification and evaluation of data sources for the commercial buildings retrofit market  

SciTech Connect

The objectives of this study are to identify data sources that provide information on current and future levels of commercial buildings retrofit activity in the US, and to evaluate the coverage these data sources provide the commercial retrofit industry. Data sources evaluated include reports, magazines, computerized data bases, and surveys. Relevant data sources were identified through a literature review and by telephone and mail contacts with building industry experts and trade associations. A brief summary of each of the data sources is provided and recommendations are made for gathering additional data to supplement the existing data source.

Smith, S.A.; Johnson, D.R.

1986-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building America House Simulation Protocols (Revised)  

Science Conference Proceedings (OSTI)

The House Simulation Protocol document was developed to track and manage progress toward Building America's multi-year, average whole-building energy reduction research goals for new construction and existing homes, using a consistent analytical reference point. This report summarizes the guidelines for developing and reporting these analytical results in a consistent and meaningful manner for all home energy uses using standard operating conditions.

Hendron, R.; Engebrecht, C.

2010-10-01T23:59:59.000Z

122

Building America's Top Innovations Advance High Performance Homes |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Top America's Top Innovations Advance High Performance Homes Building America's Top Innovations Advance High Performance Homes Building America Top Innovations. Recognizing top innovations in building science. Innovations sponsored by the U.S. Department of Energy's (DOE) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. Building America researchers have worked directly with more than 300 U.S. production home builders and have boosted the performance of more than 42,000 new homes. Learn more about Building America Top Innovations. 2013 Top Innovations New Top Innovations are awarded annually for outstanding Building America research achievements. Learn more about the 2013 Top Innovations recently

123

Persistence of energy savings of lighting retrofit technologies at the Forrestal Building  

SciTech Connect

In 1989, the Forrestal Building, headquarters for the U.S. Department of Energy, was chosen for a major lighting retrofit project. The project replaced the aging fighting system newer, energy-efficient fixtures. Pacific Northwest Laboratory conducted a three-part monitoring study at the Forrestal Building to (1) characterize building energy use, (2) empirically measure savings realized by the lighting retrofit, and (3) determine the persistence of energy savings. This report summarizes the findings from the third and final monitoring phase. Two data loggers were left installed at the Forrestal Building and data were collected for a 12-month period after the lighting retrofit was completed. An analysis-of-variance test indicated that the mean monthly lighting demand is increasing. A regression analysis performed on the data indicated that the mean monthly lighting demand for workdays is increasing at a rate of 0.3652{+-}0.1101 kW/mo. The nonworkday demand is increasing at a rate of 0.3408{+-}0.1027 kW/mo. During the same period, workday mean monthly plug load demand increased 0.0912{+-}0.0275 kW/mo., while nonworkday plug loads decreased slightly. The gradual increase, though significant, is reduced when compared to the 56% savings recorded after the lighting retrofit. The increase is attributed to a combination of occupants returning to original (pre-retrofit poor) behavior and a small set of occupancy sensors being defeated by building occupants. Degradation of lighting fixtures from {open_quotes}burn-in time{close_quotes} was ruled out because all burn-in time is expected in the first few months and the increasing trend persists over the 11 months of this study. Because the lighting demand was still increasing at the end of the study, without further data collection, it was not possible to determine when the increase would level out. Therefore, the true energy savings from the lighting retrofit remain unknown.

Chvala, W.D. Jr.; Wahlstrom, R.R.; Halverson, M.A.

1995-06-01T23:59:59.000Z

124

A Bin Method for Calculating Energy Conservation Retrofit Savings in Commercial Buildings  

E-Print Network (OSTI)

The calculation of measured energy savings from energy conservation retrofits is an important step in the verification of the success of a retrofit (Claridge et al. 1992). Several methods for calculating the savings from energy conservation retrofits to HVAC systems in the LoanSTAR program have been proposed, including linear and change-point linear empirical models and calibrated simulation models. Simple least squares linear regression is easiest to use and understand, but is incapable of describing non-linear temperature dependencies of a building's energy use. Change-point linear models are more complex than the simple linear regression and cover a broader range of buildings. However, there are some buildings for which change-point linear models do not fit the data adequately. This paper presents a first look at an hourly bin method for calculating energy savings from energy conservation retrofits to HVAC systems based on hourly whole-building electricity, sub-metered motor control center use and thermal energy measurements. A general procedure for determining the appropriate number of bins is described and the bin method is applied to data from several agencies participating in the LoanSTAR program. Results are compared to existing savings calculation procedures for two buildings.

Thamilseran, S.; Haberl, J. S.

1994-01-01T23:59:59.000Z

125

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySmart Schools EnergySmart Schools EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings Quick wins and long-term facility management strategies that pay for themselves and result in energy savings Typical School Energy Use Distribution (varies by climate zone) 30% Lighting Cooling Space Heating Water Heating Other 23% 30% 10% 7% Combining preventative operations and maintenance (O&M) with strategic retrofitting of building systems improves a school's energy performance. For schools with limited resources and experience, "quick wins" in O&M and retrofitting provide a valuable starting point to energy management. As a next step, strategically prioritizing long- and short-term measures produces overall returns on investment. Please refer to the

126

Building America Top Innovations Hall of Fame Profile - High...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hall of Fame Profile - High-R Walls This Building America Innovations profile describes Building America research on high-R-value walls showing the difference between rated and...

127

Building America Market Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Partnerships Market Partnerships Building America Market Partnerships This photo shows two men silhouetted against a sky shaking hands, with the frame of a building under construction in the background. The U.S. Department of Energy (DOE) offers partnership opportunities, educational curricula, meetings, and webinars that help industry professionals bring research results to the market. DOE Challenge Home Through the DOE Challenge Home, the Building Technologies Office offers recognition to leading edge builders meeting extraordinary levels of excellence. Builders taking the challenge gain competitive advantage in the marketplace by providing their customers with unparalleled energy savings, quality, comfort, health, durability, and much more. Learn more about the DOE Challenge Home.

128

Building America Update - October 5, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 5, 2012 October 5, 2012 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. Industry Publications Highlight HVAC Issues ECOHOME Magazine The September/October issue of ECOHOME magazine features an article about the prototype desiccant enhanced evaporative air conditioning (DEVap) system that may herald the next wave of energy efficient HVAC systems for high performance homes. This technology was developed through DOE's Building Technology Program as an energy saving alternative to the traditional way we cool homes. Visit the Building America website to learn about other cutting-edge residential innovations, as well as key issues currently limiting implementation of high

129

Building America Industrialized Housing Partnership II Expert Meeting  

Energy.gov (U.S. Department of Energy (DOE))

This is the summary report for the Building America expert meeting held on November 16, 2010, in Chicago, Illinois.

130

Florida Solar Energy Center (Building America Partnership for...  

Open Energy Info (EERE)

for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction...

131

Florida Solar Energy Center (Building America Partnership for Improved  

Open Energy Info (EERE)

(Building America Partnership for Improved (Building America Partnership for Improved Residential Construction Jump to: navigation, search Name Florida Solar Energy Center (Building America Partnership for Improved Residential Construction Place Orlando, FL Website http://www.floridasolarenergyc References Florida Solar Energy Center (Building America Partnership for Improved Residential Construction[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Florida Solar Energy Center (Building America Partnership for Improved Residential Construction is a company located in Orlando, FL. References

132

Preliminary guidelines for condition assessment of buildings being considered for solar retrofit  

DOE Green Energy (OSTI)

The report contains a general description of methods currently available for condition assessment of the structural; heating, ventilating, and air conditioning (HVAC); electrical; and plumbing systems of an existing building, in order to determine the feasibility of rehabilitation for solar retrofit.

Lerchen, F.H.; Pielert, J.H.; Chen, P.T.

1981-07-01T23:59:59.000Z

133

Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis  

SciTech Connect

This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

Wytrykowska, H.; Ueno, K.; Van Straaten, R.

2012-09-01T23:59:59.000Z

134

Building America Top Innovations 2013 Profile … Building America Solution Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

web tool connecting users to web tool connecting users to thousands of pieces of building science information developed by the U.S. Department of Energy's Building America program and its research partners. DOE's Building America program has funded decades of research by some of the brightest minds in the field of building science. However, the practical application of this knowledge by builders, contractors, and homeowners in the field has been somewhat hampered by lack of accessibility. The information has been slow to get published, located in disparate locations, not often recognizable as sponsored by DOE, difficult to search for, inconsistently formatted, and written in technical language, rather than understandable instructions. The Building America Solution Center, developed by the Pacific

135

Building America Top Innovations 2013 Profile … Building America Solution Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

single web tool connecting users single web tool connecting users to thousands of pieces of building science information developed by the U.S. Department of Energy's Building America program and its research partners. DOE's Building America program has funded decades of research by some of the brightest minds in the field of building science. However, the practical application of this knowledge by builders, contractors, and homeowners in the field has been somewhat hampered by lack of accessibility. The information has been slow to get published, located in disparate locations, not often recognizable as sponsored by DOE, difficult to search for, inconsistently formatted, and written in technical language, rather than understandable instructions. The Building America Solution Center, developed by the Pacific

136

Building Retrofit and DSM Study in Jiangsu | Open Energy Information  

Open Energy Info (EERE)

Organization Natural Resources Defense Council Sector Energy Focus Area Buildings, Energy Efficiency Topics Background analysis, Pathways analysis, Policiesdeployment...

137

Subscribe to Building America Updates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subscribe to Building America Updates Subscribe to Building America Updates Subscribe to Building America Updates Sign up to receive e-mail notices of news and events related to the Building America program. Building America will send periodic notices which provide information related to: Improving efficiency of new and existing homes Research team projects and activities Best Practices Guides, case studies, and technical publications Residential building efficiency and system-specific expert meetings. Once you've submitted your e-mail address below, you will have a chance to subscribe to other information resources available from DOE's Office of Energy Efficiency and Renewable Energy. Building America Updates Keep current with upcoming events and news by subscribing to Building America updates.

138

Building America Update - December 9, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2013 9, 2013 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's (DOE) Building America program. Please forward this message to colleagues who may be interested in subscribing to future Building America Update newsletters. Apply Now for the Challenge Home Student Design Competition! There is still time to apply for the DOE Challenge Home Design Competition-the registration deadline is December 16, 2013. This new nationwide competition aims to provide the next generation of architects, engineers, construction managers, and entrepreneurs with skills and experience to start careers in the field of high-performance homes. The competition seeks student team innovations for homes that the home

139

Building energy retrofitting: from energy audit to renovation proposals.  

E-Print Network (OSTI)

?? Abstract The built environment is responsible for 40% of the global energy demand (1). To reduce building energy consumption, regulations are enhancing the appeal (more)

Clment, Paul Francois

2012-01-01T23:59:59.000Z

140

National Laboratories Supporting Building America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratories Laboratories Supporting Building America National Laboratories Supporting Building America The U.S. Department of Energy's (DOE) national laboratories work very closely with the Building America research teams to achieve program goals. The laboratories offer extensive scientific and technical R&D expertise for building technologies and improved building practices. Following is a brief description of the laboratories involved with Building America. Logo for the Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD) performs analysis, research, and development leading to improved energy technologies and reduction of adverse energy-related environmental impacts. EETD conducts research in advanced energy

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Instrumenting Buildings to Determine Retrofit Savings: Murphy's Law Strikes Again  

E-Print Network (OSTI)

Experiences with instrumentation, installation and maintenance of building energy metering systems are presented. The building energy metering was installed in a variety of locations in programs handled by the Energy Systems Laboratory at Texas A&M University. Metering typically includes monitoring for the whole-building electric load, chilled and hot water thermal loads and selected submetered electrical loads. The emphasis of the lessons learned was on the instrumentation used and installation and maintenance problems encountered during the course of the metering projects.

O'Neal, D. L.; Bryant, J.; Carlson, K.

1998-01-01T23:59:59.000Z

142

New test procedure evaluates quality and accuracy of energy analysis tools for the residential building retrofit market.  

E-Print Network (OSTI)

building retrofit market. Reducing the energy use of existing homes in the United States offers significant energy-saving opportunities, which can be identified through building simulation software tools for residential buildings, the National Renewable Energy Laboratory's (NREL) Buildings Research team developed

143

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

144

Building America Systems Integration Research Annual Report: FY 2012  

SciTech Connect

This document is the Building America FY2012 Annual Report, which includes an overview of the Building America Program activities and the work completed by the National Renewable Energy Laboratory and the Building America industry consortia (the Building America teams). The annual report summarizes major technical accomplishments and progress towards U.S. Department of Energy Building Technologies Program's multi-year goal of developing the systems innovations that enable risk-free, cost effective, reliable and durable efficiency solutions that reduce energy use by 30%-50% in both new and existing homes.

Gestwick, M.

2013-05-01T23:59:59.000Z

145

Retrofitting Existing Buildings for Demand Response & Energy Efficiency  

E-Print Network (OSTI)

heating or cooling load, and enables existing Building Management Systems to control fan speed) · Lighting ­ 20% (solution: Adura ALPS partnership) · Plug loads, data centers ­ remainder (solution: WTR partnership) · Plug loads, data centers ­ remainder (solution: WTR, WBM) Source: US Energy Information

California at Los Angeles, University of

146

Deep Residential Retrofits in East Tennessee  

SciTech Connect

Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is also monitored, with temperature and humidity measured in all conditioned zones, attics, crawlspaces, and unconditioned basements. In some homes, heat flux transducers are installed on the basement walls to help determine the insulating qualities of the technologies and practices. EnergyGauge is used to estimate the pre-retrofit and post-retrofit home energy rating system (HERS) index and reduction in energy consumption and energy bill. In a follow-up report, data from the installed sensors will be presented and analyzed as well as a comparison of the post-retrofit energy consumption of the home to the EnergyGauge model of the post-retrofit home. Table ES1 shows the retrofits that were completed at the eight households where some or all of the recommended retrofits were completed. Home aliases are used to keep the homeowners anonymous. Some key findings of this study thus far are listed as follows. Some homeowners (50%) are not willing to spend the money to reach 30 50% energy savings. Quality of retrofit work is significantly variable among contractors which impact the potential energy savings of the retrofit. Challenges exist in defining house volume and floor area. Of the five homes that completed all the recommended retrofits, energy bill savings was not the main driver for energy retrofits. In no case were the retrofits cost neutral given a 15 year loan at 7% interest for the retrofit costs.

Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

147

Building America Research Benchmark Definition: Updated December 19, 2008  

SciTech Connect

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams.

Hendron, R.

2008-12-01T23:59:59.000Z

148

Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites  

SciTech Connect

This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

Richman, Eric E.

2012-10-31T23:59:59.000Z

149

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

Dentz, J.; Henderson, H.; Varshney, K.

2013-10-01T23:59:59.000Z

150

Building America Developments, September 2000, Information Bulletin Number 1 (Revised)  

SciTech Connect

Building America Developments on-line newsletter highlights the Erie-Ellington Homes publicly-funded housing project in Boston, Massachusetts. A Building America and industry partnership that produced energy-efficient manufactured homes built with foam core panels is featured. Also, Habitat for Humanity dedicates two energy-efficient test houses in East Tennessee, and affordable, healthy homes are offered in metro Atlanta. Upcoming events in the Building America Program are also listed.

Hendron, R.; Anderson, J.; Epstein, K.

2001-12-01T23:59:59.000Z

151

The Building America Industrialized Housing Partnership (BAIHP)  

E-Print Network (OSTI)

The Building America Industrialized Housing Partnership (BAIHP) is one of five competitively selected U.S. DOE Building America teams and began work on 9/1/99. BAIHP focuses on improving the energy efficiency, durability and indoor air quality in manufactured homes. Team members, Cavalier Homes, Fleetwood Homes, Palm Harbor Homes, Southern Energy Homes, and manufacturers in the Super Good Cents/Natural Choice program produce over 100,000 manufactured homes/yr currently. In addition, the BAIHP team provides technical assistance to about 30 site builders and modular home manufacturers including Habitat for Humanity affiliates throughout the nation. BAIHP is also charged with enhancing the energy efficiency and learning environment in portable classrooms in the northwestern states of WA, OR and ID. This paper summarizes the multifaceted work being performed by BAIHP and provides specific data on 310 homes constructed in the Gainesville FL area with technical assistance from Florida Home Energy and Resources Organization. The paper also summarizes typical causes and cures for moisture problems in manufactured homes.

Chandra, S.; McCloud, M.; Moyer, N.; Beal, D.; Chasar, D.; McIlvaine, J.; Parker, D.; Sherwin, J.; Martin, E.; Fonorow, K.; Mullens, M.; Lubliner, M.; McSorley, M.

2002-01-01T23:59:59.000Z

152

Building America Top Innovations Hall of Fame Profile - Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integration of HVAC System Design with Simplified Duct Distribution Building America Top Innovations Hall of Fame Profile - Integration of HVAC System Design with Simplified Duct...

153

Building America Best Practices Series Vol. 14: Energy Renovations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for...

154

Building America Top Innovations 2013 Profile - Exterior Rigid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Rigid Insulation Best Practices Building America Top Innovations 2013 Profile - Exterior Rigid Insulation Best Practices Field and lab studies by BSC, PHI, and Northern...

155

Building America Best Practices Series: Volume 12. EnergyRenovations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners Building America Best Practices Series: Volume 12. Energy Renovations-Insulation:...

156

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Technical Update Meeting 2013 Technical Update Meeting The U.S. Department of Energy (DOE) Building America program held its fourth annual Technical Update meeting on April 29-30, 2013, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic format that addressed eight key critical questions facing the building industry today. This Technical Update Meeting combined expert presentations, panel discussions, and audience participation to update the industry on the latest technologies and practices. View the meeting presentations below, which are available as Adobe Acrobat PDFs. The meeting summary report will be available soon. You can also view the complete webinar recordings for Day 1 (WMV 102 MB) and Day 2 (WMV 93 MB).

157

Expert Meeting Report: Transforming Existing Buildings through New Media--An Idea Exchange  

Energy.gov (U.S. Department of Energy (DOE))

This report describes results of a Building America expert meeting on September 13, 2011, in Las Vegas, Nevada, hosted by the Building America Retrofit Alliance (BARA). This meeting provided a forum for presentations and discussions on the use of new media to work with remodelers and retrofit projects to improve energy efficiency and deliver research results from the Building America program to remodelers.

158

Expert Meeting Report: Transforming Existing Buildings through New Media--An Idea Exchange  

SciTech Connect

This report describes results of a Building America expert meeting on September 13, 2011, in Las Vegas, Nevada, hosted by the Building America Retrofit Alliance (BARA). This meeting provided a forum for presentations and discussions on the use of new media to work with remodelers and retrofit projects to improve energy efficiency and deliver research results from the Building America program to remodelers.

Hunt, S.

2012-05-01T23:59:59.000Z

159

Solar America Initiative--In Focus: The Building Industry  

DOE Green Energy (OSTI)

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

Not Available

2007-01-01T23:59:59.000Z

160

Solar America Initiative--In Focus: The Building Industry  

SciTech Connect

Fact sheet introduces the building industry to the U.S. Department of Energy's Solar America Initiative (SAI) and describes how the building industry can benefit from and contribute to the SAI.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Building America Update - January 9, 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Update - January 9, 2013 Building America Update - January 9, 2013 Building America Update - January 9, 2013 January 14, 2014 - 4:37pm Addthis Top Innovation Spotlight: Next Generation Advanced Framing Image of house framing. Building America field studies involving thousands of homes have verified significant savings in energy, materials, and labor when production builders apply advanced framing techniques-exceeding $1,000 per home. The Partnership for Home Innovation (PHI), a Building America team, won a 2013 Top Innovation award for its research into simple, cost-effective ways to implement advanced framing techniques. The team tested three innovative techniques that improve the thermal performance of the building enclosure, reduce the cost of energy-efficient construction, and simplify the

162

Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review  

E-Print Network (OSTI)

Portuguese Buildings represent 35% of primary energy consumption in 2006, with non-residential sector representing almost half of this number globally and around 65% in Lisbon city. Expected to grow 5% yearly in this period, non-residential buildings rehabilitation is a great opportunity for energy rehabilitation for a stock of 800.000 buildings needing medium to high interventions. For this task to be successful it is also urgent that procedures consider an accurate technical framework, where existing technologies and best case-studies can be considered, in order to drive passive measures retrofitting forward. This paper presents an overview of a methodology development which pretends to include the energy component in rehabilitation schemes with an integrated and comprehensive analysis, achieving all those directly involved in the building process (owners, consumers, public bodies, construction and project design industry) as well as new important players such as ESCOs.

Pereira, N. C.

2008-10-01T23:59:59.000Z

163

Building America Update - November 9, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 9, 2012 November 9, 2012 This announcement brings you the latest information about news, activities, and publications from the U.S. Department of Energy's Building America program. DOE Challenge Home Technical Training The DOE Challenge Home team invites you to attend a training webinar on Thursday, November 15, 2012, titled "The Future is Now: Design Options for Locating Ducts within Conditioned Space." Locating the forced-air duct system within the home's air and thermal barriers is a "must-have" for high performance homes, and is a mandatory requirement of DOE Challenge Home. DOE recognizes several compliance approaches, including locating ducts within insulated vented attics, use of plenum truss systems, and encapsulating ducts with spray foam and burying them in insulation. Done right, these

164

Building America Efficient Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provided technical assistance to Build provided technical assistance to Build San Antonio Green (BSAG, www.buildsagreen.org) for three of their deep energy and green retrofits. BSAG is a well established non-profit organization in the community that has certified more than 710 new homes as well as 15 retrofits through its Green Retrofit Program to date. Technical assistance provided by the Pacific Northwest National Laboratory (PNNL) team included retrofitting strategy assessments, performance testing, quality assurance, and metering. The PNNL team included Calcs-Plus, which led the field work, and the Florida Solar Energy Center, which led the metering effort. This San Antonio home is one of three deep energy renovations of occupied affordable homes certified in 2011. The homes were selected through the City of San Antonio's Owner-Occupied Housing

165

Hydronic Heating Retrofits for Low-Rise Multifamily Buildings - Phase 1: Boiler Control Replacement and Monitoring  

SciTech Connect

The ARIES Collaborative, a Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, MA to implement and study improvements to the heating system in one of the non-profit's housing developments. The heating control systems in the 42-unit Columbia CAST housing development were upgraded in an effort projected to reduce heating costs by 15 to 25 percent.

Dentz, J.; Henderson, H.

2012-04-01T23:59:59.000Z

166

Retrofitting Doors on Open Refrigerated Cases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofitting Doors on Open Retrofitting Doors on Open Refrigerated Cases William Goetzler Navigant Consulting, Inc. wgoetzler@navigant.com (781) 270-8351 April 4, 2013 BBA Refrigeration Project Team Images courtesy of REMIS AMERICA, LLC. 2 | Building Technologies Office eere.energy.gov Technology Overview Image from Investigation of Energy- Efficient Supermarket Display Cases. 2004, Oak Ridge National Laboratory. Background and Motivation * Adding doors to open cases (retrofits) greatly reduces cold air loss - 50-80% load reduction - Load reduction = system energy savings

167

Design of an atrium for a passive-solar retrofit of an office buildings  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has proposed to retrofit one of its administrative office buildings with a solar atrium. A 334 m/sup 2/ courtyard will be enclosed with a roof-mounted system of clerestory windows to maximize winter solar gain. This sunspace will thermally buffer the adjoining offices and also will preheat air supplied to the building's conventional heating, ventilating, and air-conditioning (HVAC) system. The use of the DOE-2 building energy analysis computer program in the design of the solar atrium is described. The results of a series of simulations are reported detailing the tradeoffs inherent in the selection of an optimal glazing area, the maintenance of acceptable comfort levels within the sunspace, and intergration of passive-solar devices with the conventional HVAC system. Potential energy savings are also discussed.

Peterson, J.L.; Hunn, B.D.

1980-01-01T23:59:59.000Z

168

Impact evaluation of the energy retrofits installed in the Margolis high-rise apartment building, Chelsea housing authority  

SciTech Connect

As part of a joint demonstration effort involving HUD, DOE, a local public housing authority and Boston Edison, an evaluation of energy and demand saving retrofits was conducted for a tall, residential, low-income building located in Boston. The thirteen story building underwent window, lighting, and heating system control renovations in December, 1992. The success of these retrofits was determined using monthly and hourly whole-building consumption data along with a calibrated DOE-2.1D energy simulation model. According to the model developed, post-retrofit conditions showed reductions in annual energy consumption of 325 MWh and in peak demand of 100 kW. These savings resulted in an annual energy cost savings of $28,000. Over 90% of energy and cost savings were attributed to the window retrofit. Interaction of the reduction in lighting capacity with the building`s electric resistance heating system reduced the potential for energy and demand savings associated with the lighting retrofit. Results from the hourly simulation model also indicate that night setbacks controlled by the energy management system were not implemented. An additional 32 MWh in energy savings could be obtained by bringing this system on-line, however peak demand would be increased by 40 kW as the morning demand for space heat is increased, with a net loss in cost savings of $2,500.

Abraham, M.M.; McLain, H.A.; MacDonald, J.M.

1995-03-01T23:59:59.000Z

169

Building America 2013 Technical Update Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America 2013 Technical Update Meeting Building America 2013 Technical Update Meeting Building America 2013 Technical Update Meeting The U.S. Department of Energy (DOE) Building America program held its fourth annual Technical Update meeting on April 29-30, 2013, in Denver, Colorado. This meeting showcased world-class building science expertise for high performance homes in a dynamic format that addressed eight key critical questions facing the building industry today. This Technical Update Meeting combined expert presentations, panel discussions, and audience participation to update the industry on the latest technologies and practices. View the meeting presentations below, which are available as Adobe Acrobat PDFs. The meeting summary report will be available soon. You can also view the complete webinar recordings for Day 1 (video) and Day 2 (video).

170

Building America Research for the American Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the American Home for the American Home Building America Research for the American Home Watch the video to learn more about how DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient. View the text version of the video. The U.S. Department of Energy's (DOE) Building America program is helping to engineer American homes for better energy performance, durability, quality, affordability, and comfort. Building America is a cost-shared industry partnership research program working with national laboratories and building science research teams to accelerate the development and adoption of advanced building energy technologies and practices in new and existing homes. The program works closely with industry partners to develop innovative,

171

Cool Energy House - An Intro to the Cool Energy House Retrofit Demonstration Project Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

eere.energy.gov eere.energy.gov Building America: Introduction November 14, 2011 Cheryn Engebrecht Cheryn.engebrecht@nrel.gov Building Technologies Program Building Technologies Program eere.energy.gov * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov Introduction to Building America Building Technologies Program eere.energy.gov Building America Industry Consortia Industry Research Teams Habitat Cost Effective Energy Retrofit Program NorthernSTAR Building America Partnership

172

Building America System Performance Test Practices: Part 1 -- Photovoltaic Systems  

DOE Green Energy (OSTI)

The report outlines the short-term field testing used by Building America staff and includes a report on the results of an example test of a PV system with battery storage on a home in Tucson, Arizona. This report is not intended as a general recommended test procedure for wide distribution. It is intended to document current practices in Building America to inform program stakeholders and stimulate further discussion. Building America staff intend to apply this procedure until relevant standards for testing PV modules are completed.

Barker, G.; Norton, P.

2003-05-01T23:59:59.000Z

173

Simulation of the Post-Retrofit Thermal Energy Use for the Perry-Castaneda Library Building with the Use of Simplified System Models  

E-Print Network (OSTI)

Several state owned buildings with dual-duct constant volume (DDCV) systems are being retrofitted with energy efficient variable air volume (VAV) systems as part of Texas LoanSTAR Program. One method of determining the energy savings resulting from energy conserving retrofits relies on the use of a model for the daily whole building consumption, Epre, in the pre-retrofit configuration. Epre is typically a function of primary influencing parameters such as ambient temperature, humidity, building internal gains and others (Figure 1). Following the retrofit, the energy saved, E,av is determined using measured daily consumption, Emea3 as shown in Figure 1. This method is being used in the Texas LoanSTAR monitoring and analysis program for buildings that have adequate pre-retrofit monitored data. Unfortunately, in the Perry-Castaneda Library (PCL) building, the retrofits were completed before the monitoring instrumentation was installed. Therefore, no pre-retrofit monitored data are available for this building. Hence another method to estimate savings is needed. Such a method was developed and tested (Katipamula and Claridge 1991). This method was based on the use of the ASHRAE TC 4.7 simplified energy analysis procedure (SEAP). It involved developing one model each for the VAV (post-retrofit system) and the DDCV (pre-retrofit system) systems.

Katipamula, S.; Claridge, D. E.

1991-01-01T23:59:59.000Z

174

Diversity United, Building America's Future Today | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United, Building America's Future Today United, Building America's Future Today Diversity United, Building America's Future Today October 24, 2012 10:30AM EDT Department of Energy Forrestal Building, Small Auditorium Patti Solis Doyle has been honored by Hispanic Magazine with the "2007 Latinas of Excellence Award" for her accomplishments in the areas of government, politics, and civil leadership. She also received Siempre Mujer magazine's "Siempre Insprian Award," honoring remarkable Latinas whose achievements and contributions are helping shape the future of Hispanic women in this country. Hispanic Business Magazine recently counted her among America's 100 Most Influential Hispanics. Join us as Ms. Doyle provides her keynote remarks on shaping the future of Hispanics in the U.S.

175

Building America: The Advanced Whole-Home Efficiency Program (Presentation)  

SciTech Connect

This presentation discusses the Building America Program. This presentation discusses the background and goals of the program. A few hot topic technologies are discussed. Outreach activities are discussed as well.

Engebrecht, C.

2012-02-01T23:59:59.000Z

176

Building America Research Benchmark Definition: Updated December 2009  

SciTech Connect

The Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without chasing a 'moving target.'

Hendron, R.; Engebrecht, C.

2010-01-01T23:59:59.000Z

177

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.  

Energy.gov (U.S. Department of Energy (DOE))

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on ass

178

Building America Puts Residential Research Results to Work  

DOE Green Energy (OSTI)

Residential buildings use more than 20% of the energy consumed annually in the United States. To help reduce that energy use, the Department of Energy (DOE) and its Building America partners conduct research to develop advanced building energy systems that make homes and communities much more energy-efficient. DOE and its partners design, build, and evaluate attractive, comfortable homes that increase performance with little or no increase in construction costs.

Not Available

2004-08-01T23:59:59.000Z

179

Securing America's Future with Energy Efficient Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings What We Do We lead a vast network of research and industry partners to continually develop innovative, cost-effective energy saving solutions-better products, better new homes, better ways to improve older homes, and better buildings in which we work, shop, and lead our everyday lives. Why It Matters Energy efficiency is a low cost way to save money, support job growth, reduce pollution, and improve the competitiveness of our businesses. Our homes, offices, schools, hospitals, restaurants, and stores consume a lot of energy-and money. We spend more than $400 billion each year to power our homes and commercial buildings, consuming more than 70% of all

180

Funding Opportunity Announcement State Energy Program (SEP) Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action  

NLE Websites -- All DOE Office Websites (Extended Search)

FINANCIAL ASSISTANCE FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy National Energy Technology Laboratory State Energy Program (SEP) Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action DE-FOA-0000251 Announcement Type: Initial CFDA Number: 81.041 Issue Date: 04/09/2010 Application Due Date: 05/24/2010 11:59:59 PM Eastern Time 1 NOTE: REGISTRATION/SUBMISSION REQUIREMENTS Registration Requirements There are several one-time actions you must complete in order to submit an application in response to this Announcement (e.g., obtain a Dun and Bradstreet Data Universal Numbering System (DUNS) number, register with the Central Contractor Registration (CCR), and register with Grants.gov). Applicants who are not registered with CCR and Grants.gov, should allow at

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Building America Expert Meeting: Combustion Safety  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting: Combustion Safety Meeting: Combustion Safety L. Brand Partnership for Advanced Residential Retrofit March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

182

Residential Retrofits in the Southeast: A Performance Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Retrofits in Residential Retrofits in the Southeast: A Performance Update Roderick K. Jackson Ph.D Oak Ridge National Laboratory for Building America Stakeholder Meeting 3/1/2012 2 Managed by UT-Battelle for the U.S. Department of Energy Project Goals 1. Can we retrofit existing homes to achieve energy savings of more than 30% 2. Can we cost effectively retrofit existing homes to achieve energy savings of more than 30% 3. Will homeowners pay for retrofits that achieve energy savings of more than 30% 4. Will reality (i.e. utility bills) match the projected energy savings * In the event any of the answers to questions 1-4 is NO, what are obstacles to YES 3 Managed by UT-Battelle for the U.S. Department of Energy Project Overview Nine homes received retrofits with projected source energy

183

Simulation of the Post-Retrofit Thermal Energy Use for the University Teaching Center (UTC) Building with the Use of Simplified System Models  

E-Print Network (OSTI)

Several state owned buildings with dual-duct constant volume (DDCV) systems have been retrofitted with energy efficient variable air volume systems (VAV) as part of the Texas LoanSTAR Program. One method of determining the energy savings resulting from energy conserving retrofits relies on the use of a model for the daily whole building consumption, Epre, in the pre-retrofit configuration. Epre is typically a function of primary influencing parameters such as ambient temperature, humidity, building internal gains and others (Figure 1). Following the retrofit, the energy saved, Esav is determined using measured daily consumption, Emea3 as shown in Figure 1. This method is being used in the Texas LoanSTAR monitoring and analysis program for buildings that have adequate pre-retrofit monitored data (Kelly et al., 1992). Unfortunately, in the University Teaching Center (UTC) the retrofits were completed before the monitoring instrumentation was installed. Therefore, no pre-retrofit monitored data are available. Hence another method to estimate savings was needed. Such a method was developed and tested on a large engineering center (Katipamula and Claridge 1991). This method was based on the use of the ASHRAE TC 4.7 simplified energy analysis procedure (SEAP). It involved developing one model each for the VAV (post-retrofit system) and the DDCV (pre-retrofit system) systems.

Katipamula, S.; Claridge, D. E.

1991-01-01T23:59:59.000Z

184

Making America's Buildings Better (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

Not Available

2012-03-01T23:59:59.000Z

185

Expert Meeting Report: Retrofit Implementation - A Neighborhood at a Time  

Science Conference Proceedings (OSTI)

This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from utilities, energy program implementation firms, affordable housing agencies, and the financing industry.

Griffiths, D.

2012-04-01T23:59:59.000Z

186

Our Work Together Building a Stronger America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Together Building a Stronger America Work Together Building a Stronger America Our Work Together Building a Stronger America January 10, 2012 - 12:01pm Addthis Former Secretary of Labor Alexis Herman chats with Secretary Chu before the start of the Diversity and Inclusion Town Hall. | Energy Department file photo. Former Secretary of Labor Alexis Herman chats with Secretary Chu before the start of the Diversity and Inclusion Town Hall. | Energy Department file photo. Secretary Chu Secretary Chu Former Secretary of Energy Dear Colleagues, As we enter the New Year and move forward with our efforts to build a stronger, more secure and prosperous Nation, it's also important to take a moment to reflect on the progress we have made and to acknowledge everyone who made this progress possible. Across the complex, our workforce is reducing nuclear dangers, expanding

187

Building America Research Benchmark Definition, Updated December 15, 2006  

Science Conference Proceedings (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, DOE's Residential Buildings Program and NREL developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. Unlike the reference homes used for HERS, EnergyStar, and most energy codes, the Benchmark represents typical construction at a fixed point in time so it can be used as the basis for Building America's multi-year energy savings goals without the complication of chasing a ''moving target''.

Hendron, R.

2007-01-01T23:59:59.000Z

188

Our Work Together Building a Stronger America | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Work Together Building a Stronger America Our Work Together Building a Stronger America Our Work Together Building a Stronger America January 10, 2012 - 12:01pm Addthis Former Secretary of Labor Alexis Herman chats with Secretary Chu before the start of the Diversity and Inclusion Town Hall. | Energy Department file photo. Former Secretary of Labor Alexis Herman chats with Secretary Chu before the start of the Diversity and Inclusion Town Hall. | Energy Department file photo. Secretary Chu Secretary Chu Former Secretary of Energy Dear Colleagues, As we enter the New Year and move forward with our efforts to build a stronger, more secure and prosperous Nation, it's also important to take a moment to reflect on the progress we have made and to acknowledge everyone who made this progress possible.

189

Closing Gaps in Modeling Multifamily Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Technical Update Meeting Denver, Colorado April 30, 2013 Jordan Dentz, The Levy Partnership., Inc. Closing Gaps in Modeling Multifamily Retrofits Advanced Residential Integrated Energy Solutions Overview * Multifamily modeling inputs (BA House Simulation Protocols) * Important multifamily measures * Other MF gaps Vital to meet 50% goals and therefore important to include in Building America's multifamily modeling capabilities Model Inputs * Heating set point * Cooling set point * Behavior assumptions 3 Heating Set Point - Central Systems * House simulation protocol assumes 71°F * Overheating is common * Approach: adjust modeled heating set point - how much? * Average heating season indoor temperature was 76°F in a sample of 18 buildings (ARIES 2013a)

190

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)  

SciTech Connect

In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

Metzger, C.; Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

191

Specification and cost manual for energy retrofits on small commercial and multifamily buildings  

DOE Green Energy (OSTI)

This specification/cost manual was prepared as part of DOE's technical assistance to the states, utilities and other groups participating in the Commercial and Apartment Conservation Service (CACS) program. The intention is to provide a set of standardized specifications and cost information for the CACS program measures. The material was designed to be used primarily by contractors and others in preparing cost estimates at the request of CACS utilities. This information can also be used by CACS participants in preparing state plans, analyzing which measures are best-suited for their particular climates, computing paybacks, and carrying out audits. In addition, this publication may be of interest to the wider audience involved in the energy retrofit field, ranging from architects and engineers to energy auditors and building inspectors. Each specification contains several categories of information: title; description; recommendations; materials; installation; maintenance; cost information; material cost variables, installation cost variables, regional variables, and safety/hazard issues. The document is divided into six sections: building envelope and service insulation measures; HVAC measures: simple systems; HVAC measures: complex systems; lighting system measures; active solar system measures; and passive solar system measures.

Bircher, C.; Carlisle, N.; Hunter, K.; MacDonald, M.; Shapira, H.; Vineyard, T.A.; Kolb, J.

1984-07-01T23:59:59.000Z

192

Building America: Full-Text Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Bookmark and Share Home About Research Projects Building Energy Optimization Efficiency Measures & Costs House Simulation Protocols Meetings...

193

Building America Analysis Methods and Tools Standing Technical Committee Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis Methods and Tools Standing Technical Committee Meeting February 29, 2012 Building America Residential Energy Efficiency Stakeholder Meeting Austin, Texas Housekeeping *E-mail Ben Polly, ben.polly@nrel.gov to be added to committee E-mail list *Open committee: Invite others! *Next call: Tuesday, April 17, 1:00 - 2:00 PM (ET) Today's Agenda 1. Committee Purpose and Goals (10 min) 2. Brainstorming Session (30 min) 3. Strategic Plan (20 min) 1. Overview 2. Progress Update 4. Next Steps and Discussion (15) Introductions Audience Poll: *Familiar with Building America? *Attending a meeting of this committee for the first time? Building America *Department of Energy (DOE) funded *Industry-driven research program

194

Building America Industrialized Housing Partnership II Expert Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GTI PROJECT NUMBER 20970 GTI PROJECT NUMBER 20970 Building America Industrialized Housing Partnership II Subtask 1.8: Building America Expert Meeting Report Issued: December 20, 2010 Prepared For: Philip Fairey Deputy Director Florida Solar Energy Center 1679 Clearlake Road Cocoa, FL 32922-5703 (321) 638-1434 pfairey@fsec.ucf.edu GTI Technical Contacts: Ryan Kerr Douglas Kosar R&D Market Analyst Institute Engineer 847-768-0941 847-768-0725 ryan.kerr@gastechnology.org douglas.kosar@gastechnology.org Gas Technology Institute 1700 S. Mount Prospect Rd. Des Plaines, Illinois 60018 www.gastechnology.org FINAL EXPERT MEETING REPORT Building America Expert Meeting Final Report Page i Legal Notice This information was prepared by Gas Technology Institute ("GTI") for the Florida Solar

195

Retrofitting of Conditioning Systems for Existing Small Commercial Buildings - Analysis and Design of Liquid Desiccant - Vapor Compression Hybrid  

E-Print Network (OSTI)

The combination of several concepts of new energy technologies may make it possible to reduce the energy needs for thermal comfort, especially cooling and dehumidification, in small sized, single-story commercial buildings. The potentials and limitations of retrofit technology for these characteristic structures have been the focus of the experience gained through the design and installation of a system adapted to a building constructed in the early 1960's. The existing split package air conditioning system was combined with a desiccant air-conditioning unit with a waste heat and solar heat reclaim component. While this retrofit system is feasible, a number of questions remain to be considered regarding the design, installation and operation of the total system. This paper focuses on the practical applications of such a hybrid system - both architectural/construction issues and the mechanical components/system considerations.

Arnas, O. A.; McQueen, T. M.

1984-01-01T23:59:59.000Z

196

Project Closeout: Guidance for Final Evaluation of Building America Communities  

Science Conference Proceedings (OSTI)

This report presents guidelines for Project Closeout. It is used to determine whether the Building America program is successfully facilitating improved design and practices to achieve energy savings goals in production homes. Its objective is to use energy simulations, targeted utility bill analysis, and feedback from project stakeholders to evaluate the performance of occupied BA communities.

Norton, P.; Burch, J.; Hendron, B.

2008-03-01T23:59:59.000Z

197

Building America Best Practices Series: Volume 7.1: Guide to Determining Climate Regions by County  

SciTech Connect

This report for DOE's Building America program helps builders identify which Building America climate region they are building in. The guide includes maps comparing the Building America regions with climate designations used in the International Energy Conservation Code for Residential Buildings and lists all U.S. counties by climate zone. A very brief history of the development of the Building America climate map and descriptions of each climate zone are provided. This report is available on the Building America website www.buildingamerica.gov.

Baechler, Michael C.; Williamson, Jennifer L.; Gilbride, Theresa L.; Cole, Pamala C.; Hefty, Marye G.; Love, Pat M.

2010-08-30T23:59:59.000Z

198

Thinking Outside the (Tool) Box with the Building America Solution Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thinking Outside the (Tool) Box with the Building America Solution Thinking Outside the (Tool) Box with the Building America Solution Center Thinking Outside the (Tool) Box with the Building America Solution Center January 17, 2013 - 5:05pm Addthis The Energy Department's new Building America Solution Center provides building professionals with fast, free and reliable building science and efficiency knowledge. | Photo courtesy of the Energy Department. The Energy Department's new Building America Solution Center provides building professionals with fast, free and reliable building science and efficiency knowledge. | Photo courtesy of the Energy Department. Sam Rashkin Chief Architect, Building Technologies Office What is the Building America Solution Center? It is an online tool designed to provide building professionals with

199

Thinking Outside the (Tool) Box with the Building America Solution Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thinking Outside the (Tool) Box with the Building America Solution Thinking Outside the (Tool) Box with the Building America Solution Center Thinking Outside the (Tool) Box with the Building America Solution Center January 17, 2013 - 5:05pm Addthis The Energy Department's new Building America Solution Center provides building professionals with fast, free and reliable building science and efficiency knowledge. | Photo courtesy of the Energy Department. The Energy Department's new Building America Solution Center provides building professionals with fast, free and reliable building science and efficiency knowledge. | Photo courtesy of the Energy Department. Sam Rashkin Chief Architect, Building Technologies Office What is the Building America Solution Center? It is an online tool designed to provide building professionals with

200

Building America Expert Meeting: Combustion Safety  

SciTech Connect

This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

Brand, L.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Costa Rica-Low-Carbon Energy for Central America: Building a...  

Open Energy Info (EERE)

Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Costa-Rica-Low-Carbon Energy for Central America: Building a Regional...

202

El Salvador-Low-Carbon Energy for Central America: Building a...  

Open Energy Info (EERE)

El Salvador-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name El Salvador-Low-Carbon Energy for Central America: Building a Regional...

203

Building America Top Innovations Hall of Fame Profile High-R Walls  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on high-R-value walls showing the difference between rated and whole wall R values and the need for vented cladding to reduce condensation potential with some insulation types.

204

Building America Top Innovations Hall of Fame Profile Basement Insulation Systems  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Building America research on basement insulation, which identifies the wall installation methods and materials that perform best in terms of insulation and water resistance.

205

Building America Research Benchmark Definition, Updated December 29, 2004  

DOE Green Energy (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

Hendron, R.

2005-02-01T23:59:59.000Z

206

Low-Carbon Energy for Central America: Building a Regional Model | Open  

Open Energy Info (EERE)

Low-Carbon Energy for Central America: Building a Regional Model Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Central America, Central America, Central America, Central America, Central America, Central America, Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for

207

Building America Standing Technical Committee - Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Standing Technical Committee Strategic Plan, v2012a Revised: January 2012 Committee Chair: 2011, 2012 Marc Hoeschele mhoesch@davisenergy.com 530-753-1100 x23 ARBI Page 2 Background on Residential Water Heating According to the U.S. Energy Information Administration's 2005 Residential Energy Consumption Survey (RECS), annual residential water heating totals 2.11 quads of energy annually, or 20% of the energy delivered to residential buildings 1 . Over the past 70 years, gas and electric storage water heaters have been the predominant water heater type in the United States 2 . Recently, gas tankless water heaters have made inroads in market share with current industry projected gas tankless sales estimated at 400,000+ annually, and an

208

Building America House Simulation Protocols (Revised)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House House Simulation Protocols Robert Hendron and Cheryn Engebrecht National Renewable Energy Laboratory Revised October 2010 Prepared by the National Renewable Energy Laboratory For the U.S. Department of Energy Building Technologies Program ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

209

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings An...

210

Achieving Higher Performance with Cost Neutrality through Building America  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Achieving Higher Performance Achieving Higher Performance with Cost Neutrality through Building America Residential Energy Efficiency Stakeholder Meeting March 1, 2012 Residential Energy Efficiency Stakeholder Meeting Agenda * Imagine Homes - An Overview * 2010 Occupied Test House - Objectives - From Modeling through Monitoring * 2012 Occupied Test House - Objectives - What's Next * Closing Remarks Residential Energy Efficiency Stakeholder Meeting Overview: * San Antonio, TX * 68 Homes in 2011 * $140k - $425k * 1,300 - 4,500 ft 2 Imagine Homes Residential Energy Efficiency Stakeholder Meeting Environment: * Hot-Humid * 2,996 CDD * 1,546 HDD * 31" Rainfall Imagine Homes Residential Energy Efficiency Stakeholder Meeting Imagine Homes History: * Established 2006 * Partnership with Beazer Homes * Builders Challenge * Building America

211

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network (OSTI)

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES) agreement as authorized under Public Law 99-272. As DOE's first major SES contract, it was important that every aspect of this project serve as the cornerstone of DOE's Federal Relighting Initiative, including the careful measurement of the electricity and thermal energy savings.

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

212

Building America Top Innovations Hall of Fame Profile … Building Americas Top Innovations Propel the Home Building Industry toward Higher Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sponsored by the U.S. Department of Energy's (DOE's) sponsored by the U.S. Department of Energy's (DOE's) Building America program and its teams of building science experts continue to have a transforming impact, leading our nation's home building industry to high-performance homes. The U.S. home building industry represents a significant opportunity for energy savings, accounting for nearly one-fourth of U.S. energy consumption, but the industry as a whole has been slow to adopt new energy-saving technologies. This is largely due to the industry's unique disaggregation, with thousands of small business owners lacking adequate resources and capabilities to invest in research and development. DOE established the Building America program in 1995 to address both the huge energy-saving opportunity and the critical research gap

213

Building America Efficient Solutions for Existing Homes Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Case Study: Habitat for Humanity South Sarasota County, Venice, Florida PNNL and Calcs Plus helped the South Sarasota County Florida Habitat for Humanity retrofit a...

214

Building America Best Practices Series Volume 13: Energy Performance Techniques and Technologies: Preserving Historic Homes  

SciTech Connect

This guide is a resource to help contractors renovate historic houses, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. The guide is available for download from the DOE Building America website www.buildingamerica.gov.

Britt, Michelle L.; Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Makela, Erin KB; Schneider, Elaine C.; Kaufman, Ned

2011-03-01T23:59:59.000Z

215

Building America Top Innovations Hall of Fame Profile Building Energy Optimization Analysis Method (BEopt)  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes the DOE-sponsored BEopt software, which ensures a consistent analysis platform and accurate simulations. Many BEopt algorithms have been adopted by private-sector HERS software tools that have helped improve the energy efficiency of tens-of-thousands of ENERGY STAR-certified homes.

216

Steam System Balancing and Tuning for Multifamily Residential Buildings, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steam System Balancing Steam System Balancing and Tuning for Multifamily Residential Buildings Chicago, Illinois PROJECT INFORMATION Project Name: Steam System Balancing and Tuning for Multifamily Residential Buildings Location: Chicago, IL Partners: Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Steam heating distribution system and controls Application: Retrofit; Multifamily Year Tested: 2011-2012 Applicable Climate Zone(s): Cold humid continental PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $9,000 on average Projected Energy Savings: 10.2% heating savings Chicago's older multifamily housing stock is primarily heated by centrally metered steam or hydronic systems. Often, significant temperature differentials

217

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Improves Improves Building Energy Simulation Programs Through Diagnostic Testing Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model cali- bration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares soft- ware simulation findings to reference results generated with state-of-the-art

218

Addendum to the Building America House Simulation Protocols  

NLE Websites -- All DOE Office Websites (Extended Search)

Addendum to the Building Addendum to the Building America House Simulation Protocols C. Engebrecht Metzger, E. Wilson, and S. Horowitz National Renewable Energy Laboratory December 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

219

Addendum to the Building America House Simulation Protocols  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addendum to the Building Addendum to the Building America House Simulation Protocols C. Engebrecht Metzger, E. Wilson, and S. Horowitz National Renewable Energy Laboratory December 2012 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

220

Monitoring and Verification Procedures Used in the Texas LoanSTAR and Rebuild America Programs  

E-Print Network (OSTI)

The monitoring and verification procedures that have been developed for the Texas LoanSTAR program and the ESL's Rebuild America Program have become a foundation for a number of other state and federal M&V programs, including the United States Department of Energy's (USDOE's) 1996 NEMVP, 1997 IPMVP, 2001 IPMVP, ASHRAE's GP 14P, and the 1999 Texas Performance Contracting Guidelines. This paper reviews the basic procedures that are used for monitoring and verifying energy savings in commercial buildings that receive energy conservation retrofits, including procedures that are used for measuring energy savings in buildings where hourly pre-retrofit and post-retrofit whole-building data have been collected; buildings where monthly pre-retrofit and hourly post-retrofit data are collected; and buildings where monthly preretrofit and monthly post-retrofit data are used to verify savings.

Farouz, S.; Baltazar-Cervantes, J. C.; Haberl, J. S.; Claridge, D. E.

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Use of an atrium for the passive-solar retrofit of an office building: design and installation experience  

DOE Green Energy (OSTI)

A clerestory window system has been installed over a courtyard in an existing two-story office building/museum at the Los Alamos National Laboratory, thus creating an atrium. This atrium serves as a passive solar heating and daylighting system for the building and provides new display space for the museum. The retrofit consists of a roof-mounted clerestory window system with night insulating shutters which: forms an atrium that provides new museum space, buffers the former courtyard walls and windows, preheats ventilation air for the entire building, and provides daylighting and heating for the new museum space. The passive system is coupled to the heating, ventilating, and air-conditioning (HVAC) system of the surrounding building by inducing fresh-air makeup through the solar-tempered atrium; heating, cooling, and daylighting are addressed in the design. The design process, the use of the DOE-2 building energy analysis computer program during design, and the construction of the atrium are described.

Hunn, B.D.; Peterson, J.L.

1982-01-01T23:59:59.000Z

222

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings  

E-Print Network (OSTI)

Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy consumption of the buildings in their ...

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

223

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit...  

Open Energy Info (EERE)

European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource...

224

Scenario analysis of retrofit strategies for reducing energy consumption in Norwegian office buildings.  

E-Print Network (OSTI)

??Model buildings were created for simulation to describe typical office buildings from different construction periods. A simulation program was written to predict the annual energy (more)

Engblom, Lisa A. (Lisa Allison)

2006-01-01T23:59:59.000Z

225

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

226

Grupe Homes Enters the Whole-House Retrofit Market  

Science Conference Proceedings (OSTI)

This article for HomeEnergy Magazine, a trade magazine on energy efficient home construction, retrofitting, remodeling, and research, describes retrofit projects by Grupe Homes of Sacramento, California, a production builder who has worked with DOE's Building America program on energy-efficient home demonstration projects. In this project, The article is a case study of Grupe's decision to enter the energy efficient remodeling market when new home sales lagged due to the economic slowdown starting in late 2007. The article also describes an energy-efficient retrofit of of a 22-year-old, 3-bedroom home in Californias Central Valley done in 2009 by Grupe. The home is Grupe's first retrofit and was done according to the criteria of Home Performance with ENERGY STAR, a national program from the EPA and DOE that promotes a comprehensive, whole-house approach to making energy-efficiency improvements. Grupe's staff were trained through the California Building Performance Contractors Association and passed the Building Performance Institute test to learn how to conduct extensive energy audits of existing houses as well to perform the energy efficient retrofits. In the retrofit home, they did extensive air sealing, replaced and added insulation, and replaced inefficient HVAC equipment and leaky can lights. They cut air leakage from 2478 to 1115 cfm 50, a 55% reduction. A Building America case study on this project was distributed at the EEBA (Energy and Environmental Building Alliance) Annual Conference in Denver, Colorado, Sept 28-30, 2009. The Home Energy article was published in the March/April 2010 issue.

Hefty, Marye G.; Gilbride, Theresa L.

2010-03-01T23:59:59.000Z

227

Retrofitting Vegas: Implementing Energy Efficiency in Two Las Vegas Test Homes  

SciTech Connect

In 2009, the state of Nevada received nearly forty million dollars in Neighborhood Stabilization Funds from the Department of Housing and Urban Development. The purpose of this funding was to stabilize communities that have suffered from foreclosures and abandonment. In an effort to provide guidance to local officials and maximize how effectively this NSP funding is utilized in retrofitting homes, CARB provided design specifications, energy modeling, and technical support for the Building America Retrofit Alliance (BARA) team and its local partners - Better Building Performance, Nevada Energy Star Partners Green Alliance, and Home Free Nevada - for two retrofit test homes. One home was to demonstrate a modest retrofit and the other a deep energy retrofit. Through this project, CARB has provided two robust solution packages for retrofitting homes built in this region between the 1980s and early 1990s without substantially inconveniencing the occupants. The two test homes, the Carmen and Sierra Hills, demonstrate how cost-effectively energy efficient upgrades can be implemented in the hot, dry climate of the Southwest. In addition, the homes were used as an educational experience for home performance professionals, building trades, remodelers, and the general public. In-field trainings on air-sealing, HVAC upgrades, and insulating were provided to local contractors during the retrofit and BARA documented these retrofits through a series of video presentations, beginning with a site survey and concluding with the finished remodel and test out.

Puttagunta, S.

2013-04-01T23:59:59.000Z

228

Homeowner Best Practices Guide for Residential Retrofits  

SciTech Connect

This best practices guide for HV AC system retrofits is aimed at homeowners who want guidance on upgrading their heating, cooling and ventilation (HVAC) systems and integrating these upgrades with other changes to their home. It has been developed around the idea of having packages of changes to the building HV AC system and building envelope that are climate and house construction dependent. These packages include materials procedures and equipment, and are designed to remove some of the guesswork when selecting a builder, contractor, or installer. The packages are not meant to be taken as rigid requirements - instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction, where a systems engineering approach has been used to develop extremely energy-efficient homes that are comfortable safe and durable, and often cost less than standard construction. This approach is best epitomized by the Building America program, whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of simple tests that a homeowner can perform on their own together with checklists and questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HV AC system, the local climate, the construction methods used for the house, and the presence of existing energy saving systems and/or materials. This is just like a doctor referring a patient for blood tests or x-rays before actually performing surgery. This way the doctor can be sure that he does the right thing. To take this analogy further - we can borrow from the medical profession and say that the first thought when retrofitting a house is to do no harm, i.e., do not make changes that could make the house worse to live in.

Walker, Iain S.

2005-09-01T23:59:59.000Z

229

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such...

230

The design and retrofit of buildings for resistance to blast-induced progressive collapse  

E-Print Network (OSTI)

In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed in compliance with conventional building codes ...

Abbott Galvo Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

231

New Jersey Landlord, Tenants See Benefits of Retrofits | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits April 9, 2010 - 2:32pm Addthis Joshua DeLung Some might think that only single-family homes are being weatherized across America, but eligible renters in Newark, N.J., are taking advantage of the increases in savings, safety and comfort that come with weatherization. Sunny Uberio is the owner of Realty Management Systems LLC in Newark, N.J., where he had his three apartment buildings evaluated for their energy efficiency and found that the older heating and cooling systems and other measures were insufficient when it came to saving energy. La Casa de Don Pedro, a local community action agency, was able to help Sunny by weatherizing the buildings.

232

New Jersey Landlord, Tenants See Benefits of Retrofits | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Landlord, Tenants See Benefits of Retrofits Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits April 9, 2010 - 2:32pm Addthis Joshua DeLung Some might think that only single-family homes are being weatherized across America, but eligible renters in Newark, N.J., are taking advantage of the increases in savings, safety and comfort that come with weatherization. Sunny Uberio is the owner of Realty Management Systems LLC in Newark, N.J., where he had his three apartment buildings evaluated for their energy efficiency and found that the older heating and cooling systems and other measures were insufficient when it came to saving energy. La Casa de Don Pedro, a local community action agency, was able to help Sunny by weatherizing the buildings. "Through their program, I was able to get new boilers installed, new

233

Building America Top Innovations Hall of Fame Profile … Building Science-Based Climate Maps  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a a climate zone map for the DOE based on the IECC climate zone map. It may not be intuitively obvious why a U.S. climate zone map is so important to the construction industry. Thanks to this Building America innovation, building science education, energy code development, and residential design can much more effectively integrate climate-specific best practices and advanced technologies across the United States. Climate has a major impact on the energy use of residential buildings, and energy codes and standards rely on a clear definition of climate zones to convey requirements to builders. However, prior to 2004, there was no single, agreed- upon climate zone map for the United States for use with building codes. Four different methods for specifying climate-dependent requirements were used by

234

El Salvador-Low-Carbon Energy for Central America: Building a Regional  

Open Energy Info (EERE)

El Salvador-Low-Carbon Energy for Central America: Building a Regional El Salvador-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name El Salvador-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country El Salvador Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

235

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Nicaragua-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Nicaragua Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

236

Honduras-Low-Carbon Energy for Central America: Building a Regional Model |  

Open Energy Info (EERE)

Honduras-Low-Carbon Energy for Central America: Building a Regional Model Honduras-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Honduras-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Honduras Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

237

Belize-Low-Carbon Energy for Central America: Building a Regional Model |  

Open Energy Info (EERE)

Belize-Low-Carbon Energy for Central America: Building a Regional Model Belize-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Belize-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Belize Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

238

Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model Costa Rica-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Costa-Rica-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Costa Rica Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

239

Guatemala-Low-Carbon Energy for Central America: Building a Regional Model  

Open Energy Info (EERE)

Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Jump to: navigation, search Name Guatemala-Low-Carbon Energy for Central America: Building a Regional Model Agency/Company /Organization World Watch Institute Sector Energy Focus Area Renewable Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.worldwatch.org/node Country Guatemala Central America References Low-Carbon Energy for Central America: Building a Regional Model[1] Overview "This project will design a unified low-carbon development strategy for Central America through the use of renewable energy and energy efficiency maps, followed by technical, economic, and social feasibility studies for

240

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Consortium of Advanced Residential Buildings (CARB) - A Building America Energy Efficient Housing Partnership  

SciTech Connect

This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis by 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).

Robb Aldrich; Lois Arena; Dianne Griffiths; Srikanth Puttagunta; David Springer

2010-12-31T23:59:59.000Z

242

The design and retrofit of buildings for resistance to blast-induced progressive collapse.  

E-Print Network (OSTI)

??In recent years, concern has risen drastically regarding the suitability of structural design for blast resistance. Historic events have proven that buildings that are designed (more)

Abbott Galvo Sobreira Lopes, Isabel

2009-01-01T23:59:59.000Z

243

Building America Top Innovations Hall of Fame Profile Integration of HVAC System Design with Simplified Duct Distribution  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes work by Building America research teams who field tested simplified duct designs in hundreds of homes, confirming the performance of short compact duct runs, with supply registers near interior walls.

244

Review of Methods for Measuring and Verifying Savings from Energy Conservation Retrofits to Existing Buildings  

E-Print Network (OSTI)

The Measurement & Verification (M&V) process has evolved in the last 15 years to provide a high confidence approach for determining the resulting savings from a variety of retrofits and energy efficiency enhancements. M&V has a dual role. First, it quantifies the savings being obtained. Since the persistence of savings has been shown to decrease with time,1 long-term M&V provides data to make these savings sustainable. Second, M&V must be cost effective so that the cost of measurement and the analysis does not consume the savings.2, 3 Currently, a goal of about 5% of the savings per year has evolved as a preferred criteria for costing M&V, since the cost justification directly results from the savings obtained. The general procedure involves a selection of using a monthly billing analysis, a daily or hourly procedure, a component isolation analysis, or a calibrated simulation. Calibrated simulations are usually expensive and difficult to complete.

Haberl, J. S.; Culp, C.

2003-01-01T23:59:59.000Z

245

Building America Spring 2012 Stakeholder Meeting Report - Austin, Texas: February 29 - March 2, 2012  

SciTech Connect

The Building America Spring 2012 Stakeholder Meeting was held on February 29-March 2, 2012, in Austin, Texas, and outlined stakeholder needs, collaboration opportunities, and research results as they relate to the U.S. Department of Energy's (DOE) Residential Buildings Program. Presenters represented key industry stakeholders, as well as the 10 DOE Building America teams. Attendees represented a variety of industries, including manufacturing, government, nonprofit, and private sector programs.

Not Available

2012-05-01T23:59:59.000Z

246

Building America Spring 2012 Stakeholder Meeting Report - Austin, Texas: February 29 - March 2, 2012  

SciTech Connect

The Building America Spring 2012 Stakeholder Meeting was held on February 29-March 2, 2012, in Austin, Texas, and outlined stakeholder needs, collaboration opportunities, and research results as they relate to the U.S. Department of Energy's (DOE) Residential Buildings Program. Presenters represented key industry stakeholders, as well as the 10 DOE Building America teams. Attendees represented a variety of industries, including manufacturing, government, nonprofit, and private sector programs.

2012-05-01T23:59:59.000Z

247

Energy Engineering Analysis Program (EEAP), Fort Bliss headquarters building, lighting retrofit, Fort Bliss, El Paso, Texas  

SciTech Connect

The purpose of this study is to analyze the use of high efficiency fluorescent lighting with energy efficient lamps and electronic ballast for the Headquarters Building (Bldg. number 2) at Fort Bliss.

1993-02-01T23:59:59.000Z

248

Newporter Apartments: Deep Energy Retrofit Short-Term Results  

SciTech Connect

This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

2012-12-01T23:59:59.000Z

249

Experimental Tests of a Real Building Seismically Retrofitted by Special Buckling-Restrained Braces  

SciTech Connect

Buckling Restrained Braces (BRBs), differently from conventional braces, do not exhibit appreciable difference between the tensile and compression capacity and no strength degradation of brace capacity under compressive and cyclic loading. Since lateral and local buckling behaviour modes are restrained, large inelastic capacities are attainable. Hence, BRBs may represent an efficient and reliable solution for reducing the seismic vulnerability of buildings. Results of experimental tests on the response of a real two-story reinforced concrete (RC) building equipped with BRBs are presented and discussed. The considered BRBs are a special 'only-steel' version of the more common 'unbonded braces'. In particular, two different BRBs have been tested. Both of them are detachable 'only-steel' devices, consisting in a rectangular steel plate and a restraining steel sleeve. The latter is composed by two omega shapes which are bolted together. The main characteristic of the braces consists in the possibility to hide them within the space between the facing and the backing of masonry infill walls commonly used for RC buildings.

D'Aniello, Mario; Della Corte, Gaetano; Mazzolani, Federico M. [University of Naples Federico II, Dept. of Structural Engineering-Naples (Italy)

2008-07-08T23:59:59.000Z

250

Building America Top Innovations Hall of Fame Profile … Low-Cost Ventilation in Production Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

simple, cost-effective techniques for providing fresh air throughout the home, including exhaust-only and central fan-integrated supply ventilation. Building America has refined simple whole-house ventilation systems that cost less than $350 to install. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Low-Cost Ventilation in Production Housing As high-performance homes get more air-tight and better insulated, attention to good indoor air quality becomes essential. Building America has effectively guided the nation's home builders to embrace whole-house ventilation by developing low-cost options that adapt well to their production processes. When the U.S. Department of Energy's Building America research teams began

251

Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24 - 26, 2012  

SciTech Connect

This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado.

Not Available

2012-10-01T23:59:59.000Z

252

An Overview of Residential Ventilation Activities in the Building America Program (Phase I)  

DOE Green Energy (OSTI)

This report provides an overview of issues involved in residential ventilation; provides an overview of the various ventilation strategies being evaluated by the five teams, or consortia, currently involved in the Building America Program; and identifies unresolved technical issues.

Barley, D.

2001-05-21T23:59:59.000Z

253

Building America Summer 2012 Technical Update Meeting Report: Denver, Colorado - July 24 - 26, 2012  

SciTech Connect

This report summarizes key findings and outcomes from the U.S. Department of Energy's Building America Summer Technical Update Meeting, held on July 24-26, 2012, in Denver, Colorado.

2012-10-01T23:59:59.000Z

254

Assessment of Solar Energy Conversion Technologies-Application of Thermoelectric Devices in Retrofit an Office Building  

E-Print Network (OSTI)

Thermo electric (TE) devices offer an opportunity to introduce renewable energy into existing and new buildings. TE devices harvest energy from the temperature differential between the hot and cold side of a semiconductor material. In this study, the feasibility of integration of TE devices using the model of a generic enclosure will be explored. Some of these applications will involve the use of these devices as heat exchangers. However, these devices will be examined for their use in harvesting energy to provide the electric service for an office. Since demanded energy for some electronic devices can be generated directly, provided energy has the potential to take those loads off from the distribution. Besides, generated electricity expected to be replaced a greater amount of grid electricity for the periods when TE is generating. This paper represents a critical step for performing an analysis of using the proposed TE system in an office.

Azarbayjani, M.; Anderson, J.

2008-12-01T23:59:59.000Z

255

University of Minnesota (NorthernSTAR Building America Partnership...  

Open Energy Info (EERE)

Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections University of Minnesota (NorthernSTAR Building...

256

Building America Efficient Solutions for New Homes Case Study...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study: Heritage Buildings, Inc., and Energy Smart Home Plans, Leland, North Carolina PNNL worked with North Carolina Heritage Buildings and Energy Smart Home Plans to design...

257

Building America Top Innovations Hall of Fame Profile … Ducts in Conditioned Space  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A duct chase in a dropped hallway ceiling A duct chase in a dropped hallway ceiling provides an affordable way to put ducts in conditioned space, a technique that saves energy and improves indoor air quality. Moving ductwork into the home's conditioned space can save 8%-15% on homeowner air-conditioning bills. Thousands of homes are now applying this important best practice promoted by Building America research. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions: Thermal Enclosure Ducts in Conditioned Space Putting ducts in vented, unconditioned crawlspaces and attics makes almost no sense from a building science standpoint. Building America research has provided proven solutions for locating ducts in conditioned space that are being adopted by

258

Building America Perspective and Overlay to the Energy Upgrade California Approach  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Perspective & Perspective & Overlay to the Energy Upgrade California Approach Driving demand through targeted neighborhood programs By Mark Berman, Alliance for Residential Building Innovation BA Residential Energy Efficiency Stakeholder Meeting - March 1, 2012 Austin, TX Relevant BAP Gaps & Barriers 1. Difficulty in recruiting homeowners to participate in home energy upgrade programs. (Recruitment) 2. Need to develop sustainable retrofit business models (Biz Models) - Review business models in Better Buildings Program & other programs 3. Data mining - need to analyze utility bills to get a sense of whole-house efficiency and savings (Aggregate Results) 2 Overview: Stockton CA

259

Strategy Guideline: Mitigation of Retrofit Risk Factors  

SciTech Connect

The Alliance for Residential Building Innovation (ARBI) is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

Berman, M.; Smith, P.; Porse, E.

2012-12-01T23:59:59.000Z

260

Building America Top Innovations Hall of Fame Profile … EEBA Builders Guides  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a reference widely used throughout the housing industry, the EEBA Builder's a reference widely used throughout the housing industry, the EEBA Builder's Guides have been uniquely transformational, disseminating building science best practices. Moreover, the influence of the guides extends beyond the publications themselves with content continually influencing building science presentations, training, courses, and journal articles all over the United States and Canada. The U.S. Department of Energy's Building America program sponsored the development of a series of climate-specific guides for builders. The guides were authored by Joe Lstiburek, a building scientist and principal with Building Science Corporation, a Building America research partner. They are printed by Building Science Press and are also available from the Energy & Environmental

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rehabilitating missing energy use and weather data when determining retrofit energy savings in commercial buildings  

E-Print Network (OSTI)

This thesis evaluates four methods for rehabilitating short periods of missing data. Single variable regression, polynomial models, Lagrange interpolation, and linear interpolation models are developed, demonstrated, and used to fill 1-6 hour gaps in weather data, heating data and cooling data for commercial buildings. The methodology for comparing the performance of the four different methods for filling data gaps uses 11 one-year data sets to develop different models and fill over 250,000 "pseudo-gaps'' which are created by assuming data is missing and then comparing the "filled'' values with the measured values. The major findings may be summarized as follows: 1. It was also found that different data types have different gap frequency distributions. Data gaps of 1-6 hours cover all missing NWS temperature and dew point data. One to six hour gaps also cover 50-70% of the total missing LO-STAR temperature and humidity data, and 50-70% of total missing LO-STAR energy use such as cooling, heating, motor control use and electricity data. 2. The polynomial model and the linear interpolation model are comparable and more accurate than other models. The linear interpolation model is slightly better than the polynomial model for filling both missing weather data gaps and missing cooling data gaps. The least accurate is the Lagrange model, particularly as the length of the data gap increases. The single variable regression (SVR) method can not deal with missing weather data due to the pattern of weather data. Based on these findings, a polynomial model with hour-of-day as an independent variable and a linear interpolation model are recommended to fill 1-6 hour data gaps in cooling, heating and weather data.

Chen, Hui

1999-01-01T23:59:59.000Z

262

Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes  

SciTech Connect

This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

2012-01-01T23:59:59.000Z

263

Building America Best Practices Series: Guide to Determining Climate Regions by County  

SciTech Connect

This document describes the eight climate region designations used by the US Department of Energy Building America Program. In addition to describing the climate zones, the document includes a complete list of every county in the United States and their climate region designations. The county lists are grouped by state. The doucment is intended to assist builders to easily identify what climate region they are building in and therefore which climate-specific Building America best practices guide would be most appropriate for them.

Gilbride, Theresa L.

2008-10-01T23:59:59.000Z

264

Building America Top Innovations Hall of Fame Profile … Unvented, Conditioned Crawlspaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

have found that have found that in humid parts of the United States, closed, conditioned crawlspaces perform better than vented crawlspaces, reducing moisture problems and increasing energy efficiency. Building America research on unvented crawlspaces has demonstrated 15% to 18% less energy consumption for heating and cooling while reducing humidity over 20%. These results have substantially influenced changes in the 2009 and 2012 versions of the International Residential Code (R408.3) allowing unvented, conditioned crawlspaces. Thousands of homes have now been constructed with this important innovation. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Unvented, Conditioned

265

Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Update Meeting April 2013 Technical Update Meeting April 2013 www.buildingamerica.gov Buildings Technologies Program Code Gaps and Future Research Needs for Combustion Safety 2012 Expert Meeting Larry Brand Gas Technology Institute April 29-30, 2013 Building America Technical Update Meeting Denver, Colorado installation, inspection and testing 2. Appliance Installation: clearances to combustible materials, combustion air, and testing 3. Appliance venting: allowed materials, vent type selection, sizing, installation, and testing Fundamental Combustion Safety Related Coverage: 2 | Building America Technical Update Meeting April 2013 www.buildingamerica.gov 1. Gas piping: allowed materials, sizing, Code Coverage Three Key Provisions For Combustion Safety in the Codes 1. Combustion air

266

Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago  

SciTech Connect

This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

Neuhauser, K.

2013-08-01T23:59:59.000Z

267

Building America Top Innovations Hall of Fame Profile … Basement Insulation Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient Efficient and durable construction practices are critical for basements because basements can account for 10% to 30% of a home's total heat loss and provide significant risk of moisture problems due to extensive cold surfaces at the walls and slab. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Basement Insulation Systems Building America research has provided essential guidance for one of the most challenging construction assemblies in cold-climate high-performance homes. Basements can easily develop mold, rot, and odor problems if not designed properly. Building America researchers have investigated basement insulation systems that keep the space dry, healthy, and odor-free. These systems effectively address the

268

Building America Top Innovations Hall of Fame Profile … ENERGY STAR for Homes Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GW Robinson, a production home builder in GW Robinson, a production home builder in Gainesville, Florida, worked with Building America to build all 290 units at its Cobblefield development to ENERGY STAR criteria. The builder was one of several featured in a series of guides produced by Building America to help builders achieve ENERGY STAR with climate-appropriate energy- efficiency measures (Baechler et al. 2004-06). ENERGY STAR for Homes, with critical support from DOE's Building America program, has been transformative, leading the U.S. housing industry to high- performance homes and driving the development of a national Home Energy Rating System (HERS) infrastructure. ENERGY STAR is a joint program of the U.S. Environmental Protection Agency (EPA) and DOE, helping U.S. citizens save money and protect the

269

Building America Top Innovations Hall of Fame Profile … Outside Air Ventilation Controller  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partner Davis Energy partner Davis Energy Group worked with Monley Cronin Construction to build 100 energy-efficient homes in Woodland, CA, with night- cooling ventilation systems. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.3 Assured Health, Safety, and Durability Outside Air Ventilation Controller Building America researchers developed technologies to harness the natural day-night temperature swings in the U.S. Southwest to cut cooling energy peak demand with no compromise in comfort. Building America research has shown that, in dry climates, the use of ventilation cooling can significantly reduce, delay, or completely eliminate air conditioner operation resulting in both energy savings and reduction of peak demand

270

Building America Efficient Solutions for Existing Homes: Case...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solutions for Existing Homes: Case Study: Build San Antonio Green, San Antonio, Texas PNNL, FSEC, and CalcsPlus provided technical assistance to Build San Antonio Green on three...

271

Announcement Made on FOA DE-FOA0000099, "Recovery Act - Building  

NLE Websites -- All DOE Office Websites (Extended Search)

November 17, 2009 November 17, 2009 Announcement Made on FOA DE-FOA0000099, "Recovery Act - Building America Energy Efficient Housing Partnerships" Building Technology Funds To Be Restructured To Support "Recovery Through Retrofit" Initiative Morgantown, W.Va. - In conjunction with Vice President Biden's October 19, 2009, announcement of the Recovery Through Retrofit initiative, the U.S. Department of Energy (DOE) has decided to make no selections from Funding Opportunity Announcement (FOA) DE-FOA-0000099, "Recovery Act - Building America Energy Efficient Housing Partnerships." This decision is in accordance with Section VIII - Other Information, Part B, of the FOA and applies to both Area of Interest 1, Building America Teams, and Area of Interest 2, Building America Retrofit Teams.

272

High Performance Homes That Use 50% Less Energy Than the DOE Building America Benchmark Building  

DOE Green Energy (OSTI)

This document describes lessons learned from designing, building, and monitoring five affordable, energy-efficient test houses in a single development in the Tennessee Valley Authority (TVA) service area. This work was done through a collaboration of Habitat for Humanity Loudon County, the US Department of Energy (DOE), TVA, and Oak Ridge National Laboratory (ORNL).The houses were designed by a team led by ORNL and were constructed by Habitat's volunteers in Lenoir City, Tennessee. ZEH5, a two-story house and the last of the five test houses to be built, provided an excellent model for conducting research on affordable high-performance houses. The impressively low energy bills for this house have generated considerable interest from builders and homeowners around the country who wanted a similar home design that could be adapted to different climates. Because a design developed without the project constraints of ZEH5 would have more appeal for the mass market, plans for two houses were developed from ZEH5: a one-story design (ZEH6) and a two-story design (ZEH7). This report focuses on ZEH6, identical to ZEH5 except that the geothermal heat pump is replaced with a SEER 16 air source unit (like that used in ZEH4). The report also contains plans for the ZEH6 house. ZEH5 and ZEH6 both use 50% less energy than the DOE Building America protocol for energyefficient buildings. ZEH5 is a 4 bedroom, 2.5 bath, 2632 ft2 house with a home energy rating system (HERS) index of 43, which qualifies it for federal energy-efficiency incentives (a HERS rating of 0 is a zero-energy house, and a conventional new house would have a HERS rating of 100). This report is intended to help builders and homeowners build similar high-performance houses. Detailed specifications for the envelope and the equipment used in ZEH5 are compared with the Building America Benchmark building, and detailed drawings, specifications, and lessons learned in the construction and analysis of data gleaned from 94 sensors installed in ZEH5 to monitor electric sub-metered usage, temperature and relative humidity, hot water usage, and heat pump operation for 1 year are presented. This information should be particularly useful to those considering structural insulated panel (SIP) walls and roofing; foundation geothermal heat pumps for space heating and cooling; solar water heaters; and roof-mounted, grid-tied photovoltaic systems. The document includes plans for ZEH6 (adapted from ZEH5), a one-story, high-performance house, as well as projections of how the design might perform in five major metropolitan areas across the TVA service territory. The HERS ratings for this all-electric house vary from 36 (Memphis, Tennessee) to 46 (Bristol, Tennessee).

Christian, J.

2011-01-01T23:59:59.000Z

273

Americas  

E-Print Network (OSTI)

E-3 Product name of Norit Americas halogenated powdered activated carbon FF Fabric Filter (baghouse) FGD

Ravi Strivastava; Technologies Corp; Cold-side Electrostatic Precipitator; Electrostatic Precipitator; Hot-side Electrostatic Precipitator

2010-01-01T23:59:59.000Z

274

Making America's Buildings Better (Fact Sheet)  

SciTech Connect

This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

2012-03-01T23:59:59.000Z

275

Building America Efficient Solutions for New Homes Case Study...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Homes Case Study: Habitat for Humanity Palm Beach County, West Palm Beach, Florida PNNL and FSEC helped Habitat for Humanity of Palm Beach County build three <60 HERS...

276

EMCS Retrofit Analysis - Interim Report  

SciTech Connect

This report presents the interim results of analyses carried out in the Phillip Burton Federal Building in San Francisco from 1996 to 1998. The building is the site of a major demonstration of the BACnet communication protocol. The energy management and control systems (EMCS) in the building were retrofitted with BACnet compatible controllers in order to integrate certain existing systems on one common network. In this respect, the project has been a success. Interoperability of control equipment from different manufacturers has been demonstrated in a real world environment. Besides demonstrating interoperability, the retrofits carried out in the building were also intended to enhance control strategies and capabilities, and to produce energy savings. This report presents analyses of the energy usage of HVAC systems in the building, control performance, and the reaction of the building operators. The report does not present an evaluation of the performance capabilities of the BACnet protocol. A monitoring system was installed in the building that parallels many of the EMCS sensors and data were archived over a three-year period. The authors defined pre-retrofit and post-retrofit periods and analyzed the corresponding data to establish the changes in building performance resulting from the retrofit activities. The authors also used whole-building energy simulation (DOE-2) as a tool for evaluating the effect of the retrofit changes. The results of the simulation were compared with the monitored data. Changes in operator behavior were assessed qualitatively with questionnaires. The report summarizes the findings of the analyses and makes several recommendations as to how to achieve better performance. They maintain that the full potential of the EMCS and associated systems is not being realized. The reasons for this are discussed along with possible ways of addressing this problem. They also describe a number of new technologies that could benefit systems of the type found in the Philip Burton Federal Building.

Diamond, R.C.; Salsbury, T.I.; Bell, G.C.; Huang, Y.J.; Sezgen, A.O.; Mazzucchi, R.; Romberger, J.

1999-03-01T23:59:59.000Z

277

Building America Best Practices Series, Volume 13 - Energy Performance Techniques and Technologies: Perserving Historic Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Energy Performance Techniques and Technologies: Preserving Historic Homes BUILDING AMERICA BEST PRACTICES SERIES VOLUME 13. PREPARED BY Pacific Northwest National Laboratory & Kaufman Heritage Conservation February 28, 2011 R February 28, 2011 * PNNL-20185 BUILDING AMERICA BEST PRACTICES SERIES Energy Performance Techniques and Technologies: Preserving Historic Homes PREPARED BY Pacific Northwest National Laboratory Michelle Britt, Michael C. Baechler, Theresa Gilbride, Marye Hefty, Erin Makela, and Elaine Schneider and Kaufman Heritage Conservation Ned Kaufman, Ph.D. February 28, 2011 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RLO 1830 PNNL-20185 This report was prepared as an account of work sponsored by an agency of the

278

Building America Top Innovations Hall of Fame Profile … EEBA Water Management Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy codes and voluntary programs such as ENERGY STAR for Homes and energy codes and voluntary programs such as ENERGY STAR for Homes and the DOE Challenge Home continue transforming the housing industry to high performance, better insulated and air-sealed assemblies now have substantially reduced tolerance for drying. As a result, managing bulk water flow has become critical to durable construction. The DOE-sponsored Water Mangement Guide has proven to be a highly effective tool for disseminating much needed best practices. The U.S. Department of Energy's Building America program sponsored development of the Water Management Guide, written by Joe Lstiburek, a building scientist and principal with Building America research partner, Building Science Corporation. The guide gives builders practical guidance for minimizing

279

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

280

Habitat Metro Denver -- Perfecting Award-Winning Affordable Homes Using Building America's Integrated Design Approach  

DOE Green Energy (OSTI)

Habitat for Humanity's goal is to supply quality housing to poor families while reducing their energy cost burden, especially in light of ever-increasing energy prices. Habitat Metro Denver partnered with the U.S. Department of Energy's Building America Project and the National Renewable Energy Laboratory to improve their construction and design process to create an affordable home that is not only cost-effective and volunteer friendly to build but highly energy efficient and a comfortable place to live.

Not Available

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Building America Best Practices Series Volume 16: 40% Whole-House Energy Savings in the Mixed-Humid Climate  

SciTech Connect

This best practices guide is the 16th in a series of guides for builders produced by PNNL for the U.S. Department of Energys Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the mixed-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Butner, Ryan S.; Ortiz, Sallie J.

2011-09-01T23:59:59.000Z

282

Building America Best Practices Series Volume 15: 40% Whole-House Energy Savings in the Hot-Humid Climate  

SciTech Connect

This best practices guide is the 15th in a series of guides for builders produced by PNNL for the U.S. Department of Energys Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-humid climate can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and those requirements are highlighted in the text. Requirements of the 2012 IECC and 2012 IRC are also noted in text and tables throughout the guide. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Adams, Karen; Noonan, Christine F.

2011-09-01T23:59:59.000Z

283

Frequency Monitoring and Simulation Analysis for Historical Structures Being Retrofitted  

Science Conference Proceedings (OSTI)

Many historical structures now need to be retrofitted to meet the requirements of fast developing cities. To ensure the safety of a historical masonry building during its retrofitting, natural frequency of the structure was measured through ambient vibrating ... Keywords: Historical masonry building, Retrofit, Monitoring, Simulation

Chao Wang, Bin Peng, Peng Wang

2013-01-01T23:59:59.000Z

284

From the lab to the marketplace: Making America`s buildings more energy efficient  

Science Conference Proceedings (OSTI)

Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

NONE

1995-06-01T23:59:59.000Z

285

From the lab to the marketplace: Making America`s buildings more energy efficient  

Science Conference Proceedings (OSTI)

Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

NONE

1995-01-01T23:59:59.000Z

286

Building America Top Innovations Hall of Fame Profile Zero Net-Energy Homes Production Builder Business Case: California/Florida Production Builders  

Energy.gov (U.S. Department of Energy (DOE))

This Building America Innovations profile describes Grupe Homes of Sacramentos work with Building America to design Californias first production-scale community of solar homes. The homes outsold neighboring developments two to one.

287

Building America Top Innovations Hall of Fame Profile … Unvented, Conditioned Attics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

additional heat loss and gain of ducts additional heat loss and gain of ducts in unconditioned, vented attics increases energy use for heating and cooling 10%. Additionally, duct air leakage has been measured to commonly exceed 20% of conditioned air flow, which results in a significant energy loss when ducts are in unconditioned space. In addition to influencing builders across the country to adopt unvented, conditioned attics, Building America research has helped influence code acceptance of this innovation since 2006. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Unvented, Conditioned Attics The preference for a large segment of the U.S. housing industry has been to locate HVAC systems in unconditioned attics, but this is highly inefficient.

288

Building America Top Innovations Hall of Fame Profile … Advanced Framing Systems and Packages  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

studies involving studies involving thousands of homes have documented significant material, labor, and energy savings when production builders implement advanced framing techniques. Advanced framing can reduce the number of studs in the walls by up to one-third, reducing the cost of materials. and reducing the cost of labor in terms of the time it takes to handle, cut, install, drill, and attach to studs. Actual savings have exceeded $1,000 per home. Studies show the resulting improvement in thermal performance can yield 13% energy savings. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.1 Building Science Solutions Advanced Framing Systems and Packages Building America has developed best practices for advanced framing

289

Building America Top Innovations 2013 Profile … Zero Energy-Ready Single-Family Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to purchase and install. to purchase and install. Much of Building America's research is aimed directly at the goal of constructing high-performance homes and many of the Building America research teams have been directly involved with builders who are constructing zero energy or zero energy-ready homes. Here are just a few examples. The Consortium for Advanced Residential Buildings, operated by Steven Winter Associates, worked with Preferred Builders, Inc., on a high-performance test home in Old Greenwich, CT. Technologies and strategies used in the "Performance House" were not cutting-edge, but simply "best practices practiced." Closed-cell spray foam insulated the unvented attic and the interior of the foundation wall and wrapped the underside and sides of the slab while 1.5 inches of rigid foam sheathing covered the

290

Building America Research Benchmark Definition, Version 3.1, Updated July 14, 2004  

DOE Green Energy (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in consultation with the Building America industry teams. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines (RESNET 2002), with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a ''standard'' set of occupants, was created for use in conjunction with the Benchmark.

Hendron, R.

2005-01-01T23:59:59.000Z

291

Building America Top Innovations Hall of Fame Profile … Vapor Retarder Classification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2006 the IRC has permitted Class III 2006 the IRC has permitted Class III vapor retarders like latex paint (see list above) in all climate zones under certain conditions thanks to research by Building America teams. Air-tight and well-insulated homes have little or no tolerance for drying if they get wet; moisture control is critical. That's why Building America research establishing vapor retarder classifications and their appropriate applications has been instrumental in the market transformation to high-performance homes. As buildings have gotten tighter over the past several decades, questions about vapor retarders and vapor barriers have confounded builders and code developers. Vapor barriers have traditionally been installed on the warm in winter side of the wall assembly in an attempt to keep interior moisture from entering the wall cavity

292

Building America Top Innovations 2013 Profile … Zero Energy-Ready Single-Family Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for purchase and installation. for purchase and installation. Building America's research is aimed at the goal of constructing high- performance homes and many of the Building America research teams have worked directly with builders to construct zero energy or zero energy-ready homes. Here are just a few examples. The Consortium for Advanced Residential Buildings, operated by Steven Winter Associates, worked with Preferred Builders, Inc., on a high-performance test home in Old Greenwich, CT. Technologies and strategies used in the "Performance House" were not cutting-edge, but simply "best practices practiced." Closed-cell spray foam insulated the unvented attic and the interior of the foundation wall and wrapped the underside and sides of the slab while 1.5 inches of rigid foam sheathing covered the

293

Analyzing Principal-Agent Problem on Energy Use and Energy Efficiency Retrofit from selected Governmental Buildings in Beijing  

E-Print Network (OSTI)

Governmental Buildings in Beijing Zhijun Liu University of California, Davis 03/19/2010 #12;2 1. Introduction 2004 energy statistic data, building consumed 25.5% of the total national energy, and it was estimated that building has the greatest potential for energy conservation. Though the average building energy consumption

California at Davis, University of

294

Modeling National Impacts for the Building America Program  

SciTech Connect

In this paper we present a model to estimate the nationalenergy and economic impacts of the Department of Energy Building Americaprogram. The program goal is to improve energy performance in newresidential construction, by working with builders to design andconstruct energy-efficient homes at minimal cost. The model is anadaptation of the method used to calculate the national energy savingsfor appliance energy efficiency standards. The main difference is thatthe key decision here is not the consumer decision to buy anefficienthouse, but rather the builder decision to offer such a house inthe market. The builder decision is treated by developing a number ofscenarios in which the relative importance of first costs vs. energysavings is varied.

Coughlin, Katie M.; McNeil, Michael A.

2006-06-15T23:59:59.000Z

295

Building America Top Innovations Hall of Fame Profile … Tankless Gas Water Heater Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporating tankless water heaters was one Incorporating tankless water heaters was one of many energy-efficiency recommendations Building America's research team IBACOS had for San Antonio builder Imagine Homes. Although tankless gas water heaters should save approximately 33% on hot water heating compared to a conventional storage water heater, actual energy savings vary significantly based on individual draw volume. Above 10 gallons per draw, the efficiency approaches the rated energy factor. The greatest savings occur at a daily use quantity of about 50 gallons. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 1. Advanced Technologies and Practices 1.2 Energy Efficient Components Tankless Gas Water Heater Performance As improved thermal enclosures dramatically reduce heating and cooling loads,

296

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Cold Climates  

Science Conference Proceedings (OSTI)

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in Cold Climates on a cost-neutral basis.

Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Florida Solar Energy Center (FSEC); IBACOS; National Renewable Energy Laboratory (NREL)

2006-08-01T23:59:59.000Z

297

Building America Top Innovations Hall of Fame Profile … Unvented Crawlspaces Code Adoption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crawlspaces that are unvented and insulated Crawlspaces that are unvented and insulated along the interior or exterior sides of the walls remain drier in humid climate zones. Building America research played a major role in helping to clarify and contribute to code requirements that allow unvented crawlspaces in new home construction. This is critical because unvented crawlspaces save energy while improving comfort, health, and durability in most climate zones. In most climate zones, conditioned crawlspaces perform better than vented crawlspaces in terms of safety, health, comfort, durability and energy consumption. Building America research has demonstrated how these conditioned crawlspaces also do not cost more to construct than vented crawlspaces. Crawlspace venting is a widely accepted business practice across the country.

298

Building America Spring 2012 Stakeholder Meeting Report: Austin, Texas; February 29 - March 2, 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Spring 2012 Stakeholder Meeting Report Austin, Texas: February 29-March 2, 2012 May 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

299

Technical Approach for the Development of DOE Building America Builders Challenge Technology Information Packages (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

4687 4687 Revised August 2009 Technical Approach for the Development of DOE Building America Builders Challenge Technology Information Packages D.R. Roberts and R. Anderson National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-550-44687 Revised August 2009 Technical Approach for the Development of DOE Building America Builders Challenge Technology Information Packages D.R. Roberts and R. Anderson Prepared under Task No. BET88001 The addition of Appendix D is the only revision to the January 2009

300

Building America Top Innovations Hall of Fame Profile … High-R Walls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

require walls that cost-effectively require walls that cost-effectively control both thermal and moisture flow. Building America research results have provided proven high-R wall options for builders across the country. Building America's research teams have conducted modeling analysis as well as field studies of several different wall assemblies to identify effective "whole- wall" R-values that take into account thermal bridging of framing members. Researchers have also investigated critical moisture potential and durability issues since high-R walls have much less drying potential. Between 2008 and 2012, CARB conducted several evaluations of wall types (see for example Aldrich et al. 2010). In one study, CARB performed THERM and WUFI analysis on three typical cold climate wall assemblies modeled at ASHRAE

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building commissioning: The key to quality assurance  

SciTech Connect

This Guide is written to aid building owners and retrofit project managers currently participating in the Rebuild America program. The Guide provides information on implementing building commissioning projects that will optimize the results of existing building equipment improvements and retrofits projects. It should be used in coordination with Rebuild America`s Community Partnership Handbook. The Handbook describes, in detail, eight important steps necessary for planning and carrying out a community-wide energy-efficiency program. In step number 7 of the Handbook, commissioning is shown to be an integral aspect of implementing a building retrofit. The commissioning process ensures that a facility is safe, efficient, comfortable, and conducive to the presumed activities for which it was constructed. Rebuild America strongly encourages its partners to incorporate commissioning into their retrofit projects. By verifying the correct installation, functioning, operation, and maintenance of equipment, the commissioning process ensures that efficiency measures will continue to deliver benefits over the long term. Although commissioning can take place after the equipment has been installed, it is more effective when it takes place over the entire equipment installation process.

1998-05-01T23:59:59.000Z

302

Building America Top Innovations 2013 Profile … Exterior Rigid Insulation Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teams has provided the critical scientific basis for acceptance of foam sheathing by the codes community and understanding of the best practices for implementation to ensure thermal performance as well as air barrier and drainage plane integrity. Although rigid foam has long been recognized as one of the key Building America technologies for high-R walls, the practice lacked a precise engineering basis for the basic elements of the wall system such as foam thickness, connection schedules, and cladding requirements to resist wind loading. As prescriptive construction provisions in residential building codes came under increased scrutiny in building code forums, the need for a consistent, building-science-based methodology became apparent. Research by the Partnership for Home Innovation, led by the Home

303

Building America Top Innovations 2013 Profile … Exterior Rigid Insulation Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

teams teams has provided the critical scientific basis for acceptance of foam sheathing by the codes community and an understanding of best practices for installation to ensure thermal performance as well as air barrier and drainage plane integrity. Although rigid foam has long been recognized as one of the key Building America technologies for high-R walls, the practice lacked a precise engineering basis for the basic elements of the wall system such as foam thickness, connection schedules, and cladding requirements to resist wind loading. As prescriptive construction provisions in residential building codes came under increased scrutiny in building code forums, the need for a consistent, building-science-based methodology became apparent. Research by the Partnership for Home Innovation led by the Home

304

Retrofit regenerator package  

SciTech Connect

Potential fuel savings by retrofitting gas turbines with regeneration units are discussed. Thomassen U.S. is making the retrofit available.

1983-03-01T23:59:59.000Z

305

Building America Top Innovations Hall of Fame Profile … Affordable High Performance in Production Homes: Artistic Homes, Albuquerque, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

help from Building America, Artistic help from Building America, Artistic Homes built affordable, high-performance homes in New Mexico and Colorado with HERS scores of 0 to 60. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Artistic Homes have had an extraordinary impact, demonstrating the mainstream builder's business case for adopting proven innovations such as efficient thermal enclosures and ducts inside the conditioned space, even in entry-level homes. The U.S. Department of Energy's Building America program has helped develop best practices for creating efficient thermal enclosures and locating HVAC ducts inside the conditioned space. These measures cost-effectively reduce heating and

306

Cladding Attachment Over Thick Exterior Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cladding Attachment Over Thick Cladding Attachment Over Thick Exterior Insulating Sheathing Project InformatIon: Project name: Cladding Attachment Over Thick Exterior Insulating Sheathing Partners: Building Science Corporation www.buildingscience.com The Dow Chemical Company www.dow.com James Hardie Building Products www.jameshardie.com Building component: Building envelope component application: New and/or retrofit; Single and/or multifamily Year research conducted: 2011 through 2012 applicable climate Zone(s): All The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of wood-framed walls and mass masonry wall assemblies. The location of the insulation on the exterior of the structure has many direct benefits, including better effective R-value from reduced thermal

307

Buried and Encapsulated Ducts, Jacksonville, Florida (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buried and Encapsulated Ducts Buried and Encapsulated Ducts Jacksonville, Florida PROJECT INFORMATION Project Name: Buried and Encapsulated Ducts Location: Jacksonville, FL Partners: BASF http://www.basf.com Consortium for Advanced Residential Buildings www.carb-swa.com Building Component: Ductwork and Attic Insulation Application: New and/or Retrofit; Single-Family Year Tested: 2010-2011 Applicable Climate Zone(s): All Climates in IECC Moisture Regime A. PERFORMANCE DATA Cost of Energy-Efficiency Measure (including labor): $2,439 Projected Energy Savings: 34% cooling and heating savings Projected Energy Cost Savings: $11/month or $135/year Ductwork installed in unconditioned attics can significantly increase the overall

308

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

309

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

310

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: National Renewable...

311

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

312

Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems  

E-Print Network (OSTI)

panel system are given by its energy (the consumption of gas for heating, electricity for pumps for residential buildings are increasingly used. According to some studies, this figure exceeds 50% (Kilkis et al of new calculation methods. However, in terms of heat transfer modelling, there are several analytical

Paris-Sud XI, Université de

313

Thermal Performance of Unvented Attics in Hot-Dry Climates: Results from Building America; Preprint  

DOE Green Energy (OSTI)

Unvented attics have become a more common design feature implemented by Building America partners in hot-dry climates of the United States. More attention is being focused on how this approach affects heating and cooling energy consumption. By eliminating the ridge and eave vents that circulate outside air through the attic and by moving the insulation from the attic floor to the underside of the roof, an unvented attic become a semi-conditioned space, creating a more benign environment for space conditioning ducts.

Hendron, R.; Farrar-Nagy, S.; Anderson, R.; Reeves, P.; Hancock, E.

2003-01-01T23:59:59.000Z

314

Building America Top Innovations Hall of Fame Profile … High Performance Without Increased Cost: Urbane Homes, Louiseville KY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Urbane's first Urbane's first home, built for $36 per ft 2 in 2008, incorporated both energy efficiency and strategies to reduce building costs. The home won two EnergyValue Housing Awards, and homebuyers began seeking out the builder for energy-efficient, high-quality homes. Building America field projects that demonstrated minimal or cost-neutral impacts for high-performance homes have significantly influenced the housing industry to apply advanced technologies and best practices. In 2006, the U.S. Department of Energy's Building America program set a goal of proving that cost-neutral energy savings of 40% over code were possible at a production scale for new home builders in every U.S. climate zone. Between 2005 and 2010, Building America research partners worked with 34 builders to

315

Building America Efficient Solutions for New Homes Case Study: Habitat for Humanity Palm Beach County, West Palm Beach, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011, Building America assisted Habitat for Humanity of Palm 2011, Building America assisted Habitat for Humanity of Palm Beach County (HabitatPBC) in completing three high-performance prototype houses that achieved HERS index scores of less than 60, which is about 30% better than typical HabitatPBC construction, at a payback of less than 4 years. The HabitatPBC is planning to implement these strategies in future homes they build. This has the potential for significant and affordable energy savings as HabitatPBC has built more than 111 affordable houses and served an additional 125 families worldwide through their affiliation with HFH International (today serving >20 families a year). Building America (through the Florida Solar Energy Center, a member of the Pacific Northwest National Laboratory team) achieved

316

Building America Top Innovations Hall of Fame Profile … Reduced Call-Backs with High-Performance Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Grupe of Stockton, California, worked When Grupe of Stockton, California, worked with Building America to build 144 energy- efficient homes in its Carsten Crossings development, the site superintendent said he had the lowest call-back rate of any community he had worked on. He credited the third-party HERS inspections and testing for keeping the quality of work high and catching problems before move-in (Dakin et al. 2008). BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Reduced Call-Backs with High-Performance Production Builders It is essential to engage production builders to successfully transform the market to high-performance homes. Building America has effectively addressed this

317

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

match the performance of ducts in conditioned space. match the performance of ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts, and if the air handler is located in the attic as well, it is not taking up valuable square footage inside the home. The only problem is vented attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

318

Building America Top Innovations 2013 Profile … Buried and Encapsulated Ducts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

meet the code requirements for ducts in conditioned space. meet the code requirements for ducts in conditioned space. For years builders have designed their homes with the HVAC ducts in the attic. There is plenty of space up there to run the ducts and if the air handler is located in the attic as well, it's not taking up valuable square footage inside the home. The only problem is uninsulated attics can be very hot in the summer and very cold in the winter. Estimated thermal losses through ducts installed in unconditioned attics range from 10% to 45%, contributing significantly to homeowners' heating and cooling costs. The Consortium for Advanced Residential Buildings (CARB), a Building America research team led by Steven Winter Associates, has done extensive research on the feasibility of insulating ducts that are located in the attic and has

319

Building America Top Innovations Hall of Fame Profile … Model Simulating Real Domestic Hot Water Use  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and the Davis Energy Group used the and the Davis Energy Group used the Domestic Hot Water Event Schedule Generator to accurately quantify effects of low and high water usage on distribution system measures such as pipe insulation, home run plumbing, and demand-controlled recirculation loops. As progress continues with high-R, tightly sealed thermal enclosures, domestic hot water becomes an increasingly important energy use in high-performance homes. Building America research has improved our ability to model hot water use so new hot water technologies can be more accurately assessed and more readily integrated into high-performance homes. Energy savings for certain residential building technologies depend greatly on occupant behavior. Domestic hot water use is a good example. Simulating

320

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Predicting Envelope Leakage in Attached Dwellings (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Predicting Envelope Leakage Predicting Envelope Leakage in Attached Dwellings PROJECT INFORMATION Project Name: Predicting Envelope Leakage in Attached Dwellings Consortium for Advanced Residential Buildings www.carb-swa.com Building Component: Building Envelope Application: New and retrofit; Multi-family Year Tested: 2013 Applicable Climate Zone(s): All POTENTIAl BENEFITs Requires substantially fewer resources in the field-equipment, personnel, and time Does not require simultaneous access to multiple housing units-extremely difficult in occupied housing Provides a more appropriate assessment of envelope leakage and the potential energy benefits of air sealing than the commonly used total leakage test The most common method of measuring air leakage is to perform single (or solo) blower door pressurization and/or depressurization test. In detached hous-

322

Building America Best Practices Series Vol. 14: Energy Renovations - HVAC: A Guide for Contractors to Share with Homeowners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC HVAC A Guide for Contractors to Share with Homeowners PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory August 2011 August 2011 * PNNL-20421 BUILDING AMERICA BEST PRACTICES SERIES VOLUME 14. R BUILDING AMERICA BEST PRACTICES SERIES Energy Renovations Volume 14: HVAC A Guide for Contractors to Share with Homeowners Prepared by Pacific Northwest National Laboratory Program Manager: Michael C. Baechler Theresa L. Gilbride, Michael C. Baechler, Marye G. Hefty, and James R. Hand and Oak Ridge National Laboratory Pat M. Love August 2011 Prepared for the U.S. Department of Energy Building America Program PNNL-20421 Pacific Northwest National Laboratory Richland, Washington 99352 Contract DE-AC05-76RLO 1830 This report was prepared as an account of work sponsored by an agency of the

323

Building America Top Innovations Hall of Fame Profile … High-Performance Affordable Housing with Habitat for Humanity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

provide compelling benefits provide compelling benefits for all homeowners, but no sector is better served than affordable housing. These are the homeowners that most need the reduced costs of ownership, maintenance, and health associated with these homes. Building America research projects have paved the way for affordable housing providers such as Habitat for Humanity to effectively address this need. Habitat for Humanity (Habitat) has a clear goal: Enable low-income people to become owners of affordable, durable homes. Building America shares this goal, so a partnership was natural. Since the first days of the Building America program, the U.S. Department of Energy and its research partners have provided technical assistance to Habitat. Researchers have helped local Habitat affiliates

324

Building America Best Practices Series: Volume 12. Energy Renovations-Insulation: A Guide for Contractors to Share With Homeowners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Insulation A Guide for Contractors to Share with Homeowners PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory May 2012 May 2012 * PNNL-20972 BUILDING AMERICA BEST PRACTICES SERIES VOLUME 17. R BUILDING AMERICA BEST PRACTICES SERIES Energy Renovations Volume 17: Insulation A Guide for Contractors to Share with Homeowners Prepared by Pacific Northwest National Laboratory Michael C. Baechler, Project Manager K. T. Adams, M. G. Hefty, and T. L. Gilbride and Oak Ridge National Laboratory Pat M. Love May 2012 Prepared for the U.S. Department of Energy Building America Program PNNL-20972 Pacific Northwest National Laboratory Richland, Washington 99352 Contract DE-AC05-76RLO 1830 This report was prepared as an account of work sponsored by an agency of the

325

Building America Top Innovations Hall of Fame Profile … Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duct leakage was a key factor in moisture Duct leakage was a key factor in moisture damage in manufactured homes in humid climates. BUILDING AMERICA TOP INNOVATIONS HALL OF FAME PROFILE INNOVATIONS CATEGORY: 2. House-as-a-System Solutions 2.1 New Homes with Whole-House Packages Moisture and Ventilation Solutions in Hot, Humid Climates: Florida Manufactured Housing Research by Building America diagnosed the causes and prescribed a cure that dramatically reduced moisture problems in manufactured housing in Florida. In the late 1990s, Building America researchers at the Florida Solar Energy Center (FSEC) worked with manufactured home builders to diagnose moisture problems in homes in Florida. Moisture issues were so severe that in some homes researchers could push their fingers through the saturated drywall. Using a

326

Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Audit Field Test Implementation and Results  

SciTech Connect

This report describes the field test of a retrofit audit. The field test was performed during the winter of 1985-86 in four South Central Wisconsin counties. The purpose of the field test was to measure the energy savings and cost effectiveness of the audit-directed retrofit program for optimizing the programs benefit-to-cost ratio. The audit-directed retrofit program is described briefly in this report and in more detail by another report in this series (ORNL/CON-228/P3). The purpose of this report is to describe the methods and results of the field test. Average energy savings of the 20 retrofitted houses are likely (0.90 probability) to lie between 152 and 262 therms/year/house. The most likely value of the average savings is 207 therms/year/house. These savings are significantly (p < .05) smaller than the audit-predicted savings (286 therms/year/house). Measured savings of individual houses were significantly different than predicted savings for half of the houses. Each house received at least one retrofit. Thirteen of the 20 retrofitted houses received a new condensing furnace or blown-in wall insulation; all but two of the houses received one or more minor retrofits. The seven houses which received condensing furnaces saved, on average, about as much as predicted, but three of the seven houses had significantly more or less savings than predicted. The six houses which received wall insulation saved, on average, about half as much as predicted. The remaining houses which received only minor retrofits saved, on average, less than predicted, but the difference was not significant. Actual retrofit costs were close to expected costs. Overall measured energy savings averaged 15 therms/year per hundred retrofit dollars invested. Houses which received wall insulation or a condensing furnace did slightly better, and the houses which received only minor retrofits did poorly. When estimated program costs were included, average savings dropped to about 13 therms/year/per hundred dollars. The uncertainty associated with the energy savings means that these comparisons of savings and costs also have large uncertainties.

McCold, L.N.

1988-01-01T23:59:59.000Z

327

Applications of sustainable technology to retrofits in urban areas  

E-Print Network (OSTI)

Energy Losses from old buildings comprise a significant percentage of the total residential energy consumption in the United States. Retrofitting buildings for conservation can greatly decrease the present energy demand ...

Taylor, Paki (Paki A.), 1974-

2001-01-01T23:59:59.000Z

328

Building America Top Innovations 2013 Profile … Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It's well known that advanced framing techniques that reduce the amount of It's well known that advanced framing techniques that reduce the amount of framing in the stud-framed walls improve the thermal performance of walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

329

Building America Top Innovations 2013 Profile … Next Generation Advanced Framing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

It is well known that advanced framing techniques that reduce the amount of It is well known that advanced framing techniques that reduce the amount of framing in stud-framed walls improve the thermal performance of the walls by allowing more room for insulation and reducing thermal bridging-the heat transfer that happens through wood framing that extends from the inside surface to the outside surface of the wall. Unfortunately, even though the benefits are known, builders have been slow to adopt advanced framing methods because some of the techniques are difficult to apply, trades are not familiar with these nonstandard techniques, and implementation can require design and materials changes. One Building America team, the Partnership for Home Innovation (PHI) led by the Home Innovation Research Labs (formerly known as the National

330

Retrofit Energy Savings Estimation Model | Open Energy Information  

Open Energy Info (EERE)

Retrofit Energy Savings Estimation Model Retrofit Energy Savings Estimation Model Jump to: navigation, search Tool Summary Name: Retrofit Energy Savings Estimation Model Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: btech.lbl.gov/tools/resem/resem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model[1] Logo: Retrofit Energy Savings Estimation Model RESEM, the Retrofit Energy Savings Estimation Model, is a PC-based tool designed to allow Department of Energy (DOE) Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly caused by ICP-supported retrofit measures implemented in a

331

State-of-the-Art Building Concepts Lower Energy Bills: Pulte Homes -- Las Vegas, Nevada: Building America Project Summary, Hot/Dry Climates  

SciTech Connect

Houses built by Pulte Homes as part of DOE's Building America program in Las Vegas, Nevada, save money for the homeowners by reducing electric air conditioning costs and gas heating costs with little or no additional investment. And, the houses have better indoor air quality than typical new construction.

Hendron, B.

2000-08-15T23:59:59.000Z

332

Multifamily Individual Heating and Ventilation Systems, Lawrence, Massachusetts (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multifamily Individual Heating Multifamily Individual Heating and Ventilation Systems Lawrence, Massachusetts PROJECT INFORMATION Construction: Retrofit Type: Multifamily, affordable Builder: Merrimack Valley Habitat for Humanity (MVHfH) www.merrimackvalleyhabitat.org Size: 840 to 1,170 ft 2 units Price Range: $125,000-$130,000 Date completed: Slated for 2014 Climate Zone: Cold (5A) PERFORMANCE DATA HERS Index Range: 48 to 63 Projected annual energy cost savings: $1,797 Incremental cost of energy efficiency measures: $3,747 Incremental annual mortgage: $346 Annual cash flow: $1,451 Billing data: Not available The conversion of an older Massachusetts building into condominiums illustrates a safe, durable, and cost-effective solution for heating and ventilation systems that can potentially benefit millions of multifamily buildings. Merrimack Valley

333

Building America Best Practices Series Volume 12: Builders Challenge Guide to 40% Whole-House Energy Savings in the Cold and Very Cold Climates  

SciTech Connect

This best practices guide is the twelfth in a series of guides for builders produced by PNNL for the U.S. Department of Energys Building America program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the cold and very cold climates can build homes that have whole-house energy savings of 40% over the Building America benchmark with no added overall costs for consumers. The best practices described in this document are based on the results of research and demonstration projects conducted by Building Americas research teams. Building America brings together the nations leading building scientists with over 300 production builders to develop, test, and apply innovative, energy-efficient construction practices. Building America builders have found they can build homes that meet these aggressive energy-efficiency goals at no net increased costs to the homeowners. Currently, Building America homes achieve energy savings of 40% greater than the Building America benchmark home (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code). The recommendations in this document meet or exceed the requirements of the 2009 IECC and 2009 IRC and thos erequirements are highlighted in the text. This document will be distributed via the DOE Building America website: www.buildingamerica.gov.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Love, Pat M.

2011-02-01T23:59:59.000Z

334

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

335

Building Technologies Office: Qualified Software for Calculating...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations & Maintenance Retrofit Existing Buildings Find Financing for Upgrades State & Local Incentives Tax Incentives Activities Partner with DOE Commercial Buildings...

336

Summary of Prioritized Research Opportunities: Building America Program Planning Meeting, Washington, D.C., November 2-4, 2010  

SciTech Connect

This report outlines the results of brainstorming sessions conducted at the Building America Fall 2010 planning meeting, in which research teams and national laboratories identified key research priorities to incorporate into multi-year planning, team research agendas, expert meetings, and technical standing committees.

Not Available

2011-02-01T23:59:59.000Z

337

Building America Top Innovations Hall of Fame Profile … Community Scale High-Performance with Solar: Pulte Homes, Tucson, AZ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pulte Homes' Civano project in Tucson, Pulte Homes' Civano project in Tucson, Arizona, is one of the few communities in the United States to integrate passive and active solar with a comprehensive building science strategy. Many builders remain resistant to adopting high-performance innovations based on misconceptions about high cost and design challenges. Thus, Building America projects such as Pulte Homes' Civano project in Tucson, Arizona, have an extraordinary impact, demonstrating the business case for adopting proven energy-efficiency measures along with solar energy systems for an entire community. Building America has shown in numerous field demonstrations that critical economies of scale and maximum energy benefits can be realized when production builders select energy-efficiency

338

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

339

Building America Expert Meeting Report: Transitioning Traditional HVAC Contractors to Whole House Performance Contractors  

DOE Green Energy (OSTI)

This report outlines findings resulting from a U.S. Department of Energy Building America expert meeting to determine how HVAC companies can transition from a traditional contractor status to a service provider for whole house energy upgrade contracting. IBACOS has embarked upon a research effort under the Building America Program to understand business impacts and change management strategies for HVAC companies. HVAC companies can implement these strategies in order to quickly transition from a 'traditional' heating and cooling contractor to a service provider for whole house energy upgrade contracting. Due to HVAC service contracts, which allow repeat interaction with homeowners, HVAC companies are ideally positioned in the marketplace to resolve homeowner comfort issues through whole house energy upgrades. There are essentially two primary ways to define the routes of transition for an HVAC contractor taking on whole house performance contracting: (1) Sub-contracting out the shell repair/upgrade work; and (2) Integrating the shell repair/upgrade work into their existing business. IBACOS held an Expert Meeting on the topic of Transitioning Traditional HVAC Contractors to Whole House Performance Contractors on March 29, 2011 in San Francisco, CA. The major objectives of the meeting were to: Review and validate the general business models for traditional HVAC companies and whole house energy upgrade companies Review preliminary findings on the differences between the structure of traditional HVAC Companies and whole house energy upgrade companies Seek industry input on how to structure information so it is relevant and useful for traditional HVAC contractors who are transitioning to becoming whole house energy upgrade contractors Seven industry experts identified by IBACOS participated in the session along with one representative from the National Renewable Energy Laboratory (NREL). The objective of the meeting was to validate the general operational profile of an integrated whole house performance contracting company and identify the most significant challenges facing a traditional HVAC contractor looking to transition to a whole house performance contractor. To facilitate the discussion, IBACOS divided the business operations profile of a typical integrated whole house performance contracting company (one that performs both HVAC and shell repair/upgrade work) into seven Operational Areas with more detailed Business Functions and Work Activities falling under each high-level Operational Area. The expert panel was asked to review the operational profile or 'map' of the Business Functions. The specific Work Activities within the Business Functions identified as potential transition barriers were rated by the group relative to the value in IBACOS creating guidance ensuring a successful transition and the relative difficulty in executing.

Burdick, A.

2011-10-01T23:59:59.000Z

340

Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Spray Foam Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing PROJECT aPPliCaTiON Construction: Existing homes with unvented cathedralized roofs. Type: Residential Climate Zones: All TEam mEmbERs Building Science Corporation www.buildingscience.com BASF www.basf.com Dow Chemical Company www.dow.com Honeywell http://honeywell.com Icynene www.icynene.com COdE COmPliaNCE 2012 International Code Council, International Residential Code Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Energy Software Tools Directory: Autodesk Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

342

Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Humidity Control Options in Hot-Humid Climate Homes As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus tool equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid- 1990s reference home; and a 2006 International Energy Conservation

343

Building America Top Innovations Hall of Fame Profile … Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Imagine Homes of San Antonio, Texas, worked Imagine Homes of San Antonio, Texas, worked with Building America team partner IBACOS to improve the continuity of the air barrier along the thermal enclosure by using spray foam insulation in the walls and attic. Building America research teams effectively demonstrated the importance of thermal bypass air barriers, which led to their inclusion in ENERGY STAR for Homes Version 3 specifications in 2006 and then to inclusion in the 2009 IECC. This is a great example of effective research driving a complete market transformation process for a critical high-performance home innovation. Air sealing of the home's thermal enclosure has been required by the energy code for many years. However, in years past, the provisions were somewhat vague and only required that critical areas of potential air leakage (e.g., joints,

344

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

345

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

346

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Marine Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Marine Climate Region on a cost neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

347

Building Energy Software Tools Directory: Green Energy Compass  

NLE Websites -- All DOE Office Websites (Extended Search)

Whole Building Analysis Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, &...

348

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BUILDING TECHNOLOGIES OFFICE BUILDING TECHNOLOGIES OFFICE Building America Case Study Technology Solutions for New and Existing Homes Moisture Durability of Vapor Permeable Insulating Sheathing PROJECT INFORMATION Construction: Existing homes with vapor open wall assemblies Type: Residential Climate Zones: All PERFORMANCE DATA Insulation Ratio The R-value ratio of exterior to interior insulation (e.g., R-15 exterior insulation on R-11 cavity insulation has a ratio of 0.58). This variable controls sheathing temperature. Vapor Permeable Insulation An insulation with vapor permeance greater than five U.S. perms (e.g., rigid mineral fiber insulations). This variable controls water vapor flow and sheathing temperatures. Water Resisting Barrier A membrane that resists liquid water transfer. Permeable WRBs allow water

349

Advancing Residential Energy Retrofits  

Science Conference Proceedings (OSTI)

To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

2012-01-01T23:59:59.000Z

350

Lighting Retrofit Study  

SciTech Connect

The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

Kromer, S.; Morse, O.; Siminovitch, M.

1991-09-01T23:59:59.000Z

351

Retrofit Legislation at the Urban Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Legislation at the Urban Level Retrofit Legislation at the Urban Level In March, the city of Berkeley, California, passed new legislation that should serve as a model for local policies intended to keep energy dollars within the community while protecting the environment. The Commercial Energy Conservation Ordinance (CECO) is based on a similar ordinance that has been law since 1989 in San Francisco, Berkeley's neighbor across the Bay. San Francisco is currently the only other city in the world to have this type of legislation. As part of the Berkeley Municipal Code, CECO requires commercial buildings to undergo energy conservation retrofits when they are sold or substantially renovated. CECO was designed with the participation of LBL's Kristin Heinemeier, who also works with the Berkeley

352

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

353

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

354

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

355

NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Data Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where residential building characteristics (building geometry, insulation levels, equipment types, etc.), generally collected through energy audits, have been connected to measured energy use. With an emphasis on older homes, the repository contains datasets from Home Energy Rating System

356

Result of recent weatherization retrofit projects  

Science Conference Proceedings (OSTI)

Pacific Gas and Electric (PG and E) and the Bonneville Power Administration (BPA) have conducted studies in their respective service areas in order to evaluate the cost-effectiveness of certain conservation retrofits. Twenty houses in Walnut Creek, California, underwent an infiltration reduction program, similar to house doctoring. Ten of these houses also received additional contractor-installed measures. BPA retrofitted 18 houses at its Midway substation in central Washington. Retrofits made to the houses included: attic and crawlspace insulation, foundation sill caulking, storm windows and doors, increased attic ventilation, and infiltration reduction. Energy consumption and weather data were monitored before and after each set of retrofits in both projects. Leakage measurements were made by researchers from the Energy Efficient Buildings Program using blower door fan pressurization, thereby allowing calculation of heating season infiltration rates. An energy use model correlating energy consumption with outside temperature was developed in order to determine improvements to the thermal conductance of the building envelope as a result of the retrofits. Energy savings were calculated based on the results of the energy use model. As a check on these findings, the Computerized Instrumented Residential Audit (CIRA) load calculation program developed at Lawrence Berkeley Laboratory provided a theoretical estimate of the savings resulting from the retrofits. At Midway, storm windows and doors were found to save the most energy. Because the Midway houses were not very leaky at the beginning of the experiment, the infiltration reduction procedures were less effective than expected. In the Walnut Creek project, the infiltration reduction procedures did decrease the leakiness of the test houses, but the effect upon energy savings was not great.

Dickinson, J.B.; Lipschutz, R.D.; O'Regan, B.; Wagner, B.S.

1982-07-01T23:59:59.000Z

357

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

358

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

Science Conference Proceedings (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

359

Building America Efficient Solutions for Existing Homes Case Study: Habitat for Humanity of Palm Beach County, Lake Worth, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description Habitat for Humanity of Palm Beach County, working with Building America researchers from Pacific Northwest National Laboratory and the Florida Solar Energy Center, upgraded this previously unoccupied 1996 home in Lake Worth, Florida to achieve an estimated 39% improvement in energy efficiency. The 1,573-ft 2 slab-on-grade, single- family home received extensive energy upgrades during its conversion to affordable and efficient housing for low-income families. By replacing the home's water heater, using compact fluorescent lamps (CFLs), reducing air infiltration, adding more ceiling insulation, and installing a central air conditioner, the home's annual energy bills are

360

National Grid Deep Energy Retrofit Pilot  

Science Conference Proceedings (OSTI)

Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

Neuhauser, K.

2012-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Energy Software Tools Directory: LISA  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

362

Building Energy Software Tools Directory: TAPS  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

363

Building Energy Software Tools Directory: Evergreen LED  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems...

364

Indoor environmental quality benefits of apartment energy retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environmental quality benefits of apartment energy retrofits Indoor environmental quality benefits of apartment energy retrofits Title Indoor environmental quality benefits of apartment energy retrofits Publication Type Journal Article LBNL Report Number LBNL-6373E Year of Publication 2013 Authors Noris, Federico, Gary Adamkiewicz, William W. Delp, Toshifumi Hotchi, Marion L. Russell, Brett C. Singer, Michael Spears, Kimberly Vermeer, and William J. Fisk Journal Building Environment Volume 68 Pagination 170-178 Date Published 10/2013 Keywords Apartments; Energy; Indoor environmental quality; Retrofit; Selection Abstract Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

365

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

366

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies  

Science Conference Proceedings (OSTI)

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

Ueno, K.; Van Straaten, R.

2012-02-01T23:59:59.000Z

367

Continuous Commissioning: A Valuable Partner to Retrofit Projects  

E-Print Network (OSTI)

Continuous Commissioning (CC) or HVAC system optimization is not only a valuable stand-alone energy saving measure for commercial buildings, but it is also an important escort solution to retrofit projects. Energy retrofit projects typically achieve projected savings. But in cases where savings goals are not being met, optimizing HVAC system performance can be the difference in an underachieving versus a successful project. This paper presents a real-world study of pairing a CC project with an energy retrofit in a 107,000 square foot hospital building. Applying the CC strategy to an underperforming retrofit, projected energy savings were achieved and even increased. Additionally, by increasing supply air capacity, patients, staff and visitors now enjoy improved comfort conditions. This paper also explores the working relationship between an ESCO and a university research laboratory, whose combined efforts led to this remarkable turn around.

Turner, W. D.; Banks, K.; Athar, A.; Yazdani, B.; Zhu, Y.; Culp, C.

2001-01-01T23:59:59.000Z

368

NREL Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analyti- cal and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results.

369

Measured energy savings and economics of retrofitting existing single- family homes: An update of the BECA-B database  

SciTech Connect

These appendices are the companion volume to report number LBL--28147 Vol.1, with the same title. The summary data tables include physical characteristics, energy consumption, savings, and the retrofit measures installed and their costs for each retrofit project. Each existing single family residential building'' retrofit project in the BECA-B database is described. 99 refs. (BM)

Cohen, S.D.; Goldman, C.A.; Harris, J.P.

1991-02-01T23:59:59.000Z

370

Passive retrofits for Navy housing  

DOE Green Energy (OSTI)

A project to assess and initiate passive solar energy retrofits to US Navy family housing is described. The current data base for Navy housing (ECOP), and its enhancement for passive solar purposes options proposed for Navy housing are explained. The analysis goals and methods to evaluate the retrofits are discussed. An educational package to explain the retrofits is described.

Hibbert, R.; Miles, C.; Jones, R.; Peck, C.; Anderson, J.; Jacobson, V.; Dale, A.M.

1985-01-01T23:59:59.000Z

371

Building America Best Practices Series, Volume 9: Builders Challenge Guide to 40% Whole-House Energy Savings in the Hot-Dry and Mixed-Dry Climates  

SciTech Connect

This best practices guide is the ninth in a series of guides for builders produced by the U.S. Department of Energys Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the hot-dry and mixed-dry climates can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building Americas research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the hot-dry and mixed-dry climates.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Williamson, Jennifer L.; Ruiz, Kathleen A.; Bartlett, Rosemarie; Love, Pat M.

2009-10-23T23:59:59.000Z

372

Building America Best Practices Series Volume 11. Builders Challenge Guide to 40% Whole-House Energy Savings in the Marine Climate  

SciTech Connect

This best practices guide is the eleventh in a series of guides for builders produced by the U.S. Department of Energys Building America Program. This guide book is a resource to help builders design and construct homes that are among the most energy-efficient available, while addressing issues such as building durability, indoor air quality, and occupant health, safety, and comfort. With the measures described in this guide, builders in the marine climate (portions of Washington, Oregon, and California) can achieve homes that have whole house energy savings of 40% over the Building America benchmark (a home built to mid-1990s building practices roughly equivalent to the 1993 Model Energy Code) with no added overall costs for consumers. These best practices are based on the results of research and demonstration projects conducted by Building Americas research teams. The guide includes information for managers, designers, marketers, site supervisors, and subcontractors, as well as case studies of builders who are successfully building homes that cut energy use by 40% in the marine climate. This document is available on the web at www.buildingamerica.gov. This report was originally cleared 06-29-2010. This version is Rev 1 cleared in Nov 2010. The only change is the reference to the Energy Star Windows critieria shown on pg 8.25 was updated to match the criteria - Version 5.0, 04/07/2009, effective 01/04/2010.

Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

2010-09-01T23:59:59.000Z

373

Building America Top Innovations Hall of Fame Profile … Zero Net-Energy Homes Production Builder Business Case: California/Florida Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grupe Homes of Sacramento worked with Grupe Homes of Sacramento worked with Building America to design California's first production-scale community of solar homes. The homes outsold neighboring developments two to one. Building America's production builder partners have found that energy efficiency helps them sell more homes and sell them faster than their competitors even at a higher price point. These impressive business case results have helped influence substantial growth in zero net-energy homes. Four California home builders who worked with Building America to incorporate energy efficiency and solar into their home designs-Shea Homes, Clarum Homes, Premier Homes, and Grupe Homes-all reported selling homes at a faster rate than nearby projects. Clarum Home's absorption rate (the pace at which they sold homes) was

374

Building America Best Practices Series, Volume 7.1 - High-Performance Home Technologies: Guide to Determining Climate Regions by County  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HOT-HUMID HOT-HUMID MIXED-HUMID COLD / VERY COLD HOT-DRY / MIXED-DRY MARINE PREPARED BY Pacific Northwest National Laboratory & Oak Ridge National Laboratory August 2010 August 2010 * PNNL-17211 CLIMATE REGIONS VOLUME 7.1 R HIGH-PERFORMANCE HOME TECHNOLOGIES Guide to Determining Climate Regions by County BUILDING AMERICA BEST PRACTICES SERIES BUILDING AMERICA BEST PRACTICES SERIES VOLUME 7.1 High-Performance Home Technologies: Guide to Determining Climate Regions by County PREPARED BY Pacific Northwest National Laboratory Michael C. Baechler Jennifer Williamson, Theresa Gilbride, Pam Cole, and Marye Hefty

375

Building America Efficient Solutions for New Homes Case Study: Heritage Buildings, Inc., and Energy Smart Home Plans, Leland, North Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

partners Pacific partners Pacific Northwest National Laboratory, Energy Smart Home Plans, and Florida H.E.R.O. worked with North Carolina-based builder Heritage Buildings, Inc., to make the conversion to high-performance building in the hot-humid region of the Atlantic seaboard. Searching for new marketing opportunities, Heritage purchased a home plan from Energy Smart Home Plans and built a home achieving 56 on the HERS Index with only minor additional costs, despite having little on-site technical assistance. The result was so successful that Heritage now offers high-performance upgrades to its clients on a regular basis, for $5,000 per home. These additional energy efficiency measures will also result in significant savings on energy costs. The Heritage home is projected to save $843 annually in energy

376

Greenbuilt Retrofit Test House Final Report  

SciTech Connect

The Greenbuilt house, is an all-electric, 1980's era home in the eastern Sacramento suburb of Fair Oaks that was retrofit by Greenbuilt Construction as part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration (EERD) Program. The project was a joint effort between the design-build team at Greenbuilt Construction, led by Jim Bayless, SMUD and their project manager Mike Keesee, and the National Renewable Energy Laboratory (NREL). The goal of the Energy Efficient Remodel Demonstration program is to work with local builders to renovate homes with cost-effective energy efficient retrofit measures. The homes remodeled under the EERD program are intended to showcase energy efficient retrofit options for homeowners and other builders. The Greenbuilt house is one of five EERD projects that NREL has supported. NREL's main role in these projects is to provide energy analysis and to monitor the home's performance after the retrofit to verify that the energy consumption is in line with the modeling predictions. NREL also performed detailed monitoring on the more innovative equipment included in these remodels, such as an add-on heat pump water heater.

Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

2012-10-01T23:59:59.000Z

377

ARRA Proposed Award: The Affordable Multifamily Retrofit Initiative (the Initiative)  

E-Print Network (OSTI)

but not limited to: attic, wall and floor insulation; building envelope sealing; duct sealing and repair; Energy,993,029 Leverage Funding: $6,120,000 Retrofit Target: 26 Multifamily Buildings / 1600 Multifamily Units; radiant barriers; EnergyStar window replacement; domestic hot water replacement, insulation

378

Building America Top Innovations Hall of Fame Profile … High-Performance Home Cost Performance Trade-Offs Production Builders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

projects with production builders have demonstrated projects with production builders have demonstrated that high-performance homes experience significant cost trade-offs that offset other cost increases. This proved transformational, gaining builder traction with related market-based programs like ENERGY STAR for Homes and DOE Challenge Home. "Break points" or cost trade-offs that are identified during the engineering analysis of the residential construction process can yield two types of business savings: 1) reductions in costs of warranty and call-back service; and 2) offsets or "credits" attributed to reductions in other construction costs. The tables below show examples of cost and savings trade-offs experienced by Building America projects in hot-dry and cold climates. Energy-Efficiency

379

Building America Efficient Solutions for New Homes Case Study: Ravenwood Homes and Energy Smart Home Plans, Inc., Cape Coral, Florida  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ravenwood Homes achieved a HERS score of 15 on its high- Ravenwood Homes achieved a HERS score of 15 on its high- performance home with design assistance from a Building America research team including Pacific Northwest National Laboratory, Energy Smart Home Plans, LLC, and Florida HERO. The home which is located in southwestern Florida, was completed in 2011 and includes a 6 KW rooftop photovoltaic system; without the PV, the home achieves a HERS rating of 65. Ceilings that provide a continuous air barrier can be a key energy-saving feature of a home. In this home the builder installed the ceiling drywall as one continuous layer then installed duct chases in dropped ceilings beneath this drywall so that ducts were installed in conditioned space with an unbroken air barrier above. Interior walls were also attached to

380

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Fuel Utilization Annual Fuel Utilization Efficiency [AFUE] and Seasonal Energy Efficiency Ratio [SEER] and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter, and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building America Top Innovations 2013 Profile … High-Performance Furnace Blowers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

annual fuel utilization annual fuel utilization efficiency (AFUE) and seasonal energy efficiency ratio (SEER) and at real installed conditions. A testing program was undertaken at two laboratories to compare the performance of furnace blowers over a range of static pressure differences that included standard rating points and measured field test pressures. Three different combinations of blowers and residential furnaces were tested. The laboratory test results for blower power and airflow were combined with DOE2 models of building loads, models of air conditioner performance, standby power, and igniter and combustion air blower power to determine potential energy and peak demand impacts. BUILDING TECHNOLOGIES OFFICE Recognizing Top Innovations in Building Science - The U.S. Department of Energy's

382

High-Efficiency Retrofit Lessons for Retail from a SuperTarget: Preprint  

SciTech Connect

The National Renewable Energy Laboratory partnered with Target under the Commercial Building Program to design and implement a retrofit of a SuperTarget in Thornton, CO. The result was a retrofit design that predicted 37% energy savings over ASHRAE Standard 90.1-2004, and 29% compared to existing (pre-retrofit) store consumption. The largest savings came from energy efficient lighting, energy efficient cooling systems, improved refrigeration, and better control of plug loads.

Langner, R.; Deru, M.; Hirsch, A.; Williams, S.

2013-02-01T23:59:59.000Z

383

Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits  

SciTech Connect

The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

Donnelly, K.; Mahle, M.

2012-03-01T23:59:59.000Z

384

Residential Deep Energy Retrofits: Monitoring and Performance of 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Deep Energy Retrofits: Monitoring and Performance of 10 Residential Deep Energy Retrofits: Monitoring and Performance of 10 California Case Study Homes Speaker(s): Brennan Less Jeremy Fisher Date: August 16, 2011 - 12:00pm Location: 90-3075 Deep Energy Retrofits are residential remodeling projects, which attempt to drastically reduce energy usage and environmental impact, as well as increase occupant comfort and improve indoor air quality. With energy reduction targets ranging from 50% to 90%, these projects use similar strategies to those typically deployed in a net-zero energy home. Most Deep Retrofits include insulation upgrades, window replacement, air sealing, HVAC replacement, renewable energy technologies, and new appliances and lighting. No building system or component is overlooked. 10 of these exciting projects are being monitored in California by the Energy

385

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

E-Print Network (OSTI)

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partners proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the projects process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, J.; Sutherland, K.; Chandra, S.; Schleith, K.

2010-08-01T23:59:59.000Z

386

Hygric Redistribution in Insulated Assemblies: Retrofitting Residential Envelopes Without Creating Moisture Issues  

Science Conference Proceedings (OSTI)

The Building America program has recognized that most of the current housing stock is in need of energy related retrofits. One of the best ways of reducing the space conditioning energy consumption is to improve the thermal performance of the enclosure by adding exterior board foam insulation. This report quantifies the amount of water that can become trapped in the drainage cavity of typical wall systems, and measures the effect of water trapped in the drainage cavity on the moisture content of the sheathing. This study also attempts to explain the discrepancy between hygrothermal simulations and field performance of low permeance, low R-value exterior insulation (e.g. 3/4-in. foil faced polyisocyanurate) in cold climates.

Smegal, J.; Lstiburek, J.

2013-01-01T23:59:59.000Z

387

Exploring Cost-Effective, High Performance Residential Retrofits for Affordable Housing in the Hot Humid Climate  

SciTech Connect

In 2009, a Department of Energy Building America team led by the Florida Solar Energy Center began working with partners to find cost-effective paths for improving the energy performance of existing homes in the hot humid climate. A test-in energy audit and energy use modeling of the partner's proposed renovation package was performed for 41 affordable and middle income foreclosed homes in Florida and Alabama. HERS1 Indices ranged from 92 to 184 with modeled energy savings ranging from 3% to 50% (average of 26%). Analyses and recommendations were discussed with partners to encourage more efficient retrofits, highlight health and safety issues, and gather feedback on incremental cost of high performance measures. Ten completed renovations have modeled energy savings ranging from 9% to 48% (average 31%.) This paper presents the project's process including our findings thus far and highlights of the first home to meet the target HERS Index of 70.

McIlvaine, Janet; Sutherland, Karen; Schleith, Kevin; Chandra, Subrato

2010-08-27T23:59:59.000Z

388

Technical Approach for the Development of DOE Building America Builders Challenge Technology Information Packages (Revised)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has issued a challenge to the homebuilding industry to build 220,000 high-performance homes by 2012. To qualify, homes must meet the requirements of a performance path, prescriptive path, or participating in a partner program.

Roberts, D. R.; Anderson, R.

2009-08-01T23:59:59.000Z

389

Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate  

SciTech Connect

This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

Sutherland, K.; Martin, E.

2013-02-01T23:59:59.000Z

390

Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate  

SciTech Connect

This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

Sutherland, K.; Martin, E.

2013-02-01T23:59:59.000Z

391

Approaching the retrofitting market successfully  

SciTech Connect

As a relatively new market, passive solar retrofitting must continue to gain public confidence and acceptance. Homeowners need the assurance that their solar investment is in the hands of a designer/builder who can successfully execute the design and construction. Credibility, through reputation and track record, is a quality that potential clients look for. Acquiring solar retrofit contracts requires a creative marketing approach by a qualified contractor. Various approaches to retrofit contracts are addressed.

Walsh, V.

1981-01-01T23:59:59.000Z

392

Data Center Airflow Management Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

though this sometimes can be the best eco- nomic solution. Investing retrofit funds in passive components such as sealing leaks under the floor, repairing duct- work, replacing...

393

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

394

Building Energy Software Tools Directory: Tools by Subjects  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Load Calculation Renewable Energy Retrofit Analysis SustainabilityGreen Buildings Codes & Standards Materials, Components, Equipment, & Systems Other...

395

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

396

Predicted vs. Actual Energy Savings of Retrofitted House  

E-Print Network (OSTI)

This paper reports the results of actual energy savings and the predicted energy savings of retrofitted one-story house located in Dhahran, Saudi Arabia. The process started with modeling the house prior to retrofitting and after retrofitting. The monthly metered energy consumption is acquired from the electric company archives for seven years prior to retrofitting and recording the actual monthly energy consumption of the post retrofitting. The house model is established on DOE 2.1. Actual monthly energy consumption is used to calibrate and fine-tuning the model until the gap between actual and predicted consumption was narrowed. Then the Energy Conservation Measures (ECMs) are entered into the modeled house according to the changes in thermo-physical properties of the envelope and the changes in schedules and number of users. In order to account for those differences, electrical consumption attributed to A/C in summer was isolated and compared. The study followed the International Performance Measurement & Verification Protocol (IPMVP) in assessing the impact of energy conservation measures on actual, metered, building energy consumption. The study aimed to show the predicted savings by the simulated building model and the actual utility bills' analysis in air conditioning consumption and peak at monthly load due to building envelope.

Al-Mofeez, I.

2010-01-01T23:59:59.000Z

397

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

398

Retrofit Air Preheat Economics  

E-Print Network (OSTI)

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can be increased to a range of 89% to 92%. The economic justification for the addition of this equipment is presented in new total investment curves and simple payout curves for a range of fuel cost. This will enable the owner to quickly determine the preliminary feasibility and conceptual requirements for his project before proceeding with more vigorous work.

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

399

America Town: Building the Outposts of Empire by Mark L. Gillem [EDRA/Places Award 2008 -- Book  

E-Print Network (OSTI)

America Town 2008 EDRA/Places Awards with Metropolis Book InTown for this years book award, jury members praised theone where we give two awards? Leanne Rivlin: But [America

Tomlinson, Elma

2008-01-01T23:59:59.000Z

400

Pre-Retrofit Lighting Study at the University of Texas at Arlington, Texas  

E-Print Network (OSTI)

As a part of the Energy Cost Reduction Measure (ECRM) retrofit program, funded by LoanSTAR, the U.T. Arlington site was granted a $2 million loan to implement an energy-saving lighting retrofit in 20 classroom buildings on the campus. The original Audit Report for the site, completed in 1991, recommended a lighting retrofit that included delamping, relamping with high efficiency lamps, the installation of high efficiency electronic ballasts, and the installation of specular reflectors. However, if the retrofit could be implemented without the use of specular reflectors, then a considerable amount of investment capital would be saved.

Houcek, J. K.; Claridge, D. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Path to Successful Energy Retrofits: Early Collaboration Through  

NLE Websites -- All DOE Office Websites (Extended Search)

Through Through Integrated Project Delivery Teams Title A Path to Successful Energy Retrofits: Early Collaboration Through Integrated Project Delivery Teams Publication Type Report Refereed Designation Refereed LBNL Report Number LBNL-6130E Year of Publication 2012 Authors Parrish, Kristen Date Published 10/2012 Publisher Lawrence Berkeley National Laboratory Abstract This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

402

Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes  

SciTech Connect

The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. This report will detail the retrofit of 2 existing houses in the program. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district GSHP system to service the project. This draft report examines the energy efficiency recommendations for retrofit construction at these homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a Cold Climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project's affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

Lukachko, A.; Grin, A.; Bergey, D.

2013-04-01T23:59:59.000Z

403

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are also discussed. are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or, incorrectly, into the wall. Damaged or deteriorating window sashes, frames, or casings

404

Building America Top Innovations Hall of Fame Profile … National Residential Efficiency Measures Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Robust cost data for energy-efficiency Robust cost data for energy-efficiency measures provide an essential framework for transforming the housing industry to high-performance homes. These data allow for effective optimization capabilities to guide builders, researchers, HERS raters, contractors, and designers. Researchers at the U.S. Department of Energy (DOE)'s National Renewable Energy Laboratory (NREL) have developed a public database that characterizes the performance and costs of common residential energy-efficiency measures. The database, called the National Residential Efficiency Measures Database, can be found at www.buildingamerica.gov. The data are available for use in software programs that evaluate cost-effective measures to improve the energy efficiency of new and existing residential buildings.

405

Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

such as working on scaffolding are also discussed. such as working on scaffolding are also discussed. Water infiltration is dealt with at considerable length because windows are one of the likeliest components in the building structure for water entry and because water intrusion and resultant damage may have gone on unnoticed for some time as water can enter the wall cavity through and around the window assembly. Suggestions for investigating sources of water intrusion are provided. The condition of the decorative trim around the window can be an indication of water damage but deterioration of the trim is typically an aesthetic problem not a performance problem. However, if the window sill is damaged, it should be replaced because it is the means by which water will drain out away from the house or,

406

Better Buildings Challenge is Expanding, Improving Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America Better Buildings Challenge is Expanding, Improving Energy Efficiency Throughout America...

407

Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit  

SciTech Connect

Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

Lyons, J.

2013-01-01T23:59:59.000Z

408

Building America Best Practices Series Volume 8: Builders Challenge Quality Criteria Support Document  

SciTech Connect

The U.S. Department of Energy (DOE) has posed a challenge to the homebuilding industryto build 220,000 high-performance homes by 2012. Through the Builders Challenge, participating homebuilders will have an easy way to differentiate their best energy-performing homes from other products in the marketplace, and to make the benefits clear to buyers. This document was prepared by Pacific Northwest National Laboratory for DOE to provide guidance to U.S. home builders who want to accept the challenge. To qualify for the Builders Challenge, a home must score 70 or less on the EnergySmart Home Scale (E-Scale). The E-scale is based on the well-established Home Energy Rating System (HERS) index, developed by the Residential Energy Services Network (RESNET). The E-scale allows homebuyers to understand at a glance how the energy performance of a particular home compares with the performance of others. To learn more about the index and HERS Raters, visit www.natresnet.org. Homes also must meet the Builders Challenge criteria described in this document. To help builders meet the Challenge, guidance is provided in this report for each of the 29 criteria. Included with guidance for each criteria are resources for more information and references for relevant codes and standards. The Builders Challenge Quality Criteria were originally published in Dec. 2008. They were revised and published as PNNL-18009 Rev 1.2 in Nov. 2009. This is version 1.3, published Nov 2010. Changes from the Nov 2009 version include adding a title page and updating the Energy Star windows critiera to the Version 5.0 criteria approved April 2009 and effective January 4, 2010. This document and other information about the Builders Challenge is available on line at www.buildingamerica.gov/challenge.

Baechler, Michael C.; Bartlett, Rosemarie; Gilbride, Theresa L.

2010-11-01T23:59:59.000Z

409

Building America Residential System Research Results: Achieving 30% Whole House Energy Savings Level in Mixed-Humid Climates; January 2006 - December 2006  

SciTech Connect

The Building America program conducts the system research required to reduce risks associated with the design and construction of homes that use an average of 30% to 90% less total energy for all residential energy uses than the Building America Research Benchmark, including research on homes that will use zero net energy on annual basis. To measure the program's progress, annual research milestones have been established for five major climate regions in the United States. The system research activities required to reach each milestone take from 3 to 5 years to complete and include research in individual test houses, studies in pre-production prototypes, and research studies with lead builders that provide early examples that the specified energy savings level can be successfully achieved on a production basis. This report summarizes research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Mixed-Humid Climate Region on a cost-neutral basis.

Building America Industrialized Housing Partnership (BAIHP); Building Industry Research Alliance (BIRA); Building Science Consortium (BSC); Consortium for Advanced Residential Buildings (CARB); Davis Energy Group (DEG); IBACOS; National Association of Home Builders Research Center (NAHBRC); National Renewable Energy Laboratory (NREL)

2006-12-01T23:59:59.000Z

410

Measuring Energy-Saving Retrofits: Experiences from the LoanSTAR Program  

E-Print Network (OSTI)

In 1988 the Governor's Energy Management Center of Texas received approval from the U.S. Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint.

Claridge, D. E.; Heffington, W. M.; O'Neal, D. L.; Turner, W. D.; Haberl, J. S.; Reddy, T. A.

2005-09-27T23:59:59.000Z

411

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 The Cutting Edge: On the Energy Edge The 13,400 square foot (1,240 square meter) Landmark building in Yakima, Washington, one of 28 participating Energy Edge buildings. In the Pacific Northwest, 28 commercial buildings have been built to demonstrate cost-effective energy savings with no loss of occupant amenity. Sponsored by the Bonneville Power Administration, the Energy Edge buildings were designed to use 30% less energy than a baseline building built to the Model Conservation Standards, the regional energy code. The 28 buildings are typical of new commercial construction in the region: office buildings, schools, fast-food establishments, medical clinics, a supermarket, and a convenience store. Floor areas range from 2,000 to more than 1,000,000 square feet (~200 to 10,000 square meters).

412

Building America Best Practices Series: Volume 5; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Marine Climate  

Science Conference Proceedings (OSTI)

This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the Marine climate region. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team--from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Baechler, M. C.; Taylor, Z. T.; Bartlett, R.; Gilbride, T.; Hefty, M.; Steward, H.; Love, P. M.; Palmer, J. A.

2006-10-01T23:59:59.000Z

413

Building America Best Practices Series: Volume 3; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in Cold and Very Cold Climates  

SciTech Connect

This best practices guide is part of a series produced by Building America. The guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the cold and very cold climates. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team-from the manager to the site planner to the designers, site supervisors, the trades, and marketers. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Not Available

2005-08-01T23:59:59.000Z

414

Building America Best Practices Series: Volume 1; Builders and Buyers Handbook for Improving New Home Efficiency, Comfort, and Durability in the Hot and Humid Climate  

SciTech Connect

This Building America Best Practices guide book is a resource to help builders large and small build high-quality, energy-efficient homes that achieve 30% energy savings in space conditioning and water heating in the hot and humid climate. The savings are in comparison with the 1993 Model Energy Code. The guide contains chapters for every member of the builder's team. There is also a chapter for homeowners on how to use the book to provide help in selecting a new home or builder.

Baechler, M. C.; Love, P. M.

2004-11-01T23:59:59.000Z

415

Biofuels America Inc | Open Energy Information  

Open Energy Info (EERE)

Biofuels America Inc Jump to: navigation, search Name Biofuels America Inc Place Memphis, Tennessee Zip 38126 Product Tennessee-based company that has proposed building a...

416

Evaluating High Efficiency Motor Retrofit  

E-Print Network (OSTI)

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a significant factor. Engineers Involved In motor specification can help lower plant operating costs and reduce electrical energy consumption dramatically by a relatively simple technique: retrofit of existing, standard-efficiency motors with new, high efficiency models. This article demonstrates strong reasons for motor retrofit, and explains step-by step how process and manufacturing engineering personnel can fully evaluate a retrofit decision.

Evans, T. A.

1984-01-01T23:59:59.000Z

417

Advancing Residential Retrofits in Atlanta  

SciTech Connect

This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

Jackson, Roderick K [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute; Stephenson, Robert [Southface Energy Institute

2012-07-01T23:59:59.000Z

418

Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California (Fact Sheet), Building America Case Study: Efficient Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Rigid Foam Insulation at Exterior Rigid Foam Insulation at the Edge of a Slab Foundation Fresno, California PROJECT INFORMATION Construction: New Home Type: Single-family, affordable Builder: Wathen-Castanos Hybrid Homes, Inc., www.wchomes.com Size: 1,789 ft 2 Price Range: Starting at $205,000 Date completed: 2011 Climate Zone: Hot-dry PERFORMANCE DATA Using BEopt version 1.3 modeling on the house plan and specifications noted for this Fresno, California, unoccupied test house, the research team deter- mined that the house will achieve energy savings of 35.5% with respect to the Building America House Simulation Protocols*. * Hendron, R. and Engebrecht, C. NREL/TP-550-49426. "Building America House Simulation Protocols." Golden, CO: National Renewable Energy Laboratory, 2010.

419

Closed-cycle Retrofit Study  

Science Conference Proceedings (OSTI)

EPRI is investigating implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking that would establish "Best Technology Available" (BTA) based on closed-cycle cooling retrofits for facilities with once-through cooling. This report focuses on estimated costs associated with closed-cycle cooling system retrofits that include: 1) capital costs, 2) energy required to operate the closed-cycle system, 3) heat rate penalty, and 4) extended downtime required to retrof...

2011-01-31T23:59:59.000Z

420

Building Technologies Office: Innovative Retrofit Programs and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next...

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Seismic retrofitting of deficient Canadian buildings  

E-Print Network (OSTI)

Many developed countries such as Canada and the United States are facing a significant infrastructure crisis. Most of their facilities have been built with little consideration of seismic design and durability issues. As ...

Gemme, Marie-Claude

2009-01-01T23:59:59.000Z

422

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

minimizing the use of air-conditioning A research reportComfort without air -conditioning in refurbished offices projects. Whether air conditioning is being reduced or

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

423

Phillip Burton Federal Building EMCS Retrofit Analysis  

E-Print Network (OSTI)

on a location and project-specific basis. ELECTRCITY AND NATURAL GAS (E-3): Renewables Portfolio Standard and (E

424

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

425

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

October 1991). Energy Consumption Guide 19, Bordass, W.programme. Energy Consumption Guide 19, Energy W. 1991. Energy Efficiency in Offices: A Technical Guide for

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

426

Home Retrofits Save Money, Add Value | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value February 22, 2010 - 11:40am Addthis Joshua DeLung What are the key facts? Tanya $41,000 in home upgrades were possible through the Energy Independence Program. Tanya to pay back the money through installments on her property taxes. After she did the upgrades, Tanya's energy bills are now down 50 percent. As the real estate business rebounds, homebuilders are seeing some growth because of a new nationwide awareness of energy efficiency and the money it can save homeowners. Tanya Narath, of Santa Rosa, Calif., was already taking advantage of renewable energy and green building techniques - her home has had solar panels on its roof for years, and solar tubes draw in natural light to brighten even the darkest spaces of the home. But then Tanya had an energy

427

Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion)  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion) Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion) Speaker(s): Emily Kirsch Justin Butler Date: July 15, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose James Lutz Cities around the country are developing large-scale programs to retrofit portions of their housing stock, seizing the 'low-hanging fruit' of energy efficiency. As buildings account for roughly 40% of energy consumption in the U.S., such efforts can substantially reduce carbon-based energy use while providing jobs and growing the local green economy. The main barriers to this work are the necessary upfront capital, the risk of losing investment if properties are sold before savings are realized, and the issue of "split incentives" in rented housing units. In order for Oakland

428

Home Retrofits Save Money, Add Value | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value February 22, 2010 - 11:40am Addthis Joshua DeLung What are the key facts? Tanya $41,000 in home upgrades were possible through the Energy Independence Program. Tanya to pay back the money through installments on her property taxes. After she did the upgrades, Tanya's energy bills are now down 50 percent. As the real estate business rebounds, homebuilders are seeing some growth because of a new nationwide awareness of energy efficiency and the money it can save homeowners. Tanya Narath, of Santa Rosa, Calif., was already taking advantage of renewable energy and green building techniques - her home has had solar panels on its roof for years, and solar tubes draw in natural light to brighten even the darkest spaces of the home. But then Tanya had an energy

429

New York State passive solar design and retrofit competition  

SciTech Connect

Many homeowners are faced with the problem of reducing their home energy bills. Solar and energy conservation retrofitting is a potential solution for the home energy problem, capable of significantly reducing heating, cooling, and domestic hot water energy bills. The technique used by 12 homeowners and their designers to adapt and integrate various solar and energy conservation features into 12 different projects is discussed. A variety of innovative solutions were utilized in this project and the integration of those ideas into the buildings being retrofitted is discussed. Integration of sunspaces, increased south glazing, solar domestic hot water, storage systems, air distribution systems, insulation systems, etc., is discusssed. All 12 of these designs are award winning projects submitted in response to an ERDA competitive solar retrofit announcement.

Niles, J.E.; Barron, J.J.; Cole, W.J.

1981-01-01T23:59:59.000Z

430

Retrofitting the Southeast: The Cool Energy House  

Science Conference Proceedings (OSTI)

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

431

Indoor environment quality and energy retrofits in low-income...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environment quality and energy retrofits in low-income apartments: retrofit selection protocol Title Indoor environment quality and energy retrofits in low-income...

432

Building America System Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Inverse Modeling Data-Driven, Physics-Based Simulation and Optimization Software Community scale optimization Community scale energy savings potential Targeted deployment at scale...

433

America Town: Building the Outposts of Empire by Mark L. Gillem [EDRA/Places Award 2008 -- Book  

E-Print Network (OSTI)

its outposts? And in this book, Gillems background as anThe defense of America, the book reveals, has created mini-There are a lot of good books here. And I think that there

Tomlinson, Elma

2008-01-01T23:59:59.000Z

434

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

China. Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

Zhou, Nan

2011-01-01T23:59:59.000Z

435

Assessment of Building Energy-Saving Policies and Programs in China During the 11th Five Year Plan  

E-Print Network (OSTI)

China. Energy& Buildings 40 (12): 2121-2127. Zhou N. ,Scenarios of Commercial Building Energy Consumption inbuilding energy retrofits, and building energy control

Zhou, Nan

2010-01-01T23:59:59.000Z

436

Building Energy Software Tools Directory: New Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Auditing & Sales Tool, home energy assessments, energy analysis, home performance, residential retrofits 2013-05-17 MyVerdafero Utility Optimization, building performance,...

437

Building Technologies Office: Data Centers and Servers  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

438

Building Technologies Office: Technology Performance Exchange...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

439

Building Technologies Office: National Residential Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

at all levels. The data from the efficiency measures database is used in the Building Energy Optimization (BEopt) software. Benefits The National Retrofit Measures Database...

440

Cook County- LEED Requirements for County Buildings  

Energy.gov (U.S. Department of Energy (DOE))

In 2002, Cook County enacted an ordinance requiring all new county buildings and all retrofitted county buildings to be built to LEED standards. Specifically, all newly constructed buildings and...

Note: This page contains sample records for the topic "building america retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building Energy Software Tools Directory: RESEM  

NLE Websites -- All DOE Office Websites (Extended Search)

RESEM RESEM RESEM logo. A simulation-based tool developed to allow the DOE Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly attributable to ICP-supported retrofit measures implemented in a building. RESEM (Retrofit Energy Savings Estimation Model) calculates long-term energy savings directly from actual utility data, with corrections for weather and use variations between the pre-retrofit and post-retrofit utility data collection periods. Keywords retrofit, institutional buildings Validation/Testing N/A Expertise Required Moderate level of computer literacy; familiarity with building energy concepts. Users Over 50. Audience Building managers and energy retrofit engineers. Input Minimal required input includes: original year of building construction,

442

Group Home Energy Efficiency Retrofit for 30% Energy Savings: Washington, D.C. (Fact Sheet)  

SciTech Connect

Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

Not Available

2013-11-01T23:59:59.000Z

443

Natural Cooling Retrofit  

E-Print Network (OSTI)

Substantial numbers of existing plants and buildings are found to depend solely upon Mechanical Cooling even though Natural Cooling techniques could be employed utilizing ambient air. Most of these facilities were constructed without Natural Cooling capability due to 'first cost' budget constraints when the cost and availability of energy were of little concern.

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

444

Modular and Manufactured Houses Offer Homeowners the Building America and ENERGY STAR(R) Advantage: Genesis Homes -- Auburn Hills, Michigan  

SciTech Connect

Genesis Homes is headquartered in Auburn, Michigan, and has 11 factories throughout the nation. They build modular and manufactured homes with quality design, construction practice, and building materials that qualify for the Energy Star label.

2002-01-01T23:59:59.000Z

445

The RFF Home Energy Audit and Retrofit Survey...............................................................  

E-Print Network (OSTI)

Commercial and residential buildings are responsible for 42 percent of all U.S. energy consumption and 41 percent of U.S. CO2 emissions. Engineering studies identify several investments in new enegy-efficiency equipment or building retrofits that would more than pay for themselves in terms of lower future energy costs, but homeowners and businesses generally do not have good information about how to take advantage of these opportunities. Energy auditors make up a growing industry of professionals who evaluate building energy use and provide this information to building owners. This paper reports the results of a survey of nearly 500 home energy auditors and contractors that Resources for the Future conducted in summer 2011. The survey asked about the characteristics of these businesses and the services they provide, the degree to which homeowners follow up on their recommendations, and the respondents opinions on barriers to home energy retrofits and the role for government. Findings from the survey suggest that the audit industry only partially is filling the information gap. Not enough homeowners know about or understand audits, and the follow-through on recommendations once they do have audits is incomplete. But the survey findings suggest that low energy prices and the high cost of retrofits may be more responsible for these outcomes than failures of information.

Karen Palmer; Margaret Walls; Hal Gordon; Todd Gerarden

2011-01-01T23:59:59.000Z

446

PSNH - Small Business Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Retrofit Program PSNH - Small Business Retrofit Program Eligibility Commercial Savings For Other Construction Commercial Heating & Cooling Commercial Weatherization...

447

Building Technologies Office: Building America: Bringing Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat....

448

Exterior Insulation and Overclad Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Insulation & Overclad Exterior Insulation & Overclad Retrofits Residential Energy Efficiency Stakeholder Meeting March 2, 2012 - Austin, TX Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 2  Incredible practical experience:  New construction - nearly a century  Retrofit applications - many decades Exterior Insulation Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 3 1980s ON - a "weird" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 4 1990s ON - a "good" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 5 2000s ON - a "typical" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 6