Powered by Deep Web Technologies
Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TRANSPORTATION SYSTEMS are the build-ing blocks of modern society. Efficient and  

E-Print Network [OSTI]

agenciestoprovideleadershiponresearch,ed- ucation and technology transfer to address is- sues related to transportation system produc- cation, and technology transfer pertain- ing to all forms of transportation. Work- ing through the GTI and its its international goods movement infrastructure.With substantial increases in demand

Storici, Francesca

2

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

3

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

For the ice storage system, during direct cooling, thethe building cooling load. In dynamic systems, ice is formedcooling/demand-limited storage / electric load management / full storage / ice

Akbari, H.

2010-01-01T23:59:59.000Z

4

Application of Cooling Concepts to European Office Buildings  

Science Journals Connector (OSTI)

Plant Model and Cooling Concepts.... Five different cooling concepts are applied in order to cool the office building (Fig.7.3). All of them allow for free ventilation by opening windows. Four con...

Doreen E. Kalz; Jens Pfafferott

2014-01-01T23:59:59.000Z

5

Building Technologies Office: Pollution Impact on Cool Roof Efficacy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pollution Impact on Pollution Impact on Cool Roof Efficacy Research Project to someone by E-mail Share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Facebook Tweet about Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Twitter Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Google Bookmark Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Delicious Rank Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on Digg Find More places to share Building Technologies Office: Pollution Impact on Cool Roof Efficacy Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

6

Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" 1. Heated, Cooled, and Lit Buildings, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","Heated Buildings",,"Cooled Buildings",,"Lit Buildingsc" ,,"Total Floorspacea","Heated Floorspaceb","Total Floorspacea","Cooled Floorspaceb","Total Floorspacea","Lit Floorspaceb" "All Buildings ................",67338,61602,53812,58474,42420,64085,54696 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,5055,4879,3958,5859,4877 "5,001 to 10,000 ..............",8238,7090,5744,6212,4333,7421,5583 "10,001 to 25,000 .............",11153,9865,8196,9530,6195,10358,8251

7

Potential of Evaporative Cooling Systems for Buildings in India  

E-Print Network [OSTI]

Evaporative cooling potential for building in various climatic zones in India is investigated. Maintainable indoor conditions are obtained from the load - capacity analysis for the prevailing ambient conditions. For the assumed activity level...

Maiya, M. P.; Vijay, S.

2010-01-01T23:59:59.000Z

8

Energy Star Building Upgrade Manual Heating and Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9. Heating and 9. Heating and Cooling Revised January 2008 9.1 Overview 2 9.2 Central Cooling Systems 3 Chiller Plant Operations and Maintenance 4 Chiller Plant Retrofits 6 9.3 Central Heating Systems 10 Boiler System Operations and Maintenance 11 Boiler System Retrofits 11 Improving Furnace Efficiency 13 9.4 Unitary Systems 14 Packaged Rooftop Units 16 Split-System Packaged Units 18 Air-Source Heat Pumps 18 Ground-Source, Closed-Loop Heat Pumps 19 9.5 Additional Strategies 20 Air-Side Economizer 20 Energy Recovery 20 Desiccant Dehumidification 20 Night Precooling 21 Cool Storage 22 Evaporative Cooling 22 9.6 Summary 22 Bibliography 23 Glossary G-1 1 ENERGY STAR ® Building Manual ENERGY STAR ® Building Manual 9. Heating and Cooling 9.1 Overview Although heating and cooling systems provide a useful service by keeping occupants comfort-

9

Effects of Material Moisture Adsorption and Desorption on Building Cooling Loads  

E-Print Network [OSTI]

Moisture adsorption and desorption (MAD) by internal building materials and furnishings can be significant in buildings. For many building cooling strategies, MAD may have overriding effects on building cooling loads. For example, natural...

Fairey, P.; Kosar, D.

1988-01-01T23:59:59.000Z

10

Building Energy Software Tools Directory: CBE UFAD Cooling Design Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CBE UFAD Cooling Design Tool CBE UFAD Cooling Design Tool CBE UFAD Cooling Design Tool logo The Center for the Built Environment's research team has developed a simplified, practical design procedure and associated software tool to determine cooling load requirements of underfloor air distribution (UFAD) systems. These are provided to improve the accuracy of airflow, thermal decay data, thermal comfort calculations, system design, and the operation of UFAD buildings. Screen Shots Keywords UFAD, underfloor, Cooling load calculator, cooling, stratification, thermal comfort Validation/Testing N/A Expertise Required Knowledge about cooling load calculation and UFAD. Users N/A Audience Practicing architects and engineers involved in the design, specification, and analysis of UFADs. Instructional tool in colleges and universities.

11

AEDG Implementation Recommendations: Cooling and Heating Loads | Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling and Heating Loads Cooling and Heating Loads The Advanced Energy Design Guide (AEDG) for Small Office Buildings, 30% series, seeks to achieve 30% savings over ASHRAE Standard 90.1-1999. This guide focuses on improvements to small office buildings, less than 20,000ft2. The recommendations in this article are adapted from the implementation section of the guide and focus on heating and cooling system design loads for the purpose of sizing systems and equipment should be calculated in accordance with generally accepted engineering standards and handbooks such as ASHRAE Handbook--Fundamentals. Publication Date: Wednesday, May 13, 2009 air_cooling_and_heating_loads.pdf Document Details Affiliation: DOE BECP Focus: Compliance Building Type: Commercial Code Referenced: ASHRAE Standard 90.1-1999

12

Auxiliary Cooling Loads in Passively Cooled Buildings: An Experimental Research Study  

E-Print Network [OSTI]

Solar Energy Center (FSEC) is examining the auxiliary cooling requirements of residences in warm, humid climates. The study addresses both the thermal and moisture response of buildings. A total of eight wall systems, three frame wall types and five...

Fairey, P.; Vieira, R.; Chandra, S.; Kerestecioglu, A.; Kalaghchy, S.

1984-01-01T23:59:59.000Z

13

Cooling, Heating, and Power for Commercial Buildings- Benefits Analysis, April 2002  

Broader source: Energy.gov [DOE]

An analysis of the benefits of cooling, heating, and power (CHP) technologies in commercial buildings

14

Potential benefits of cool roofs on commercial buildings: conserving  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cool roofs on commercial buildings: conserving cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Title Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants Publication Type Journal Article Year of Publication 2010 Authors Levinson, Ronnen M., and Hashem Akbari Journal Energy Efficiency Volume 3 Pagination 53-109 Publisher Springer Netherlands ISSN 1570-646X Keywords cool roof, Heat Island Abstract Cool roofs-roofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emission-lessen the flow of heat from the roof into the building, reducing the need for space cooling energy in conditioned buildings. Cool roofs may also increase the need for heating energy in cold climates. For a commercial building, the decrease in annual cooling load is typically much greater than the increase in annual heating load. This study combines building energy simulations, local energy prices, local electricity emission factors, and local estimates of building density to characterize local, state average, and national average cooling energy savings, heating energy penalties, energy cost savings, and emission reductions per unit conditioned roof area. The annual heating and cooling energy uses of four commercial building prototypes-new office (1980+), old office (pre-1980), new retail (1980+), and old retail (pre-1980)-were simulated in 236 US cities. Substituting a weathered cool white roof (solar reflectance 0.55) for a weathered conventional gray roof (solar reflectance 0.20) yielded annually a cooling energy saving per unit conditioned roof area ranging from 3.30 kWh/m2 in Alaska to 7.69 kWh/m2 in Arizona (5.02 kWh/m2 nationwide); a heating energy penalty ranging from 0.003 therm/m2 in Hawaii to 0.14 therm/m2 in Wyoming (0.065 therm/m2 nationwide); and an energy cost saving ranging from $0.126/m2 in West Virginia to $1.14/m2 in Arizona ($0.356/m2 nationwide). It also offered annually a CO2 reduction ranging from 1.07 kg/m2 in Alaska to 4.97 kg/m2 in Hawaii (3.02 kg/m2 nationwide); an NOx reduction ranging from 1.70 g/m2 in New York to 11.7 g/m2 in Hawaii (4.81 g/m2 nationwide); an SO2 reduction ranging from 1.79 g/m2 in California to 26.1 g/m2 in Alabama (12.4 g/m2 nationwide); and an Hg reduction ranging from 1.08 μg/m2 in Alaska to 105 μg/m2 in Alabama (61.2 μg/m2 nationwide). Retrofitting 80% of the 2.58 billion square meters of commercial building conditioned roof area in the USA would yield an annual cooling energy saving of 10.4 TWh; an annual heating energy penalty of 133 million therms; and an annual energy cost saving of $735 million. It would also offer an annual CO2 reduction of 6.23 Mt, offsetting the annual CO2 emissions of 1.20 million typical cars or 25.4 typical peak power plants; an annual NOx reduction of 9.93 kt, offsetting the annual NOx emissions of 0.57 million cars or 65.7 peak power plants; an annual SO2 reduction of 25.6 kt, offsetting the annual SO2 emissions of 815 peak power plants; and an annual Hg reduction of 126 kg.

15

Cooling Performance Assessment of Building America Homes  

E-Print Network [OSTI]

durability, comfort and reduced energy use. The ultimate program goal is to achieve a 70% reduction in energy while making up the other 30% with on-site power to provide homes that can cost-effectively produce as much energy as they consume. As of 2004.... Data from this home was collected over three summers from 2002 to 2004. Each of these residences is cooled by the originally installed, minimum efficiency equipment, SEER 10 in Lakeland and SEER 9 in Cocoa. Figure 1 shows the data points used...

Chasar, D.; Chandra, S.; Parker, D.; Sherwin, J.; Beal, D.; Hoak, D.; Moyer, N.; McIlvaine, J.

2006-01-01T23:59:59.000Z

16

Table B29. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" 9. Percent of Floorspace Cooled, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled","All Buildings","Not Cooled","1 to 50 Percent Cooled","51 to 99 Percent Cooled","100 Percent Cooled" "All Buildings ................",4657,1097,1012,751,1796,67338,8864,16846,16966,24662 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,668,352,294,1034,6774,1895,1084,838,2957 "5,001 to 10,000 ..............",1110,282,292,188,348,8238,2026,2233,1435,2544

17

Independent Control of Sensible and Latent Cooling in Small Buildings  

E-Print Network [OSTI]

util impact. INTRODUCTION Dehumidification has become an increasingly large fraction of the total cooling load in many new buildings, as heat gains through the envelope have been reduced but internal moisture generation and the need... to be coincident with maximum air-conditioning loads. The possibility was suggested that by independently controlling temperature and humidity ways might be found to ameliorate the peak electrical loads imposed on utilities by the residential and small...

Andrews, J.; Lamontagne, J.; Piraino, M.

1989-01-01T23:59:59.000Z

18

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network [OSTI]

Incorporating Solar Assisted Cooling Ryan Firestone, Chrisevaluates the operation of solar assisted cooling at a large

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

19

High-albedo materials for reducing building cooling energy use  

SciTech Connect (OSTI)

One simple and effective way to mitigate urban heat islands, i.e., the higher temperatures in cities compared to those of the surrounds, and their negative impacts on cooling energy consumption is to use high-albedo materials on major urban surfaces such as rooftops, streets, sidewalks, school yards, and the exposed surfaces of parking lots. High-albedo materials can save cooling energy use by directly reducing the heat gain through a building`s envelope (direct effect) and also by lowering the urban air temperature in the neighborhood of the building (indirect effect). This project is an attempt to address high-albedo materials for buildings and to perform measurements of roof coatings. We search for existing methods and materials to implement fighter colors on major building and urban surfaces. Their cost effectiveness are examined and the possible related technical, maintenance, and environmental problems are identified. We develop a method for measuring albedo in the field by studying the instrumentation aspects of such measurements. The surface temperature impacts of various albedo/materials in the actual outdoor environment are studied by measuring the surface temperatures of a variety of materials tested on an actual roof. We also generate an albedo database for several urban surfaces to serve as a reference for future use. The results indicate that high-albedo materials can have a large impact on the surface temperature regime. On clear sunny days, when the solar noon surface temperatures of conventional roofing materials were about 40{degrees}C (72{degrees}F) warmer than air, the surface temperature of high-albedo coatings were only about 5{degrees}C warmer than air. In the morning and in the late afternoon, the high-albedo materials were as cool as the air itself. While conventional roofing materials warm up by an average 0.055{degrees}C/(W m{sup {minus}2}), the high-albedo surfaces warm up by an average 0.015{degrees}C/(W m{sup {minus}2}).

Taha, H.; Sailor, D.; Akbari, H.

1992-01-01T23:59:59.000Z

20

Cooling Strategies Based on Indicators of Thermal Storage in Commercial Building Mass  

E-Print Network [OSTI]

specific instance of this phenomenon, in which thermal storage by building mass over weekends exacerbates Monday cooling energy requirements. The study relies on computer simulations of energy use for a large, office building prototype in El Paso, TX using...

Eto, J. H.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network [OSTI]

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants...

Abernethy, D.

22

Passive-solar-cooling system concepts for small office buildings. Final report  

SciTech Connect (OSTI)

This report summarizes the efforts of a small group of building design professionals and energy analysis experts to develop passive solar cooling concepts including first cost estimates for small office buildings. Two design teams were brought together at each of two workshops held in the fall of 1982. Each team included an architect, mechanical engineer, structural engineer, and energy analysis expert. This report presents the passive cooling system concepts resulting from the workshops. It summarizes the design problems, solutions and first-cost estimates relating to each technology considered, and documents the research needs identified by the participants in attempting to implement the various technologies in an actual building design. Each design problem presented at the workshops was based on the reference (base case) small office building analyzed as part of LBL's Cooling Assessment. Chapter II summarizes the thermal performance, physical specifications and estimated first-costs of the base case design developed for this work. Chapters III - VI describe the passive cooling system concepts developed for each technology: beam daylighting; mass with night ventilation; evaporative cooling; and integrated passive cooling systems. The final Chapters, VII and VIII present the preliminary implications for economics of passive cooling technologies (based on review of the design concepts) and recommendations of workshop participants for future research in passive cooling for commercial buildings. Appendices provide backup information on each chapter as indicated.

Whiddon, W.I.; Hart, G.K.

1983-02-01T23:59:59.000Z

23

Installation of Cool Roofs on Department of Energy Buildings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Guidelines for Selecting Cool Roofs CX-002735: Categorical Exclusion Determination 2010 Annual Planning Summary for Savannah River Operations Office (SRS)...

24

Solar Energy to Drive Absorption Cooling Systems Suitable for Small Building Applications  

E-Print Network [OSTI]

results and an overview of the performance of low capacity single stage and half-effect absorption cooling systems, suitable for residential and small building applications. The primary heat source is solar energy supplied from flat plate collectors...

Gomri, R.

2010-01-01T23:59:59.000Z

25

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov [DOE]

Presentation covers the new and existing buildings heating and cooling opportunities and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

26

Building Energy Software Tools Directory: Cool Roof Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

27

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Title Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center Publication Type Report LBNL Report Number LBNL-3348e Year of Publication 2008 Authors Yin, Rongxin, Peng Xu, and Sila Kiliccote Keywords auto-dr, building energy simulation tool, demand response, demand shifting (pre-cooling), DRQAT, market sectors, pre-cooling, technologies, testbed tools and guides, thermal mass Abstract Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool - the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From the simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.

28

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings  

E-Print Network [OSTI]

Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings Redouane) 141-149" DOI : 10.1016/j.enbuild.2013.12.047 #12;ABSTRACT In several situations, a heat pump occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates

Paris-Sud XI, Université de

29

Radiant cooling in US office buildings: Towards eliminating the perception of climate-imposed barriers  

SciTech Connect (OSTI)

Much attention is being given to improving the efficiency of air-conditioning systems through the promotion of more efficient cooling technologies. One such alternative, radiant cooling, is the subject of this thesis. Performance information from Western European buildings equipped with radiant cooling systems indicates that these systems not only reduce the building energy consumption but also provide additional economic and comfort-related benefits. Their potential in other markets such as the US has been largely overlooked due to lack of practical demonstration, and to the absence of simulation tools capable of predicting system performance in different climates. This thesis describes the development of RADCOOL, a simulation tool that models thermal and moisture-related effects in spaces equipped with radiant cooling systems. The thesis then conducts the first in-depth investigation of the climate-related aspects of the performance of radiant cooling systems in office buildings. The results of the investigation show that a building equipped with a radiant cooling system can be operated in any US climate with small risk of condensation. For the office space examined in the thesis, employing a radiant cooling system instead of a traditional all-air system can save on average 30% of the energy consumption and 27% of the peak power demand due to space conditioning. The savings potential is climate-dependent, and is larger in retrofitted buildings than in new construction. This thesis demonstrates the high performance potential of radiant cooling systems across a broad range of US climates. It further discusses the economics governing the US air-conditioning market and identifies the type of policy interventions and other measures that could encourage the adoption of radiant cooling in this market.

Stetiu, C.

1998-01-01T23:59:59.000Z

30

A Control Scheme of Enhanced Reliability for Multiple Chiller Plants Using Mergerd Building Cooling Load Measurements  

E-Print Network [OSTI]

of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 much on the accuracy of the chiller model. Measurement accuracy and reliability are essential for the accuracy and reliability of chiller sequencing... Central Chilling Plant Monitoring and control Figure 1. Framework of enhancing building cooling load measurements using data fusion 2 ESL-IC-08-10-31 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany...

Wang, S.; Sun, Y.; Huang, G.; Zhu, N.

31

Building Energy Software Tools Directory: CL4M Commercial Cooling and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CL4M Commercial Cooling and Heating Loads CL4M Commercial Cooling and Heating Loads Uses ASHRAE methods and algorithms to calculate cooling loads, heating loads and air requirements for each space, and coil specifications, for commercial buildings. CLTD's, SHGF's, CLF's and almost all other factors in the ASHRAE load calculations for each surface and space are calculated and displayed for the engineer's inspection. Latitude and longitude of building location may be specified to the degree, altitude to the foot, and calculations are made for any range of days of the year, and range of hours desired. Building may be rotated or reflected and construction types easily changed for studies. &nsbsp; Handles variations in sky clarity, ground reflectivity, building shading, humidity and altitude. Almost unlimited flexibility in wall, roof and glass

32

A bottom-up engineering estimate of the aggregate heating and cooling loads of the entire U.S. building stock  

E-Print Network [OSTI]

the amount of commercial building energy usage, particularlycommercial building sector. To compare the aggregated energy usagecommercial buildings. For the residential sector, the total heating and cooling energy usages

Huang, Yu Joe; Brodrick, Jim

2000-01-01T23:59:59.000Z

33

Identification of the building parameters that influence heating and cooling energy loads for apartment buildings in hot-humid climates  

Science Journals Connector (OSTI)

Identifying the building parameters that significantly impact energy performance is an important step for enabling the reduction of the heating and cooling energy loads of apartment buildings in the design stage. Implementing passive design techniques for these buildings is not a simple task in most dense cities; their energy performance usually depends on uncertainties in the local climate and many building parameters, such as window size, zone height, and features of materials. For this paper, a sensitivity analysis was performed to determine the most significant parameters for buildings in hot-humid climates by considering the design of an existing apartment building in Izmir, Turkey. The Monte Carlo method is selected for sensitivity and uncertainty analyses with the Latin hypercube sampling (LHC) technique. The results show that the sensitivity of parameters in apartment buildings varies based on the purpose of the energy loads and locations in the building, such as the ground, intermediate, and top floors. In addition, the total window area, the heat transfer coefficient (U) and the solar heat gain coefficient (SHGC) of the glazing based on the orientation have the most considerable influence on the energy performance of apartment buildings in hot-humid climates.

Yusuf Y?ld?z; Zeynep Durmu? Arsan

2011-01-01T23:59:59.000Z

34

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect (OSTI)

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

35

Thermally Activated Cooling: A Regional Approach for EstimatingBuilding Adoption  

SciTech Connect (OSTI)

This paper examines the economic potential for thermally-activated cooling (TAC) technologies as a component of distributed energy resource (DER) systems in California. A geographic information system (GIS) is used to assess the regional variation of TAC potential and to visualize the geographic pattern of potential adoption. The economic potential and feasibility of DER systems in general, and especially TAC, is highly dependent on regional factors such as retail electricity rates, building cooling loads, and building heating loads. Each of these factors varies with location, and their geographic overlap at different sites is an important determinant in a market assessment of DER and TAC. This analysis uses system payback period as the metric to show the regional variation of TAC potential in California office buildings. The DER system payback with and without TAC is calculated for different regions in California using localized values of retail electricity rates and the weather-dependent variation in building cooling and heating loads. This GIS-based method has numerous applications in building efficiency studies where geographically dependent variables, such as space cooling and heating energy use, play an important role.

Edwards, Jennifer L.; Marnay, Chris

2005-06-01T23:59:59.000Z

36

Total analysis of cooling effects of cross-ventilation affected by microclimate around a building  

Science Journals Connector (OSTI)

This study aims to develop a simulation system for evaluating the passive cooling effects, such as cross-ventilation, solar shading by trees, etc. Since the passive cooling effects are strongly affected by the spatial distributions of airflow, air temperature and radiative heat transports around a building, the microclimate around a building should be accurately predicted for this type of simulations. In this study, convective and radiative heat transports around buildings are analyzed by CFD (computational fluid dynamics) and radiation computations. Furthermore, the heat load calculation with the program TRNSYS was carried out, using the values of the cross-ventilation rates predicted by CFD computation and incoming solar radiation onto the building walls under the shade of trees obtained by the radiation computation as boundary conditions. Indoor velocity and indoor air temperature obtained by the simulation system developed here showed generally good agreement with measured data.

Akashi Mochida; Hiroshi Yoshino; Satoshi Miyauchi; Teruaki Mitamura

2006-01-01T23:59:59.000Z

37

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings  

E-Print Network [OSTI]

UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

Hayden, Nancy J.

38

Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load  

Science Journals Connector (OSTI)

Abstract The residential sector is responsible for approximately a quarter of energy consumption in Europe. This consumption, together with that of other buildings, mainly from the tertiary sector, makes up 40% of total energy consumption and 36% of CO2 emissions. Artificial lighting makes up 14% of electrical consumption in the European Union and 19% worldwide. Through the use of well-designed natural lighting, controlled by technologies or systems which guarantee accessibility from all areas inside buildings, energy consumption for lighting and air conditioning can be kept to a minimum. The authors of this article carried out a state of the art on the technologies or control systems of natural light in buildings, concentrating on those control methods which not only protect the occupants from direct solar glare but also maximize natural light penetration in buildings based on the occupants? preferences, whilst allowing for a reduction in electrical consumption for lighting and cooling. All of the control and/or natural light guidance systems and/or strategies guarantee the penetration of daylight into the building, thus reducing the electrical energy consumption for lighting and cooling. At the same time they improve the thermal and visual comfort of the users of the buildings. However various studies have also brought to light certain disadvantages to these systems.

E.J. Gago; T. Muneer; M. Knez; H. Kster

2015-01-01T23:59:59.000Z

39

Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia  

Science Journals Connector (OSTI)

Institutional buildings contain different types of functional spaces which require different types of heating, ventilating and air conditioning (HVAC) systems. In addition, institutional buildings should be designed to maintain an optimal indoor comfort condition with minimal energy consumption and minimal negative environmental impact. Recently there has been a significant interest in implementing desiccant cooling technologies within institutional buildings. Solar desiccant cooling systems are reliable in performance, environmentally friendly and capable of improving indoor air quality at a lower cost. In this study, a solar desiccant cooling system for an institutional building in subtropical Queensland (Australia) is assessed using TRNSYS 16 software. This system has been designed and installed at the Rockhampton campus of Central Queensland University. The system's technical performance, economic analysis, energy savings, and avoided gas emission are quantified in reference to a conventional HVAC system under the influence of Rockhampton's typical meteorological year. The technical and economic parameters that are used to assess the system's viability are: coefficient of performance (COP), solar fraction, life cycle analysis, payback period, present worth factor and the avoided gas emission. Results showed that, the installed cooling system at Central Queensland University which consists of 10m2 of solar collectors and a 0.400m3 of hot water storage tank, achieved a 0.7 COP and 22% of solar fraction during the cooling season. These values can be boosted to 1.2 COP and 69% respectively if 20m2 of evacuated tube collector's area and 1.5m3 of solar hot water storage volume are installed.

Ali M. Baniyounes; Gang Liu; M.G. Rasul; M.M.K. Khan

2012-01-01T23:59:59.000Z

40

Integrated Modeling of Building Energy Requirements IncorporatingSolar Assisted Cooling  

SciTech Connect (OSTI)

This paper expands on prior Berkeley Lab work on integrated simulation of building energy systems by the addition of active solar thermal collecting devices, technology options not previously considered (Siddiqui et al 2005). Collectors can be used as an alternative or additional source of hot water to heat recovery from reciprocating engines or microturbines. An example study is presented that evaluates the operation of solar assisted cooling at a large mail sorting facility in southern California with negligible heat loads and year-round cooling loads. Under current conditions solar thermal energy collection proves an unattractive option, but is a viable carbon emission control strategy.

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

What`s new in building energy research - desiccant cooling program  

SciTech Connect (OSTI)

Desiccant cooling systems are energy efficient, cost effective, and environmentally safe. They are used as stand-alone systems or with conventional air-conditioning to improve the indoor air quality of all types of buildings. In these systems, a desiccant removes moisture from the air, which releases heat and increases the air temperature. The dry air is cooled using either evaporative cooling or the cooling coils of a conventional air conditioner. The absorbed moisture in the desiccant is then removed (the desiccant is regenerated, or brought back to its original dry state) using thermal energy supplied by natural gas, electricity, waste heat, or the sun. Commercially available desiccants include silica gel, activated alumina, natural and synthetic zeolites, lithium chloride, and synthetic polymers. Currently, desiccant cooling and dehumidification are being used successfully in industrial and some commercial applications. The Office of Building Technologies in the U.S. Department of Energy (DOE) is working with industry to broaden the market for desiccant cooling so its full energy savings and indoor air quality improvement potential can be realized. The main goals of the Desiccant Cooling Program are to (1) Reduce carbon dioxide emissions by 5 million tons (4.5 million metric tons) annually by 2005 and 18 million tons (16.3 million metric tons) annually by 2010. (2) Reduce energy consumption by 0.1 quad (105.5 petajoules) annually by 2005 and 0.3 quad (316.5 petajoules) annually by 2010. (3) Capture 5% of the air-conditioning market by 2005 and 15% by 2010.

NONE

1996-02-01T23:59:59.000Z

42

Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants  

Science Journals Connector (OSTI)

Cool roofsroofs that stay cool in the sun by minimizing solar absorption and maximizing thermal emissionlessen the flow of heat from the roof into the building, reducing the need for space cooling energy in con...

Ronnen Levinson; Hashem Akbari

2010-03-01T23:59:59.000Z

43

Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency  

Science Journals Connector (OSTI)

Abstract Two single-layer, waterborne cool white coatings for building envelopes were recently developed for use in improving building energy efficiency. After the coatings were manufactured, their optical properties over the solar spectrum and their indoor temperature reduction effect were systematically investigated using appropriate tools, and the advantages/disadvantages of single layer cool white coatings over multilayer ones were discussed in detail. The preparation process enables these two coatings to integrate multiple cooling principles and thereby exhibit high solar heat reflectance and good indoor temperature reduction. The predicted industrial limit of solar heat reflectance for practical reflective cool white coatings is 0.91. Use of cool white coatings significantly reduces radiant heat flux. The temperature reduction effects evaluated by a self-developed device cannot describe adequately the indoor cooling performance of cool coatings.

Zhongnan Song; Weidong Zhang; Yunxing Shi; Jianrong Song; Jian Qu; Jie Qin; Tao Zhang; Yanwen Li; Hongqiang Zhang; Rongpu Zhang

2013-01-01T23:59:59.000Z

44

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

3 3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s): Source(s): 1) PTHP = Packaged Terminal Heat Pump, WLHP = Water Loop Heat Pump. 2) PTAC = Packaged Terminal Air Conditioner BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume 1: Chillers, Refrigerant Compressors, and Heating Systems, Apr. 2001, Figure 5-5, p. 5-14 for cooling and Figure 5-10, p. 5-18 for heating

45

Heating and cooling of municipal buildings with waste heat from ground water  

SciTech Connect (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

46

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building  

E-Print Network [OSTI]

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

Zhu, N.

2014-01-01T23:59:59.000Z

47

Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and Latent Fractions From Whole-Building Monitored Data: Methodology and Advantages  

E-Print Network [OSTI]

Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and latent Fractions From Whole-Building Monitored Data: Methodology and Advantages S. Katipamula, Ph.D., T.A. Reddy, Ph.D. and D.E. Claridge, P.E., Ph.D. Energy Systems...) belter understanding of the sensible and latent fractions in the total cooling energy use of a building, and (ii) better regression models for energy analysis. Such a method is presented in this paper. The methodology to disaggregate sensible...

Katipamula, S.; Reddy, T. A.; Claridge, D. E.

48

Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building  

SciTech Connect (OSTI)

The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2006-08-01T23:59:59.000Z

49

Peak demand reduction from pre-cooling with zone temperature reset in an office building  

SciTech Connect (OSTI)

The objective of this study was to demonstrate the potential for reducing peak-period electrical demand in moderate-weight commercial buildings by modifying the control of the HVAC system. An 80,000 ft{sup 2} office building with a medium-weight building structure and high window-to-wall ratio was used for a case study in which zone temperature set-points were adjusted prior to and during occupancy. HVAC performance data and zone temperatures were recorded using the building control system. Additional operative temperature sensors for selected zones and power meters for the chillers and the AHU fans were installed for the study. An energy performance baseline was constructed from data collected during normal operation. Two strategies for demand shifting using the building thermal mass were then programmed in the control system and implemented progressively over a period of one month. It was found that a simple demand limiting strategy performed well in this building. This strategy involved maintaining zone temperatures at the lower end of the comfort region during the occupied period up until 2 pm. Starting at 2 pm, the zone temperatures were allowed to float to the high end of the comfort region. With this strategy, the chiller power was reduced by 80-100% (1-2.3 W/ft{sup 2}) during normal peak hours from 2-5 pm, without causing any thermal comfort complaints. The effects on the demand from 2-5 pm of the inclusion of pre-cooling prior to occupancy are unclear.

Xu, Peng; Haves, Philip; Piette, Mary Ann; Braun, James

2004-08-01T23:59:59.000Z

50

Energy saving technique for cooling dominated academic building: Techno-economic analysis of its application  

Science Journals Connector (OSTI)

Abstract Adaptive cooling technique has been proposed previously, as an energy efficient strategy for a centralized HVAC system in a tropical environment. It served single or multi zone buildings by considering both the occupancy pattern (occupied and unoccupied periods) and the local weather conditions. This technique demonstrated considerable annual energy saving potential, however, the technical consequence and economic evaluation for its application have not been provided. This paper aims to analyze the technical and economical feasibility of the proposed technique for an academic building in Universiti Teknologi PETRONAS. It showed that a dual-duct dual-fan system was required to maximize technical feasibility of the proposed technique due to huge cooling load gap, during occupied and unoccupied periods. At the end, an economic evaluation by using net present worth (NPW) method and 3 financing scenarios were performed by considering the dual-duct dual-fan system. With an assumption of 10years service time, NPW value of the proposed technique was RM176,404 and hence, it became evident that the proposed adaptive comfort technique was economically feasible.

Syed Ihtsham ul Haq Gilani; Mohd Shiraz Aris; Petrus Tri Bhaskoro

2014-01-01T23:59:59.000Z

51

Numerical simulation of airflow in a solar chimney for cooling buildings in the city of Yazd  

Science Journals Connector (OSTI)

This paper investigates numerically a two-dimensional turbulent flow in a solar chimney due to free convectionheat transfer. For evaluation of the fluid flow and heat transfer in the system the basic equations including conservation of mass and momentum in the x y directions and energy in the Cartesian coordinate are converted to the algebraic form using the finite volume method. This simulation (use the commercial CFD code) provides the profile of temperature velocity and mass flow rate variations in the solar chimney in different conditions. These results can be used to evaluate the effective parameters and optimize the performance of the system for natural evaporative cooling and ventilating the buildings. Based on climate conditions in Yazd the optimum dimension of the width of the chimney is 0.30.4?m inlet height is 0.3?m and the flow rate created in the system and at the outlet is at 0.18 m3/s. The mean cooling rate resulted from the solar chimney is about 800?W/m2. Considering the long hot and sunny days of summer (about 12?h in Yazd) the use of this system in warm and dry region is recommended. We can save a considerable amount of energy sources such as natural gas or oil and lower CO2 emissions.

Vali Kalantar

2012-01-01T23:59:59.000Z

52

Peak Demand Reduction from Pre-Cooling with Zone Temperature Reset in an Office Building  

E-Print Network [OSTI]

Figure 9 Chiller Power in Pre-Cooling Tests Chiller powerFigure 10 Supply Fan Power in Pre- Cooling Tests response ofthe extended pre-cooling tests, the power increased at night

Xu, Peng

2010-01-01T23:59:59.000Z

53

Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center  

E-Print Network [OSTI]

and Nonresidential Buildings, 1987, 1988, 1992, 1995, 1998,2006. The Application of Building Energy Simulation andTwo High-rise Commercial Buildings in Shanghai, Proceedings

Yin, Rongxin

2010-01-01T23:59:59.000Z

54

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center  

E-Print Network [OSTI]

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis outlines the results from energy models of several multifamily building configurations to improve airflow component of multifamily building design due to its effects on occupant health and comfort. Though

California at Davis, University of

55

Roof aperture system for selective collection and control of solar energy for building heating, cooling and daylighting  

DOE Patents [OSTI]

The amount of building heating, cooling and daylighting is controlled by at least one pair of solar energy passing panels, with each panel of the pair of panels being exposed to a separate direction of sun incidence. A shutter-shade combination is associated with each pair of panels and the shutter is connected to the shade so that rectilinear movement of the shutter causes pivotal movement of the shade.

Sanders, William J. (Kansas City, KS); Snyder, Marvin K. (Overland Park, KS); Harter, James W. (Independence, MO)

1983-01-01T23:59:59.000Z

56

Assessment of Energy Use and Comfort in Buildings Utilizing Mixed-Mode Controls with Radiant Cooling  

E-Print Network [OSTI]

building occupants. An exceedance-based goal leaves room for comfort achieved in part through energy neutral

Borgeson, Samuel Dalton

2010-01-01T23:59:59.000Z

57

Recommended requirements to code officials for solar heating, cooling, and hot water systems. Model document for code officials on solar heating and cooling of buildings  

SciTech Connect (OSTI)

These recommended requirements include provisions for electrical, building, mechanical, and plumbing installations for active and passive solar energy systems used for space or process heating and cooling, and domestic water heating. The provisions in these recommended requirements are intended to be used in conjunction with the existing building codes in each jurisdiction. Where a solar relevant provision is adequately covered in an existing model code, the section is referenced in the Appendix. Where a provision has been drafted because there is no counterpart in the existing model code, it is found in the body of these recommended requirements. Commentaries are included in the text explaining the coverage and intent of present model code requirements and suggesting alternatives that may, at the discretion of the building official, be considered as providing reasonable protection to the public health and safety. Also included is an Appendix which is divided into a model code cross reference section and a reference standards section. The model code cross references are a compilation of the sections in the text and their equivalent requirements in the applicable model codes. (MHR)

None

1980-06-01T23:59:59.000Z

58

Computer Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building  

E-Print Network [OSTI]

, the placement of the wind tower opening and air inlets into the building should be considered. Finally, the model should include energy storage effects in the thermal mass of the building. Perhaps the best way to incorporate all of these issues into a..., the placement of the wind tower opening and air inlets into the building should be considered. Finally, the model should include energy storage effects in the thermal mass of the building. Perhaps the best way to incorporate all of these issues into a...

Seryak, J.; Kissock, J. K.

2002-01-01T23:59:59.000Z

59

Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States  

E-Print Network [OSTI]

of the change in outdoor conditions [3, 4]. In 2010, building energy consumption accounted for 41% of the total activities in buildings. One area directly affected by climate change is the energy consumption for heating on future energy uses. There would be a net increase in source energy consumption by the 2080s for climate

Chen, Qingyan "Yan"

60

Natural Cooling Retrofit  

E-Print Network [OSTI]

of the most important design considerations for any method of Natural Cool ing is the chil led water temperature range selected for use during Natural Cool ing. Figure VI shows that for a hypo thetical Chicago plant, the hours of operation for a Natural..." system on the Natural Cool ing cycle. As the pressures and flow rates of the condenser and chil led water systems are seldom the same, the designer must pay careful attention to the cross over system design to ensure harmonious operations on both...

Fenster, L. C.; Grantier, A. J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

62

Categories of indoor environmental quality and building energy demand for heating and cooling  

Science Journals Connector (OSTI)

Maintaining suitable indoor climate conditions is a need for the occupants well being, while requiring very strictly thermal comfort conditions and very high levels of indoor air quality in buildings represents ...

Stefano Paolo Corgnati; Enrico Fabrizio; Daniela Raimondo

2011-06-01T23:59:59.000Z

63

REVIEW OF GEOTHERMAL HEATING AND COOLING OF BUILDINGS C. A. Coles  

E-Print Network [OSTI]

with wind and solar energy options will help address the problem of climate change and compensate and expected technological improvements, it is thought that geothermal energy will be able to "contribute harnessing of low temperature, renewable geothermal energy for hot water heating and heating and cooling

Coles, Cynthia

64

Viability of exterior shading devices for high-rise residential buildings: Case study for cooling energy saving and economic feasibility analysis  

Science Journals Connector (OSTI)

Abstract Proper use of building shading devices can only improve the thermal comfort in indoor environment, but also reduce cooling energy consumption effectively. Researches on this topic have been mostly conducted for office buildings, but were limited for exterior shading devices of high-rise buildings, where cooling is a major energy consumer. This paper presents an integrated approach for exterior shading design analysis about energy performance and economic feasibility in a high-rise residential building (Seoul, Korea) by both numerical simulations and field mock-up test for possibility of installing. The sun-shading/daylighting performance analysis of the 48 exterior shading devices was measured with 4.0mנ3.2m window module size during the period of MaySeptember. Furthermore, quantitative analysis of the cooling energy saving potential of solar radiation controls was conducted with DOE-2.1E simulation program. The cooling energy saving potential was about 20%, while the reducing of solar heat gain by the two exterior shading devices (the horizontal overhang and the vertical panel) would lead to a decrease of the cooling energy demand 19.7% and 17.3%, respectively. Cost benefit and economic feasibility was also analyzed, in consideration of the OPEX and CAPEX, depending on the shading type. The significance of this study lies in providing basic information for rational exterior shading planning, when designing high-rise residential buildings.

Jinkyun Cho; Changwoo Yoo; Yundeok Kim

2014-01-01T23:59:59.000Z

65

New and Existing Buildings Heating and Cooling Opportunities: Dedicated Heat Recovery Chiller  

Broader source: Energy.gov (indexed) [DOE]

Langfitt Langfitt U S Department of State Overseas Buildings Operations Mechanical Engineering Division *Engineers are working Harder AND Smarter *New Energy Economy *Heating Is Where The Opportunity Is  39% of total US energy goes into non-residential buildings.  Gas for heating is about 60% of energy used in a building  Gas for heating is at least 25% of total energy used in the US. Heat Generation System Heat Disposal System What's Wrong With This Picture? Keep the heat IN the system Don't run main plant equipment until necessary ! Less rejected heat Less gas consumption High Temp >160F with conventional boilers Hydronic heating... condensing style modular boilers. The entire heating system... designed for low temperature water, recommend maximum temperature of 135ºF.

66

Impact of Different Glazing Systems on Cooling Load of a Detached Residential Building at Bhubaneswar, India  

E-Print Network [OSTI]

assuming north?south and east?west facings of the building. For each orientation, different types of glazing (Table 4) and different glazing areas are considered. The first case(the base case) assumes a single clear glazing with a window-to-wall ratio.... Floor plan of the east-west oriented residential building taken for study (not to scale) Table 1. The zones basic characteristics Zone Area (m2) Volume (m3) Occupancy (people/m2) Venti- lation (l/s) HVAC system Bed room1 15.12 52...

Sahoo, P. K.; Sahoo, R.

2010-01-01T23:59:59.000Z

67

Development of Building Automation and Control Systems  

E-Print Network [OSTI]

A design flow for building automation and control systems,Development of Building Automation and Control Systems Yangdesign of the build- ing automation system (including the

Yang, Yang; Zhu, Qi; Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

68

Hydraulic fractur ing--also called hy  

E-Print Network [OSTI]

Hydraulic fractur ing--also called hy drofracking or frack ing--is a process where large volumes) is an aquatic invasive spe cies listed on the USDA's federal noxious weeds list (http:// www.aphis.usda.gov/plant_health

Goodman, Robert M.

69

Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Di Liu; Li-Qun Liu; Xiao-Chuan Pan

2014-01-01T23:59:59.000Z

70

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book [EERE]

5 5 Commercial Equipment Efficiencies Equipment Type Chiller Screw COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.02 / 4.45 Scroll COP 2.80 / 3.06 2.96 / 4.40 N.A. Reciprocating COP(full-load / IPLV) 2.80 / 3.05 2.80 / 3.05 3.52 / 4.40 Centrifugal COP(full-load / IPLV) 5.0 / 5.2 6.1 / 6.4 7.3 / 9.0 Gas-Fired Absorption COP 1.0 1.1 N.A. Gas-Fired Engine Driven COP 1.5 1.8 N.A. Rooftop A/C EER 10.1 11.2 13.9 Rooftop Heat Pump EER (cooling) 9.8 11.0 12.0 COP (heating) 3.2 3.3 3.4 Boilers Gas-Fired Combustion Efficiency 77 80 98 Oil-Fired Thermal Efficiency 80 84 98 Electric Thermal Efficiency 98 98 98 Furnace AFUE 77 80 82 Water Heater Gas-Fired Thermal Efficiency 78 80 96 Oil-Fired Thermal Efficiency 79 80 85 Electric Resistance Thermal Efficiency 98 98 98 Gas-Fired Instantaneous Thermal Efficiency 77 84 89 Source(s): Parameter Efficiency

71

FIVE-YEAR PROGRESS REPORT ON A SUCCESSFUL SOLAR/GEOTHERMAL HEATING AND COOLING SYSTEM FOR A COMMERCIAL OFFICE BUILDING IN BURLINGTON, MASSACHUSETTS  

Science Journals Connector (OSTI)

ABSTRACT The purpose of this paper is to present: 1) a description of a solar/geothermal heating and cooling system that has been in successful operation in a commercial office building for over five years; and 2) to present technical and cost operational results that indicate a total annual energy consumption of approximately 25,000 Btu/sq ft/ year. The paper includes a general description of the three-story multi-tenant office building located in Burlington, Massachusetts, its energy efficient design features, its active solar space heating and hot water system, its solar/geothermal heat pump back-up heating system and its geothermal cooling system. A description of the solar/geothermal system is presented including the liquid flat plate collectors, storage tanks, heat exchangers, heat pump, heat transfer fluid, control system, operational modes and the energy monitoring system. KEYWORDS Solar space heating; geothermal heating; geothermal cooling; solar domestic hot water; energy monitoring and control.

John Zvara; P.E.; Ronald J. Adams

1986-01-01T23:59:59.000Z

72

Ing Arvid Nesheim | Open Energy Information  

Open Energy Info (EERE)

search Name: Ing Arvid Nesheim Address: Hoymyrmarka 123A Place: Vollen Zip: 1391 Region: Norway Sector: Marine and Hydrokinetic Phone Number: 47 951 08 439 Website: http:...

73

Indoor air environment and night cooling energy efficiency of a southern German passive public school building operated by the heat recovery air conditioning unit  

Science Journals Connector (OSTI)

Abstract The recently built school building has adopted a novel heat recovery air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification have been numerically investigated concerning the effects of the heat flow flux of passive cooling within the ceiling concrete in the classroom due to night ventilation in summer which could result in cooling energy storage. Numerical results indicate that the promotion of passive cooling can simultaneously decrease the volume averaged indoor temperatures and the non-uniformity of indoor thermal distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air-cooling unit decreases with the increasing temperatures of exhaust air and the heat flux value for passive cooling within the classroom ceiling concrete. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented.

Yang Wang; Fu-Yun Zhao; Jens Kuckelkorn; Xiao-Hong Li; Han-Qing Wang

2014-01-01T23:59:59.000Z

74

Exergy efficiency analysis in buildings climatized with LiClH2O solar cooling systems that use swimming pools as heat sinks  

Science Journals Connector (OSTI)

Solar cooling is emerging as one of the most interesting applications in the harnessing of solar energy for alternative uses. Current devices can effectively control the climates of small buildings while addressing the issues associated with the excessive thermal energy captured during the summer months. This article presents an exergy analysis of buildings with solar thermal systems used for Domestic Hot Water (DHW) production and heating and cooling support. The cooling system analyzed is a LiClH2O thermally driven heat pump with integral energy storage that uses outdoor swimming pools as heat sink. All subsystems were integrated into the model and considered as a single energy system, and data from installations in three different locations were used. The influences of the heating and cooling demand ratios and the dead state and house temperatures were analyzed. Further, the use of dissipated energy was analyzed, demonstrating that the proposed method facilitates the realistic study of these systems and provides useful analytical tools for improving the overall exergy performance. The energy delivered for heating, cooling and DHW production strongly influences global performance, suggesting that the appropriate sizing of each system is a priority.

D. Borge; A. Colmenar; M. Castro; S. Martn; E. Sancristobal

2011-01-01T23:59:59.000Z

75

Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California  

Science Journals Connector (OSTI)

This paper presents a systematic energetic, economical, and environmental assessment on a solar cooling system for a medium-sized office building in Los Angeles, California by means of system modeling. The studied solar cooling system primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect LiBrH2O absorption chiller, and a gas-fired auxiliary heater. System performance optimization and sensitivity analysis were conducted by varying two major parameters (i.e. storage tank volume and collector area). The results suggest that a trade-off exists between economic performance indicated by the equivalent uniform annual cost (EUAC) and the energetic/environmental performance indicated by the solar fraction and CO2 reduction percentage, respectively. The cost of carbon footprint reduction was defined and served as an indicator for the overall system performance. Based on this indicator, the optimal system design could be found for a solar cooling system. The approach adapted in this study can be applied to other buildings located in different climate zones to reveal the cost and benefits of solar cooling technologies and facilitate decision-making.

Yin Hang; Ming Qu; Fu Zhao

2011-01-01T23:59:59.000Z

76

Curriculum Vitae Prof. Ing. Vincenzo Tucci  

E-Print Network [OSTI]

Curriculum Vitae Prof. Ing. Vincenzo Tucci;Vincenzo Tucci Curriculum Vitae Pagina 2 di 15 Vincenzo Tucci Professore Ordinario di Elettrotecnica;Vincenzo Tucci Curriculum Vitae Pagina 3 di 15 II. ATTIVIT? SCIENTIFICA Il prof. Tucci è responsabile del

Costagliola, Gennaro

77

Geothermal Heat Pumps- Cooling Mode  

Broader source: Energy.gov [DOE]

In summer, the fluid removes heat from the building and transfers it to the relatively cooler ground in order to cool the building.

78

Investigation of Cooling and Dehumidification Energy Use and Indoor Thermal Conditions in Polk County Schools Permanent Replacement Classroom Buildings  

E-Print Network [OSTI]

of this research was to compare the energy consumption and interior conditions of the autoclaved aerated concrete (AAC) construction with an unvented roof assembly to that of the conventional metal framing and concrete panel buildings. Four buildings, 2 metal...

Moyer, N. A.; Cummings, J. B.; Chasar, D.

2002-01-01T23:59:59.000Z

79

Building America Webinar: High Performance Space Conditioning Systems, Part I: Heating and Cooling with Mini-Splits in the Northeast  

Broader source: Energy.gov [DOE]

This presentation was delivered at the U.S. Department of Energy Building America webinar, High Performance Space Conditioning Systems, Part I, conducted on October 23, 2014, by Kohta Ueno of Building Science Corporation.

80

Evaluation on Cooling Energy Load with Varied Envelope Design for High-Rise Residential Buildings in Malaysia  

E-Print Network [OSTI]

With the development of the economy in the recent years, Malaysia is maintaining a high economic growth and therefore, its energy consumption increases dramatically. Residential buildings are characterized by being envelope-load dominated buildings...

Al-Tamimi, N.; Fadzil, S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Eco Design and the Optimization of Passive Cooling Ventilation for Energy Saving in the Buildings: A Framework for Prediction of Wind Environment and Natural Ventilation in Different Neighborhood Patterns  

Science Journals Connector (OSTI)

The idea of utilizing natural ventilation for passive cooling and hence reducing the energy for air conditioning systems of buildings has increasingly attracted the attention of researchers. In urban areas how...

Mohammad Reza Masnavi; Hasan-Ali Laghai

2012-01-01T23:59:59.000Z

82

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

83

Building Technologies Office: Buildings to Grid Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

84

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

85

Design and modeling of 110MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

86

Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system  

Science Journals Connector (OSTI)

In this study, passive cooling of a room using a solar chimney and water spraying system in the room ... a hot and arid city with very high solar radiation). The performance of this system ... some parameters suc...

Ramin Rabani; Ahmadreza K. Faghih; Mehrdad Rabani; Mehran Rabani

2014-11-01T23:59:59.000Z

87

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

SciTech Connect (OSTI)

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

88

Evolution of cool-roof standards in the United States  

E-Print Network [OSTI]

2000 Summer Study on Energy Efficiency in Buildings 1:1-11 (to energy efficiency standards for buildings. Online ataddress cool roofs in building energy-efficiency standards

Akbari, Hashem

2008-01-01T23:59:59.000Z

89

Online map of buildings using radiant technologies  

E-Print Network [OSTI]

of radiant slab cooling using building simulation and fieldmeasurements. Energy and Buildings, 41, 3, 320-330.2013) Net-Zero Energy Buildings - Worldwide. Available at:

Karmann, Caroline; Schiavon, Stefano; Bauman, Fred

2014-01-01T23:59:59.000Z

90

New York City - Green Building Requirements for Municipal Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirements for Municipal Buildings Green Building Requirements for Municipal Buildings New York City - Green Building Requirements for Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Solar Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State New York Program Type Energy Standards for Public Buildings Provider Mayor's Office of Operations In 2005 New York City passed a law (Local Law No. 86) making a variety of green building and energy efficiency requirements for municipal buildings and other projects funded with money from the city treasury. The building

91

M. Sri, J. Remund, T. Cebecauer, D. Dumortier, L. Wald, T. Huld, P. Blanc, Proceeding of the EUROSUN 2008, International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 10 October 2008.  

E-Print Network [OSTI]

of the EUROSUN 2008, 1st International Conference on Solar Heating, Cooling and Buildings, Lisbon, Portugal, 7 ­ 10 October 2008. First Steps in the Cross-Comparison of Solar Resource Spatial Products in Europe M in complex climate conditions of mountains, along some coastal zones and in areas where solar radiation

Boyer, Edmond

92

Hydronic Radiant Cooling Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Hydronic Radiant Cooling Systems Cooling nonresidential buildings in the U.S. contributes significantly to electrical power consumption and peak power demand. Part of the electrical energy used to cool buildings is drawn by fans transporting cool air through the ducts. The typical thermal cooling peak load component for California office buildings can be divided as follows: 31% for lighting, 13% for people, 14% for air transport, and 6% for equipment (in the graph below, these account for 62.5% of the electrical peak load, labeled "chiller"). Approximately 37% of the electrical peak power is required for air transport, and the remainder is necessary to operate the compressor. DOE-2 simulations for different California climates using the California

93

Cold Air Distribution in Office Buildings: Technology Assessment for California  

E-Print Network [OSTI]

available. The cooling plant is an ice harvester designedused for ice making or for building cooling. During iceyears. The cooling plant is a Mueller ice harvester system

Bauman, F.S.

2008-01-01T23:59:59.000Z

94

Cool Roof Colored Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Roof Colored Materials Cool Roof Colored Materials Speaker(s): Hashem Akbari Date: May 29, 2003 - 12:00pm Location: Bldg. 90 Raising roof reflectivity from an existing 10-20% to about 60% can reduce cooling-energy use in buildings in excess of 20%. Cool roofs also result in a lower ambient temperature that further decreases the need for air conditioning and retards smog formation. Reflective roofing products currently available in the market are typically used for low-sloped roofs. For the residential buildings with steep-sloped roofs, non-white (colored) cool roofing products are generally not available and most consumers prefer colors other than white. In this collaborative project LBNL and ORNL are working with the roofing industry to develop and produce reflective, colored roofing products and make yhrm a market reality within three to

95

District cooling gets hot  

SciTech Connect (OSTI)

Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

Seeley, R.S.

1996-07-01T23:59:59.000Z

96

STOCHASTIC COOLING  

E-Print Network [OSTI]

on Stochastic Cooling i n ICE, IEEE Transaction's in Nucl. SICE studies firmly establishing the stochastic cooling

Bisognano, J.

2010-01-01T23:59:59.000Z

97

EXCELLENTIA CoLumbIA ENgINEErINg66 echanical engineers think about the design, construction, material proper-  

E-Print Network [OSTI]

responsibility for understanding how engines work, how buildings can be more efficiently built, and howHEALTH EXCELLENTIA CoLumbIA ENgINEErINg66 M echanical engineers think about the design the environment affects bridge architecture. They also apply their knowledge to the workings of the human body

Hone, James

98

Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations  

E-Print Network [OSTI]

usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

2011-10-01T23:59:59.000Z

99

Effectiveness of External Window Attachments Based on Daylight Utilization and Cooling Load Reduction for Small Office Buildings in Hot Humid Climates  

E-Print Network [OSTI]

savings in the building. Computer simulations using an hourly energy calculation model were conducted to predict the building's total energy consumption using each strategy. The economics of each strategy were analyzed with lifecycle costing techniques...

Soebarto, V. I.; Degelman, L. O.

1994-01-01T23:59:59.000Z

100

After the 1950's: Looking Back at William Inge  

E-Print Network [OSTI]

that there is an Aaron Copeland quality to Inges plays a lyrical (45) sadness (with overtones of Moonglow?). Without fanfare or hyperbole, typical of his style as a man and playwright (he dressed and spoke plainly), William Inge had told me something sad, wise... at the center of his plays.] And of equal, if not greater importance, Rubin has no place to go. He is a harness salesman (229) in the age of the automobile. Raised on a ranch, he is a son of the West. A son of pioneers, he is a stranger in the very land...

Wolf, Howard R.

2010-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

102

New Cool Roof Coatings and Affordable Cool Color Asphalt  

Broader source: Energy.gov (indexed) [DOE]

New Cool Roof Coatings and New Cool Roof Coatings and Affordable Cool Color Asphalt Shingles Meng-Dawn Cheng Oak Ridge National Laboratory chengmd@ornl.gov; 865-241-5918 April 4, 2013 PM: Andre Desjarlais PI: Meng-Dawn Cheng, Ph.D. David Graham, Ph.D. Sue Carroll Steve Allman Dawn Klingeman Susan Pfiffner, Ph.D. (FY12) Karen Cheng (FY12) Partner: Joe Rokowski (Dow) Roof Testing Facility at ORNL Building Technologies Research and Integration Center 2 | Building Technologies Office eere.energy.gov * Building accounted for 41% of the US energy consumption in 2010 greater than either transportation (28%) or industry (31%).

103

NightCool: An Innovative Residential Nocturnal Radiation Cooling Concept  

E-Print Network [OSTI]

buildings roof to take advantage of long-wave radiation to the night sky has been long identified as a potentially productive means to reduce building space cooling. A typical roof at 75?F will radiate at about 55-60 W/m 2 to clear night sky... and about 25 W/m 2 to a cloudy sky. For a typical roof (250 square meters), this represents a cooling potential of 6,000 - 14,000 Watts or about 1.5 - 4.0 tons of cooling potential each summer night. However, various physical constraints (differential...

Parker, D. S.

2006-01-01T23:59:59.000Z

104

Cooling System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

105

Cooling System Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling System Basics Cooling System Basics Cooling System Basics August 16, 2013 - 1:08pm Addthis Cooling technologies used in homes and buildings include ventilation, evaporative cooling, air conditioning, absorption cooling, and radiant cooling. Learn more about how these technologies work. Ventilation Ventilation allows air to move into and out of homes and buildings either by natural or mechanical means. Evaporative Cooling In dry climates, evaporative cooling or "swamp cooling" provides an experience like air conditioning, but with much lower energy use. An evaporative cooler uses the outside air's heat to evaporate water inside the cooler. The heat is drawn out of the air and the cooled air is blown into the space by the cooler's fan. Air Conditioning Air conditioners, which employ the same operating principles and basic

106

A test section for evaluating cooling tower components  

E-Print Network [OSTI]

be- ing, used i'or the evaluation of various t;, . pss of cooling tower packing. The mater measuring and heating equipnent hsvs been used in ths testing of two small cmneroial cooling tcsrers. 37 C~WP18FR STATIC PREDStlRE -/g. g~g 1 fry v t t... be- ing, used i'or the evaluation of various t;, . pss of cooling tower packing. The mater measuring and heating equipnent hsvs been used in ths testing of two small cmneroial cooling tcsrers. 37 C~WP18FR STATIC PREDStlRE -/g. g~g 1 fry v t t...

Alter, Alan Brian

2012-06-07T23:59:59.000Z

107

Global Cool Cities Alliance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Global Cool Cities Alliance Global Cool Cities Alliance Global Cool Cities Alliance The Department of Energy (DOE) is currently supporting the Global Cool Cities Alliance (GCCA), a non-profit organization that works with cities, regions, and national governments to speed the worldwide installation of cool roofs, pavements, and other surfaces. GCCA is dedicated to advancing policies and actions that increase the solar reflectance of our buildings and pavements as a cost-effective way to promote cool buildings, cool cities, and to mitigate the effects of climate change through global cooling. The alliance was launched in June of 2011. Cool reflective surfaces are an important near-term strategy for improving city sustainability by delivering significant benefits such as increased building efficiency and comfort, improved urban health, and heat

108

cooling | OpenEI Community  

Open Energy Info (EERE)

cooling cooling Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

109

Evolution of cool-roof standards in the United States  

E-Print Network [OSTI]

Design (LEED) Green Building Rating System assigns one rating point for the use of a cool roof in its Sustainable

Akbari, Hashem

2008-01-01T23:59:59.000Z

110

Cooling, Heating, and Power for Industry: A Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

sector. chpindustrymarketassessment0803.pdf More Documents & Publications Integrated Energy Systems (IES) for Buildings: A Market Assessment, September 2002 Cooling, Heating,...

111

Maintenance building structural design description: 4 x 350 MW(t) Modular HTGR [High-Temperature Gas-Cooled Reactor] Plant  

SciTech Connect (OSTI)

The Maintenance Building is a grade-founded, two-story, steel-framed structure, located adjacent to the Turbine Building in the Energy Conversion Area. It has a reinforced concrete foundation and slab on grade, and insulated sheet metal exterior walls and roof decking.

NONE

1986-06-01T23:59:59.000Z

112

Stochastic Cooling  

SciTech Connect (OSTI)

Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

Blaskiewicz, M.

2011-01-01T23:59:59.000Z

113

STEM-ing the Tide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

STEM-ing the Tide STEM-ing the Tide STEM-ing the Tide September 29, 2010 - 4:29pm Addthis Ali Zaidi Special Assistant to the Secretary of Energy Yesterday, the MacArthur Foundation rolled out its latest class of "geniuses" - 23 Americans who stand out because of their creativity and enterprise. Each recipient of the honor (and the $500,000 prize) has made an extraordinary contribution. One of those recipients is Amir Abo-Shaeer, an engineer in the aerospace and telecommunications industries who decided 10 years ago to go back to high school - this time as a teacher. At his alma mater, Dos Pueblos High School (in Santa Barbara, California), Amir created "a school within a school" built around a hands-on curriculum that helps students learn by connecting the ideas of physics, engineering and mathematics through

114

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

Figure9?Annualelectricityconsumptioncomparisonofthetotalannualelectricityconsumption,BuildingsAandBmostly measure electricity consumption, cooling loads,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

115

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network [OSTI]

10.5 1 ) TBtu (primary energy consumption of 14.6 [ 12.4] 4.0) TBtu (primary energy consumption of 25.5 [ 12.2]Primary Energy Space Heating Space Cooling Figure 2: Higher space conditioning end-use energy consumption

Blum, Helcio

2010-01-01T23:59:59.000Z

116

Energy Efficiency and Green Building Standards for State Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings Energy Efficiency and Green Building Standards for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Wisconsin Program Type Energy Standards for Public Buildings Provider State of Wisconsin Department of Administration In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and annually review energy

117

High-Performance Building Requirements for State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » High-Performance Building Requirements for State Buildings High-Performance Building Requirements for State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State South Dakota Program Type Energy Standards for Public Buildings Provider Office of the State Engineer In March 2008, South Dakota enacted legislation mandating the use of high-performance building standards in new state construction and renovations. This policy requires that new and renovated state buildings

118

Energy Conservation in Public Buildings  

Broader source: Energy.gov [DOE]

The Florida Energy Conservation and Sustainable Buildings Act requires the use of energy-efficient equipment and design, and solar energy devices for heating and cooling state buildings where life...

119

Misleading advertising MISLEadING adVErTISING  

E-Print Network [OSTI]

03 Misleading advertising #12;MISLEadING adVErTISING Background The ASA may take the Consumer to the consumer by other means. 3.4 For marketing communications that quote prices for advertised products other trader on whose behalf the marketer is acting 3.4.3 the price of the advertised product, including

Wirosoetisno, Djoko

120

Bartholomew Heating and Cooling | Open Energy Information  

Open Energy Info (EERE)

Heating and Cooling Heating and Cooling Jump to: navigation, search Name Bartholomew Heating and Cooling Place Linwood, NJ Website http://bartholomewheatingandco References Bartholomew Heating and Cooling[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Bartholomew Heating and Cooling is a company located in Linwood, NJ. References ↑ "Bartholomew Heating and Cooling" Retrieved from "http://en.openei.org/w/index.php?title=Bartholomew_Heating_and_Cooling&oldid=381585" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cool Cities, Cool Planet (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.

Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen

2011-04-28T23:59:59.000Z

122

Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings. Final report, January 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

The technical and economic feasibility of using a direct contact liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while thare is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

Karaki, S.; Brothers, P.

1980-06-01T23:59:59.000Z

123

Direct contact liquid-liquid heat exchanger for solar-heated and -cooled buildings. Final report, January 1, 1979-May 30, 1980  

SciTech Connect (OSTI)

The procedure used was to obtain experimental performance data from a solar system using a DCLLHE for both heating and cooling functions, develop a simulation model for the system, validate the model using the data, apply the model in five different climatic regions of the country for a complete year, and estimate the life-cycle cost of the system for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger.

Karaki, S.; Brothers, P.

1980-06-01T23:59:59.000Z

124

Berkeley Lab's Cool Your School Program  

SciTech Connect (OSTI)

Cool Your School is a series of 6th-grade, classroom-based, science activities rooted in Berkeley Lab's cool-surface and cool materials research and aligned with California science content standards. The activities are designed to build knowledge, stimulate curiosity, and carry the conversation about human-induced climate change, and what can be done about it, into the community.

Ivan Berry

2012-07-30T23:59:59.000Z

125

Guidelines for Selecting Cool Roofs  

Broader source: Energy.gov (indexed) [DOE]

BUILDING TECHNOLOGIES PROGRAM BUILDING TECHNOLOGIES PROGRAM Guidelines for Selecting Cool Roofs July 2010 V. 1.2 Prepared by the Fraunhofer Center for Sustainable Energy Systems for the U.S. Department of Energy Building Technologies Program and Oak Ridge National Laboratory under contract DE-AC05-00OR22725. Additional technical support provided by Lawrence Berkeley National Laboratory and the Federal Energy Management Program. Authors: Bryan Urban and Kurt Roth, Ph.D. ii Table of Contents Introduction ..................................................................................................................................... 3 Why Use Cool Roofs .............................................................................................................. 3

126

Cool Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs Cool Roofs Cool Roofs July 26, 2013 - 10:36am Addthis White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk White painted roofs have been popular since ancient times in places like Greece. Similar technology can be easy to adapt to modern homes and other buildings. | Credit: ©iStockphoto/PhotoTalk If you live in a hot climate, a cool roof can: Save you money on air conditioning Make your home more comfortable in hot weather How does it work? By making your roof more reflective, you reduce heat gain into your home. Check out these resources for more information. A cool roof is one that has been designed to reflect more sunlight and

127

Office Buildings: Developer's Requirements- Consultant's Solutions  

E-Print Network [OSTI]

Ein Kooperationsvortrag von Office Buildings: Developer?s Requirements ? Consultant?s Solutions Dipl.-Ing. (TU) Jens Arndt Vivico Real Estate GmbH, Frankfurt a. M., Germany Dipl.-Ing. (TU) Peter Forster Ebert-Ingenieure Berlin GmbH 8. Kongress f...?r Geb?ude- und Betriebsoptimierung - ICEBO?08 October 20/21/22 2008 ESL-IC-08-10-35a Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 Seite 2 Dipl.-Ing (TU) Jens Arndt; Vivico...

Forster, P.; Arndt, J.

128

The effect of injection hole geometry on flat plate film cooling and heat transfer  

E-Print Network [OSTI]

to thermal ly protect a gas turb ine blade f r om the hot gases w i th in a gas turbine engine by inject ion of a coo l ing f lu id th rough discrete holes i n the surface of the blade. Tests were conducted on a flat p late us ing the f i lm cool ing... surface w i th coo l ing a ir c i rculated w i th in the hol low core of the turb ine b lade. External cool ing employs co ld a ir inject ion th rough holes on the outer surface of the turb ine blade produc ing a f i lm of a i r that protects...

Madsen, Eric Perry

2012-06-07T23:59:59.000Z

129

Fort Inge and the Texas frontier, 1849-1869  

E-Print Network [OSTI]

the Civil War. Personalities associated with the history of Fort Inge include frontier artist Captain Seth Eastman, Frederick Law Olmsted, Bigfoot Wallace, Lydia Spencer Lane, and army officers such as William J. Hardee, Edmund Kirby Smith, Eugene A. Carr..., Gordon Granger, Zenas R. Bliss, William "Wild Bill" Hazen, John L. Bullis, and Fitzhugh Lee. This case study examines a number of topical problems associated with the U. S. Army and the frontier. Was the Army s role as an economic multiplier and mar...

Smith, Thomas Tyree

2012-06-07T23:59:59.000Z

130

Building Technologies Office: Appliances Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appliances Research to Appliances Research to someone by E-mail Share Building Technologies Office: Appliances Research on Facebook Tweet about Building Technologies Office: Appliances Research on Twitter Bookmark Building Technologies Office: Appliances Research on Google Bookmark Building Technologies Office: Appliances Research on Delicious Rank Building Technologies Office: Appliances Research on Digg Find More places to share Building Technologies Office: Appliances Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub Building Energy Modeling

131

Global cooling updates: Reflective roofs and pavements  

Science Journals Connector (OSTI)

With increasing the solar reflectance of urban surfaces, the outflow of short-wave solar radiation increases, less solar heat energy is absorbed leading to lower surface temperatures and reduced outflow of thermal radiation into the atmosphere. This process of negative radiative forcing effectively counters global warming. Cool roofs also reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling winwinwin activity that can be undertaken immediately, outside of international negotiations to cap CO2 emissions. We review the status of cool roof and cool pavements technologies, policies, and programs in the U.S., Europe, and Asia. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

Hashem Akbari; H. Damon Matthews

2012-01-01T23:59:59.000Z

132

Energy Department Completes Cool Roof Installation on DC Headquarters  

Broader source: Energy.gov (indexed) [DOE]

Completes Cool Roof Installation on DC Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy Energy Department Completes Cool Roof Installation on DC Headquarters Building to Save Money by Saving Energy December 14, 2010 - 12:00am Addthis Washington - Secretary Steven Chu today announced the completion of a new cool roof installation on the Department of Energy's Headquarters West Building. There was no incremental cost to adding the cool roof as part of the roof replacement project and it will save taxpayers $2,000 every year in building energy costs. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency, reduce cooling costs and offset carbon emissions. The cool roof and increased insulation at the facility were

133

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

134

Improving Data Center Efficiency with Rack or Row Cooling Devices  

Broader source: Energy.gov (indexed) [DOE]

Challenging conventional Challenging conventional cooling systems Rack/row-mounted cooling devices can replace or supplement conventional cooling systems and result in energy savings. Conventional data center cool- ing is achieved with computer room air conditioners (CRACs) or computer room air handlers (CRAHs). These CRAC and CRAH units are typically installed in data centers on top of raised-floors that are used for cooling air distribution. Such under-floor air distribution is not required by the new rack/row-mounted devices. Consequently, the vagaries of under-floor airflow pathways for room conditioning are avoided. Importantly, close-coupled devices may be better

135

Electricity cost saving comparison due to tariff change and ice thermal storage (ITS) usage based on a hybrid centrifugal-ITS system for buildings: A university district cooling perspective  

Science Journals Connector (OSTI)

Abstract In this paper, the case study of a district cooling system of a university located in a South East Asia region (lat: 0129?; long: 11020?E) is presented. In general, the university has high peak ambient temperature of around 3235C coupled with high humidity of about 85% during afternoon period. The total electricity charge for the Universiti Malaysia Sarawak Campus is very high amounting to more than $314,911 per month. In this paper, a few district cooling schemes are investigated to provide what-if analysis and in order to minimize the overall electricity charges. Few scenarios designed for the application of centrifugal with and without ice-thermal storage (ITS) systems on the buildings were investigated. It was found that, due to the local tariff status, marginally saving can be achieved in the range of 0.083.13% if a new tariff is adopted; and a total of further saving of 1.262.43% if ITS is operated. This marginally saving is mainly due to the local tariff conditions and lower local temperature range (?T) which are less favorable as compared with those reported in the literature elsewhere.

Mohammad Omar Abdullah; Lim Pai Yii; Ervina Junaidi; Ghazali Tambi; Mohd Asrul Mustapha

2013-01-01T23:59:59.000Z

136

Heating and cooling system  

SciTech Connect (OSTI)

Heating and cooling of dwelling houses and other confined spaces is facilitated by a system in which thermal energy is transported between an air heating and cooling system in the dwelling and a water heat storage sink or source, preferably in the form of a swimming pool or swimming pool and spa combination. Special reversing valve circuitry and the use of solar collectors and liquid-to-liquid heat exchangers on the liquid side of the system , and special air valves and air modules on the air side of the system, enhance the system's efficiency and make it practical in the sense that systems employing the invention can utilize existing craft skills and building financing arrangements and building codes, and the like, without major modification.

Krumhansl, M.U.

1982-10-12T23:59:59.000Z

137

Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison  

E-Print Network [OSTI]

A strategy to optimize the low temperature cooling energy supply of a newly build office building is discussed against the background of a changing energy system. It is focused on, what production way - Direct Cooling, the Compression Refrigeration...

Uhrhan, S.; Gerber, A.

2012-01-01T23:59:59.000Z

138

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Massachusetts Program Type Building Energy Code Provider State Board of Building Regulations and Standards ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Massachusetts Board of Building Regulations and Standards has authority

139

Energy-Aware Meeting Scheduling Algorithms for Smart Buildings  

E-Print Network [OSTI]

The increasing worldwide concern over the energy con- sumption of commercial buildings calls for new approaches; Build- ing energy efficiency 1 Introduction The energy consumption of commercial buildings is of growingEnergy-Aware Meeting Scheduling Algorithms for Smart Buildings Abhinandan Majumdar Computer Systems

Albonesi, David H.

140

Buildings | OpenEI Community  

Open Energy Info (EERE)

Buildings Buildings Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Dc Living Walls Posted by: Dc 15 Nov 2013 - 13:26 Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more... Tags: ancient building system, architect, biomimicry, building technology, cooling, cu, daylight, design problem, energy use, engineer, fred andreas, geothermal, green building, heat transfer, heating, living walls, metabolic adjustment, net zero, pre-electricity, Renewable Energy, Solar, university of colorado, utility grid, Wind

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electron CoolingElectron Cooling Sergei Nagaitsev  

E-Print Network [OSTI]

Electron CoolingElectron Cooling Sergei Nagaitsev FNAL - AD April 28, 2005 #12;Electron Cooling methods must "get around the theorem" e.g. by pushing phase-space around. #12;Electron Cooling - Nagaitsev 3 TodayToday''s Menus Menu What is cooling? Types of beam cooling Electron cooling Conclusions #12

Fermilab

142

Kiowa County Commons Building  

Broader source: Energy.gov (indexed) [DOE]

South- and west-facing windows allow more South- and west-facing windows allow more natural light into the building and reduce electricity use * Extensive awnings and overhangs control the light and heat entering the building during the day to reduce cooling loads * Rooftop light monitors in the garden area provide controllable natural light from above to save on electricity consumption * Insulating concrete form block construction with an R-22 insulation value helps control the temperature of the building and maximize

143

Cool Roofs Are Ready to Save Energy, Cool Urban Heat Islands, and Help Slow Global Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

roofing is the fastest growing sector roofing is the fastest growing sector of the building industry, as building owners and facility managers realize the immediate and long-term benefits of roofs that stay cool in the sun. Studies exploring the energy efficiency, cost-effectiveness, and sustainability of cool roofs show that in warm or hot climates, substituting a cool roof for a conventional roof can: * Reduce by up to 15% the annual air-

144

Rain on the Roof-Evaporative Spray Roof Cooling  

E-Print Network [OSTI]

This paper describes evaporative spray roof cooling systems, their components, performance and applications in various climates and building types. The evolution of this indirect evaporative cooling technique is discussed. Psychrometric and sol...

Bachman, L. R.

1985-01-01T23:59:59.000Z

145

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network [OSTI]

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

146

Space Heating and Cooling Basics | Department of Energy  

Energy Savers [EERE]

- 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain...

147

Rapid Cooling Using Ice Slurries for Industrial and Medical Applicatio...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to replace chilled-water cooling systems in building complexes. Because of the high energy content of ice slurry, its cooling capacity is many times greater than that of...

148

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe Grass Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices and Sonic Arts Q Nursing and Midwifery R Pharmacy S Planning, Architecture and Civil Engineering T Politics

Paxton, Anthony T.

149

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Accommodation Queen's University Belfast Campus Map The Lanyon Building The Students' Union The David Keir Building School Offices A Biological Sciences B Chemistry and Chemical Engineering C Education D

Müller, Jens-Dominik

150

University Buildings Landmark Buildings  

E-Print Network [OSTI]

KEY University Buildings Landmark Buildings The Lanyon Building Roads Footpath Cafe University Engineering N Medicine, Dentistry and Biomedical Sciences P Music and Sonic Arts Q Nursing and Midwifery R and Student Affairs 3 Administration Building 32 Ashby Building 27 Belfast City Hospital 28 Bernard Crossland

Paxton, Anthony T.

151

Santa Clara County - Green Building Policy for County Government Buildings  

Broader source: Energy.gov (indexed) [DOE]

Green Building Policy for County Government Green Building Policy for County Government Buildings Santa Clara County - Green Building Policy for County Government Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Santa Clara County Executive's Office In February 2006, the Santa Clara County Board of Supervisors approved a Green Building Policy for all county-owned or leased buildings. The standards were revised again in September 2009. All new buildings over 5,000 square feet are required to meet LEED Silver

152

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Ohio Program Type Building Energy Code Provider Ohio Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Board of Building Standards is the primary state agency that protects

153

H C26 Performance Analysis of Optica1 Interconnection Systems Inch-ing  

E-Print Network [OSTI]

Analysis of Optica1 Interconnection Systems Inch- ing T ransmitter T emperature Dependence .è ¯ ? , ? ? ì

Choi, Woo-Young

154

13:00 Begrung und Symposiumserffnung Prof. Dr.-Ing. Gerd Holbach  

E-Print Network [OSTI]

Windenergie-Gewinnung Dipl.-Ing. Jörgen Thiele Stiftung Offshore-Windenergie, Varel 14:45 Evolution der

Berlin,Technische Universität

155

FOCUS COOLING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

156

Dr. Cool  

Science Journals Connector (OSTI)

...replace fossil fuels, and analyses of hydrogen fuel, natural gas...quickly "cut the average rate of global...global cooling effect of large volcanic...dollars"the price of a Hollywood blockbuster...away from fossil fuels, he concedes...

Eli Kintisch

2013-10-18T23:59:59.000Z

157

Ventilative cooling  

E-Print Network [OSTI]

This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

Graa, Guilherme Carrilho da, 1972-

1999-01-01T23:59:59.000Z

158

Cooling the Planet: Opportunities for Deployment of Superefficient Room Air Conditioners  

E-Print Network [OSTI]

using granular phase change material to augment buildingPhase Change Materials as evaporative cooling, phase change materials and night

Shah, Nihar

2014-01-01T23:59:59.000Z

159

Federal Energy Management Program: Best Management Practice: Cooling Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

160

Evolution of cool-roof standards in the United States  

E-Print Network [OSTI]

reduce building energy use, while energy-neutral cool-roofbuilding when the roof is cooler than the inside air. One can develop an energy-neutral

Akbari, Hashem

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Data Center Alternative Cooling Analysis Tool - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Building Energy Efficiency Find More Like This Return to Search Data Center Alternative Cooling Analysis Tool National Renewable Energy Laboratory Contact NREL About...

162

Western Cooling Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Efficiency Center Efficiency Center Jump to: navigation, search Name Western Cooling Efficiency Center Place Davis, CA Website http://http://wcec.ucdavis.edu References Western Cooling Efficiency Center [1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections Western Cooling Efficiency Center is a research institution located in Davis, CA, at the University of California at Davis (UC Davis). References ↑ "Western Cooling Efficiency Center" Retrieved from "http://en.openei.org/w/index.php?title=Western_Cooling_Efficiency_Center&oldid=382319" Categories: Clean Energy Organizations

163

Building 32 35 Building 36  

E-Print Network [OSTI]

Building 10 Building 13 Building 7 LinHall Drive Lot R10 Lot R12 Lot 207 Lot 209 LotR9 Lot 205 Lot 203 LotBuilding30 Richland Avenue 39 44 Building 32 35 Building 36 34 Building 18 Building 19 11 12 45 29 15 Building 5 8 9 17 Building 16 6 Building 31 Building 2 Ridges Auditorium Building 24 Building 4

Botte, Gerardine G.

164

Cool Roofs: An Introduction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs: An Introduction Cool Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

165

Energy 101: Cool Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Description This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. Duration 2:17 Topic Tax Credits, Rebates, Savings Heating & Cooling Commercial Heating & Cooling Credit Energy Department Video MR. : Maybe you've never given much thought about what color your roof is or what it's made of, but your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. Think about it this way: In the summertime, we wear light-colored clothes because they keep us cooler. Lighter clothes reflect rather than absorb the heat of the sun. It's the same with your roof. A cool roof is

166

Guide to Developing Air-Cooled Lithium Bromide (LiBr) Absorption for CHP Applications, April 2005  

Broader source: Energy.gov [DOE]

Development status of air-cooled lithium bromide (LiBr)-water absorption chillers for cooling, heating, and power (CHP) system applications in light-commercial buildings.

167

Building Technologies Office: Commercial Building Research and Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

168

High Performance Building Standards in State Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings High Performance Building Standards in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Oklahoma Program Type Energy Standards for Public Buildings Provider Oklahoma Department of Central Services In June 2008, the governor of Oklahoma signed [http://webserver1.lsb.state.ok.us/2007-08bills/HB/hb3394_enr.rtf HB 3394] requiring the state to develop a high-performance building certification program for state construction and renovation projects. The standard, which

169

City of Chandler - Green Building Requirement for City Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Chandler - Green Building Requirement for City Buildings Chandler - Green Building Requirement for City Buildings City of Chandler - Green Building Requirement for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State Arizona Program Type Energy Standards for Public Buildings Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing a requirement for all new occupied city buildings larger than 5,000 square feet to be designed and built to achieve the Silver level

170

Development of the Passive Cooling Technique in China  

E-Print Network [OSTI]

With more and more energy and environmental issues, the energy-saving and sustainable development of buildings is of utmost concern to the building industry. Passive cooling techniques can optimally utilize natural resources in order to reduce...

Zhou, J.; Wu, J.; Zhang, G.; Xu, Y.

2006-01-01T23:59:59.000Z

171

Energy 101: Cool Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Cool Roofs Energy 101: Cool Roofs Energy 101: Cool Roofs February 1, 2011 - 10:50am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Editor's Note: This entry has been cross-posted from DOE's Energy Blog. In this edition of Energy 101 we take a look at one of Secretary Chu's favorite energy efficiency techniques, cool roofs. Traditional dark-colored roofing materials absorb a great deal of sunlight, which in turn transfers heat to a building. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent. Cool roofs can also reduce the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas

172

Solar Roof Cooling by Evaporation  

E-Print Network [OSTI]

It is generally recognized that as much as 60% of the air conditioning load in a building is generated by solar heat from the roof. This paper on SOLAR ROOF COOLING BY EVAPORATION is presented in slide form, tracing the history of 'nature's way...

Patterson, G. V.

1981-01-01T23:59:59.000Z

173

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Alabama Program Type Building Energy Code Provider Alabama Department of Economic and Community Affairs ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Legislation passed in March 2010 authorized the Alabama Energy and

174

Green Building Requirement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Requirement Green Building Requirement Green Building Requirement < Back Eligibility Commercial Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider District Department of the Environment The District of Columbia City Council enacted [http://dcclims1.dccouncil.us/images/00001/20061218152322.pdf B16-515] on December 5, 2006, establishing green building standards for public buildings and privately-owned commercial buildings of 50,000 square feet or

175

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Connecticut Program Type Building Energy Code Provider Connecticut Office of Policy and Management ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/

176

MODELING COUNT DATA FROM MULTIPLE SENSORS: A BUILDING OCCUPANCY MODEL  

E-Print Network [OSTI]

MODELING COUNT DATA FROM MULTIPLE SENSORS: A BUILDING OCCUPANCY MODEL Jon Hutchins, Alexander Ihler a probabilistic model for predict- ing the occupancy of a building using networks of people-counting sensors-sensor probabilistic model for building occupancy. Inference for the oc- cupancy model follows in Section 4

Smyth, Padhraic

177

A Model-Based Method For Building Reconstruction Konrad Schindler  

E-Print Network [OSTI]

A Model-Based Method For Building Reconstruction Konrad Schindler Graz University of Technology with predefined shape templates in or- der to automatically recover a CAD-like model of the build- ing surface specifically, the building model delivered by a dig- ital reconstruction system should be a structured surface

Schindler, Konrad

178

Modelling tunnelling-induced settlement of masonry buildings  

E-Print Network [OSTI]

Modelling tunnelling-induced settlement of masonry buildings H. J. Burd, MA DPhil, G. T. Houlsby in which green®eld settlements are imposed on a structual model of the build- ing. This process ignores on a structural model of the building to obtain an assessment of the expected damage. Burland and Wroth1 described

Augarde, Charles

179

MODELING COUNT DATA FROM MULTIPLE SENSORS: A BUILDING OCCUPANCY MODEL  

E-Print Network [OSTI]

MODELING COUNT DATA FROM MULTIPLE SENSORS: A BUILDING OCCUPANCY MODEL Jon Hutchins, Alexander Ihler a probabilistic model for predict­ ing the occupancy of a building using networks of people­counting sensors­sensor probabilistic model for building occupancy. Inference for the oc­ cupancy model follows in Section 4

Ihler, Alexander

180

Section III: Sustainability/ 1 University of Colorado Boulder Master Plan utilization of existing buildings, before building new ones.  

E-Print Network [OSTI]

the architectural heritage of the campus, go to Section V.A.6 2. Sustainable Buildings Campuses have a significant with sustainable build- ing practices to ensure that efficient, appropriate, and low-impact growth occurs over that are the tools by which sustainable buildings are created

Stowell, Michael

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A systematic approach to energy efficiency retrofit solutions for exsisting office buildings  

E-Print Network [OSTI]

Institute of Energy Efficient and Sustainable Design and Building Prof. Dr.-Ing. Werner Lang Yunming Shao Prof. Dr.-Ing. Werner Lang Technical University of Munich, Germany 11/11/2014 A systematic approach to energy efficiency retrofit solutions... for existing office buildings ESL-IC-14-09-33 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 Institute of Energy Efficient and Sustainable Design and Building Prof. Dr.-Ing. Werner Lang...

Shao,Y.

2014-01-01T23:59:59.000Z

182

Energy 101: Cool Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs Cool Roofs Energy 101: Cool Roofs Addthis Below is the text version for the Energy 101: Cool Roofs video. The video opens with "Energy 101: Cool Roofs." This is followed by images of residential rooftops. Maybe you've never given much thought about what color your roof is, or what it's made of. But your roof could be costing you more money than you know to cool your home or office building, especially if you live in a warmer climate. The video shows pedestrians walking on a city street. Think about it this way... in the summertime we wear light-colored clothes because they keep us cooler. Lighter colors reflect - rather than absorb - the heat of the sun. The video shows images of a white roof. It's the same with your roof. A cool roof is often light in color and made

183

Demand Response in Quebec's CI Buildings: Potentioal and Strategies  

E-Print Network [OSTI]

1 October 10th 2013 ? ICEBO2013 Demand response in Quebec?s CI buildings: potential and strategies Team: Ahmed Daoud, Ph.D, project manager Marie-Andr?e Leduc, MSc., ing, task manager Jean Baribeault, ing, researcher Karine Lavigne, MSc...-10-20 Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013 4 Demand response in CI buildings ESL-IC-13-10-20 Proceedings of the 13th International Conference for Enhanced Building Operations...

Daoud, A.; Leduc, M. A.; Baribeault, J.; Lavigne, K.; Chenard, S.; Poulin, A.; Martel, S.; Bendaoud, A.

2013-01-01T23:59:59.000Z

184

Building Technologies Office: Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

185

Guam - Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guam - Building Energy Code Guam - Building Energy Code Guam - Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by the legislature before it is official. This entry and information will be updated accordingly. Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the

186

Energy 101: Cool Roofs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs Cool Roofs Energy 101: Cool Roofs January 31, 2011 - 12:38pm Addthis This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofing materials absorb a great deal of sunlight, which transfers heat into a building. This can also cause the "heat island" effect in cities and suburbs, a phenomenon that produces higher temperatures in densely populated areas due to extensive changes in the landscape. Cool roofs use light-colored, highly reflective materials to regulate building temperatures without increasing electricity demand, which can result in energy savings of up to 10 to 15 percent.

187

One Cool Roof | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

One Cool Roof One Cool Roof One Cool Roof November 9, 2010 - 10:28am Addthis Deputy Director Salmon Deputy Director, Resource Management The Office of Science occupies many buildings around the country, but it owns only two of them. One of them is making some news. The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight. The previous roof was black, but worse, it was leaky and those leaks, controlled for years in some very innovative ways by the OSTI staff, were going to cause significant problems if not addressed. OSTI needed to invest

188

City of Greensburg - Green Building Requirement for New Municipal Buildings  

Broader source: Energy.gov (indexed) [DOE]

Greensburg - Green Building Requirement for New Municipal Greensburg - Green Building Requirement for New Municipal Buildings City of Greensburg - Green Building Requirement for New Municipal Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State Kansas Program Type Energy Standards for Public Buildings Provider Greensburg City Hall In the aftermath of a May 2007 tornado that destroyed 95% of the city, the Greensburg City Council passed an ordinance requiring that all newly constructed or renovated municipally owned facilities larger than 4,000

189

Green Cooling: Improving Chiller Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Green Cooling: Improving Chiller Efficiency This new chiller simulation module being developed by Building Performance Assurance Project members will help building managers compare optimal and actual chiller efficiency. Chillers are the single largest energy consumers in commercial buildings. These machines create peaks in electric power consumption, typically during summer afternoons. In fact, 23% of electricity generation is associated with powering chillers that use CFCs and HCFCs, ozone-depleting refrigerants. Satisfying the peak demand caused by chillers forces utilities to build new power plants. However, because chiller plants run the most when the weather is hot and very little at other times, their load factors - and hence the utilities' load factors (the percentage of time the

190

"Dark Web: Exploring and Min-ing the Dark Side of the Web"  

E-Print Network [OSTI]

Title: "Dark Web: Exploring and Min- ing the Dark Side of the Web" Speaker: Director, Prof will review the emerging research in Terrorism Informatics based on a web mining perspective. Recent progress in the internationally re- nowned Dark Web project will be reviewed, including: deep/dark web spider- ing (web sites

Michelsen, Claus

191

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Bcker  

E-Print Network [OSTI]

vehiclesElectric vehicles RailCab Power Electronics Switched-mode power supplies High efficiency Drives and Electric Vehicles Power Electronics and Electrical Drives 5 Prof. Dr.-Ing. Joachim BöckerPower Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker Research Topics Mechatronic

Hellebrand, Sybille

192

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

193

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Broader source: Energy.gov (indexed) [DOE]

Evaporative Pre-Cooling Systems Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

194

New and Underutilized Technology: Evaporative Pre-Cooling Systems |  

Broader source: Energy.gov (indexed) [DOE]

Technology: Evaporative Pre-Cooling Systems Technology: Evaporative Pre-Cooling Systems New and Underutilized Technology: Evaporative Pre-Cooling Systems October 4, 2013 - 4:43pm Addthis The following information outlines key deployment considerations for evaporated pre-cooling systems within the Federal sector. Benefits Evaporative pre-cooling systems install ahead of the condenser to lower the condenser pressure. These systems can also work with an economizer. Evaporative pre-cooling reduces the requirement for energy intensive DX cooling. Application Evaporative pre-cooling systems are applicable in most building categories. Climate and Regional Considerations Evaporative pre-cooling systems are well suited in dry climates. Key Factors for Deployment Water usage needs to be taken into account in evaporative pre-cooling

195

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

5.1 Building Materials/Insulation 5.1 Building Materials/Insulation 5.2 Windows 5.3 Heating, Cooling, and Ventilation Equipment 5.4 Water Heaters 5.5 Thermal Distribution Systems 5.6 Lighting 5.7 Appliances 5.8 Active Solar Systems 5.9 On-Site Power 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 5 contains market and technology data on building materials and equipment. Sections 5.1 and 5.2 cover the building envelope, including building assemblies, insulation, windows, and roofing. Sections 5.3 through 5.7 cover equipment used in buildings, including space heating, water heating, space cooling, lighting, thermal distribution (ventilation and hydronics), and appliances. Sections 5.8 and 5.9 focus on energy production from on-site power equipment. The main points from this chapter are summarized below:

196

Evaporative Roof Cooling - A Simple Solution to Cut Cooling Costs  

E-Print Network [OSTI]

basis. Since that humble beginning, literally millions of square feet of roof cooling systems have been installed in industrial and commercial buildings. A "mini-boom" for roof sprays existed following World War 11, when air conditioning was new.... All supply piping and spray laterals are supported at 5 ft. inter- vals by cementing redwood blocks to the surface. No roof penetrations are necessary with the excep- tion of very large roof areas, and this is done by a competent roofing...

Abernethy, D.

1985-01-01T23:59:59.000Z

197

Building Technologies Office: Water Heating Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Heating Research Water Heating Research to someone by E-mail Share Building Technologies Office: Water Heating Research on Facebook Tweet about Building Technologies Office: Water Heating Research on Twitter Bookmark Building Technologies Office: Water Heating Research on Google Bookmark Building Technologies Office: Water Heating Research on Delicious Rank Building Technologies Office: Water Heating Research on Digg Find More places to share Building Technologies Office: Water Heating Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research Sensors & Controls Research Energy Efficient Buildings Hub

198

Cool Roofs: An Introduction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Roofs: An Introduction Roofs: An Introduction Cool Roofs: An Introduction August 9, 2010 - 4:43pm Addthis Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs Lately, I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar. Cool roofs, also referred to as white roofs, have special coatings that reflect sunlight and emit heat more efficiently than traditional roofs, keeping them cooler in the sun. Cool roofing technologies can be implemented quickly and at a relatively low cost, making it the fastest growing sector of the building industry. U.S. Department of Energy Secretary Steven Chu is among the many cool roof enthusiasts. The Secretary recently announced plans to install cool roofs

199

Building Energy Software Tools Directory: BuildingSim  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BuildingSim BuildingSim BuildingSim logo BuildingSim allows users to model a building and analyze the heating and cooling energy costs in any climate. Users can create any building—from a one-room apartment up to a 100+ floor skyscraper--and account for everything from window coverings to shade trees. BuildingSim uses actual hourly weather data from over 90 climates around the world to numerically solve the full thermodynamic differential equations every minute of the year, giving the user the actual energy use down to the cent. The simulation algorithm fully accounts for thermostat and HVAC controls, allowing the user to analyze the effects of different thermostat algorithms (programmable thermostats, setback, split-zone, etc.) on the energy costs for a specific building and climate. Screen Shots

200

Anaheim Public Utilities - Green Building and New Construction Rebate  

Broader source: Energy.gov (indexed) [DOE]

Anaheim Public Utilities - Green Building and New Construction Anaheim Public Utilities - Green Building and New Construction Rebate Program Anaheim Public Utilities - Green Building and New Construction Rebate Program < Back Eligibility Commercial Construction Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Maximum Rebate Commercial Green Building: $75,000 Residential Green Building: $100,000 LEED Certification: $30,000 Green Building Rater Incentive: $6,000 Program Info State California Program Type Utility Rebate Program

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

City of San Diego - Sustainable Building Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

San Diego - Sustainable Building Policy San Diego - Sustainable Building Policy City of San Diego - Sustainable Building Policy < Back Eligibility Commercial Construction Local Government Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider San Diego Environmental Services Department The City of San Diego's Sustainable Building Policy is directed by Council Policy 900-14. The policy contains regulations regarding building

202

City of Denver - Green Building Requirement for City-Owned Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Denver - Green Building Requirement for City-Owned Denver - Green Building Requirement for City-Owned Buildings City of Denver - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider Greenprint Denver Executive Order 123, signed in October 2007, established the Greenprint Denver Office and the Sustainability Policy for the city. The Sustainability Policy includes several goals and requirements meant to increase the sustainability of Denver by having the city government lead by

203

City of Boulder - Green Points Building Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program City of Boulder - Green Points Building Program < Back Eligibility Commercial Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Solar Heating Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider City of Boulder The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the size of the proposed structure. Similar to the US Green Building Council's LEED program, the

204

Thermostatically controlled solar heating and cooling system  

SciTech Connect (OSTI)

This patent describes a solar heating and cooling system for simultaneously heating or cooling an ambient air system within a building, heating a hot water supply for domestic use within the building and heating or cooling a swimming pool adjacent the building comprising a building. This comprises a swimming pool as a primary water source, a solar connector connected to the swimming pool, a heat pump for controlling ambient air temperature within the building, an energy conservation unit connected to the heat pump and to the hot water supply for utilizing hot gases from the heat pump to heat water in the hot water supply and an air heat exchanger connected to the air system and to the heat pump for selectively heating or cooling air in the building. Also a water heat exchanger is connected to a water source for selectively transferring heat between the heat pump and the water source, a well as a secondary water source connected to the water heat exchanger.

Yovanofski, T.

1986-12-16T23:59:59.000Z

205

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Heating Buying & Making Electricity Water Heating Program Info State California Program Type Building Energy Code Provider California Energy Commission '''''Note: The California Energy Commission adopted the 2013 Building Energy Efficiency Standards for new residential and commercial construction on May 31, 2012. The new standards are expected to take effect on January 1, 2014, and represent significant energy and water savings compared to the current standards. Among many notable provisions, the new standards will

206

Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings  

E-Print Network [OSTI]

- tems 1 Introduction In EU countries, primary energy consumption in build- ings represents about 40Tuning Fuzzy Logic Controllers for Energy Efficiency Consumption in Buildings R. Alcal´a DECSAI 18071 ­ Granada, Spain e-mail: A.Gonzalez@decsai.ugr.es Abstract In EU countries, primary energy consump

Casillas Barranquero, Jorge

207

Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents  

E-Print Network [OSTI]

% of all natural gas produced in the United States thereby contributing 40% of the carbon dioxide a significant stake in improving the energy footprint and efficiency of the build- ings sector for economic- ergy savings. The large number of existing buildings that do not employ energy efficient technologies

Wang, Xiaorui "Ray"

208

The Essence of American Drama: The Short Plays of William Inge  

E-Print Network [OSTI]

complexly, if not more effectively, in the plays of Tennessee Williams; ordinary social settings The Fiesta Room of the Hotel Boomerang in a small town in middle Texas (79) where Bus Rileys Back In Town takes place; and even perhaps especially... the PROPERTY PLOT. Inges theatrical spaces tend to be bare and spare. In THE RAINY AFTERNOON, there are: Nail kegs, barrels, tool chests, 2 dolls, 2 glasses (107). In THE STRAINS OF TRIUMPH, there is only a Cane (142). Although I have said that Inge...

Wolf, Howard R.

2012-04-01T23:59:59.000Z

209

Tips: Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

210

Towards Energy Efficient Building Assets: A Review on Sub-Tropical Climate  

E-Print Network [OSTI]

of the energy demand, to conserve energy, to improve the comfort levels including indoor-air quality, and to increase the buildings productivity through leveraging information. The idea of integrated building services functions is beneficial from... air conditioning, radiant cooling, desiccant cooling, and passive solar cooling are important in terms of energy use and indoor environment of building. Energy efficient approach enables building assets to reduce energy consumption, improve...

Chowdhury, A. A.; Rasul, M. G.; Khan, M. M. K.

2006-01-01T23:59:59.000Z

211

The Integration of Cogeneration and Space Cooling  

E-Print Network [OSTI]

associated space cool- ing is essentially cost free. FIGURE B In hot and humid climates, both air conditioning and humidity control are required. The thermal out- put of a cogeneration unit provides the heat neces- sary to power an absorption chiller... absorption chiller/heaters are in operation within the U.S.; 10,000 tons are oper- ating in the Gulf Coast, a hot and humid climate area. Cogeneration saw a resurgence in the early 1980s, but its growth was limited mostly to in- dustrial plants...

Phillips, J.

1987-01-01T23:59:59.000Z

212

A review of "The Temple mit einer deutschen Versbersetzung." by Inge Leimberg ed. George Herbert  

E-Print Network [OSTI]

REVIEWS 189 George Herbert. ?The Temple? mit einer deutschen Vers?bersetzung. Ed. Inge Leimberg. M?nster, New York, Munich, Berlin: Waxmann Verlag, 2002. xx + 473 pp. 39,00 EURO. Review by BILL ENGEL (NASHVILLE, TENNESSEE). Seventeenth...

Bill Engel

2002-01-01T23:59:59.000Z

213

Methodology for the Evaluation of Thermal Comfort in Office Buildings  

Science Journals Connector (OSTI)

Some studies of individual buildings try to combine long-term monitoring of ... occupancy evaluation and correlate these findings with the energy consumption for heating, cooling, and ventilation.... ...

Doreen E. Kalz; Jens Pfafferott

2014-01-01T23:59:59.000Z

214

Electricity production and cooling energy savings from installation of a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production and cooling energy savings from installation of a production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Title Electricity production and cooling energy savings from installation of a building-integrated photovoltaic roof on an office building Publication Type Journal Article Year of Publication 2013 Authors Ban-Weiss, George, Craig P. Wray, William W. Delp, Peter Ly, Hashem Akbari, and Ronnen M. Levinson Journal Energy and Buildings Volume 56 Pagination 210 - 220 ISSN 0378-7788 Keywords Advanced Technology Demonstration, building design, Building heat transfer, cool roof, energy efficiency, Energy Performance of Buildings, energy savings, Energy Usage, energy use, Heat Island Abstract Reflective roofs can reduce demand for air conditioning and warming of the atmosphere. Roofs can also host photovoltaic (PV) modules that convert sunlight to electricity. In this study we assess the effects of installing a building integrated photovoltaic (BIPV) roof on an office building in Yuma, AZ. The system consists of thin film PV laminated to a white membrane, which lies above a layer of insulation. The solar absorptance of the roof decreased to 0.38 from 0.75 after installation of the BIPV, lowering summertime daily mean roof upper surface temperatures by about 5 °C. Summertime daily heat influx through the roof deck fell to ±0.1 kWh/m2from 0.3-1.0 kWh/m2. However, summertime daily heat flux from the ventilated attic into the conditioned space was minimally affected by the BIPV, suggesting that the roof was decoupled from the conditioned space. Daily PV energy production was about 25% of building electrical energy use in the summer. For this building the primary benefit of the BIPV appeared to be its capacity to generate electricity and not its ability to reduce heat flows into the building. Building energy simulations were used to estimate the cooling energy savings and heating energy penalties for more typical buildings.

215

Building Technologies Office: Nanolubricants Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanolubricants Research Nanolubricants Research Project to someone by E-mail Share Building Technologies Office: Nanolubricants Research Project on Facebook Tweet about Building Technologies Office: Nanolubricants Research Project on Twitter Bookmark Building Technologies Office: Nanolubricants Research Project on Google Bookmark Building Technologies Office: Nanolubricants Research Project on Delicious Rank Building Technologies Office: Nanolubricants Research Project on Digg Find More places to share Building Technologies Office: Nanolubricants Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

216

Building Technologies Office: Emerging Technologies Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

217

Building Technologies Office: Sensors and Controls Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Controls Sensors and Controls Research to someone by E-mail Share Building Technologies Office: Sensors and Controls Research on Facebook Tweet about Building Technologies Office: Sensors and Controls Research on Twitter Bookmark Building Technologies Office: Sensors and Controls Research on Google Bookmark Building Technologies Office: Sensors and Controls Research on Delicious Rank Building Technologies Office: Sensors and Controls Research on Digg Find More places to share Building Technologies Office: Sensors and Controls Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

218

Building Technologies Office: Building America: Bringing Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

219

Cooling Dry Cows  

E-Print Network [OSTI]

This publication discusses the effects of heat stress on dairy cows, methods of cooling cows, and research on the effects of cooling cows in the dry period....

Stokes, Sandra R.

2000-07-17T23:59:59.000Z

220

Building Technologies Office: Commercial Building Energy Asset Score  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Due to hardware limitations dur-ing the first 20-year-span of life of the  

E-Print Network [OSTI]

NEXRAD Now Due to hardware limitations dur- ing the first 20-year-span of life of the WSR-88D) and RDA (Radar Data Acquisition) hardware upgrades, an on-going effort to migrate to modern process- ing

222

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

223

Ventilation Systems for Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ventilation Systems for Cooling Ventilation Systems for Cooling Ventilation Systems for Cooling May 30, 2012 - 6:19pm Addthis Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Proper ventilation helps you save energy and money. | Photo courtesy of JD Hancock. Ventilation is the least expensive and most energy-efficient way to cool buildings. Ventilation works best when combined with methods to avoid heat buildup in your home. In some cases, natural ventilation will suffice for cooling, although it usually needs to be supplemented with spot ventilation, ceiling fans, and window fans. For large homes, homeowners might want to investigate whole house fans. Interior ventilation is ineffective in hot, humid climates where

224

Natural ventilation in buildings : modeling, control and optimization  

E-Print Network [OSTI]

Natural ventilation in buildings has the potential to reduce the energy consumption usually associated with mechanical cooling while maintaining thermal comfort and air quality. It is important to know how building parameters, ...

Ip Kiun Chong, Karine

2014-01-01T23:59:59.000Z

225

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New York Program Type Building Energy Code Provider NYS Department of State ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings,

226

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State New Hampshire Program Type Building Energy Code Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites. New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New

227

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State District of Columbia Program Type Building Energy Code Provider Washington State Department of Commerce ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The State Building Code Council revised the [https://fortress.wa.gov/ga/apps/sbcc/Page.aspx?nid=14 Washington State

228

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Oregon Program Type Building Energy Code Provider Oregon Building Codes Division ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://www.oregon.gov/ENERGY/CONS/Codes/cdpub.shtml The Oregon Energy

229

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Montana Program Type Building Energy Code Provider Building Codes Bureau ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The energy codes are reviewed on a three-year cycle corresponding to the adoption of new versions of the International Code Conference (ICC) Uniform

230

Building Technologies Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hVac controls guide hVac controls guide for Plans examiners and Building inspectors September 2011 authors: Eric Makela, PNNL James Russell, PECI Sarah Fujita, PECI Cindy Strecker, PECI Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Technologies Program 2 contents introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 how to use the guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 code requirements and compliance checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Performance Path 10 Control Requirements for All Systems 11 Thermostatic Control of Heating and Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply Fan Motor Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

231

Local Option - Green Building Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Green Building Incentives Local Option - Green Building Incentives Local Option - Green Building Incentives < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info Start Date 6/11/2009 State North Carolina Program Type Green Building Incentive To encourage sustainable building practices, North Carolina law allows all counties and cities to provide reductions or partial rebates for building permit fees. To qualify for a fee reduction, buildings must meet guidelines established by the Leadership in Energy and Environmental Design (LEED)

232

City of Santa Monica - Expedited Permitting for Green Buildings |  

Broader source: Energy.gov (indexed) [DOE]

Expedited Permitting for Green Buildings Expedited Permitting for Green Buildings City of Santa Monica - Expedited Permitting for Green Buildings < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider City of Santa Monica The City of Santa Monica allows for priority plan check processing for building projects that are registered with the United States Green Building Council for certification under the Leadership in Energy and Environmental Design (LEED) Green Building Rating System. The priority status applies to

233

Solar Design Standards for State Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Design Standards for State Buildings Solar Design Standards for State Buildings Solar Design Standards for State Buildings < Back Eligibility Construction Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Program Info State Arizona Program Type Energy Standards for Public Buildings Provider Arizona Department of Commerce Arizona law requires that new state building projects over six thousand square feet follow prescribed solar design standards. Solar improvements should be evaluated on the basis of life cycle costs. Affected buildings include buildings designed and constructed by the department of

234

Chandler - Expedited Plan Review for Green Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chandler - Expedited Plan Review for Green Buildings Chandler - Expedited Plan Review for Green Buildings Chandler - Expedited Plan Review for Green Buildings < Back Eligibility Commercial Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Arizona Program Type Green Building Incentive Provider City of Chandler The mayor and city council of Chandler, AZ adopted Resolution 4199 in June 2008, establishing incentives for green building in the private sector. Permit applications for buildings registered with the US Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) for

235

Constraint Driven Model Using Correlation and Collaborative Filtering for Sustainable Building  

E-Print Network [OSTI]

Constraint Driven Model Using Correlation and Collaborative Filtering for Sustainable Building Hsin Miami, FL 33199, USA Abstract Sustainable building has emerged as an important topic due to the fact gaining wider acceptance for many sustainable building projects. However, manag- ing design

Chen, Shu-Ching

236

An Energy-Harvesting Sensor Architecture and Toolkit for Building Monitoring and Event Detection  

E-Print Network [OSTI]

An Energy-Harvesting Sensor Architecture and Toolkit for Building Monitoring and Event Detection of Michigan Ann Arbor, MI 48109 {bradjc,prabal}@umich.edu Abstract Understanding building usage patterns a new architecture for design- ing building-monitoring focused energy-harvesting sensors. The key

Dutta, Prabal

237

Buildings Energy Data Book  

Buildings Energy Data Book [EERE]

Glossary Glossary Acronyms and Initialisms Technology Descriptions Residential Space Heating Residential Space Cooling Residential Water Heating Commercial Space Cooling Commercial Space Heating Commercial Refrigeration Lighting Building Descriptions Commercial Residential Acronyms and Initialisms A B C D E F G H I L M N O P Q R S U V AAMA - American Architectural Manufacturers Association ACEEE - American Council for an Energy Efficient Economy AEO - EIA's Annual Energy Outlook AFEAS - Alternative Fluorocarbons Environmental Acceptability Study AFUE - Annual Fuel Utilization Efficiency AHAM - Association of Home Appliance Manufacturers ARI - Air-Conditioning and Refrigeration Institute ASHRAE - American Society of Heating, Refrigerating and Air-Conditioning Engineers BTS - DOE's Office of Building Technology, State and Community Programs

238

City of Los Angeles - Green Building Retrofit Requirement | Department of  

Broader source: Energy.gov (indexed) [DOE]

Green Building Retrofit Requirement Green Building Retrofit Requirement City of Los Angeles - Green Building Retrofit Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Manufacturing Buying & Making Electricity Solar Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles Department of Water and Power In April 2009, Los Angeles enacted [clkrep.lacity.org/onlinedocs/2006/06-1963_ord_180633.pdf Ordinance 180636], known as the Green Building Retrofit Ordinance. This ordinance was later amended by Ordinance 182259. The law requires all city-owned

239

Recent Developments of the Modelica "Buildings" Library for Building Energy and Control Systems  

E-Print Network [OSTI]

consumption and related green house gas emis- sions. For example, in the United States, build- ings consume 2. Section 4 presents applications with models for multizone airflow simulation and for co-simulation in these packages augment models from the Modelica Standard Library and from the Modelica.Fluid library. Base

240

Handling model uncertainty in model predictive control for energy efficient buildings  

E-Print Network [OSTI]

trol for the operation of building cooling systems, IEEEK. Wirth, Energy ef?cient building climate control usingSagerschnig, E. Z ? ?cekov, Building [8] J. Pr vara, S.

Maasoumy, Mehdi; Razmara, M; Shahbakhti, M; Sangiovanni-Vincentelli, Alberto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CFD Analysis Of Direct Evaporative Cooling Zone Of Air-side Economizer For Containerized Data Center.  

E-Print Network [OSTI]

??Agonafer, Dr. Dereje Conventional data centers are extremely large buildings that have complex power distribution and cooling systems. These traditional brick and mortar data centers (more)

Shah, Niket

2012-01-01T23:59:59.000Z

242

Around Buildings  

E-Print Network [OSTI]

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

243

Filter Press Building  

E-Print Network [OSTI]

"FILTER PRESS BUILDING" AVON LAKE WATER POLLUTION CONTROL CENTER HEAT PUMP HEATING AND COOLING SYSTEM William M. Bush, P.E. The Cleveland Electric Illuminating Company Cleveland, Ohio ABSTRACT The high heat value of the plant's treated wa..." of the thousands of homes in the com munity, we were able to recommend a system of heat recovery refrigeration cycles that would provide space conditioning at a fraction of the cost of natural gas. The all-electric recommendation was accepted because...

Bush, W. M.

244

Better than Average? - Green Building Certification in International Projects  

E-Print Network [OSTI]

8th International Conference for Enhanced Building Operations - ICEBO?08 Conference Center of the Federal Ministry of Economics and Technology Berlin, October 20 - 22, 2008 Dipl.-Ing. Oliver Baumann Ebert & Baumann Consulting Engineers, Inc.... An Enterprise of the Ebert-Consulting Group 1004 Pennsylvania Avenue, SE Washington, D.C. 20003, USA 00 12 02/ 6 08 - 13 34 o.baumann@eb-engineers.com Better than Average? - Green Building Certification in International Projects Green Building...

Baumann, O.

2008-01-01T23:59:59.000Z

245

BUILDING NAME HEYDON-LAURENCE BUILDING  

E-Print Network [OSTI]

'S BUILDING PHYSICS BUILDING BAXTER'S LODGE INSTITUTE BUILDING CONSERVATION WORKS R.D.WATT BUILDING MACLEAYBUILDING NAME HEYDON-LAURENCE BUILDING PHARMACY AND BANK BUILDING JOHN WOOLEY BUILDING OLD TEARCHER BUILDING THE QUARANGLE BADHAM BUILDING J.D. STEWART BUILDING BLACKBURN BUILDING MADSEN BUILDING STORE

Viglas, Anastasios

246

City of Fort Collins - Green Building Requirement for City-Owned Buildings  

Broader source: Energy.gov (indexed) [DOE]

Fort Collins - Green Building Requirement for City-Owned Fort Collins - Green Building Requirement for City-Owned Buildings City of Fort Collins - Green Building Requirement for City-Owned Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type Energy Standards for Public Buildings Provider The City of Fort Collins The City Council of Fort Collins passed a resolution in September 2006, establishing green building goals for new city-owned buildings of 5,000 square feet or more. New buildings must be designed and constructed to

247

Eagle County - Eagle County Efficient Building Code (ECO-Green Build) |  

Broader source: Energy.gov (indexed) [DOE]

Eagle County - Eagle County Efficient Building Code (ECO-Green Eagle County - Eagle County Efficient Building Code (ECO-Green Build) Eagle County - Eagle County Efficient Building Code (ECO-Green Build) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Colorado Program Type Building Energy Code Provider Eagle County In an effort to reduce county-wide energy consumption and improve the environment, Eagle County established their own efficient building code (ECO-Green Build) which applies to all new construction and renovations/additions over 50% of the existing floor area of single-family and multifamily residences, and commercial buildings.

248

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

249

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was slightly above average. Lodging buildings were one of the few...

250

Dark Colored Cool Pigments for Materials Exposed to the Sun ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Renewable Energy. (1,201 KB) Technology Marketing Summary For the building and automobile industries in need of dark-colored products that can stay cool in the sun, this...

251

Research & Development Needs for Building-Integrated Solar Technologies  

Broader source: Energy.gov [DOE]

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

252

Building America Expert Meeting: Simplified Space Conditioning...  

Energy Savers [EERE]

I: Heating and Cooling with Mini-Splits in the Northeast Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps...

253

Building Envelopes | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Envelope Envelope SHARE Building Envelopes MFEL.jpg The building envelope-the materials that separate the indoor and outdoor environments-primarily determines the amount of energy required to heat, cool, and ventilate a building. The envelope also can significantly influence energy needs in areas accessible to sunlight. To cost-effectively improve the energy efficiency, moisture-durability, and environmental sustainability of building envelopes, ORNL is exploring new and emerging materials, components, and systems as well as the fundamentals of heat, air, and moisture transfer. Research is also focused on multifunctional solutions where the envelope serves as a filter that selectively accepts or rejects solar radiation and outdoor air, depending on the need for heating, cooling, ventilation, and lighting.

254

Cooling Energy and Cost Savings with Daylighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling Energy and Cost Savings with Daylighting Cooling Energy and Cost Savings with Daylighting Title Cooling Energy and Cost Savings with Daylighting Publication Type Conference Paper LBNL Report Number LBL-19734 Year of Publication 1985 Authors Arasteh, Dariush K., Russell Johnson, Stephen E. Selkowitz, and Deborah J. Connell Conference Name 2nd Annual Symposium on Improving Building Energy Efficiency in Hot and Humid Climates Date Published 09/1985 Conference Location Texas A&M University Call Number LBL-19734 Abstract Fenestration performance in nonresidentialsbuildings in hot climates is often a large coolingsload liability. Proper fenestration design andsthe use of daylight-responsive dimming controls onselectric lights can, in addition to drasticallysreducing lighting energy, lower cooling loads,speak electrical demand, operating costs, chillerssizes, and first costs. Using the building energyssimulation programs DOE-2.1B and DOE-2.1C , wesfirst discuss lighting energy savings from daylighting.sThe effects of fenestration parametersson cooling loads, total energy use, peak demand,schiller sizes, and initial and operating costs aresalso discussed. The impact of daylighting, asscompared to electric lighting, on cooling requirementssis discussed as a function of glazingscharacteristics, location, and shading systems.

255

"Cook"ing at Y-12 for 70 years | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Cook"ing at Y-12 ... "Cook"ing at Y-12 ... "Cook"ing at Y-12 for 70 years Posted: December 5, 2013 - 4:48pm At a Nov. 14 visit to Y-12, National Nuclear Security Administration's Deputy Administrator for Defense Don Cook shared his outlook on the future and his thanks to employees for continuing their 70-year tradition of making America safer. "There are three things to remember," Cook told a meeting of NNSA Production Office and Y-12 employees. "We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America." Cook also shared his thanks for preparing for the potential furlough in October because of the government shutdown and lack of appropriations. During what was the longest government shutdown to date, Cook said Y-12

256

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Building Energy Code Provider West Virginia Division of Energy ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. Local jurisdictions must adopt

257

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Water Heating Program Info State Colorado Program Type Building Energy Code Provider Colorado Energy Office ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Colorado is a home rule state so no statewide energy code exists. Voluntary

258

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Mississippi Program Type Building Energy Code Provider Mississippi Development Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement

259

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Code Building Energy Code Building Energy Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Building Energy Code Provider Georgia Environmental Finance Authority ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory"

260

Los Angeles County - LEED for County Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings Los Angeles County - LEED for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Heating Wind Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles County In January 2007, the Los Angeles County Board of Supervisors adopted rules to require that all new county buildings greater than 10,000 square feet be LEED Silver certified. All buildings authorized and fully funded on or

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

City of Cincinnati - Property Tax Abatement for Green Buildings |  

Broader source: Energy.gov (indexed) [DOE]

City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings City of Cincinnati - Property Tax Abatement for Green Buildings < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Maximum Rebate For buildings with permits received on or before January 31, 2013: $562,792 maximum improved market value for residential buildings except no limitation with LEED Platinum certification (the maximum incentive increases by 3% every year) For buildings with permits received after January 31, 2013:

262

Energy Efficient State Building Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficient State Building Initiative Efficient State Building Initiative Energy Efficient State Building Initiative < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Indiana Program Type Energy Standards for Public Buildings Provider Department of Administration In June 2008, Governor Mitch Daniels issued an executive order establishing an energy efficient state buildings initiative. The order requires the Indiana Department of Administration (DOA) to develop design standards for all new state buildings which require a cost-effectiveness analysis of the

263

Energy-Efficient Building Standards for State Facilities | Department of  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Building Standards for State Facilities Energy-Efficient Building Standards for State Facilities Energy-Efficient Building Standards for State Facilities < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Maine Program Type Energy Standards for Public Buildings Provider State Energy Program Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and environmental sustainability,

264

Durham County - High-Performance Building Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy Durham County - High-Performance Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider Durham City and County Durham County adopted a resolution in October 2008 that requires new non-school public buildings and facilities to meet high-performance standards. New construction of public buildings and facilities greater than

265

Arlington County - Green Building Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program Arlington County - Green Building Incentive Program < Back Eligibility Commercial Construction Installer/Contractor Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Virginia Program Type Green Building Incentive Provider Arlington County In October 1999, the County Board of Arlington adopted a Pilot Green Building Incentive Program using the standards established by the U. S. Green Building Council's Leadership in Energy and Environmental Design

266

Energy Efficiency Standards for Public Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Standards for Public Buildings Efficiency Standards for Public Buildings Energy Efficiency Standards for Public Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Idaho Program Type Energy Standards for Public Buildings Provider Idaho Office of Energy Resources In May 2008, Idaho enacted HB 422 (the Energy Efficient State Building Act) to reduce the amount of energy consumed by state facilities. To the extent feasible and practical, all major facility projects must be designed, constructed and certified to meet a target of at least 10% to 30% better efficiency than a comparable building on a similar site. A major facility

267

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network [OSTI]

Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per and lower energy usage was reviewed. This factor is contained in the adopted Green Building Code Section 9 for the May 5, 2010 California Energy Commission business meeting. Thank you. John LaTorra Building Inspection

268

Building Load Simulation and Validation of an Office Building  

E-Print Network [OSTI]

of the model for electricity use were calibrated to match the actual electricity use for the average year of the available data for years 1998, 1999, and 2000. The monthly and annual cooling loads of the building were calculated by using the DOE2.1E. The extra...

Alghimlas, F.

2002-01-01T23:59:59.000Z

269

Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nano-Enabled Titanium Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project to someone by E-mail Share Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Facebook Tweet about Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Twitter Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Google Bookmark Building Technologies Office: Nano-Enabled Titanium Dioxide Ultraviolet Protective Layers for Cool-Color Roofing Research Project on Delicious Rank Building Technologies Office: Nano-Enabled Titanium Dioxide

270

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

271

Thermal Performance of Phase-Change Wallboard for Residential Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Thermal Performance of Phase-Change Wallboard for Residential Cooling Cooling residential buildings in milder climates contributes significantly to peak demand mainly because of poor load factors. Peak cooling load determines the size of equipment and the cooling source. Several measures reduce cooling-system size and allow the use of lower-energy cooling sources; they include incorporating exterior walls or other elements that effectively shelter interiors from outside heat and cold, and providing thermal mass, to cool interior spaces during the day by absorbing heat and warm them at night as the mass discharges its heat. Thermal mass features may be used for storage only or serve as structural elements. Concrete, steel, adobe, stone, and brick all satisfy requirements

272

Sustainable Building Design Revolving Loan Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Building Design Revolving Loan Fund Sustainable Building Design Revolving Loan Fund Sustainable Building Design Revolving Loan Fund < Back Eligibility State Government Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Heating Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate 100% project financing Program Info Start Date 1/8/2010 State Arkansas Program Type State Loan Program Rebate Amount 100% project financing Provider Arkansas Energy Office The Sustainable Building Design Revolving Loan Fund (RLF) is funded by the American Recovery and Reinvestment Act of 2009 (ARRA). The Arkansas Energy

273

City of Indianapolis - Green Building Incentive Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Indianapolis - Green Building Incentive Program Indianapolis - Green Building Incentive Program City of Indianapolis - Green Building Incentive Program < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Water Heating Solar Buying & Making Electricity Wind Program Info Start Date 08/01/2010 State Indiana Program Type Green Building Incentive Provider City of Indianapolis The Indianapolis Office of Sustainability and the Department of Code

274

Dimension Estimation-based Spectrum Sens-ing for Cognitive Radio  

E-Print Network [OSTI]

Dimension Estimation-based Spectrum Sens- ing for Cognitive Radio Bassem Zayen and Aawatif Hayar. Introduction The discrepancy between current-day spectrum allocation and spectrum use sug- gests that radio mean that radios could find and adapt to any immediate local spectrum availability. A new class

Gesbert, David

275

Climate change is not "a problem" wait-ing for "a solution". It is an environ-  

E-Print Network [OSTI]

41 Climate change is not "a problem" wait- ing for "a solution". It is an environ- mental, cultural humanity's place on Earth. My new book, Why We Disagree About Climate Change, dissects this idea of climate about it. It also develops a different way of approaching the idea of climate change and of working

Hulme, Mike

276

This tutorial describes stroke-based render-ing (SBR), an automatic approach to cre-  

E-Print Network [OSTI]

This tutorial describes stroke-based render- ing (SBR), an automatic approach to cre- ating nonphotorealistic imagery by placing discrete elements such as paint strokes or stipples. Researchers have proposed strokes are placed in a manner that match- estheoriginalphotograph,andthen rendered to have the appearance

Toronto, University of

277

Fraunhofer FOKUSCompetence Center NGNI Prof. Dr.-Ing. habil Thomas Magedanz  

E-Print Network [OSTI]

Fraunhofer FOKUSCompetence Center NGNI Overview ?berblick 1 Prof. Dr.-Ing. habil Thomas Magedanz Berlin, Germany Internet: www.av.tu-berlin.de Email: tm@cs.tu-berlin.de #12;Fraunhofer FOKUSCompetence and IT is fueling the innovation in Service Delivery Platforms and underlying networking infrastructures · IP

Wichmann, Felix

278

BEST MANAGEMENT PRACTICES FOR POTATOES seec ing Potato Voriet-es  

E-Print Network [OSTI]

BEST MANAGEMENT PRACTICES FOR POTATOES seec ing Potato Voriet-es for Mic -gon 45¢ Richard Chase bal to a high quality potato crop for commer- inche in rows 34 inches apart. Based on a soil test cial outlet. Extensive potato Ibs K20/A. variety performance trials are conducted each year Harvests were made

Douches, David S.

279

Power and sample size calculations for designing rare variant sequenc-ing association studies.  

E-Print Network [OSTI]

of the statistical power of SKAT. Required sample size can be computed easily by inverting the power functionPower and sample size calculations for designing rare variant sequenc- ing association studies pow- erful than the collapsing based burden tests under many circumstances [4]. To design new sequence

Lin, Xihong

280

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

282

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

283

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

284

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

285

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Demand Shifting With Thermal Mass in Large Commercial Buildings: Case Studies and Tools Speaker(s): Peng Xu Date: March 9, 2007 - 12:00pm Location: 90-3122 The idea of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling energy in the building thermal mass and thereby reducing cooling loads during the peak periods. Savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. Case studies in a number of office buildings in California has found that a simple demand limiting strategy reduced the chiller power by 20-100% (0.5-2.3W/ft2) during six

286

Cool Roofs: Your Questions Answered | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Roofs: Your Questions Answered Roofs: Your Questions Answered Cool Roofs: Your Questions Answered January 6, 2011 - 2:58pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Last month Secretary Chu announced that the Department of Energy had installed a "cool roof" atop the west building of our Washington, DC headquarters. The announcement elicited a fair number of questions from his Facebook fans, so we decided to reach out to the people behind the project for their insight on the specific benefits of switching to a cool roof, and the process that went into making that choice. Jim Bullis (Facebook): So what is the percentage saving of energy bills for this building? Answer: The West Building cool roof is estimated to save about $2,000 per

287

One Cool Change at Energy HQ | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

One Cool Change at Energy HQ One Cool Change at Energy HQ One Cool Change at Energy HQ July 6, 2012 - 3:49pm Addthis Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Karissa Marcum Public Affairs Specialist, Office of Public Affairs What does this project do? 126 new cool roofs were installed in fiscal year 2012 on buildings across the Department. New solar panels at the Department's Germantown campus in Maryland

288

One Cool Change at Energy HQ | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Change at Energy HQ Cool Change at Energy HQ One Cool Change at Energy HQ July 6, 2012 - 3:49pm Addthis Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Officials from the Energy Department and NORESCO cut the ribbon at the new chiller plant in the Forrestal building. The chiller is expected to save $600,000 per year from the Department's energy bills. | Energy Department photo Karissa Marcum Public Affairs Specialist, Office of Public Affairs What does this project do? 126 new cool roofs were installed in fiscal year 2012 on buildings across the Department. New solar panels at the Department's Germantown campus in Maryland

289

Green Energy Standards for Public Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Energy Standards for Public Buildings Green Energy Standards for Public Buildings Green Energy Standards for Public Buildings < Back Eligibility Fed. Government Local Government State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State West Virginia Program Type Energy Standards for Public Buildings Provider West Virginia Department of Administration In March 2012, West Virginia enacted the Green Buildings Act, which applies to all new construction of public buildings, buildings receiving state grant funds, and buildings receiving state appropriations. For those buildings that have not entered the schematic design phase prior to July 1, 2012, buildings must be designed and construction to comply with the ICC

290

Sustainable Buildings  

Science Journals Connector (OSTI)

The construction and real estate sectors are in a state of change: ... operated differently, i.e. more sustainably. Sustainable building means to build intelligently: the focus ... comprehensive quality concept t...

Christine Lemaitre

2012-01-01T23:59:59.000Z

291

Building technologies  

SciTech Connect (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-14T23:59:59.000Z

292

Building technologies  

ScienceCinema (OSTI)

After growing up on construction sites, Roderick Jackson is now helping to make buildings nationwide far more energy efficient.

Jackson, Roderick

2014-07-15T23:59:59.000Z

293

Alternative cooling resource for removing the residual heat of reactor  

SciTech Connect (OSTI)

The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

2012-07-01T23:59:59.000Z

294

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

295

A Cool Roof for the Iconic Cyclotron | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron A Cool Roof for the Iconic Cyclotron July 15, 2011 - 5:42pm Addthis Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron, built in 1941. | Courtesy of Lawrence Berkeley National Laboratory; Roy Kaltschmidt, Berkeley Lab Public Affairs Berkeley Lab's iconic building, the Advanced Light Source, is getting a new cool roof, righ, that will reflect sunlight back into the atmosphere, playing a small part in mitigating global warming. On left, Ernest Orlando Lawrence talks to colleagues at the construction site of the cyclotron,

296

A prediction of energy savings resulting from building infiltration control  

E-Print Network [OSTI]

, temperature ('C) Indoor, or room, temperature of building ('C) Temperature of exterior surface of a building wall, window or roof ( C) Sol-air temperature for a wall or other building surface ('C) Interchangeable with T, Difference between building room... infiltration Designating airflow into a building surface Maximum model Minimum Interaction heat transfer calculation model N North Pressure Surface South sa Sol-air Room tot Total CHAPTER I INTRODUCTION 1. 1 OBJECTIVES Heating and cooling...

McWatters, Kenneth Rob

1995-01-01T23:59:59.000Z

297

CoolEarth formerly Cool Earth Solar | Open Energy Information  

Open Energy Info (EERE)

CoolEarth formerly Cool Earth Solar CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name CoolEarth (formerly Cool Earth Solar) Place Livermore, California Zip 94550 Product CoolEarth is a concentrated PV developer using inflatable concentrators to focus light onto triple-junction cells. References CoolEarth (formerly Cool Earth Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CoolEarth (formerly Cool Earth Solar) is a company located in Livermore, California . References ↑ "CoolEarth (formerly Cool Earth Solar)" Retrieved from "http://en.openei.org/w/index.php?title=CoolEarth_formerly_Cool_Earth_Solar&oldid=343892" Categories: Clean Energy Organizations

298

Building Technologies Office: Residential Building Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

299

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Broader source: Energy.gov (indexed) [DOE]

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

300

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Building Technologies Office: Building America Meetings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

302

Building America Building Science Education Roadmap | Department...  

Broader source: Energy.gov (indexed) [DOE]

Building Science Education Roadmap Building America Building Science Education Roadmap This roadmap outlines steps that U.S. Department of Energy Building America program must take...

303

Building Technologies Office: Building Energy Optimization Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

304

Buildings Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

305

Building Science  

Broader source: Energy.gov (indexed) [DOE]

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

306

Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office building.  

E-Print Network [OSTI]

??Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such (more)

Blair, Jacob Dale

2014-01-01T23:59:59.000Z

307

Solar Heating and Cooling  

Science Journals Connector (OSTI)

...diameter of the turbine is about 60 meters. The Putnam wind generator installed...than 15,000 wind generat-ing...the cost of the offshore platforms, would...billion. If these wind generators were...15,000 wind turbines, and their cost...

John I. Yellott

1974-08-09T23:59:59.000Z

308

Building Name BuildingAbbr  

E-Print Network [OSTI]

Capture/InstrCam ClassroomCapture/TechAsst SkypeWebcam NOTES for R&R Only Room Detail Building Times Weekend and Evening BldgBuilding Name BuildingAbbr RoomNumber SeatCount DepartmentalPriority SpecialNeedsSeating Special Detail Building Contacts Event Scheduling Detail BI 02010 104 NR Y 52 61 81 84 85 86 87 88 89 90 91 92 94

Parker, Matthew D. Brown

309

Residential Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

310

Stochastic cooling in RHIC  

SciTech Connect (OSTI)

The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

Brennan J. M.; Blaskiewicz, M.; Mernick, K.

2012-05-20T23:59:59.000Z

311

Energy Reduction Plan for State Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction Plan for State Buildings Reduction Plan for State Buildings Energy Reduction Plan for State Buildings < Back Eligibility Institutional Local Government Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State Massachusetts Program Type Energy Standards for Public Buildings Provider Massachusetts Department of Energy Resources (DOER) In April 2007, Massachusetts Gov. Deval Patrick signed Executive Order 484, titled "Leading by Example: Clean Energy and Efficient Buildings." This order establishes numerous energy targets and mandates for state government

312

State Building Energy Efficiency Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

State Building Energy Efficiency Program State Building Energy Efficiency Program State Building Energy Efficiency Program < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Utah Program Type Energy Standards for Public Buildings Provider State of Utah Department of Administrative Services On March 17, 2006, [http://www.le.state.ut.us/~2006/bills/hbillenr/hb0080.pdf House Bill 80] was enacted in Utah, requiring the Division of Facilities Construction and Management to administer the State Building Energy Efficiency Program. The Division is responsible for developing guidelines, incentives and procedures for energy efficiency and reduction of costs in state

313

Miami-Dade County - Expedited Green Buildings Process | Department of  

Broader source: Energy.gov (indexed) [DOE]

Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process Miami-Dade County - Expedited Green Buildings Process < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Water Heating Wind Program Info State Florida Program Type Green Building Incentive Provider Miami-Dade Permitting and Inspection Center In an effort to promote environmentally sensitive design and construction, the Miami-Dade County Commissioners passed an ordinance in June 2005 to expedite the permitting process for "green" buildings certified by a recognized environmental rating agency. Commercial, industrial, and

314

City of San Francisco - Green Building Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » City of San Francisco - Green Building Code City of San Francisco - Green Building Code < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Building Energy Code Provider San Francisco San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the following schedule:

315

Green Building and Energy Reduction Standards for State Agencies |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Green Building and Energy Reduction Standards for State Agencies Green Building and Energy Reduction Standards for State Agencies < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State District of Columbia Program Type Energy Standards for Public Buildings Provider Washington Department of General Administration On January 5, 2005, Washington's governor signed Executive Order 05-01, directing state agencies to adopt green building practices in the construction of all new buildings and in major (over 60%) renovation of

316

City of Scottsdale - Green Building Incentives | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Scottsdale - Green Building Incentives Scottsdale - Green Building Incentives City of Scottsdale - Green Building Incentives < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Solar Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Program Info State Arizona Program Type Green Building Incentive Provider City of Scottsdale Scottsdale's Green Building Program, established in 1998, was the first such program in Arizona with an emphasis on residential home construction.

317

New York City - Energy Conservation Requirements for Existing Buildings |  

Broader source: Energy.gov (indexed) [DOE]

New York City - Energy Conservation Requirements for Existing New York City - Energy Conservation Requirements for Existing Buildings New York City - Energy Conservation Requirements for Existing Buildings < Back Eligibility Commercial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Program Info State New York Program Type Building Energy Code Provider New York City Mayor's Office of Operations In December 2009 the New York City Council enacted a series of bills intended to improve the energy efficiency of existing buildings in the city. Each of the four bills addresses a different aspect of improving energy efficiency in the city's buildings as follows: energy conservation

318

San Bernardino County - Green Building Requirement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bernardino County - Green Building Requirement Bernardino County - Green Building Requirement San Bernardino County - Green Building Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings In August 2007, the San Bernardino County Board of Supervisors approved a policy requiring that all new county buildings and major renovations be built to LEED Silver standards. The decision was part of the Green County San Bernardino project, which also includes incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Source http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA73R

319

City of Asheville - Efficiency Standards for City Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Asheville - Efficiency Standards for City Buildings Asheville - Efficiency Standards for City Buildings City of Asheville - Efficiency Standards for City Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State North Carolina Program Type Energy Standards for Public Buildings Provider City of Asheville In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon emissions by 2% per year until the city reaches an 80%

320

InspIrIng generatIons through Knowledge and dIscovery  

E-Print Network [OSTI]

;IntroductIon 2 Imagining the Future 2 On the Verge of a New Era 2 A Smithsonian for the 21st Century 3IthsonIan for the 21st century #12;2 introduction ImagInIng the Future imagine being able to access all known as a boy to the camp table he used on safari, to his contemporaries' recollections of his vigor

Mathis, Wayne N.

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

tHe LeAdING MBA IN JAPAN Japan's Leading  

E-Print Network [OSTI]

tHe LeAdING MBA IN JAPAN MBA Japan #12;Japan's Leading Master of Business adMinistration prograM the mcgill mBa JaPan Program, oFFered By mcgill University's desaUtels FacUlty oF management, is the leading mBa Program in JaPan. the two-weekends-Per-month Format allows stUdents to comPlete a FUll, to

Shoubridge, Eric

322

mis of most land plants is uniseriate (compris-ing one layer), and if SHR and SCR orthologs  

E-Print Network [OSTI]

378 mis of most land plants is uniseriate (compris- ing one layer), and if SHR and SCR orthologs- mis in some organs (8). These horsetails have apparently tinkered with their SCR and SHR genes to allow SHR to escape the clutches of SCR in the first endodermal layer, thus extend- ing the endodermis

323

ancient building system | OpenEI Community  

Open Energy Info (EERE)

ancient building system ancient building system Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

324

Buildings*","Energy Used For  

U.S. Energy Information Administration (EIA) Indexed Site

4. Energy End Uses, Number of Buildings for Non-Mall Buildings, 2003" 4. Energy End Uses, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All Buildings* ...............",4645,3982,3625,3472,801,119 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,1841,1715,354,"Q" "5,001 to 10,000 ..............",889,782,732,725,155,29 "10,001 to 25,000 .............",738,659,629,607,127,28 "25,001 to 50,000 .............",241,225,216,217,69,"Q" "50,001 to 100,000 ............",129,123,118,119,50,8

325

Building Technologies Office: Commercial Reference Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

326

Fusion of Feature-and Area-Based Information for Urban Buildings Modeling from Aerial Imagery  

E-Print Network [OSTI]

Fusion of Feature- and Area-Based Information for Urban Buildings Modeling from Aerial Imagery on Graph Cuts. The fusion pro- cess exploits the advantages of both information sources and thus yields the complete geometry of the build- ing. The fusion of those sparse features is very fragile as there is no way

Giger, Christine

327

Supercomputer Assisted Generation of Machine Learning Agents for the Calibration of Building Energy Models  

E-Print Network [OSTI]

consumed 74% of all electrictity and 34% of all natural gas produced in the United States thereby) Building Technologies Office (BTO) has a significant stake in improving the energy footprint and efficiency build- ings that do not employ energy efficient technologies present a low-hanging fruit that could

Wang, Xiaorui "Ray"

328

Gas turbine cooling system  

DOE Patents [OSTI]

A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

Bancalari, Eduardo E. (Orlando, FL)

2001-01-01T23:59:59.000Z

329

Would You Consider Installing a Cool Roof? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? Would You Consider Installing a Cool Roof? August 12, 2010 - 7:30am Addthis On Monday, Erin discussed cool roof technologies and how they can improve the comfort of buildings while reducing energy costs. Would you consider installing a cool roof? Why or why not? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Would You Consider Driving a Vehicle that Can Run on Biodiesel? Would You Consider Installing a Cool Roof? Tips: Energy-Efficient Roofs How Do You Save Water When Caring for Your Lawn?

330

Power electronics cooling apparatus  

DOE Patents [OSTI]

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

331

Logistics: Keeping cool  

Science Journals Connector (OSTI)

... Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 10.1038/507S8aLogistics: Keeping cool NeilSavageN

Neil Savage

2014-03-05T23:59:59.000Z

332

Cooling System Analysis.  

E-Print Network [OSTI]

??ABSTRACT This master thesis report describes the behavior of a cooling system based on the power consumption and power losses during the velocity range. The (more)

Cruz, Joo Pedro Brs da

2012-01-01T23:59:59.000Z

333

Cool Roofs | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Roofs Cool Roofs Cool Roofs Posted: July 18, 2012 - 1:59pm | Y-12 Report | Volume 9, Issue 1 | 2012 Hot, sunny days call for light-colored clothing to reflect the heat. As it turns out, the same principle works for roofs. Consider the results from a Lawrence Berkeley National Laboratory study in Austin, Texas, which measured a dark roof to average a whopping 43 degrees hotter than a light roof. The hotter the roof, the hotter the building becomes, and the more air-conditioning is needed - 11 percent, in that particular study. That in turn puts more carbon dioxide into the atmosphere. Higher atmospheric temperatures also affect atmospheric chemistry, causing higher ozone levels and more smog. Turning down the heat can be both inexpensive and simple, however: replace

334

Buildings Database  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable Energy EERE Home | Programs & Offices | Consumer Information Buildings Database Welcome Guest Log In | Register | Contact Us Home About All Projects...

335

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

336

Better Buildings Neighborhood Program: Better Buildings Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

337

Building Technologies Office: National Laboratories Supporting Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

338

Building Technologies Office: Integrated Building Management System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

339

Building Green in Greensburg: Greensburg State Bank  

Broader source: Energy.gov (indexed) [DOE]

Greensburg State Bank Greensburg State Bank When a tornado leveled 95% of Greensburg, the only thing left of Greensburg State Bank was the original vault. So the bank was rebuilt on its original site and re-opened for business just one year later. It was the second commercial building in Greensburg to do so. The new bank boasts a variety of green building features including an east-west building orientation that maximizes natural daylight inside, insulated concrete form (ICF) construction for an energy- efficient building envelope, and a high efficiency heating and cooling system. ENERGY EFFICIENCY FEATURES * An east-west building orientation maximizes natural daylighting in the interior and reduces the wall area on the east and west that the sun can heat up, decreasing the need for cooling

340

District Cooling Using Central Tower Power Plant  

Science Journals Connector (OSTI)

Abstract During the operation of solar power towers there are occasions, commonly in the summer season, where some of the heliostats have to stop focusing at the central receiver, located at the top of the tower, because the maximum temperature that the receiver can withstand has been reached. The highest demands of cooling for air conditioning take place at these same occasions. In the present paper, we have analyzed the possibility of focusing the exceeding heliostats to the receiver increasing the mass flow rate of the heat transfer fluid over the nominal value and using the extra heat as a source of an absorption chiller. The chilled water would be used to cool buildings and offices, using a district cooling network. Using the extra heat of the solar power tower plant would greatly reduce the electricity usage. In this work we have analyzed the case of a circular field of heliostats focusing at a circular receiver, such as the case of Gemasolar plant. We have quantified the thermal power that can be obtained from the unused heliostats, the cooling capacity of the absorption system as well as the heat losses through the insulated pipes that distribute the chilled water to the buildings of the network.

C. Marugn-Cruz; S. Snchez-Delgado; M.R. Rodrguez-Snchez; M. Venegas

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Technologies Office: Windows, Skylights, and Doors Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Windows, Skylights, and Windows, Skylights, and Doors Research to someone by E-mail Share Building Technologies Office: Windows, Skylights, and Doors Research on Facebook Tweet about Building Technologies Office: Windows, Skylights, and Doors Research on Twitter Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Google Bookmark Building Technologies Office: Windows, Skylights, and Doors Research on Delicious Rank Building Technologies Office: Windows, Skylights, and Doors Research on Digg Find More places to share Building Technologies Office: Windows, Skylights, and Doors Research on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

342

San Bernardino County - Green Building Incentive | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » San Bernardino County - Green Building Incentive San Bernardino County - Green Building Incentive < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Bioenergy Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Wind Program Info State California Program Type Green Building Incentive San Bernardino's Board of Supervisors launched Green County San Bernardino in August 2007. The program includes a number of incentives to encourage residents, builders, and businesses to adopt more sustainable practices. Builders who participate in San Bernardino County's

343

Cool Earth Solar  

ScienceCinema (OSTI)

In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

2014-02-26T23:59:59.000Z

344

Very Cool Close Binaries  

E-Print Network [OSTI]

We present new observations of cool <6000K and low mass <1Msun binary systems that have been discovered by searching several modern stellar photometric databases. The search has led to a factor of 10 increase in the number of known cool close eclipsing binary systems.

J. Scott Shaw; Mercedes Lopez-Morales

2006-03-28T23:59:59.000Z

345

Secondary condenser Cooling water  

E-Print Network [OSTI]

Receiver Secondary condenser LC LC Reboiler TC PC Cooling water PC FCPC Condenser LC XC Throttling valve ¨ mx my l© ª y s § y m «¬ ly my wx l n® ® x np © ¯ Condenser Column Compressor Receiver Super-heater Decanter Secondary condenser Reboiler Throttling valve Expansion valve Cooling water

Skogestad, Sigurd

346

Farm Buildings  

Science Journals Connector (OSTI)

... is intended to guide the American farmer and agricultural student in designing and constructing farm buildings. It is stated that farm ... . It is stated that farm buildings have had their most rapid development in America in the years since 1910. Prior ...

1923-03-24T23:59:59.000Z

347

Demonstration of high efficiency elastocaloric cooling with large DT using Jun Cui,1,2  

E-Print Network [OSTI]

times that of CO2 [Buildings Energy Data Book (Building Technologies Program, Department of Energy, 2009 and environmentally friendly [A. D. Little, Report For Office of Building Technology State and Community ProgramsDemonstration of high efficiency elastocaloric cooling with large DT using NiTi wires Jun Cui,1

Rubloff, Gary W.

348

Home Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cooling Cooling Home Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read more Although your first thought for cooling may be air conditioning, there are many alternatives that provide cooling with less energy use. You might also consider fans, evaporative coolers, or heat pumps as your primary means of cooling. In addition, a combination of proper insulation, energy-efficient windows and doors, daylighting, shading, and ventilation will usually keep homes cool with a low amount of energy use in all but the hottest climates. Although ventilation is not an effective cooling strategy in hot, humid

349

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

350

Solar Desiccant Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Desiccant Cooling Solar Desiccant Cooling Speaker(s): Paul Bourdoukan Date: December 6, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil The development of HVAC systems is a real challenge regarding its environmental impact. An innovative technique operating only by means of water and solar energy, is desiccant cooling. The principle is evaporative cooling with the introduction of a dehumidification unit, the desiccant wheel to control the humidity levels. The regeneration of the desiccant wheel requires a preheated airstream. A solar installation is a very interesting option for providing the preheated airstream. In France, at the University of La Rochelle, and at the National Institute of Solar Energy (INES), the investigation of the solar desiccant cooling technique has been

351

Cooling of neutron stars  

Science Journals Connector (OSTI)

On the basis of current physical understanding, it is impossible to predict with confidence the interior constitution of neutron stars. Cooling of neutron stars provides a possible way of discriminating among possible states of matter within them. In the standard picture of cooling by neutrino emission developed over the past quarter of a century, neutron stars are expected to cool relatively slowly if their cores are made up of nucleons, and to cool faster if matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been called into question by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

C. J. Pethick

1992-10-01T23:59:59.000Z

352

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

353

Experiences of Using Models and Information of Building Automation System in Commissioning  

E-Print Network [OSTI]

Simulation programs are widely used in the design of heating and cooling devices. However, modeling of the whole building with simulation programs is exceptional at least in Finland. We have built and utilized whole building models in a...

Keranen, H.; Kalema, T.; Pesonen, A.

2004-01-01T23:59:59.000Z

354

Commissioning of A Large Office Building in Texas - A Case Study  

E-Print Network [OSTI]

Control System) programming and operation, and the installation of automatic chiller isolation valves, in addition to calibration and repair of building VAV (Variable Air Volume) boxes. In the case study building, four air-cooled chillers and two chilled...

Deng, S.; Turner, W. D.; Liu, M.

2000-01-01T23:59:59.000Z

355

Better Buildings Neighborhood Program: Better Buildings Residential  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

356

Building Technologies Office: Commercial Building Partnership Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

357

Building Technologies Office: About Residential Building Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

358

Simulation of radiant cooling performance with evaporative cooling sources  

E-Print Network [OSTI]

a trade-off between cooling power and faster reaction time,a trade-off between cooling power and faster reaction time,derived potential peak cooling power of 77 W/m 2 (24 Btu/hr-

Moore, Timothy

2008-01-01T23:59:59.000Z

359

Harris County - LEED Requirement for County Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings Harris County - LEED Requirement for County Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Texas Program Type Energy Standards for Public Buildings Provider Harris County In 2009, the Harris County Commissioners Court approved a measure that requires all new county buildings to meet minimum LEED certification standards. Buildings do not have to register with the the U.S. Green Building Council. The Harris County Facilities and Property Management (FPM) Division also requires all county buildings to meet minimum energy efficiency and sustainability measures, as described in the

360

N. Mariana Islands - Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code N. Mariana Islands - Building Energy Code < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info Program Type Building Energy Code Provider Department of Public Works ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] web sites.'' Building codes for the Commonwealth of the Northern Mariana Islands (CNMI)

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

BUILDING TECHNOLOGIES PROGRAM CODE NOTES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IECC IECC BUILDING TECHNOLOGIES PROGRAM CODE NOTES 1 The intent of the pipe insulation requirements is to reduce temperature changes while fluids are being transported through piping associated with heating, cooling or service hot water (SHW) systems, thereby saving energy and reducing operating costs. Uninsulated piping systems that transport fluids can create water temperature irregularities, which ultimately requires additional heating or cooling and associated energy costs to bring the water to operating temperature. Any piping that carries heated or cooled water, including piping systems with external heating (e.g., heat trace or impedance heating), should be thermally insulated to reduce heat loss or gain, allowing the fluid to be delivered at the intended temperature.

362

Glossary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C-Factor C-Factor Time rate of steady-state heat flow through the unit area of a material or construction surfaces. Units of C-Factor are Btu/h x ft2 x degrees Fahrenheit. Note that the C-factor does not include soil or air films. CABO The Council of American Building Officials. Cavity Insulation Insulation installed between structural members such as wood studs, metal framing, and Z-clips. CDD Cooling degree day. See "Cooling Degree Days." CDD50 Cooling degree days base 50°F. See "Degree Day Base 50F." CE Combustion efficiency. Ceiling The ceiling requirements apply to portions of the roof and/or ceiling through which heat flows. Ceiling components include the interior surface of flat ceilings below attics, the interior surface of cathedral or vaulted

363

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling Evaporative Cooling (Redirected from Hybrid Cooling) Jump to: navigation, search Dictionary.png Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can

364

Thermal performance of phase change wallboard for residential cooling application  

SciTech Connect (OSTI)

Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

Feustel, H.E.; Stetiu, C.

1997-04-01T23:59:59.000Z

365

Electronic Cooling in Graphene  

Science Journals Connector (OSTI)

Energy transfer to acoustic phonons is the dominant low-temperature cooling channel of electrons in a crystal. For cold neutral graphene we find that the weak cooling power of its acoustic modes relative to their heat capacity leads to a power-law decay of the electronic temperature when far from equilibrium. For heavily doped graphene a high electronic temperature is shown to initially decrease linearly with time at a rate proportional to n3/2 with n being the electronic density. The temperature at which cooling via optical phonon emission begins to dominate depends on graphene carrier density.

R. Bistritzer and A. H. MacDonald

2009-05-21T23:59:59.000Z

366

Multiphase cooling flows  

E-Print Network [OSTI]

I discuss the multiphase nature of the intracluster medium whose neglect can lead to overestimates of the baryon fraction of clusters by up to a factor of two. The multiphase form of the cooling flow equations are derived and reduced to a simple form for a wide class of self-similar density distributions. It is shown that steady-state cooling flows are \\emph{not} consistent with all possible emissivity profiles which can therefore be used as a test of the theory. In combination, they provide strong constraints on the mass distribution within the cooling radius.

Peter A. Thomas

1996-08-20T23:59:59.000Z

367

Building America Residential Buildings Energy Efficiency Meeting...  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Energy Efficiency Meeting: July 2010 Building America Residential Buildings Energy Efficiency Meeting: July 2010 On this page, you may link to the summary...

368

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers [EERE]

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

369

Building America Building Science Education Roadmap  

Broader source: Energy.gov (indexed) [DOE]

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

370

Initial and Continuous Commissioning of Building Automation and Control Systems (BACS) -Preview EN ISO 16484-  

E-Print Network [OSTI]

8th International Conference for Enhanced Building Operations - ICEBO?08 Conference Center of the Federal Ministry of Economics and Technology Berlin, October 20 - 22, 2008 Dipl.-Ing. Hans R. Kranz VDI HAK Consulting Enzstrasse 10 76694... Forst 0 04 91 72/ 2 92 60 21 hans@kranz.com INITIAL AND CONTINUOUS COMMISSIONING OF BUILDING AUTOMATION AND CONTROL SYSTEMS (BACS) - PREVIEW EN ISO 16484 - Did you ever think about: ?why are our buildings so dumb?? The simple answer might be...

Kranz, H. R.

2008-01-01T23:59:59.000Z

371

Los Angeles County - Green Building Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Los Angeles County - Green Building Program Los Angeles County - Green Building Program Los Angeles County - Green Building Program < Back Eligibility Commercial Construction Industrial Local Government Multi-Family Residential Nonprofit Residential Schools Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating Buying & Making Electricity Water Water Heating Program Info State California Program Type Building Energy Code Provider Los Angeles County Department of Regional Planning '''''Note: The Regional Planning Commission is considering amendments to the requirements outlined here. See the website above for the most recent

372

Green Building Standards for State Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Standards for State Facilities Green Building Standards for State Facilities Green Building Standards for State Facilities < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Arkansas Program Type Energy Standards for Public Buildings Provider Arkansas Economic Development Commission Effective July 1, 2005, Act 1770 (the Arkansas Energy and Natural Resources Conservation Act), encourages all state agencies, including institutions of higher education, to use Leadership in Energy and Environmental Design (LEED) and Green Globes rating systems whenever possible and appropriate in

373

City of Philadelphia - Energy Standards for Public Buildings | Department  

Broader source: Energy.gov (indexed) [DOE]

Philadelphia - Energy Standards for Public Buildings Philadelphia - Energy Standards for Public Buildings City of Philadelphia - Energy Standards for Public Buildings < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Pennsylvania Program Type Energy Standards for Public Buildings Provider City of Philadelphia In 2009, the Philadelphia Office of Sustainability released a six-year plan, [http://www.phila.gov/green/greenworks/index.html Greenworks Philadelphia], to become the greenest city in America. The plan sets 15 sustainability-related targets. Target 1 is a goal to decrease energy consumption by city government by 30% by 2015, compared to 2008 levels.

374

Energy Efficiency in State Buildings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency in State Buildings Energy Efficiency in State Buildings Energy Efficiency in State Buildings < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Commercial Lighting Lighting Bioenergy Manufacturing Buying & Making Electricity Solar Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Michigan Program Type Energy Standards for Public Buildings Provider Michigan Department of Management and Budget In October 2008, the Michigan legislature enacted a series of bills addressing several components of the state's energy markets. Among the enacted laws was Public Act (P.A.) 295, which renewed and revised the

375

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

376

Radiant Cooling | Department of Energy  

Energy Savers [EERE]

hours, reducing the electrical demand on electric utilities. Learn More Home Cooling Systems References Final Report Compilation for Residential Hydronic Radiant Cooling and...

377

Better Buildings  

E-Print Network [OSTI]

Challenge National leadership Initiative Better Information MOU with the Appraisal Foundation Better Tax Incentives/Credits New :179d eligibility and tool; Announced in March Better Financing With Small Business...: engaging in ESCO financing with low interest bonds) ?Tenant/Employee behaviors at odds with efficiency goals ?Split incentives ?Not enough/qualified workforce Better Buildings strategies to overcome barriers and drive action 4 Better Buildings...

Neukomm, M.

2012-01-01T23:59:59.000Z

378

Energy Department Invests to Save on Heating, Cooling and Lighting |  

Broader source: Energy.gov (indexed) [DOE]

to Save on Heating, Cooling and Lighting to Save on Heating, Cooling and Lighting Energy Department Invests to Save on Heating, Cooling and Lighting August 14, 2013 - 1:39pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's efforts to reduce energy bills for American families and businesses and reduce greenhouse gas emissions, the Energy Department today announced 12 projects to develop innovative heating, cooling and insulation technologies as well as open source energy efficiency software to help homes and commercial buildings save energy and money. These projects will receive an approximately $11 million Energy Department investment, matched by about $1 million in private sector funding. "Energy efficient technologies - from improved heating and cooling

379

TEST PLAN FOR MONITORING COOLING COILS IN A LABORATORY SETTING  

SciTech Connect (OSTI)

The objective of this research project is to understand and quantify the moisture removal performance of cooling coils at part-load conditions. The project will include a comprehensive literature review, detailed measurement of cooling coil performance in a laboratory facility, monitoring cooling systems at several field test sites, and development/validation of engineering models that can be used in energy calculations and building simulations. This document contains the detailed test plan for monitoring cooling coil performance in a laboratory setting. Detailed measurements will be taken on up to 10 direct expansion (DX) and chilled water cooling coils in various configurations to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation.

Don B. Shirey, III

2002-04-01T23:59:59.000Z

380

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

382

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

383

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

384

Sisyphus Cooling of Lithium  

E-Print Network [OSTI]

Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 \\mu K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali species.

Paul Hamilton; Geena Kim; Trinity Joshi; Biswaroop Mukherjee; Daniel Tiarks; Holger Mller

2014-03-20T23:59:59.000Z

385

HomeCooling101  

Energy Savers [EERE]

openings to prevent warm air from leaking into your home. Insulate and seal ducts -- air loss through ducts accounts for about 30 percent of a cooling system's energy consumption....

386

Cool Magnetic Molecules  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

387

Building America Whole-House Solutions for New Homes: Treasure...  

Office of Environmental Management (EM)

who worked with SMUD, DOE, NREL, and ConSol to build HERS-54 homes with high-efficiency HVAC, ducts buried in attic insulation, SmartVent cooling, and rooftop PV. Treasure Homes:...

388

Laser cooling of solids  

SciTech Connect (OSTI)

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

389

Refrigerant directly cooled capacitors  

DOE Patents [OSTI]

The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

2007-09-11T23:59:59.000Z

390

Building Energy Software Tools Directory: Analysis Platform  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Platform Analysis Platform Technical and economic performance estimation for building heating, cooling, and water heating equipment, including power generating options such as photovoltaics, fuel cells, and cogeneration. Based on representative loads in residential and commercial sectors. Focus on HVAC, aggregated electric, and integrated systems. Keywords heating, cooling, and SWH equipment, commercial buildings Validation/Testing N/A Expertise Required Moderate. Users N/A Audience Building end-use analysts, engineers, policy analysts. Input Building loads (selected from library, electric and fossil fuel rates, weather parameters, type of equipment, equipment operating parameters, and operating schedules. Allows detailed specification of equipment behavior, or use of default data. Data options correspond to selectable skills

391

Archive Reference Buildings by Building Type: Warehouse  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

392

Archive Reference Buildings by Building Type: Supermarket  

Broader source: Energy.gov [DOE]

Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is...

393

Development and Application of a Procedure to Estimate Overall Building and Ventilation Parameters from Monitored Commercial Building Energy Use  

E-Print Network [OSTI]

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building...

Deng, Song

394

Development and application of a procedure to estimate overall building and ventilation parameters from monitored commercial building energy use  

E-Print Network [OSTI]

This thesis proposes and validates a simplified model appropriate for parameter identification and evaluates several different inverse parameter identification schemes suitable for use when heating and cooling data from a commercial building...

Deng, Song Jiu

2012-06-07T23:59:59.000Z

395

Commercial Building Energy Asset Scoring Tool Application Programming Interface  

Broader source: Energy.gov (indexed) [DOE]

Commercial Building Energy Asset Scoring Tool Commercial Building Energy Asset Scoring Tool Application Programming Interface NORA WANG GEOFF ELLIOTT JUSTIN ALMQUIST EDWARD ELLIS Pacific Northwest National Laboratory JUNE 14, 2013 Commercial Building Energy Asset Score Energy asset score evaluates the as- built physical characteristics of a building Energy Asset Score and its overall energy efficiency, independent of occupancy and operational choices. The physical characteristics include Building envelope (window, wall, roof) HVAC systems (heating, cooling, air distribution) Lighting system (luminaire and lighting control systems) Service hot water system Other major energy-using equipment (e.g. commercial refrigerator, commercial kitchen appliances, etc.) Building energy use is affected by many factors.

396

Commercial Building Energy Asset Scoring Tool | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Scoring Tool Scoring Tool Commercial Building Energy Asset Scoring Tool This Asset Scoring Tool will guide your data collection, store your building information, and generate Asset Scores and system evaluations for your building envelope and building systems. The Asset Scoring Tool will also identify cost-effective upgrade opportunities and help you gain insight into the energy efficiency potential of your building. Key Features The Asset Scoring Tool will generate an Asset Score Report that will provide: A whole-building energy efficiency score based on the building envelope and building systems (heating, ventilation, cooling, lighting and service hot water). An evaluation of the current building systems that identifies inefficient building systems A set of opportunities to save energy and money

397

Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Paul Johnston-Knight Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water efficiency. Namely, Executive Order 13514 Federal Leadership in Environmental, Energy, and Economic Performance, requires an annual two percent reduction of water use intensity (water use per square foot of building space) for agency potable water consumption as well as a two percent reduction of water use for industrial, landscaping, and agricultural applica- tions. Cooling towers can be a significant

398

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

399

AN ENERGY COST OPTIMIZATION METHOD FOR A LARGE SCALE HYBRID CENTRAL COOLING PLANT WITH MULTIPLE ENERGY SOURCES UNDER A COMPLEX ELECTRICITY COST STRUCTURE.  

E-Print Network [OSTI]

??The cooling energy cost could be a significant portion of the total energy cost for a large organization or building complex during summer. A hybrid (more)

Guo, Yin

2012-01-01T23:59:59.000Z

400

San Diego County - Green Building Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Program Green Building Program San Diego County - Green Building Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Program Info State California Program Type Green Building Incentive Provider County of San Diego The County of San Diego has a Green Building Incentive Program designed to promote the use of resource efficient construction materials, water conservation and energy efficiency in new and remodeled residential and commercial buildings. As part of the program, the County will waive the fee for the building permit and plan check for a photovoltaic system. In addition, for qualifying resource conservation measures, the County will

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Riverside County - Sustainable Building Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

County - Sustainable Building Policy County - Sustainable Building Policy Riverside County - Sustainable Building Policy < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Energy Standards for Public Buildings Provider County of Riverside In February 2009, the County of Riverside Board of Supervisors adopted Policy Number H-29, creating the Sustainable Building Policy. The Policy requires that all new county building projects initiated on or after March 1, 2009 must meet the criteria for LEED certification.The Board of Supervisors may grant exceptions, especially for projects under 5,000 square feet. Additionally, all county buildings project must have a LEED

402

Howard County - High Performance and Green Building Property Tax Credits |  

Broader source: Energy.gov (indexed) [DOE]

Howard County - High Performance and Green Building Property Tax Howard County - High Performance and Green Building Property Tax Credits Howard County - High Performance and Green Building Property Tax Credits < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Maximum Rebate High Performance Buildings: none specified High Performance R-2, R-3 Buildings: $5,000 per building or owner-occupied unit Green Buildings (w/energy conservation devices): limited to assessed property taxes on the structure Program Info Start Date 07/01/2008 State Maryland

403

Burbank Water and Power - Green Building Incentive Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program Burbank Water and Power - Green Building Incentive Program < Back Eligibility Commercial Multi-Family Residential Nonprofit Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Water Heating Wind Program Info State California Program Type Green Building Incentive Provider Rebates The U.S. Green Building Council is a non-profit organization that promotes the design and construction of buildings that are environmentally responsible, profitable, and healthy places to live and work. The Green Building Council developed the Leadership in Energy and Environmental

404

Green Building Standards for State Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Green Building Standards for State Facilities Green Building Standards for State Facilities Green Building Standards for State Facilities < Back Eligibility State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Manufacturing Buying & Making Electricity Solar Lighting Windows, Doors, & Skylights Heating Water Water Heating Wind Program Info State Rhode Island Program Type Energy Standards for Public Buildings Provider Rhode Island Office of Energy Resources In November 2009, Rhode Island enacted legislation (S.B. 232) requiring that public building construction projects 5,000 square feet or larger and public building renovation projects 10,000 square feet or larger achieve the U.S. Green Building Council's LEED certification or an equivalent

405

City of San Diego - Sustainable Building Expedited Permit Program |  

Broader source: Energy.gov (indexed) [DOE]

San Diego - Sustainable Building Expedited Permit Program San Diego - Sustainable Building Expedited Permit Program City of San Diego - Sustainable Building Expedited Permit Program < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Buying & Making Electricity Program Info Start Date 05/20/2003 State California Program Type Green Building Incentive Provider City of San Diego In 2002, the City of San Diego passed a Resolution R-298001, which amended the [http://dsireusa.org/incentives/incentive.cfm?Incentive_Code=CA42R&re=1&ee=1 Sustainable Building Policy] to allow for expedited permitting for sustainable buildings. Sustainable buildings are defined in Policy Number

406

City of Chicago - Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chicago - Building Energy Code Chicago - Building Energy Code City of Chicago - Building Energy Code < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Insulation Program Info State Illinois Program Type Building Energy Code Provider City of Chicago The Chicago Energy Conservation Code (CECC) requires residential buildings applying for building permits to comply with energy efficient measures which go beyond those required by the [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=I... Illinois Building Energy Code]. The applicability of the CECC to commercial construction was superseded when the state of Illinois adopted the more stringent IECC 2009 model code. Illinois state law in 2009 also mandated

407

Page 1 of 42 BUILDING ENERGY RESEARCH GRANT  

E-Print Network [OSTI]

at the UC Davis Engineering Shop, and John McNamara of Lightning Demolition were essential to onPage 1 of 42 BUILDING ENERGY RESEARCH GRANT (BERG) PROGRAM BERG FINAL REPORT Improving Cost Effectiveness of Radiant Floor Cooling University of California, Davis Western Cooling Efficiency Center 1450

California at Davis, University of

408

Building Technologies Office: Energy Modeling Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

409

Numerical Simulation of Transpiration Cooling  

E-Print Network [OSTI]

University, Templergraben 55, 52056 Aachen SUMMARY Transpiration cooling using ceramic matrix composite (CMC

410

Residential Buildings Integration Program  

Broader source: Energy.gov [DOE]

Residential Buildings Integration Program Presentation for the 2013 Building Technologies Office's Program Peer Review

411

Building Scale DC Microgrids  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Marnay, Chris

2013-01-01T23:59:59.000Z

412

Commercial Buildings Consortium  

Broader source: Energy.gov [DOE]

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

413

Energy Efficient Buildings Hub  

Broader source: Energy.gov [DOE]

Energy Efficient Buildings HUB Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

414

Evaporative Cooling | Open Energy Information  

Open Energy Info (EERE)

Evaporative Cooling: Evaporative Cooling: An evaporative cooler is a device that cools air through the evaporation of water. Evaporative cooling works by employing water's large enthalpy of vaporization. The temperature of dry air can be dropped significantly through the phase transition of liquid water to water vapor (evaporation), which can cool air using much less energy than refrigeration. Evaporative cooling requires a water source, and must continually consume water to operate. Other definitions:Wikipedia Reegle Evaporative Cooling Evaporative Cooling Tower Diagram of Evaporative Cooling Tower Evaporative cooling technologies take advantage of both air and water to extract heat from a power plant. By utilizing both water and air one can reduce the amount of water required for a power plant as well as reduce the

415

Air Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling Cooling Jump to: navigation, search Dictionary.png Air Cooling: Air cooling is commonly defined as rejecting heat from an object by flowing air over the surface of the object, through means of convection. Air cooling requires that the air must be cooler than the object or surface from which it is expected to remove heat. This is due to the second law of thermodynamics, which states that heat will only move spontaneously from a hot reservoir (the heat sink) to a cold reservoir (the air). Other definitions:Wikipedia Reegle Air Cooling Air Cooling Diagram of Air Cooled Condenser designed by GEA Heat Exchangers Ltd. (http://www.gea-btt.com.cn/opencms/opencms/bttc/en/Products/Air_Cooled_Condenser.html) Air cooling is limited on ambient temperatures and typically require a

416

Water Cooling | Open Energy Information  

Open Energy Info (EERE)

Cooling: Cooling: Water cooling is commonly defined as a method of using water as a heat conduction to remove heat from an object, machine, or other substance by passing cold water over or through it. In energy generation, water cooling is typically used to cool steam back into water so it can be used again in the generation process. Other definitions:Wikipedia Reegle Water Cooling Typical water cooled condenser used for condensing steam Water or liquid cooling is the most efficient cooling method and requires the smallest footprint when cold water is readily available. When used in power generation the steam/vapor that exits the turbine is condensed back into water and reused by means of a heat exchanger. Water cooling requires a water resource that is cold enough to bring steam, typically

417

Cooling Energy and Cost Savings with Daylighting in a Hot and Humid Climate  

E-Print Network [OSTI]

Fenestration performance in nonresidential buildings in hot climates is often a large cooling load liability. Proper fenestration design and the use of daylight-responsive dimming controls on electric lights can, in addition to drastically reducing...

Arasteh, D.; Johnson, R.; Selkowitz, S.; Connell, D.

1985-01-01T23:59:59.000Z

418

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network [OSTI]

Distributed Generation in Japanese Prototype Buildings: English Version On-site absorption cooling On-site heating On-site generatorsDistributed Generation in Japanese Prototype Buildings: English Version On-site direct absorption cooling On-site heating On-site generatorDistributed Generation in Japanese Prototype Buildings: English Version Macrogrid On-site heating fuel consumption (tJ/a) carbon (t/a) On-site generators

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

419

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

on ice storage power and cooling load was not available.Ice storage system power consumption 2 Stored cooling 3 Peakpower density 0.38 W/ft 2 (4.1 W/m 2 ) The building is equipped with a cooling

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the  

Broader source: Energy.gov (indexed) [DOE]

Steps to Implement Cool Roofs at DOE and Steps to Implement Cool Roofs at DOE and Across the Federal Government Secretary Chu Announces Steps to Implement Cool Roofs at DOE and Across the Federal Government July 19, 2010 - 12:00am Addthis Washington - U.S. Department of Energy Secretary Steven Chu today announced a series of initiatives underway at the Department of Energy to more broadly implement cool roof technologies on DOE facilities and buildings across the federal government. Cool roofs use lighter-colored roofing surfaces or special coatings to reflect more of the sun's heat, helping improve building efficiency by reducing cooling costs and offsetting carbon emissions. President Obama and Secretary Chu have made clear that the federal government should play a leading role in moving the nation toward a more

422

Building Technologies Office: Building America Research Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

423

Building Technologies Office: Commercial Building Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

424

cooling | OpenEI  

Open Energy Info (EERE)

cooling cooling Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

425

Effect of tree-shading on energy demand of two similar buildings  

Science Journals Connector (OSTI)

Abstract This study investigates the effect of tree-shading on energy demand in two similar buildings. Outdoor and indoor air temperature was measured simultaneously for a period of 6 months. Five different base temperatures ranging from 20C to 25C were chosen and used to calculate cooling degree-days. Degree-day and cooling/warming rate methods were used to estimate cooling energy requirements for the two buildings. Indoor and outdoor cooling degree days were observed to be more for the un-shaded buildings compared to the tree-shaded one. Indoor warming and cooling rate show that the un-shaded building warms earlier and faster than the tree-shaded. Results indicate that tree-shading can save up to 34,500 NGN (US$218) on energy costs. The study shows the role of greening in reducing energy demand in buildings.

Ahmed Adedoyin Balogun; Tobi Eniolu Morakinyo; Olumuyiwa Bayode Adegun

2014-01-01T23:59:59.000Z

426

Hidden buildings  

Science Journals Connector (OSTI)

... to charge to research grants a portion of the costs of constructing and financing new buildings. What this means is that institutions confident that their researchers would be well supported ... that institutions confident that their researchers would be well supported have

1991-11-28T23:59:59.000Z

427

Cooling Towers Make Money  

E-Print Network [OSTI]

was hired and wrote specifications for a four cell induced draft counterflow cooling tower to cool 10,000 GPM entering at 95 0 F leaving at 85 0 F during an 80 0 F ambient wet bulb temperature. The specifications required that the bidders project a... F during an ambient wet bulb temperature of 7] OF could not be met The SuperCellular film fill, style] 3] 62 Illustration 3 was selected by the consultant because of its previous highly satisfactory service in sewage treatment trickling filter...

Burger, R.

428

Combustor liner cooling system  

DOE Patents [OSTI]

A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

Lacy, Benjamin Paul; Berkman, Mert Enis

2013-08-06T23:59:59.000Z

429

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Palao, J P; Gordon, J M; Palao, Jose P.; Kosloff, Ronnie; Gordon, Jeffrey M.

2001-01-01T23:59:59.000Z

430

Quantum thermodynamic cooling cycle  

E-Print Network [OSTI]

The quantum-mechanical and thermodynamic properties of a 3-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force - the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultra-low temperatures, is determined and shown to respect the recently-established fundamental bound based on the second and third laws of thermodynamics.

Jose P. Palao; Ronnie Kosloff; Jeffrey M. Gordon

2001-06-08T23:59:59.000Z

431

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtColg | Open Energy  

Open Energy Info (EERE)

DstrtColg DstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 38.7648166048 + Sweden Building 05K0002 + 44.9720670391 + Sweden Building 05K0003 + 11.6524472384 + Sweden Building 05K0004 + 35.3996101365 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 24.0451630889 + Sweden Building 05K0007 + 18.6296832954 + Sweden Building 05K0008 + 15.7692307692 + Sweden Building 05K0009 + 17.2637030643 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 5.09803921569 + Sweden Building 05K0012 + 15.0675825393 + Sweden Building 05K0013 + 21.4822771214 +

432

THERMAL BUILDING PERFORMANCE OPTIMIZATION USING SPATIAL ARCHETYPES  

E-Print Network [OSTI]

is spent for heating and cooling systems, see Figure 1.2. Figure 1.1 Primary energy consumption by sector, 1970-2020 in quadrillion Btu (EIA, 2001) Figure 1.2 Residential Primary Energy Consumption by end use encouragement, love and support #12;1 CHAPTER 1 INTRODUCTION 1.1. Energy Consumption Energy conscious building

Papalambros, Panos

433

Dehumidification and cooling loads from ventilation air  

SciTech Connect (OSTI)

The importance of controlling humidity in buildings is cause for concern, in part, because of indoor air quality problems associated with excess moisture in air-conditioning systems. But more universally, the need for ventilation air has forced HVAC equipment (originally optimized for high efficiency in removing sensible heat loads) to remove high moisture loads. To assist cooling equipment and meet the challenge of larger ventilation loads, several technologies have succeeded in commercial buildings. Newer technologies such as subcool/reheat and heat pipe reheat show promise. These increase latent capacity of cooling-based systems by reducing their sensible capacity. Also, desiccant wheels have traditionally provided deeper-drying capacity by using thermal energy in place of electrical power to remove the latent load. Regardless of what mix of technologies is best for a particular application, there is a need for a more effective way of thinking about the cooling loads created by ventilation air. It is clear from the literature that all-too-frequently, HVAC systems do not perform well unless the ventilation air loads have been effectively addressed at the original design stage. This article proposes an engineering shorthand, an annual load index for ventilation air. This index will aid in the complex process of improving the ability of HVAC systems to deal efficiently with the amount of fresh air the industry has deemed useful for maintaining comfort in buildings. Examination of typical behavior of weather shows that latent loads usually exceed sensible loads in ventilation air by at least 3:1 and often as much as 8:1. A designer can use the engineering shorthand indexes presented to quickly assess the importance of this fact for a given system design. To size those components after they are selected, the designer can refer to Chapter 24 of the 1997 ASHRAE Handbook--Fundamentals, which includes separate values for peak moisture and peak temperature.

Harriman, L.G. III [Mason-Grant, Portsmouth, NH (United States); Plager, D. [Quantitative Decision Support, Portsmouth, NH (United States); Kosar, D. [Gas Research Inst., Chicago, IL (United States)

1997-11-01T23:59:59.000Z

434

Impact of Reflective Roofing on Cooling Electrical Use and Peak Demand in a Florida Retail Mall  

E-Print Network [OSTI]

on Energy Efficiency in Buildings, American Council for an Energy Efficient Economy, Washington D.C., Vol. 9, p. 1, August, 1992. Akbari, H., Bretz, S., Kurn, D.M. and Hanford, J., ?Peak Power and Cooling Energy Savings of High Albedo Roofs,? Energy... positive pressure dehumidified air ventilation in hot humid climates, quiet exhaust fan ventilation in cool climates, solar water heaters, heat pump water heaters, high efficiency right sized heating/cooling equipment, and gas fired combo space...

Parker, D. S.; Sonne, J. K.; Sherwin, J. R.

2002-01-01T23:59:59.000Z

435

Building Energy Software Tools Directory: AAMASKY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AAMASKY AAMASKY Analysis of component and total heating, cooling, and lighting energy consumption attributable to skylights in commercial buildings, as well as peak demand impacts. Also provides hourly and monthly patterns of illumination levels from daylighting. The American Architectural Manufacturers Association's AAMASKY (AAMA SKYlight) consists of a Skylight Design Guidelines Handbook containing worksheet-based calculations, as well as a software spreadsheet that allows much more rapid determination of skylight impacts; all required data for analysis in ten U.S. climates is provided. Directly applicable to simple diffusing skylight designs for most types of commercial buildings. Helps achieve compliance with performance-based building codes. With experience, can be used for some

436

Building Technologies Office: About Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

437

Analysis of combined cooling, heating, and power systems based on source primary energy consumption  

Science Journals Connector (OSTI)

Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.

Nelson Fumo; Louay M. Chamra

2010-01-01T23:59:59.000Z

438

Turbomachine rotor with improved cooling  

DOE Patents [OSTI]

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

1998-05-26T23:59:59.000Z

439

Turbomachine rotor with improved cooling  

DOE Patents [OSTI]

A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

1998-01-01T23:59:59.000Z

440

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

"Designing equipment and buildings to more quickly respond to occupant  

E-Print Network [OSTI]

GRANTS · NSF ­ Occupant Oriented Heating and Cooling · NSF ­ Body Area Sensor Networks: A Holistic building technology to improve building efficiency by using information about occupant locations energy with only $25 in sensors. As an extension of this work, we propose installing servers into homes

Acton, Scott

442

City of Asheville - Building Permit Fee Waiver | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver City of Asheville - Building Permit Fee Waiver < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Program Info Start Date 7/01/2009 State North Carolina Program Type Green Building Incentive Provider Building Safety Department The City of Asheville waives fees for building permits and plan reviews for certain renewable energy technologies and green building certifications for homes and mixed-use commercial buildings. Waivers for building permit fees may apply to residences with the following designations (the regular fee is in parentheses): * HealthyBuilt Home Certification* ($100) * Energy Star Rating ($100) * Geothermal heat pumps ($50)

443

Building Energy Software Tools Directory: EE4 CBIP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CBIP CBIP EE4 CBIP logo. Designed to demonstrate a building's compliance to the requirements of the Commercial Building Incentive Program (CBIP) performance path approach. EE4 CBIP is offered by Natural Resources Canada's Office of Energy Efficiency to building owners and developers for the design and construction of new commercial and institutional buildings that use 25% less energy than similar buildings built to the requirements of the Model National Energy Code for Buildings (MNECB). EE4 CBIP may also be used to perform non-compliance energy analyses and thus to predict a building's annual energy consumption, and to assess the impact of design changes to the building. Alternatively, EE4 CBIP can be used to determine a building's heating and cooling loads for equipment sizing. EE4 CBIP calculations are

444

Building Technologies Program: Building America Publications  

Broader source: Energy.gov (indexed) [DOE]

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

445

Radiant heating and cooling, displacement ventilation with heat recovery and storm water cooling: An environmentally responsible HVAC system  

SciTech Connect (OSTI)

This paper describes the design, operation, and performance of an HVAC system installed as part of a project to demonstrate energy efficiency and environmental responsibility in commercial buildings. The systems installed in the 2180 m{sup 2} office building provide superior air quality and thermal comfort while requiring only half the electrical energy of conventional systems primarily because of the hydronic heating and cooling system. Gas use for the building is higher than expected because of longer operating hours and poor performance of the boiler/absorption chiller.

Carpenter, S.C.; Kokko, J.P. [Enermodal Engineering Ltd., Kitchener, Ontario (Canada)

1998-12-31T23:59:59.000Z

446

Detection of buildings through multivariate analysis of spectral, textural, and shape based features Thomas Knudsen National Survey and Cadastre DK, Geodetic Office, Rentemestervej 8, DK-2400 Copenhagen NV, thk@kms.dk  

E-Print Network [OSTI]

- proximate position (AP) of the building to be registered. In the present work, we develop a method detection algorithm is utilized; the first part discriminates buildings from background by thresholding for further work is now to get a more reliable evaluation of the exist- ing buildings, allowing us to decide

447

Retrofitting the Southeast: The Cool Energy House  

SciTech Connect (OSTI)

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

448

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network [OSTI]

s',:ratumin year 2001 for rebate incentives program ofthe utility provides a rebate so that any system with aof only 3 years, and (6) rebates--a rebate of $100 for each

Akbari, H.

2010-01-01T23:59:59.000Z

449

Model Predictive Control for the Operation of Building Cooling Systems  

E-Print Network [OSTI]

predictive control of thermal energy storage in buildingpredictive control of thermal energy storage in buildingsystems which use thermal energy storage. In particular the

Ma, Yudong

2010-01-01T23:59:59.000Z

450

Cooling, Heating, and Power for Commercial Buildings - Benefits...  

Broader source: Energy.gov (indexed) [DOE]

recuperators to maximize generation efficiency, even if waste heat is utilized. chpbenefitscommercialbuildings.pdf More Documents & Publications Opportunities for...

451

Integrated Modeling of Building Energy Requirements Incorporating Solar Assisted Cooling  

E-Print Network [OSTI]

current conditions solar thermal energy collection proves anenergy systems by the addition of active solar thermal

Firestone, Ryan; Marnay, Chris; Wang, Juan

2005-01-01T23:59:59.000Z

452

Preconditioning Outside Air: Cooling Loads from Building Ventilation  

E-Print Network [OSTI]

of the standard. To mitigate or nullify these additional weather loads, outdoor air preconditioning technologies are being promoted in combination with conventional HVAC operations downstream as a means to deliver the required fresh air and control humidity...

Kosar, D.

1998-01-01T23:59:59.000Z

453

Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers  

E-Print Network [OSTI]

Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

Smith, M.

454

Advanced, Integrated Control for Building Operations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced, Integrated Control for Building Advanced, Integrated Control for Building Operations Advanced, Integrated Control for Building Operations The U.S. Department of Energy (DOE) is currently conducting research into advanced integrated controls for building operations and seeking to validate energy savings strategies by simulations. Project Description This project will develop an advanced, integrated control for the following building systems: Cooling and heating Lighting Ventilation Window and blind operation. A variety of operation and energy saving control strategies will be evaluated on a building equipped with alternative cooling and heating methods, including fan coil units, radiant mullions, and motorized window and blinds. Project Partners Research is being undertaken by DOE, Siemens Corporate Research, Siemens

455

Miami-Dade County - Sustainable Buildings Program (Florida) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Miami-Dade County - Sustainable Buildings Program (Florida) Miami-Dade County - Sustainable Buildings Program (Florida) Miami-Dade County - Sustainable Buildings Program (Florida) < Back Eligibility Local Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Florida Program Type Energy Standards for Public Buildings Provider Miami-Dade County In 2005, the Miami-Dade Board of County Commissioners passed a [http://www.miamidade.gov/govaction/matter.asp?matter=052213&file=true&ye... resolution] to incorporate sustainable building measures into county facilities. In 2007, Ordinance 07-65 created the Sustainable Buildings Program in the County Code, and Implementing Order 8-8 established specific

456

Clean Air-Cool Planet Community Toolkit | Open Energy Information  

Open Energy Info (EERE)

Clean Air-Cool Planet Community Toolkit Clean Air-Cool Planet Community Toolkit Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Clean Air-Cool Planet Community Toolkit Agency/Company /Organization: Clean Air-Cool Planet Partner: Jeffrey H. Taylor and Associates Inc. Sector: Climate Focus Area: Energy Efficiency, Buildings, - Landfill Gas, - Waste to Energy, - Solar PV, Wind, Transportation, Agriculture, People and Policy, Food Supply, - Materials, Offsets and Certificates, Greenhouse Gas Phase: Bring the Right People Together, Determine Baseline, Get Feedback, Develop Finance and Implement Projects, Create Early Successes Resource Type: Guide/manual, Case studies/examples, Templates User Interface: Website Website: www.cleanair-coolplanet.org/for_communities/toolkit_home.php

457

Cool Roofs Lead to Cooler Cities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities Cool Roofs Lead to Cooler Cities July 23, 2010 - 2:07pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs How does it work? Dark-colored roofs and roadways create what is called the "urban heat island effect," meaning a city is significantly warmer than its surrounding rural areas. Light colored roofs reduce the heat island effect and improve air quality by reducing emissions. Lighter-colored roofing surfaces reflect more of the sun's heat, which helps to improve building efficiency by reducing cooling costs and offsetting carbon emissions. Roofs and road pavement cover 50 to 65 percent of urban areas. Because they absorb so much heat, dark-colored roofs and roadways create what is called

458

Building Performance Simulation  

E-Print Network [OSTI]

of Three Building Energy Modeling Programs:andD. Zhu. Buildingenergymodelingprogramscomparison:Comparison of building energy modeling programs: HVAC

Hong, Tianzhen

2014-01-01T23:59:59.000Z

459

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

460

Building Performance Simulation  

E-Print Network [OSTI]

technologies, integrated design, building operation andperformance, integrated buildingdesignandoperation,Integrated Design and Operation for Very Low Energy Buildings,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

462

Building Performance Simulation  

E-Print Network [OSTI]

Y (2008). DeSTAn integrated building simulation toolkit,Part ? : Fundamentals. Building Simulation, 1: 95 ? 110.Y (2008). DeSTAn integrated building simulation toolkit,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

463

Building Energy Software Tools Directory: EZDOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EZDOE EZDOE EZDOE logo. An easy to use IBM PC version of DOE-2. EZDOE calculates the hourly energy use of a building and its life-cycle cost of operation given information on the building's location, construction, operation, and heating and air conditioning system. Using hourly weather data and algorithms developed by Lawrence Berkeley National Laboratory, EZDOE takes into account complex thermal storage effects of various building materials. In addition, it can also accurately simulate the operation of all types of heating and cooling plants including ice water thermal storage and cogeneration systems. Up to 22 different air handling systems each with multiple control options are supported. The types of heating and cooling plants allowed is nearly infinite as thousands of combinations of chillers, boilers, furnaces,

464

Building Energy Software Tools Directory: DPClima  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DPClima DPClima DPClima logo. Helps size any system for heating and air conditioning of a building, i.e., the terminal units, the zone units and the total capacity of the cooling or heating plants. DPClima performs a 24 hour calculation of the steady state value of the cooling and heating loads of a building for a typical day of each month (either the coldest or the hottest). DPClima organizes the spaces into several zones inside the building so that the designer is able to adapt its system best to the thermal response of those zones. The calculations are done using the heat transfer functions methodology. Inside the spaces schedules are defined for; occupancy, lights and other loads. A database is distributed with information about types of walls, glasses, human activities, type of lights, etc. Screen Shots

465

Building Energy Software Tools Directory: CHVAC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHVAC CHVAC CHVAC logo. Quickly and accurately calculates the maximum heating and cooling loads for commercial buildings. CHVAC allows an unlimited number of zones which can be grouped into as many as 100 air handling systems. CHVAC automatically looks up all CLTD cooling load and correction factors necessary for computing loads. In addition, the programs can look up outdoor design weather data for over 1500 cities located around the world. There is also provision for editing the weather data as well as adding data for other cities. Comprehensive reports list the general project data, detailed zone loads, air handler summary loads, outside air loads, total building loads, building envelope analysis, tonnage requirements, CFM air quantities, chilled water flow rates (if applicable), and complete psychrometric data

466

Building Green in Greensburg: Centera Bank  

Broader source: Energy.gov (indexed) [DOE]

Centera Bank Centera Bank After a category EF-5 tornado virtually leveled the entire town of Greensburg in 2007, the owners of Centera Bank were determined to rebuild green. Design plans were drawn up with optimal energy efficiency and sustainability in mind, in keeping with the goals of the City of Greensburg to rebuild green. Situated on a downtown corner lot across the street from the bank's former location, the new 4,000-square-foot building incorporates energy-efficient building principles required to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) certification. ENERGY EFFICIENCY FEATURES * A high-efficiency air-cooled heat pump split system harnesses the benefits of environmentally friendly R-410 refrigeration in both the heating and cooling mode to reduce

467

City of Austin - Commercial and Residential Green Building Requirements |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » City of Austin - Commercial and Residential Green Building Requirements City of Austin - Commercial and Residential Green Building Requirements < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Bioenergy Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating Water Heating Wind Program Info State Texas Program Type Building Energy Code Provider Austin Energy '''''Note: The requirements listed below are current only up to the date of last review (see the top of this page). The City of Austin may also make additional requirements depending on the circumstances of a given project.

468

Sustainable Building Tax Credit (Personal) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Personal) Personal) Sustainable Building Tax Credit (Personal) < Back Eligibility Commercial Multi-Family Residential Nonprofit Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Personal Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

469

Sustainable Building Tax Credit (Corporate) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Corporate) Corporate) Sustainable Building Tax Credit (Corporate) < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Solar Lighting Windows, Doors, & Skylights Heating Buying & Making Electricity Water Heating Wind Program Info Start Date 1/1/2007 Expiration Date 12/31/2016 State New Mexico Program Type Corporate Tax Credit Rebate Amount Varies based on the square footage of the building and the certification level Provider New Mexico Taxation and Revenue Department SB 463, enacted in April 2007, established a personal tax credit and a corporate tax credit for sustainable buildings in New Mexico. The tax

470

Building Energy Software Tools Directory: HVACSIM+  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HVACSIM+ HVACSIM+ Simulation model of a building HVAC (heating, ventilation, and air-conditioning ) system plus HVAC controls, the building shell, the heating/cooling plant, and energy management and control system (EMCS) algorithms. The main program of HVACSIM+ (HVAC SIMulation PLUS other systems employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. The modular approach is based upon the methodology used in the TRNSYS program. Keywords HVAC equipment, systems, controls, EMCS, complex systems Validation/Testing N/A Expertise Required High level of computer literacy. Users More than 100. Audience Building technology researchers, graduate schools, consultants. Input Building system component model configuration, simulation setup work file,

471

Building Energy Software Tools Directory: HOT2000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HOT2000 HOT2000 HOT2000 logo. Easy-to-use energy analysis and design software for low-rise residential buildings. Utilizing current heat loss/gain and system performance models, the program aids in the simulation and design of buildings for thermal effectiveness, passive solar heating and the operation and performance of heating and cooling systems. Keywords energy performance, design, residential buildings, energy simulation, passive solar Validation/Testing N/A Expertise Required Basic understanding of the construction and operation of residential buildings. Users Over 1400 worldwide. HOT2000 is used mainly in Canada and the United States with a few users in Japan and Europe. Audience Builders, design evaluators, engineers, architects, building and energy code writers, Policy writers. HOT2000 is also used as the compliance

472

Building Energy Code | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Iowa Iowa Program Type Building Energy Code Provider Iowa Office of Energy Independence ''Much of the information presented in this summary is drawn from the U.S. Department of Energy's (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the [http://www.energycodes.gov/states/ DOE] and [http://bcap-ocean.org/ BCAP] websites.'' [http://coolice.legis.state.ia.us/Cool-ICE/default.asp?Category=billinfo&... House File 2361] was signed in April 2006. This law rescinded Iowa's minimum energy efficiency standard for residential construction, the "home heating index," and instead requires the state building commissioner to adopt energy conservation requirements based on a nationally recognized

473

Commercial Building Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Research Research Commercial Building Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

474

51.99.99.M0.01 Procedure for Capitalizing Improvements on Buildings Page 1 of 3 STANDARD ADMINISTRATIVE PROCEDURE  

E-Print Network [OSTI]

(heating/cooling, electric, plumbing) interior or exterior upgrades, additions, and space conversions. 2 - Replacement of the heating/cooling system as part of a building renovation that increases the useful life and. Example - rehabilitation of a building that may include, but is not limited to, upgraded building systems

475

Building Technologies Office: Advancing Building Energy Codes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

476

Building ventilation and acoustics for people who dont know much about building ventilation.  

Science Journals Connector (OSTI)

The architectural composition required for building ventilation used both for low energy cooling and improved air quality can be anathema to acoustical goals of speech privacy and noise control. This paper presents a short tutorial on the basics of cross ventilation stack ventilation comfort ventilation and indoor air quality as it relates to climate building type and indoor pollutants. It is geared to those without significant prior knowledge and follows a similar tutorial on geothermal systems presented at the Miami ASA conference.

2009-01-01T23:59:59.000Z

477

European Union Energy Performance of Building Directive and the Impact of Building Automation on Energy Efficiency  

E-Print Network [OSTI]

consumption. The European Union's 2002 Energy Performance of Buildings Directive takes this fact into account and formulates savings goals. A resulting European standard, and uniform certification, applicable throughout Europe, form the foundation since... to standardized utilization of the building?. The energy consumers concerned are heating, water heating, cooling, ventilating and lighting; also included is the auxiliary electric power require to operate these systems. One of the basic requirements of the EPBD...

Wirth, U.

2008-01-01T23:59:59.000Z

478

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

479

Glossary | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daylight Glazing Daylight Glazing Exterior glazing over 6 feet above the finished floor. DDC See Direct Digital Control. Deadband The temperature range in which no heating or cooling is used. Decorative Lighting Lighting that is purely ornamental and installed for aesthetic effect. Decorative lighting shall not include general lighting. Degree Day See "Heating Degree Days." Degree Day Base 50F For any one day, when the mean temperature is more than 50°F, there are as many degree days as degrees Fahrenheit temperature difference between the mean temperature for the day and 50°F. Annual cooling degree days (CDDs) are the sum of the degree days over a calendar year. Demand The highest amount of power (average kilowatt over an interval) recorded for a building or facility in a selected time frame.

480

STOCHASTIC COOLING FOR BUNCHED BEAMS.  

SciTech Connect (OSTI)

Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

BLASKIEWICZ, M.

2005-05-16T23:59:59.000Z

Note: This page contains sample records for the topic "build ings cooling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Cooling Tower Inspection with Scuba  

E-Print Network [OSTI]

A serious problem of scale and other solid material settling in heat transfer equipment was threatening to shut down our ethylene plant. All evidence pointed to the cooling tower as the source of the contamination. Visual inspection of the cooling...

Brenner, W.

1982-01-01T23:59:59.000Z

482

Cooling power of quenching oils  

Science Journals Connector (OSTI)

Industrial oils 20 and 20V have the best cooling powers of all quenching oils (used in the USSR). They secure high cooling rates at low temperatures, have a satisfactory...

L. V. Petrash

1959-07-01T23:59:59.000Z

483

Ball State building massive geothermal system | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

484

Ball State building massive geothermal system | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

485

JEA - New Home Build Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program JEA - New Home Build Rebate Program < Back Eligibility Construction Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Solar Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Heat pumps and central air conditioning: $125 - $200 Pin-based lighting fixtures: $10 per fixture Clothes Washers: $25 Refrigerators: $25 Solar Water Heaters: $800 Provider JEA JEA's New Home Build Program is an incentive program offered by JEA to promote the use of energy efficient equipment in new single family homes constructed in Northeast Florida. rebates are available for certain energy efficient products. See the program web site for complete details.

486

Energy Saving 'Cool Roofs' Installed at Y-12 | Y-12 National Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saving 'Cool ... Saving 'Cool ... Energy Saving 'Cool Roofs' Installed at Y-12 Posted: October 17, 2012 - 4:08pm The Y-12 National Security Complex has taken additional steps to reduce its energy costs by installing almost 100,000 square feet of new heat reflective "cool" roofs at the Oak Ridge, Tennessee facility. The latest Y-12 cool roofs were added to Buildings 9204-2E and 9103. Fifteen percent of roofs at Y-12 are currently equipped with cool roof technology. This technology is expected to be applied to the majority of the roofs at Y-12. "Replacing older, heat-absorbing roofs with the heat-reflective cool roofs is part of NNSA's strategy to achieve energy and cost efficiencies," said Robert "Dino" Herrera, Facilities and Infrastructure Recapitalization Program Manager. "We strive to lead the

487

Trends in Heating and Cooling Degree Days: Implications for Energy Demand Issues (released in AEO2008)  

Reports and Publications (EIA)

Weather-related energy use, in the form of heating, cooling, and ventilation, accounted for more than 40% of all delivered energy use in residential and commercial buildings in 2006. Given the relatively large amount of energy affected by ambient temperature in the buildings sector, the Energy Information Administration has reevaluated what it considers normal weather for purposes of projecting future energy use for heating, cooling, and ventilation. The Annual Energy Outlook 2008, estimates of normal heating and cooling degree-days are based on the population-weighted average for the 10-year period from 1997 through 2006.

2008-01-01T23:59:59.000Z

488

Direct Liquid Cooling for Electronic Equipment  

E-Print Network [OSTI]

by the power distribution and cooling systems. The the power distribution and cooling infrastructure IT power consumed along with the cooling required

Coles, Henry

2014-01-01T23:59:59.000Z

489

Evaluation of the cooling fan efficiency index.  

E-Print Network [OSTI]

for Figure 3. Fan power versus cooling fan the computer fanparameters (cooling effect, fan power and CFE) involved inthat the typical power consumption of cooling fans is lower

Schiavon, Stefano; Melikov, Arsen

2009-01-01T23:59:59.000Z

490

Building envelope thermal anomaly analysis  

SciTech Connect (OSTI)

A detailed study has been made of building energy thermal anomalies (BETA's) in a large modern office building using computer simulation, on-site inspections, and infrared thermography. The goal was to better understand the heat and moisture flow through these ''bridges,'' develop the beginnings of a classification scheme, and establish techniques for assessing the potential for retrofit or initial design modifications. In terms of presently available analytical techniques, a one-dimensional equivalent of the bridge and its affected area can be created from a steady-state computer simulation. This equivalent, combined with a degree day model, yields good estimates of the bridge behavior in buildings employing heating only. With heating and cooling, the equivalent must be used with an hour-by-hour simulation. A classification scheme based on the one-dimensional equivalent is proposed which should make it possible to create a catalog of basic bridge types that can be used to estimate their effects without requiring a complete hour-by-hour simulation of each building. The classification relates both energy loss and moisture condensation potential to the bridge configuration and the building envelope. The potential for moisture condensation on interior surfaces near a BETA was found to be as significant as the energy loss and this factor needds to be considered in assessing the complete detrimental effects of a bridge. With such a catalog, building designers and analysts would be able to determine and estimate the advantages or disadvantages of modifying the building envelope to reduce the impact of a thermal bridge. 18 refs., 31 figs., 17 tabs.

Melton, B.S.; Mulroney, P.; Scott, T.; Childs, K.W.

1987-12-01T23:59:59.000Z

491

Cooling by heating  

E-Print Network [OSTI]

We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

A. Mari; J. Eisert

2011-04-01T23:59:59.000Z

492

Measurements of the soot emissions and engine operat-ing parameters from a diesel engine during transient op-  

E-Print Network [OSTI]

ABSTRACT Measurements of the soot emissions and engine operat- ing parameters from a diesel engine and are the subject of future research. INTRODUCTION Soot emissions from diesel engines are well known to have gov- erning the emission of particles from diesel engines are becoming ever more stringent. The soot

Daraio, Chiara

493

Like many techies, I've been wonder-ing what changes we'll see in the  

E-Print Network [OSTI]

Like many techies, I've been wonder- ing what changes we'll see in the Internet in the coming years. In doing so, I look at the Internet in the broad sense, at the level of applications and uses, but without conceptualization of the Internet is based on the interactions--between people and between people and computers

494

ION CYCLOTRON H EAT ING IN A TORO IDAL OCTUPOLE J. D. Barter and J. C. Sprott  

E-Print Network [OSTI]

of the Wisonsin Supported Toroidal Octupole has been used to heat ions at the cyclotron frequency. Fig. 1 shows electric field in the toroidal direction appropriate to cyclotron heating in the poloidal octupole fieldION CYCLOTRON H EAT ING IN A TORO IDAL OCTUPOLE J. D. Barter and J. C. Sprott November 1974 Plasma

Sprott, Julien Clinton

495

The solar eclipse is indeed a momentous, or at least visually entertain-ing and curious happening in astrology.  

E-Print Network [OSTI]

The solar eclipse is indeed a momentous, or at least visually entertain- ing and curious happening recordings of lunar and solar eclipses. 2 #12;The Dresden Codex was for the Mayans a way to predict eclipses likely that Martin Meinshausen proposed that this data was related to the timing of series of solar

Little, John B.

496

Conduction cooled tube supports  

DOE Patents [OSTI]

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

497

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

498

Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels  

SciTech Connect (OSTI)

Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

Parker, D.; Kono, J.; Vieira, R.; Fairey, P.; Sherwin, J.; Withers, C.; Hoak, D.; Beal, D.

2014-05-01T23:59:59.000Z

499

Building Technologies Office: Energy Efficient Buildings Hub  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

500

Building America Technology Solutions for New and Existing Homes: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate  

Broader source: Energy.gov [DOE]

This project investigates the impact of air infiltration and ventilation on space cooling and moisture in residential buildings; research was conducted in two identical laboratory homes in the hot-humid climate over the cooling season.