Sample records for bubbling fluidized bed

  1. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    SciTech Connect (OSTI)

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

    1992-11-01T23:59:59.000Z

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

  2. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    SciTech Connect (OSTI)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22T23:59:59.000Z

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  3. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    SciTech Connect (OSTI)

    Steven Ceccio; Jennifer Curtis

    2011-01-18T23:59:59.000Z

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energyâ??s open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  4. Dispersion and combustion of a bitumen-based emulsion in bubbling fluidized bed

    SciTech Connect (OSTI)

    Miccio, F.; Miccio, M.; Repetto, L.; Gradassi, A.T.

    1999-07-01T23:59:59.000Z

    An experimental program was carried out with ORIMULSION{reg{underscore}sign} as a part of an R and D project aimed at demonstrating the feasibility of contemporary combustion and desulfurization in atmospheric bubbling fluidized bed. ORIMULSION is a bitumen-based emulsion that is produced in Venezuela's Orinoco region with 30% w/w water and about 3% w/w sulfur content (on a dry basis). Two atmospheric, pre-pilot, bubbling bed units were used: a 140 mm ID reactor and a 370 mm ID combustor. The first one provides qualitative and quantitative information on dispersion and in-bed retention of ORIMULSION: to this end the bed is operated batchwise in hot tests without combustion and the fuel can be injected into the bed with or without a gaseous atomization stream. With the second one, steady-state combustion tests are carried out under typical conditions of bubbling FBC. The outcome of the experiments and significance of the results are fully discussed in the paper with reference to the ORIMULSION combustion mechanism. Among the other findings, the following ones appear particularly relevant. (1) A carbon condensed phase is actually formed with the structure of tiny carbon deposits on bed particles, but at a very low rate, as a consequence, combustion (and pollutant formation) is dominated by homogeneous mechanisms. (2) Combustion efficiency is always very high, with values approaching 100% in those tests with higher excess air. (3) The in-bed combustion efficiency is enhanced by those fuel injection conditions that lead to dispersion into fine droplets and to effective mixing within the bed; therefore, contrarily to the case of water suspensions of solid fuels, intense atomization of ORIMULSION is recommended.

  5. Experimental and theoretical investigation on the mechanism of transient bubble images in fluidized-bed combustors: Systematic interpretation and analysis. Final report, July 1992--July 1995

    SciTech Connect (OSTI)

    Hisashi O. Kono

    1995-08-01T23:59:59.000Z

    For the improvement of the design and operation of the FBC systems, the insight into the intrinsic transient bubbling phenomena in freely bubbling fluidized beds is of vital importance. The authors have found several basic new bubbling mechanisms in this work experimentally, and some of them have not been published in past literature. Using the two dimensional fluidized bed, the images of transient bubbling behavior were recorded by videos, and processed and analyzed by computers. As the results of experiments, the following new experimental facts were found: (1) transient bubbles change and fluctuate their size and shape over very short time intervals (on the order of 30 milliseconds); (2) bubble disappearance and reappearance occurred in the emulsion phase in addition to the known phenomena of coalescence and splitting. The bubble interaction occurred between the bubbles and adjacent emulsion phase and also among the transient bubbles; (3) bubble`s velocity fluctuated significantly, e.g., 0.6 to 3.0 m/s; (4) under one single specific fluidization condition, two different fluidization patterns appeared to occur randomly shifting from one pattern to the other or vice versa; (5) the erosion rates of in-bed tubes at ambient and elevated temperature could be predicted using material property data and transient behavior of bubbles. By introducing a new quantitative criterion which the authors call a gas stress index in the emulsion phase, the comparison of the fluidization quality between two and three dimensional fluidized beds was accomplished. They found reasonable correspondence between the two beds, and concluded that the new findings of transient bubble behavior should hold true for both types of fluidized beds. 32 refs., 85 figs., 13 tabs.

  6. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect (OSTI)

    Lee, Andrew; Miller, David C.

    2012-01-01T23:59:59.000Z

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  7. Fluidized bed calciner apparatus

    DOE Patents [OSTI]

    Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

    1988-01-01T23:59:59.000Z

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  8. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  9. Staged fluidized bed

    DOE Patents [OSTI]

    Mallon, R.G.

    1983-05-13T23:59:59.000Z

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  10. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, A.G.; Patel, J.G.

    1987-05-12T23:59:59.000Z

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  11. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  12. Particle pressures in fluidized beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  13. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14T23:59:59.000Z

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25T23:59:59.000Z

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  15. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01T23:59:59.000Z

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  16. Fluidized-bed sorbents

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  17. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  18. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  19. Fluidized bed controls refinery emissions

    SciTech Connect (OSTI)

    Abdulally, I.F.; Kersey, B.R.

    1986-05-01T23:59:59.000Z

    In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

  20. Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Laughlin, Robert B.

    the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

  1. Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Zevenhoven, Ron

    the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

  2. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect (OSTI)

    Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

    1998-05-01T23:59:59.000Z

    The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

  3. Bed material agglomeration during fluidized bed combustion

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01T23:59:59.000Z

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  4. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31T23:59:59.000Z

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  5. Heat transfer coefficients in three phase fluidized beds

    SciTech Connect (OSTI)

    Suh, I.S.; Jin, G.T.; Kim, S.D.

    1985-03-01T23:59:59.000Z

    In order to obtain a semitheoretical correlation for the heat transfer coefficients in three phase fluidized beds, Deckwer's semitheoretical correlation for the heat transfer coefficients in the bubble column, which was derived from Higbie's surface renewal theory of interphase mass transfer with the concept of isotropic turbulence, has been extended to three phase fluidized beds with the modification of the energy dissipation rate. One of the desirable characteristics of three phase fluidized beds is the uniformity of temperature in the bed. The intense longitudinal and transverse turbulent mixing in a fluidized bed may induce the uniform fields of temperature and solids concentration. For highly exothermic reactions, the uniform temperature in the bed is essential to avoid the local hot spots. In order to control the uniform temperature of three phase fluidized beds, the addition or removal of heat in the bed is required and the information on heat transfer surface and the bed is essential to designing the heat exchanger. Recently, Chiu and Ziegler (1983) determined wall-to-bed heat transfer coefficients in three phase fluidized bed (5.08 cm ID) of glass beads and cylindrical gamma alumina particles which were fluidized by cocurrent flow of air and water. Their data were correlated in terms of the modified Colburn j factor. Kato et al. (1981) measured wall-to-bed heat transfer coefficients in three phase fluidized beds of 5.2 and 12.0 cm internal diameter. Four different sizes of glass beads (0.42-2.2 mm) were fluidized by air and aqueous carboxymethyl cellulose solutions. The coefficients increased with decrease in liquid viscosity and with increase in gas and liquid velocity.

  6. Control of bed height in a fluidized bed gasification system

    DOE Patents [OSTI]

    Mehta, Gautam I. (Greensburg, PA); Rogers, Lynn M. (Export, PA)

    1983-12-20T23:59:59.000Z

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  7. Application of a fluidized bed combustor to the DARS process

    SciTech Connect (OSTI)

    Scott-Young, R.E. [Australian Paper, Burnie, Tasmania (Australia). Pulp Mill and Services Unit

    1995-12-31T23:59:59.000Z

    Australian Paper has built the world`s first and only operational Direct Alkali Recovery System (DARS) to recover caustic soda for a soda AQ chemical pulp mill. At the heart of the DARS process, concentrated spent pulping liquor is burnt in a fluidized bed. The bed material is made up of coarse, dense iron oxide pellets which require a high fluidizing velocity. Bubbling is violent and gives robust fluidization of the iron and sodium compounds. The plant suffered a protracted startup because of equipment failures, air flow instability problems, and process and equipment design errors. A large amount of post construction development work was required. This paper discusses the experiences and knowledge gained in adapting a fluidized bed to the DARS process.

  8. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect (OSTI)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01T23:59:59.000Z

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  9. Fluidized Bed Technology - Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The...

  10. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  11. State of Fluidized Bed Combustion Technology

    E-Print Network [OSTI]

    Pope, M.

    1979-01-01T23:59:59.000Z

    directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions, thereby eliminating the need for stack gas scrubbing equipment. The excellent heat transfer characteristics...

  12. Tube construction for fluidized bed combustor

    DOE Patents [OSTI]

    De Feo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

    1984-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  13. Fluidized bed combustor and tube construction therefor

    DOE Patents [OSTI]

    De Feo, Angelo (Passaic, NJ); Hosek, William (Morris, NJ)

    1981-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  14. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  15. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    A fluidized bed combustion unit has been designed and installed to study the fluidized bed combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm inside diameter and 130 cm height fitted with a perforated plate air distributor of 611 holes, each of 1

  16. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram [Ames Laboratory

    2012-11-02T23:59:59.000Z

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  17. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect (OSTI)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23T23:59:59.000Z

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  18. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01T23:59:59.000Z

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  19. Combined fluidized bed retort and combustor

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  20. The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter

    SciTech Connect (OSTI)

    Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, England (United Kingdom)

    2006-11-15T23:59:59.000Z

    Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter of the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)

  1. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  2. Dynamic modeling and control of a solid-sorbent CO{sub 2} capture process with two-stage bubbling fluidized bed adsorber reactor

    SciTech Connect (OSTI)

    Modekurti, S.; Bhattacharyya, D.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developed in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.

  3. Pressurized fluidized-bed combustion

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  4. Gas fluidized-bed stirred media mill

    DOE Patents [OSTI]

    Sadler, III, Leon Y. (Tuscaloosa, AL)

    1997-01-01T23:59:59.000Z

    A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

  5. Particle withdrawal from fluidized bed systems

    DOE Patents [OSTI]

    Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

    1982-01-01T23:59:59.000Z

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  6. Fluidized bed catalytic coal gasification process

    DOE Patents [OSTI]

    Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

    1984-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  7. Pressure Fluctuations as a Disgnostic Tool for Fluidized Beds.

    SciTech Connect (OSTI)

    Brown, R.C.; Schroeder, J.R.

    1997-10-28T23:59:59.000Z

    The validity of using bubbling fluidized bed (BFB) similitude parameters to match a hot BFB to a cold BFB is being studied. Sand in a BFB combustor and copper powder in cold BFB model have been analyzed and found to be out of similitude. In the analysis process, it was determined that the condition of the screen covering the pressure tap affects the quality of pressure data recorded. In addition, distributor plate design and condition will affect the hydrodynamics of the bed. Additional tests are planned to evaluate the validity of similitude concepts in BFB.

  8. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01T23:59:59.000Z

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  9. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15T23:59:59.000Z

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  10. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    and produce steam. In a one-year evaluation test on an aluminum remelt furnace, the FBWHRS generated about 26 million lb of saturated steam at 150 psig. Before entering the FBWHRS, the flue gases were diluted to IIOO?F to protect the fluidized bed... an improved foulant cleaning system for the fluidized bed di~tributor plate and operating the total system on an aluminum remelt furnace which has a corrosive and fouling flue gas stream (3). Although this project focused on an aluminum remelt furnace...

  11. Bed drain cover assembly for a fluidized bed

    DOE Patents [OSTI]

    Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

    1982-01-01T23:59:59.000Z

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  12. Fluidized bed electrowinning of copper. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  13. Reversed flow fluidized-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  14. Fluidized bed retorting of eastern oil shale

    SciTech Connect (OSTI)

    Gaire, R.J.; Mazzella, G.

    1989-03-01T23:59:59.000Z

    This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

  15. Application of a fiber optic probe to the hydrodynamic study of an industrial fluidized bed furnace

    SciTech Connect (OSTI)

    Saberi, B.; Shakourzadeh, K. [Technical Univ. of Compiegne (France); Militzer, J. [Technical Univ. of Nova Scotia, Halifax, Nova Scotia (Canada)

    1997-12-31T23:59:59.000Z

    A fiber optic probe technique is used to establish the hydrodynamic characteristics of an industrial scale (0.9 m internal diameter and 2.5 m tall) bubbling fluidized bed. This measurement technique allows for the bubbling phenomenon to be studied locally. Bubble parameters such as size, velocity and frequency can be measured with an adequate accuracy. This, however, is not a straight forward procedure, since among other things the shape of the bubble and the position at which fiber intercepts the bubble are unknown. This requires a statistical treatment of the data and the use of a correction factor. A geometrical and statistical analysis of the bubble/probe interactions shows that the correction factor is approximately unitary and thus the bubble size distribution can be obtained directly from the statistical treatment of the results of relatively large number of series of measurements. In addition, sampling rate and sample duration have to be determined as a function of the bubble size and velocity. Several combinations of sampling time and sampling rate have been tested allowing for the best combination of these parameters to be determined. After treatment of the acquired signals, the mean bubble size and velocity were calculated. The results obtained were compared to the measured expansion of the bed and the overall gas flow rate. This confirmed the accuracy of the measurements and the usefulness of this technique to establish the hydrodynamics of bubbling fluidized beds.

  16. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  17. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  18. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26T23:59:59.000Z

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  19. Status of the fluidized bed unit

    SciTech Connect (OSTI)

    Williams, P.M.; Wade, J.F.

    1994-06-01T23:59:59.000Z

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  20. Model for attrition in fluidized beds

    SciTech Connect (OSTI)

    Chen, T.P.; Sishtla, C.I.; Punwani, D.V.; Arastoopour, H.

    1980-01-01T23:59:59.000Z

    A model developed to predict the particle-size distribution and amount of fines generated during the attrition of particles in fluidized beds agrees well with experimental data for siderite iron ore and lignite char. Certain parameters used in the model are independent of particle size, orifice size, system pressure, bed weight, and attrition time, thus making the model suitable for scale-up purposes. Although the analysis was limited to a single jet with the attrition occurring at room temperature, the model can be extended to multi-jet, high-temperature operations.

  1. Heat exchanger support apparatus in a fluidized bed

    DOE Patents [OSTI]

    Lawton, Carl W. (West Hartford, CT)

    1982-01-01T23:59:59.000Z

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  2. Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990

    SciTech Connect (OSTI)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01T23:59:59.000Z

    This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  3. Fluidized Bed Technology - An R&D Success Story | Department...

    Energy Savers [EERE]

    line. The Nucla fluidized bed power plant in Colorado was operated in DOE's Clean Coal Technology Program. The technology progressed into larger scale utility applications...

  4. E-Print Network 3.0 - anaerobic fluidized bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physik, Universitt Dortmund Collection: Physics 12 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

  5. E-Print Network 3.0 - agitation fluidized bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

  6. E-Print Network 3.0 - atmospheric fluidized bed Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

  7. E-Print Network 3.0 - agitated fluidized bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    large-scale, commercial, fluidized bed reactor was started by Fritz Winkler for the gasification... of powdered coal in 1926. Since then fluidized beds have been developed...

  8. E-Print Network 3.0 - annual fluidized bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Minnesota Collection: Engineering 16 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

  9. Second-generation pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A.

    1992-05-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  10. Second-generation pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A.

    1992-01-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  11. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  12. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01T23:59:59.000Z

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  13. Evaluation of Wall Boundary Condition Parameters for Gas-Solids Fluidized Bed Simulations

    SciTech Connect (OSTI)

    Li, Tingwen; Benyahia, Sofiane

    2013-10-01T23:59:59.000Z

    Wall boundary conditions for the solids phase have significant effects on numerical predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of gas-solids flow. In this study, a model for specularity coefficient used in Johnson and Jackson boundary conditions by Li and Benyahia (AIChE Journal, 2012, 58, 2058-2068) is implemented in the open-source CFD code-MFIX. The variable specularity coefficient model provides a physical way to calculate the specularity coefficient needed by the partial-slip boundary conditions for the solids phase. Through a series of 2-D numerical simulations of bubbling fluidized bed and circulating fluidized bed riser, the model predicts qualitatively consistent trends to the previous studies. Furthermore, a quantitative comparison is conducted between numerical results of variable and constant specularity coefficients to investigate the effect of spatial and temporal variations in specularity coefficient.

  14. EXPERIMENT AND NEURAL NETWORK MODEL OF PRIMARY FRAGMENTATION OF OIL SHALE IN FLUIDIZED BED

    E-Print Network [OSTI]

    Zhigang Cui; Xiangxin Han; Xiumin Jiang; Jianguo Liu

    that the fluidized bed temperature is an important factor of primary fragmentation of oil shale, and

  15. Advanced control strategies for fluidized bed dryers

    SciTech Connect (OSTI)

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01T23:59:59.000Z

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  16. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect (OSTI)

    Keith, Raymond E.

    1991-10-01T23:59:59.000Z

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  17. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect (OSTI)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01T23:59:59.000Z

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  18. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect (OSTI)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01T23:59:59.000Z

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  19. Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer...

    Office of Environmental Management (EM)

    Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3...

  20. Gas phase hydrodynamics inside a circulating fluidized bed

    E-Print Network [OSTI]

    Moran, James C. (James Christopher)

    2001-01-01T23:59:59.000Z

    Circulating Fluidized Beds (CFB's) offer many advantages over traditional pulverized coal burners in the power generation industry. They operate at lower temperatures, have better environmental emissions and better fuel ...

  1. Syngas combustor for fluidized bed applications

    SciTech Connect (OSTI)

    Brushwood, J.

    1999-07-01T23:59:59.000Z

    The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

  2. Staged fluidized-bed combustion and filter system

    DOE Patents [OSTI]

    Mei, Joseph S. (Morgantown, WV); Halow, John S. (Waynesburg, PA)

    1994-01-01T23:59:59.000Z

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  3. The backflow cell model for fluidized bed catalytic reactors

    E-Print Network [OSTI]

    Ganapathy, E. V

    2012-06-07T23:59:59.000Z

    that the backmixing of gas in a small fluidized bed with high length to diameter rati. o is relatively small. Hence, it was recommended. that reaction rate studies in fluidized bed reactors be correlated on the basis oi' piston flow~ neglecting mixing. Nay (19...) points out that the straight line obtained on plotting the results of Gilliland's ex- periment on a paper with semilogarithmic coordinates, can be used to characterize the residence time distribution introduced by Danckwerts (6). A steep slope, he...

  4. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15T23:59:59.000Z

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  5. Mixing and combustion in a coal-limestone fluidized bed combustor

    SciTech Connect (OSTI)

    Kirkpatrick, M.O.

    1987-01-01T23:59:59.000Z

    Task 1 was to investigate experimentally the characteristics of solids mixing between coal and limestone in a cold fluidized bed; Task 2 was to derive a model to describe the behavior of solids mixing observed in Task 1; and Task 3 was to develop a combustor model, which couples the mixing model derived in Task 2 with a combustion model, to simulate the mixing and combustion behavior in a hot coal-limestone fluidized bed combustor. In Task 1, the experiments were carried out in a 0.203 m diameter cold fluidized bed with coal and limestone of different sizes the the fluidized particles. Experimental parameters examined included operation time, air flow rate, bed height, initial bed setup, relative particle size and relative amount of the two particles. In the second task, the mixing model considered the downward or upward movement of a particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbles. The distance of the upward movement was governed by the residence time of a particle staying in a bubble wake; the distance of downward movement, however, was determined from a material balance consideration. In all, the model took into account the effects of time, flow rate, initial bed setup and relative particle size on solids mixing. Dynamic coal concentration profiles under different operating conditions were generated by the simulation and were found to represent the experimental data reasonably well. In addition to the operation parameters included in Tasks 1 and 2, the model developed in Task 3 also considered the inlet size distribution of coal, size reduction of coal due to combustion and coal elutriation. This model was a capable of predicting the dynamic mixing and combustion behavior in a combustor under specific operation conditions.

  6. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOE Patents [OSTI]

    Gall, Robert L. (Morgantown, WV)

    1981-01-01T23:59:59.000Z

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  7. Methods of forming a fluidized bed of circulating particles

    DOE Patents [OSTI]

    Marshall, Douglas W. (Blackfoot, ID)

    2011-05-24T23:59:59.000Z

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  8. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect (OSTI)

    Ibrahim, Essam A

    2013-01-09T23:59:59.000Z

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  9. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  10. Fluidized bed combustor and coal gun-tube assembly therefor

    DOE Patents [OSTI]

    Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

    1984-01-01T23:59:59.000Z

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  11. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect (OSTI)

    Rong Fan

    2006-08-09T23:59:59.000Z

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.

  12. Analysis of fluidized beds for the simultaneous aerosol separation and heat recovery

    SciTech Connect (OSTI)

    El-Halwagi, M.M. [Auburn Univ., AL (United States)

    1993-01-01T23:59:59.000Z

    A mathematical model is developed to describe the performance of fluidized beds for the simultaneous heat recovery and aerosol separation. This new concept is analyzed in light of the various transport processes taking place within the bed. A two-phase model is developed for the system in which heat and aerosol particles are transferred from the bubble phase to the emulsion phase. In addition to aerosol separation via diffusion, interception, impaction and electrostatic precipitation, thermophoretic collection is also analyzed. The results indicate that high thermal and separation efficiencies can be obtained.

  13. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11T23:59:59.000Z

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  14. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    T.B. & Jackson, R. A fluid mechanical description ofJ. & Jackson, R. Fluid mechanical description of fluidizedT.B. & Jackson, R. A fluid mechanical description of

  15. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect (OSTI)

    ,

    1980-04-01T23:59:59.000Z

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  16. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect (OSTI)

    Vincent, R.Q.

    1989-11-01T23:59:59.000Z

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  17. Grid-region heat transfer in a gas solid fluidized bed

    SciTech Connect (OSTI)

    Wang, R.C.

    1986-01-01T23:59:59.000Z

    The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

  18. Lateral solids dispersion coefficient in large-scale fluidized beds

    SciTech Connect (OSTI)

    Liu, Daoyin; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2010-11-15T23:59:59.000Z

    The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effect on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)

  19. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOE Patents [OSTI]

    DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

    1983-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  20. Fluidized bed combustor and removable windbox and tube assembly therefor

    DOE Patents [OSTI]

    DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

    1981-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

  1. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect (OSTI)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01T23:59:59.000Z

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  2. Method for using fast fluidized bed dry bottom coal gasification

    DOE Patents [OSTI]

    Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

    1983-01-01T23:59:59.000Z

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  3. DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project

    SciTech Connect (OSTI)

    Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

    1992-12-01T23:59:59.000Z

    The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

  4. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M. (Mamaroneck, NY)

    1982-01-01T23:59:59.000Z

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  5. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982

    SciTech Connect (OSTI)

    Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

    1982-08-01T23:59:59.000Z

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  6. Studies with a laboratory atmospheric fluidized bed combustor system

    SciTech Connect (OSTI)

    Orndorff, W.W.; Su, Shi; Napier, J. [Western Kentucky Univ., Bowling Green, KY (United States)] [and others

    1996-12-31T23:59:59.000Z

    Growing public concerns over acid rain and municipal solid waste problems have created interest in the development of atmospheric fluidized bed combustion systems. A computer controlled 12-inch laboratory atmospheric fluidized bed combustor (AFBC) system has been developed at Western Kentucky University. On-line analysis by gas chromatography, Fourier-transform infrared (FTIR) spectrometry, and mass spectrometry (MS) allows extensive analysis of the flux gases. Laboratory experiments with a thermogravimetric analyzer (TGA) interfaced with FTIR and MS systems are used to screen fuel blends for runs in the AFBC system. Current experiments being conducted include co-firing blends of refuse derived fuels with coal and extended burns with coals containing different levels of chlorine.

  7. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  8. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  9. Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

    1995-04-01T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  10. Spectral methods applied to fluidized bed combustors. Final report

    SciTech Connect (OSTI)

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01T23:59:59.000Z

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  11. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01T23:59:59.000Z

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  12. Mathematical modeling of fluidized bed reactors

    E-Print Network [OSTI]

    Nasif, Nilufer Havva

    1985-01-01T23:59:59.000Z

    39 40 Comparison of concentration profiles predicted by CCBM with constant bubble size (dB ) using dif- ferent solution procedures Schematic representation of Fryer and Potter (1974) algorithm . Schematic representation of Peters et al. (1982... description of the downward flow of emulsion phase gas under certain conditions, such as those of Kunii and Levenspiel (1968b, 1969), and Fryer and Potter (1972a) have this limitation in common. Dubble size is one of the most important parameters...

  13. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01T23:59:59.000Z

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  14. State of the art of pressurized fluidized bed combustion systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-09-01T23:59:59.000Z

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  15. Control of thermal processes in a fluidized bed combustor (FBC)

    SciTech Connect (OSTI)

    Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

    1997-12-31T23:59:59.000Z

    Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

  16. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-03-01T23:59:59.000Z

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

  17. Fluidized bed gasification of agricultural residue

    E-Print Network [OSTI]

    Groves, John David

    1979-01-01T23:59:59.000Z

    studied to develop a process which can convert organic waste matter into fuel gas. Hammond et al. (1974) described a fixed bed gasifier which operated at 1800 F (1256 K) and atmos- pheric pressure. When woodchips were used as the feed material...

  18. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  19. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E. AYALA; V.S. VENKATARAMANI

    1998-09-30T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  20. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOE Patents [OSTI]

    Scott, C.D.; Strandberg, G.W.

    1987-09-14T23:59:59.000Z

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  1. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

    1989-01-01T23:59:59.000Z

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  2. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-11-01T23:59:59.000Z

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  3. E-Print Network 3.0 - advanced fluidized bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Biomass Thermochemcial Conversion to Biofuels: Advances in Modeling and Summary: gasification in fluidized bed reactors will be presented. This includes the development of...

  4. Incineration of biological sludge in a fluidized bed

    SciTech Connect (OSTI)

    Ku, W.C.P.

    1988-01-01T23:59:59.000Z

    Incineration rate, ash properties, and percentage destruction of the combustible material were evaluated under different operating conditions. Experimental measurements were made for temperature, air flow rate, sludge size, ash size and sludge composition. A model based on the heat transfer consideration was derived to describe the drying and devolatilization process during sludge incineration. The model assumes that the drying and devolatilization of a sludge particle is manly caused by the heat flowing into the sludge particle from the bed. Parameters affecting the simulation results included sludge size, inert particle size, sludge heat capacity, sludge heat conductivity, operating flow rate and incinerator temperature. A model developed to simulate a batch type air-sand fluidized bed considered the incineration process as being composed of three consecutive operations, namely, drying, devolatilization, and char combustion. The simulation model predicted the dynamic characteristics of sludge incineration in the bed including its percentage completion and the incinerator temperature. The effects of sludge moisture level, sludge size and incinerator operating conditions on the incinerator behavior were also evaluated. The model developed to simulate the behavior of a fluidized bed incinerator under continuous operation was capable of predicting the time to reach steady state, the stack gas composition, the percentage combustion and the auxiliary heat required under various operating conditions, including sludge feed rate and size, air feed rate, and incinerator temperature.

  5. Fluidized-bed gasification of an eastern oil shale

    SciTech Connect (OSTI)

    Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

    1987-01-01T23:59:59.000Z

    The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

  6. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29T23:59:59.000Z

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  7. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect (OSTI)

    Li, Tingwen; Zhang, Yongmin

    2013-10-11T23:59:59.000Z

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  8. Four Rivers second generation pressurized circulating fluidized bed combustion project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Wedel, G. von; Richardson, K.W.; Morehead, H.T.

    1995-12-31T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  9. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect (OSTI)

    Weimer, R.F.

    1995-08-01T23:59:59.000Z

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  11. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01T23:59:59.000Z

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  12. Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds

    E-Print Network [OSTI]

    Magdeburg, Universität

    Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds Ch. Nagaiah1 adaptive numerical results of heat and mass transfer in fluidized beds using higher order time stepping injection. The numerical results are tested with different time stepping methods for different spatial grid

  13. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

  14. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect (OSTI)

    Kevin Whitty

    2003-12-01T23:59:59.000Z

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  15. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01T23:59:59.000Z

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  16. Dynamic analysis of a circulating fluidized bed riser

    SciTech Connect (OSTI)

    Panday, Rupen [REM Engineering PLLC; Shadle, Lawrence J. [U.S. DOE; Guenther, Chris [U.S. DOE

    2012-01-01T23:59:59.000Z

    A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

  17. Fluidized bed combustion of alternate fuels. Final report

    SciTech Connect (OSTI)

    Howe, W.C.; Divilio, R.J. [Combustion Systems, Inc., Aptos, CA (United States)

    1993-12-01T23:59:59.000Z

    Fluidized bed combustion (FBC) technology offers the opportunity combust a broader range of fuels than previously possible with other technologies. FBC boilers are currently being used throughout the world to dispose of a wide range of solid and semi-solid waste fuels, including municipal and industrial solid wastes and sludges, agricultural wastes, and coal mining or cleaning wastes. FBCs can also accommodate cofiring waste fuels in units designed for coal or other solid fuels with relative ease compared to conventional technology. The capacity and experience base for coal-fired FBCs has increased in recent years so that utility-scale reheat units of 200-300 MWe in size are now commercially available, and larger units are now being considered. As utilities install fluidized bed boilers to generate power, it is anticipated that many will at some point consider cofiring one or more waste fuels either together or with coal to reduce the quantity and cost of the primary fuel, and in many cases, help offset the environmental impact of other disposal options such as landfills. In order to assist the industry in their evaluations, this report summarizes the fuel characteristics, experience base, and technical issues associated with burning selected fuels using FBC technology, including: Municipal Solid Wastes; Biomass; Sewage Sludge; Paper Manufacturing and Recycling Wastes; Scrap Tires; and Automobile Wastes.

  18. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    SciTech Connect (OSTI)

    Mastellone, M.L. [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering] [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering; Arena, U. [National Research Council, Napoli (Italy). Inst. for Combustion Research] [National Research Council, Napoli (Italy). Inst. for Combustion Research; [Univ. of Naples, Caserta (Italy). Dept. of Environmental Sciences

    1999-05-01T23:59:59.000Z

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

  19. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30T23:59:59.000Z

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  20. In-bed tube bank for a fluidized-bed combustor

    DOE Patents [OSTI]

    Hemenway, Jr., Lloyd F. (Morgantown, WV)

    1990-01-01T23:59:59.000Z

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  1. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01T23:59:59.000Z

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  2. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  3. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

    1994-10-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

  4. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  5. Metal behavior during fluidized bed thermal treatment of soil

    SciTech Connect (OSTI)

    Ho, T.C.; Lee, H.T.; Shiao, C.C.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering; Bostick, W.D. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.

    1995-12-31T23:59:59.000Z

    The Superfund dumpsites are frequently composed of soils contaminated with hazardous organic constituents and toxic heavy metals. While thermal treatment is an effective method of remediating the contaminated soils, the major environmental concerns are the emissions of toxic metal fumes during the treatment and the leaching of metals from the treated soil. The US EPA has reported that metals can account for almost all of the identified cancer risks from waste incineration systems. Research leading to better understanding of their behavior and better controlling of their emissions is urgently needed. In this study, the behavior of metals during the fluidized bed thermal treatment of artificially prepared metal-contaminated clay was experimentally and theoretically investigated. The objective of the study was to evaluate the effects of operating conditions on metal volatilization and metal leachability associated with the process. Metal experiments were carried out in a well instrumented 76 mm (3 inch) i.d. fluidized bed incinerator. The metals involved were compounds of lead and cadmium and the operating parameters included metal concentration, air flow rate, treatment temperature and treatment duration. The observed results indicated that metal volatilization is mainly a function of treatment temperature and treatment duration. The degree of volatilization was observed to range from 5 to 40% depending on the operating conditions. Cadmium leachability was observed to be relatively high compared to that of lead. In addition to the experimental study, a theoretical model based on the laws of heat and mass transfer operations and reaction kinetics was derived to simulate the metal volatilization process. The derived model was found to predict reasonably well the experimental observations.

  6. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  7. Development of a countercurrent multistage fluidized-bed reactor and mathematical modeling for prediction of removal efficiency of sulfur dioxide from flue gases

    SciTech Connect (OSTI)

    Mohanty, C.R.; Malavia, G.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-02-15T23:59:59.000Z

    A bubbling countercurrent multistage fluidized-bed reactor for the sorption of sulfur dioxide by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow and with the emulsion phase either in plug flow (EGPF model) or in perfectly mixed flow (EGPM model). The model calculations were compared with experimental data in term of percentage removal efficiency of sulfur dioxide. Both models were applied to understand the influence of operating parameters on the reactor performance. The comparison showed that the EGPF model agreed well with the experimental data. From the perspective of use of a multistage fluidized-bed reactor as air pollution control equipment in industry, the model could be considered general enough for predicting the performance of reactors for gas-solid treatment.

  8. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial

    E-Print Network [OSTI]

    Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell Roland D. Cusick*, Mark L. Ullery, Brian A. Dempsey, Bruce E. Logan Department of Civil January 2014 Available online 6 February 2014 Keywords: Microbial electrolysis cell Electrochemical

  9. Supplementary Information for: Electrochemical struvite precipitation from digestate with a fluidized bed

    E-Print Network [OSTI]

    Supplementary Information for: Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell Roland D. Cusick1,2 , Mark Ullery1 , Brian A. Dempsey1

  10. Empirical models of emissions and energy efficiencies of coal-fired fluidized bed power plants

    E-Print Network [OSTI]

    Gruhl, Jim

    Mass and energy balances of fluidized bed energy technologies are to a significant degree dependent upon the specific design being investigated. It is difficult to make any generally accurate comments. about these balances. ...

  11. E-Print Network 3.0 - activated carbon fluidized-bed Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies 16 PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY MEANS OF FLUIDIZED BED PYROLYSIS OF VIRGIN OR RECYCLED POLYMERS Summary: PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY...

  12. Characterization of Biofilm in 200W Fluidized Bed Reactors

    SciTech Connect (OSTI)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29T23:59:59.000Z

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.

  13. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01T23:59:59.000Z

    Biodegradation Combustion Pyrolysis Gasification . Gas Clean-Up . Fluidized-Bed Gasification DESIGN OF THE GASIFICATION SYSTEM Fluidized-Bed Reactor Particle Size Distributor Plate Insulation Preheaters . Cyclone Feed Injection System Gasifier..., The greatest thermal efficiency appeared to occur near 760'C, well below the expected ash fusion temperature. The gasification reaction was operated with no supplemental heat for most of the experiments. The most prominent problem with the gasifier...

  14. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2006-07-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2006 through June 30, 2006. Substantial progress was made on the development and application of software for the effective operation and safe control of the Circulating Fluidized-Bed (CFB) Combustor, as well as for the display and logging of acquired data and operating parameters.

  15. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983

    SciTech Connect (OSTI)

    Cole, W.E.; DeSaro, R.; Joshi, C.

    1983-02-01T23:59:59.000Z

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  16. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982

    SciTech Connect (OSTI)

    Cole, W. E.; DeSaro, R.; Joshi, C.

    1982-02-01T23:59:59.000Z

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  17. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01T23:59:59.000Z

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  18. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect (OSTI)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01T23:59:59.000Z

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  19. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect (OSTI)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01T23:59:59.000Z

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  20. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, J.; Koskinen, J.

    1995-08-22T23:59:59.000Z

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  1. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09T23:59:59.000Z

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  2. Circulating fluidized-bed boiler makes inroads for waste recycling

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

  3. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-06-30T23:59:59.000Z

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

  4. Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers

    E-Print Network [OSTI]

    Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

    2011-01-01T23:59:59.000Z

    A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

  5. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOE Patents [OSTI]

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  6. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16T23:59:59.000Z

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  8. The design of a fluidized bed for testing of a robotic burrowing device which mimics razor clams

    E-Print Network [OSTI]

    Dorsch, Daniel Scott

    2012-01-01T23:59:59.000Z

    This thesis reviews the design of a fluidized bed test setup for testing digging kinematics of RoboClam, a burrowing device based on Atlantic Razor Clams. This test bed allows for in-lab testing in an environment covered ...

  9. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect (OSTI)

    Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

    1996-12-31T23:59:59.000Z

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  10. Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

    2008-05-15T23:59:59.000Z

    In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

  11. Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study

    SciTech Connect (OSTI)

    Jack A. Fuller; Harvie Beavers; Robert Bessette [West Virginia University, Morgantown, WV (United States). College of Business and Economics

    2006-06-15T23:59:59.000Z

    The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

  12. Automatic control of air to fuel ratio in a fluidized bed gasifier

    E-Print Network [OSTI]

    Ling, Peter P.

    1984-01-01T23:59:59.000Z

    as fuel. Gasification is a thermal chemical process where a controlled combustion of solid or liquid material is used to produce a combustible gas (Groves and Anthony, 1979). Groves (1978), from his experiment with a 50 mm diameter fluidized bed... heating value, 5. 9 mJ/m , of the LCV gas for a 61 cm diameter fluidized bed 3 gasifier operation. If too little fuel or too much air is supplied to the system, gasification will shift into combustion, causing slagging and fouling (LePori et al. , 1983...

  13. A Fluidized Bed Chiller: A New Approach in Making Slush-Ice

    E-Print Network [OSTI]

    Klaren, D. G.; Van Der Meer, J. S.

    A FLUIDIZED BED CHILLER: A NEW APPROACH IN MAKING SLUSH-ICE Dr.Ir. D.G. Klaren M.Sc. Technical Director Gebr. Scheffers B.V. Schiedam, The Netherlands ABSTRACT A fluidized bed heat exchanger already successfully applied for heat transfer... applications involving severely fouling liquids, can also be used in making slush-ice. Overwhelming world-wide interest confirms the importance of this technology. This paper explains the principle and presents the first results of this fas cinating new...

  14. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    SciTech Connect (OSTI)

    Vincent, R.Q.

    1989-11-01T23:59:59.000Z

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  15. Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

  16. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    SciTech Connect (OSTI)

    Jantzen, C

    2006-09-13T23:59:59.000Z

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability must not be compromised--binding agent should not react with the NAS product and binding agent should not create an unfavorable pH environment that may cause accelerated leaching. It is the goal of the present study to survey cementitious waste forms based on Ordinary Portland Cement (OPC), Ceramicrete, and hydroceramic binders by correlating waste loading, density and compressive strength and then determine if these binders affect the product performance in terms of the PCT response. This will be done by making a one-to-one comparison of the PCT response measured on granular NAS mineral product (mixed bed and fines products) with the PCT response of the monolithed NAS product in the different binders. Future studies may include, refining the above binders, and examining other binders. It is likely that binders formed from kaolin would be most compatible with the chemistry of the THOR{reg_sign} mineral waste form which is made by steam reforming of kaolin and sodium rich wastes. The economics of production on a large scale have yet to be investigated for any of the binders tested.

  17. Operating Experience of a Coal Fired Fluidized Bed at Georgetown University

    E-Print Network [OSTI]

    Lutes, I. G.; Gamble, R. L.

    1980-01-01T23:59:59.000Z

    Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion...

  18. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    HEWITT WM

    2011-04-08T23:59:59.000Z

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  19. Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor

    E-Print Network [OSTI]

    George, Steven M.

    /high-temperature (HP/HT) synthesis methods [4­7] led to the discovery of polycrystalline diamond grit and the manufacture of polycrystalline diamond compact (PDC) materials [8]. PDC cutters are well known and widely usedAlumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed

  20. Behavior of fluidized beds similar to equilibrium states Kengo Ichiki* & Hisao Hayakaway

    E-Print Network [OSTI]

    Ichiki, Kengo

    on the behavi* *or of systems excited by mechanical activations such as vibration or rotation of vessels. On* * the other hand, the researches on fluidized beds, where systems are excited by the fluid * *flow for the fluid flow at the bottom. I* *n experiments, energy injection to the system is controlled by the flow

  1. Development of the fluidized bed thermal treatment process for treating mixed waste

    SciTech Connect (OSTI)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-05-01T23:59:59.000Z

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures ({approx} 525--600{degree}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB`s) with 99.9999% (``six-nines``) destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na{sub 2}CO{sub 3}) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste.

  2. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  3. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect (OSTI)

    Patch, K.D.; Cole, W.E.

    1988-06-01T23:59:59.000Z

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  4. Alexandria fluidized-bed process development unit: cold-mode testing

    SciTech Connect (OSTI)

    None

    1981-02-01T23:59:59.000Z

    The objectives of the current test program include: validation of predictions from the Massachusetts Institute of Technology (MIT) Coal Atmospheric Fluidized Bed Combustor System Model; experimental studies supporting AFBC process developments; and the collection of transient data for process control design. This topical report summarizes results from cold mode testing, i.e., experiments performed without combustion for MIT Model verification. During these tests, sulfated limestone (generated from normal AFBC operations) was fluidized with air at temperatures ranging from 80 to 500/sup 0/F in the 3' x 3' (nominal) size PDU at Alexandria, VA. The MIT Model predictions tested include: slumped bed height, minimum fluidization velocity, and expanded bed height. In all cases, there were large discrepancies between the Model predictions and corresponding experimental results. Other results obtained included solids size distribution and particle size profiles in the bed. Size distribution was adequately modeled by the Rosin-Rammler equation. No transient process data was collected due to hardware problems with the Data Acquisition System. Tests were also performed to determine the effect of maldistribution of air, caused by leaks in the air distributor, on experimental results. The data indicated that effects of these leaks seemed to be undetectable.

  5. Fluidized-Bed Waste-Heat Recovery System Advances

    E-Print Network [OSTI]

    Patch, K. D.; Cole, W. E.

    ACCESS DOOR (TYPICAL) 1.. LEVEL . PUTFORII ?n'if~~??? FLUIDIZED L--lJ FLUE ';:S ! "'D I DUCT , PRQVISK>N FOR 14" I.P.S. : FLUE GAS . LFr UN! J-~DU~C~T~CL!:!:E~ANO~UT~? RE~':aL:"-~L_--WL:!:!J~~~=:IAIR 1." I.P.S. PREHEATED COMBUSTION AIR... of six months. Data gathered will be used to evaluate performance, energy savings. and economic attractiveness of the FBWHR system. ACKNOWLEDGEMENT This work was jointly funded by the Depart ment of Energy and Thermo Electron Corporation...

  6. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1997-07-01T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

  7. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  9. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  10. Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste

    E-Print Network [OSTI]

    Guard, R. F. W.

    1982-01-01T23:59:59.000Z

    OPERATING EXPERIENCE WITH A LARGE FLUIDIZED-BED GASIFIER OF WOODWASTE Robin F.W. Guard Omnifuel Gasification Systems Toronto, Ontario ABSTRACT The town of Hearst in northern Ontario is the lo cation of many forest product industries. One... Houston, TX, April 4-7, 1982 energy recovery systems before choosing gasification. The main reason for the choice was the need to be able to distribute the energy to four existing boilers in different locations, all working on natural gas. A secondary...

  11. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  12. Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems

    E-Print Network [OSTI]

    Nuboer, Benito Frans

    1991-01-01T23:59:59.000Z

    into the bottom center of a fluidized bed. A feed hopper with a feeder assembly, two pressure sealing rotary valves and an injector feeder were used, Problems experienced included uneven metering of the trash into the gasifier. In a report prepared... of cotton gin trash and the fact that feeding this material will be without preprocessing, the decision was made to study devices that provide mechanical pressure seals. Three concepts were chosen, lock hopper with door valves, lock hopper with knife gate...

  13. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01T23:59:59.000Z

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  14. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide

    SciTech Connect (OSTI)

    Roy, S.; Mohanty, C.R.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-12-15T23:59:59.000Z

    Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

  15. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24T23:59:59.000Z

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  16. Pressurized fluidized-bed combustion part-load behavior. Volume I. Summary report

    SciTech Connect (OSTI)

    Roberts, A. G.; Pillai, K. K.; Raven, P.; Wood, P.

    1981-09-01T23:59:59.000Z

    Tests performed during 1980 to determine the part-load characteristics of a pressurized fluidized-bed combustor for a combined-cycle power plant and to examine its behavior during load changing are discussed. Part-load operation was achieved by varying the bed temperature by amounts between 200 to 300/sup 0/F and the bed depth from between 9 and 10 ft at rates varying between 0.2 ft/min and 0.5 ft/min. The performance at part-load steady-state conditions and during transient conditions is reported with information on combustion efficiency (99% at full-load with 9 ft bed depth and 1650/sup 0/F bed temperature; 95% with 4 ft depth and 1390/sup 0/F); sulfur retention (95/sup 0/ at full load to 80% at low bed depth and low bed temperature); sulfur emissions (no definitive results); NO/sub x/ emissions (tendency for increase as bed temperature was reduced); alkali emissions (no bed temperature effect detected); and heat transfer. It was demonstrated that load can be altered in a rapid and controlled manner by changing combinations of bed depth temperature and pressure. The most important practical change was the reduction in O/sub 2/ concentration which occurred when the bed height was increased at a rapid rate. The extra energy required to reheat the incoming bed material resulted (in the most extreme case) in a temporary drop in excess air from 65% to 12%. In a full-scale plant the loss of heat from the stored bed material would be much lower and the excess air trough when increasing load would not be as pronounced. Nevertheless, it seems prudent to design full-scale plant for a full load excess air of not less than about 50% when using bed depth as a load control parameter.

  17. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  18. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-04-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  19. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  20. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30T23:59:59.000Z

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  1. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  2. A simplified model for the combustion of coal in a continuous flow fluidized bed

    E-Print Network [OSTI]

    Richardson, Thomas Wade

    1982-01-01T23:59:59.000Z

    specific heat of char (J/g K) 0 specific heat of the fluidizing gas (J/g K) domain over which the interval is defined particle diameter (cm) molecular gas diffusion coefficient (cm /s) intraparticle diffusion coefficient through the ash layer (cm /s... particle (N) weight of an individual particle (N) number of times a bubble is flushed ratio of the volume of ash formed to char burnt z-coordinate of the lower boundary (m) z-coordinate of the upper boundary (m) ~GkS b 1 s/K convective heat transfer...

  3. Experimental study of fluidized bed combustion of feedlot manure

    E-Print Network [OSTI]

    Madan, Ajit M.

    1984-01-01T23:59:59.000Z

    . CHAPTER II LITERATURE REVIEH Most of the previous research has dealt with fuel characteristics, pyrolysis and gasification or partial oxida- tion of feedlot manure (Walawender, et al. , 1973; Huffman, 1978; Kreis, 1979; Raman, et al. , 1981). A review... Characteristics 2. 2 Gasification 2. 3 Combustion CHAPTER III OBJECTIVES CHAPTER IV THE EXPERIMENTAL APPARATUS 4. 1 General Facility Layout 4. 2 Air Flow System 4. 3 Bed Chamber 4. 4 Fuel Feed System 1V V1 1X 12 14 19 21 21 23 25 25 TABLE...

  4. Combustion of Cattle Manure in a Fluidized Bed Combustor

    E-Print Network [OSTI]

    Annamalai, K.; Colaluca, M. A.; Ibrahim, M. Y.; Sweeten, J. M.

    . Experiments were conducted with -20 to +20 percent excess air and at bed temperatures ranging from 600?C (1112?F) to 800?C (1472?F). Experimental data revealed that the gasification efficiencies ranged from 90 to 98 percent, while the combustion... of manure (A, B, C, 0, E, and F) were obtained. The gasification and partial oxidation results for manure A, B, and C (supplied by Hill Feed Yard and Biocon Division of Anderson Peat Company) were reported in references [6 and BJ. The thermochemical...

  5. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

    2012-12-24T23:59:59.000Z

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  6. Some investigations on heat transfer in a hot circulating fluidized bed

    SciTech Connect (OSTI)

    Nag, P.K.; Reddy, B.V. [Indian Inst. of Tech., Kharagpur (India). Dept. of Mechanical Engineering

    1995-12-31T23:59:59.000Z

    An experimental investigation has been made to study the heat transfer characteristics at different bed heights along the riser column in a Circulating Fluidized Bed (CFB) unit of 102 mm x 102 mm in bed cross-section, 5.25 m in height with a return leg of the same dimensions. The test probes have dimensions of 42.5 mm in O.D., 70 mm in height, and half of its outer surface is exposed to the bed. Three such test sections made of mild steel are located at 1.8 m, 2.3 m and 3.4 m (probe 3, probe 2 and probe 1 respectively) above the distributor plate in the riser column. The variation of the heat transfer coefficient at different bed heights, and the influence of operating parameters are investigated. PG and coal (of mean size 800 {micro}m) are burned. The primary superficial air velocity is varied between 3.0 to 7.0 m/s. Local sand of mean size 248 {micro}m is used as the bed material. The present data is compared with the published literature.

  7. Circulating fluidized bed gasification of a tire-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A. [Ist. di Ricerche Sulla Combustione-C.N.R., Napoli (Italy)

    1997-12-31T23:59:59.000Z

    A market available tire-derived fuel (TDF) was continuously fed in a laboratory scale CFB gasifier operated with air and steam as oxidizers. Silica sand, having a Sauter mean diameter of 155 {micro}m, was used as bed material. The riser and the recirculation column were maintained at 850 C by means of electric heaters driven by electronic controllers. The experiments were carried out at fixed values of solids mass flux (10 kg/sm{sup 2}) and superficial gas velocity in the primary (1.7 m/s) as well as in the secondary zone (2.7 m/s). The equivalence ratios and the H{sub 2}O/TDF d.a.f. ratio were varied between 0.3 and 0.6 and between 0.4 and 1.3, respectively. For each run, data from pressure electronic transducers, thermocouples and gas analyzers were processed to evaluate riser axial profiles of pressure, temperature and gas concentration (in terms of CO, H{sub 2}, CH{sub 4}, C{sub n}H{sub m} and CO{sub 2} content). Collecting, sieving and analyzing solids hold-up in the riser allowed estimation of the amount of carbon particles and their size distribution. Carbon conversion efficiency, specific gas yield and energy output were also determined.

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31T23:59:59.000Z

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  9. PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor

    SciTech Connect (OSTI)

    Peltier, R.

    2007-08-15T23:59:59.000Z

    The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

  10. Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers

    SciTech Connect (OSTI)

    Abdulally, I.F.; Reed, K.A.

    1993-12-31T23:59:59.000Z

    As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

  11. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01T23:59:59.000Z

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  12. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  13. Pressurized fluidized-bed hydroretorting of Indiana New Albany shale in batch and continuous units

    SciTech Connect (OSTI)

    Roberts, M.J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA)); Roosmagi, C. (USDOE Laramie Energy Technology Center, WY (USA))

    1989-01-01T23:59:59.000Z

    Work is being conducted at the Institute of Gas Technology (IGT) to develop a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The PFH process, using smaller particle sizes than the moving-bed hydroretorting process, offers higher oil yields and greater reactor mass fluxes through higher selectivity of organic carbon to oil and shorter residence times, respectively. Batch PFH tests have been conducted to study the effects of shale preheat time (15 to 30 min) and temperature (25{degree} to 320{degree}C), retorting temperature (450{degree} to 710{degree}C), hydrogen pressure (2.8 to 7.0 MPa), particle size (65 to 330 microns), and residence time (5 to 30 min) on the product yields from Indiana New Albany shale. Oil yield has been found to increase with increasing hydrogen pressure. Results are discussed. 10 refs., 14 figs., 3 tabs.

  14. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1996-06-01T23:59:59.000Z

    Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

  15. Experimental investigation of bubbling in particle beds with high solid holdup

    SciTech Connect (OSTI)

    Cheng, Songbai; Hirahara, Daisuke; Tanaka, Youhei; Gondai, Yoji; Zhang, Bin; Matsumoto, Tatsuya; Morita, Koji; Fukuda, Kenji [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Yamano, Hidemasa; Suzuki, Tohru; Tobita, Yoshiharu [Advanced Nuclear System R and D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan)

    2011-02-15T23:59:59.000Z

    A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injecting nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes. (author)

  16. Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983

    SciTech Connect (OSTI)

    Cole, W. E.; De Saro, R.; Joshi, C.

    1983-08-01T23:59:59.000Z

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

  17. Bench-scale testing of fluidized-bed sorbents -- ZT-4

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

  18. Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales

    SciTech Connect (OSTI)

    Rue, D.M.

    1991-01-01T23:59:59.000Z

    A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

  19. Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales

    SciTech Connect (OSTI)

    Rue, D.M.

    1991-12-31T23:59:59.000Z

    A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

  20. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors

    SciTech Connect (OSTI)

    Bharadwaj, S.S.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

    1994-03-01T23:59:59.000Z

    The production of synthesis gas (CO + H[sub 2]) by the catalytic partial oxidation of CH[sub 4] in air or O[sub 2] in static fluidized beds at atmospheric pressure has been examined over Pt, Rh, and Ni catalysts coated on 100-[mu]m [alpha]-Al[sub 2]O[sub 3] beads. With CH[sub 4]/air feeds, CO and H[sub 2] selectivities as high as 95% with >90% CH[sub 4] conversion were obtained on Rh and Ni catalysts at contact times of 0.1-0.5 sec. Pt catalysts were found to have significantly lower selectivities for all the three catalysts were improved by heating the reaction mixture above the autothermal reactor temperature and using O[sub 2] instead of air. The selectivities and conversions were fairly constant over the range of contact time s used. Probable reaction pathways for CH[sub 4] oxidation in fluidized beds are discussed. 31 refs., 6 figs.

  1. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect (OSTI)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01T23:59:59.000Z

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  2. Four stage, fluidized bed gasification process minimizes NO{sub x}

    SciTech Connect (OSTI)

    Lewis, F.M.; Haug, R.T.

    1999-07-01T23:59:59.000Z

    In 1981, after a long and thorough study of alternative methods of sewage sludge (biosolids) disposal, the City of Los Angeles (CLA) embarked on a pilot test program to incinerate dried sewage sludge from its Hyperion Wastewater Treatment Plant. This dried sludge is typically 47% ash, 53% combustible, and has an average higher heating value (HHV), moisture, ash-free (MAF) of 10,675 Btu/Lbm. The dried sludge is called sludge derived fuel (SDF). Approximately 8% of the MAF fraction of SDF is fuel-bound nitrogen. When SDF, with its extremely high fuel-bound nitrogen, was combusted in conventional multiple hearth and fluidized bed pilot plant furnaces, NO{sub x} emissions were extremely high ({gt}1,000 ppm). Faced with this dilemma, the CLA initiated an R and D program to reduce NO{sub x}. The pilot tests with a sub-stoichiometric fluid bed and an excess air afterburner (two-stages) reduced NO{sub x} to 400--600 ppm. With one intermediate stage added (three-stage), NO{sub x} was reduced to 130--150 ppm. However, when the following four-stage process was developed and tested, NO{sub x} was reduced to 50--75 ppm. Stage 1: Sub-stoichiometric fluidized bed operating at a nominal 30% stoichiometric air (SA). Stage 2:Sub-stoichiometric zone operating at a nominal 80% SA. Stage 3: Stoichiometric zone operating at a nominal 100% SA. Stage 4: Excess air zone (Afterburner) operating at a nominal 135% SA (35% excess air). After pilot testing was complete and design parameters established, three full-size, fluid bed gasifiers (two operational--one standby) were designed, constructed and operated until 1996. This paper describes the design, operation, and emission testing of these four-stage fluid bed gasifiers with special emphasis on the problems of (a) pneumatic feeding of SDF powder into the pressurized bed and (b) baghouse fabrics (expanded PTEE membrane on PTFE scrim). Final emission test results for NO{sub x} and other criteria pollutants are also presented.

  3. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01T23:59:59.000Z

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  4. Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Rue, D.M.; Lau, F.S.

    1991-01-01T23:59:59.000Z

    The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

  5. Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Rue, D.M.; Lau, F.S.

    1991-12-31T23:59:59.000Z

    The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

  6. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  7. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li

    2006-01-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  8. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05T23:59:59.000Z

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  9. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect (OSTI)

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01T23:59:59.000Z

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  10. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  11. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-07-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

  13. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  14. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.

    1996-02-20T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  15. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-12-31T23:59:59.000Z

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  16. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-01-01T23:59:59.000Z

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  17. Effect of pressure on second-generation pressurized fluidized bed combustion plants

    SciTech Connect (OSTI)

    Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1993-06-01T23:59:59.000Z

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

  18. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  19. An experimental study of temperature of burning coal particle in fluidized bed

    SciTech Connect (OSTI)

    Mirko Komatina; Vasilije Manovic; Dragoljub Dakic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Mechanical Engineering

    2006-02-01T23:59:59.000Z

    The purpose of this study was to investigate the temperature of coal particle during combustion in fluidized bed (FB). It is necessary to know the coal particle temperature in order to predict kinetics of chemical reactions within and at the surface of coal particle, accurate NOx and SO{sub 2} emission, fragmentation, attrition, the possibility of ash melting, etc. The experimental investigations were conducted in order to obtain the reliable data on the temperature of particle burning in the FB. A method using thermocouple was developed and applied for measurements. Thermocouple was inserted in the center of the particle shaped into spherical form with various diameters: 5, 7, 8, and 10 mm. Two characteristic types of low-rank Serbian coals were investigated. Experiments were done at the FB temperature in the range of 590-710{sup o}C. Two types of experiments were performed: (I) combustion using air as fluidization gas and (ii) devolatilization with N{sub 2} followed by combustion of obtained char in air. The temperature histories of particles during all stages after introducing in the FB were analyzed. Temperature difference between the burning particle and the FB was defined as a criterion, for comparison. It was shown that the temperature profile depends on the type of the coal and the particle size. The higher temperature difference between the burning particle and the FB was obtained for smaller particles and for lignite (130-180{sup o}C) in comparison to the brown coal (70-130{sup o}C). The obtained results indicated that a primary role in the temperature history of coal particle have the mass and heat transfer through combusting particle. 24 refs., 6 figs., 3 tabs.

  20. CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION

    SciTech Connect (OSTI)

    Crawford, C

    2008-07-31T23:59:59.000Z

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

  1. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect (OSTI)

    Lee, S.K.; Keener, T.C.

    1994-10-10T23:59:59.000Z

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  2. Petrographic characteristics of Romanian lignite and solid by-products resulting from circulating fluidized bed combustion -- CFBC

    SciTech Connect (OSTI)

    Panaitescu, C. [Politehnica Univ. Bucharest (Romania); Dragos, L.; Fluieraru, C.; Nistor, I. [Thermal Power Engineering Inst., Bucharest (Romania)

    1994-12-31T23:59:59.000Z

    The low rank coals -- lignites -- are the main source, in Romania for power and thermal energy generation. The Circulating Fluidized Bed Combustion -- CFBC -- was chosen to be used for its particular features with very low emission levels. Carbopetrographic research, using optical microscopy, was carried out on the raw coals and, especially, on the carbonaceous products in different thermal stages and the residues. The existence of successive and simultaneous phases of degasing, pyrolysis and burning of organic and mineral material was revealed. The study gave the possibility of improving the process-governing parameters, in order to raise the combustion efficiency on once-through combustors. The main solid fuel fired in power plants is the lignite obtained from surface exploitation. Experience of its use in high load power systems has shown that it can be fired only by adding liquid fuel. Moreover, it is rather difficult to prepare it to exact size requested. The only technology conveniently applied for this fuel was the fluidized bed combustion (FBC), which uses a 0--7 mm-sized lignite. On the basis of this original concept technology, steam and hot water load generators were built in Romania, that is 2 t/h, 8 bar, 170 C, and 10 t/h, 16 bar, 350 C steam generators and 5 Gcal/h, and 10 Gcal/h hot water boilers. For loads over 100 Gcal/h, 100 t/h, circulating fluidized bed combustion boilers were conceived.

  3. Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons

    E-Print Network [OSTI]

    Mehta, Shirish Ramniklal

    1982-01-01T23:59:59.000Z

    for fixed H /0 ratio and average s particle diameter is shown in Figures 3 and 4 respectively. The smooth curve for the 5 micron plate reflects uniform density throughout the bed due to good distribution of the gas phase. The curves for the 40 and 100...COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment...

  4. Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-31T23:59:59.000Z

    Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

  5. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed. Annual report, 1990

    SciTech Connect (OSTI)

    Gautam, M.; Johnson, E.

    1991-01-01T23:59:59.000Z

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The ``fringe-model`` laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  6. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Gautam, M.; Johnson, E.

    1991-01-01T23:59:59.000Z

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  7. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Progress report, July--September 1988

    SciTech Connect (OSTI)

    Punwani, D.V.; Lau, F.S.; Knowlton, T.M.; Akin, C.; Roberts, M.J.; Findlay, J.G.; Mensinger, M.C.; Chang, I.H.; Xiong, T.Y.

    1988-12-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with six other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the fourth program quarter from July 1 through September 30, 1988.

  8. Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, July--September 1989

    SciTech Connect (OSTI)

    Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

    1989-12-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the eighth program quarter from July 1 through September 30, 1989.

  9. Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, October--December 1988

    SciTech Connect (OSTI)

    Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

    1989-02-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the fifth program quarter from October 1 through December 31, 1988.

  10. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    SciTech Connect (OSTI)

    NONE

    1996-06-30T23:59:59.000Z

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  11. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.N.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1996-12-31T23:59:59.000Z

    Toxic trace metallic elements such as arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium are usually contained in coal in various forms and trace amounts. These metals will either stay in the ash or be vaporized during high temperature combustion. Portions of the vaporized metals may eventually be emitted from a combustion system in the form of metal fumes or particulates with diameters less than 1 micron, which are potentially hazardous to the environment. Current practice of controlling trace metal emissions during coal combustion employs conventional air pollution control devices (APCDs), such as electrostatic precipitators and baghouses, to collect fly ash and metal fumes. The control may not always be effective on metal fumes due to their extremely fine sizes. This study is to explore the opportunities for improved control of toxic trace metal emissions from coal-fired combustion systems. Specifically, the technology proposed is to employ suitable sorbents to reduce the amount of metal volatilization and capture volatilized metal vapors during fluidized bed coal combustion. The objective of the study was to investigate experimentally and theoretically the metal capture process.

  12. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01T23:59:59.000Z

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  13. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect (OSTI)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01T23:59:59.000Z

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  14. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26T23:59:59.000Z

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  15. Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September 1992--November 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01T23:59:59.000Z

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  16. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  17. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    SciTech Connect (OSTI)

    Bodenan, F., E-mail: f.bodenan@brgm.f [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France); Guyonnet, D.; Piantone, P.; Blanc, P. [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France)

    2010-07-15T23:59:59.000Z

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  18. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01T23:59:59.000Z

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  19. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.; Peterson, Reid A.

    2013-10-01T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.

  20. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  1. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

  2. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31T23:59:59.000Z

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  3. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C

    2004-11-01T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  4. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  5. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  6. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  7. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    SciTech Connect (OSTI)

    Zhen Fan

    2006-05-30T23:59:59.000Z

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  8. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect (OSTI)

    Albulescu, P.; Mazzella, G.

    1987-06-01T23:59:59.000Z

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  9. Evaluation of a fluidized-bed waste-heat recovery system. A technical case study

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

  10. Evaluation of a fluidized-bed waste-heat recovery system

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

  11. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01T23:59:59.000Z

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

  12. Measurement of bubble sizes in fluidised beds using electrical capacitance tomography

    E-Print Network [OSTI]

    Chandrasekera, T. C.; Li, Y.; Moody, D.; Schnellmann, M. A.; Dennis, J. S.; Holland, D. J.

    2015-01-13T23:59:59.000Z

    -mail address: djh79@cam.ac.uk (D.J. Holland). 1 Now at the Ocean Science & Technology Division, Graduate School at Shenzhen, Tsinghua University, China. 2 Now at the Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New... Measurement of bubble sizes in fluidised beds using electrical capacitance tomography T.C. Chandrasekera, Y. Li 1, D. Moody, M.A. Schnellmann, J.S. Dennis, D.J. Holland n,2 Department of Chemical Engineering and Biotechnology, University...

  13. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01T23:59:59.000Z

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  14. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  15. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal. Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  16. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  17. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect (OSTI)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01T23:59:59.000Z

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  18. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions

    SciTech Connect (OSTI)

    Neeway, James J [ORNL] [ORNL; Rod, Kenton A. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Bowden, Mark E [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Pierce, Eric M [ORNL] [ORNL; Qafoku, Nikolla [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Williams, Benjamin D [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Brown, Christopher F [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

    2014-01-01T23:59:59.000Z

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10 6 g/(m2 d) for the granular material and 10 5 g/(m2 d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two materials is dependent on their depth in the column. This phenomenom is a result of depth-dependent solution concentrations giving rise chemical environments that may be supersaturated with respect to a number of mineral phases.

  19. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect (OSTI)

    DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1996-09-01T23:59:59.000Z

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  20. Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

    1994-03-01T23:59:59.000Z

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

  1. Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-06-01T23:59:59.000Z

    The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

  2. Parametric performance studies on fluidized-bed heat exchangers. Task I. Fouling characteristics. Yearly technical progress report, 28 July 1981-31 July 1982

    SciTech Connect (OSTI)

    None

    1982-09-01T23:59:59.000Z

    Analyses and experiments are being performed in this program to investigate the heat transfer performance of single and multi-stage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. The work, which is an extension of that done previously under contracts EC-77-C-03-1433 and DE-AC03-79-ET11348, consists of three tasks. In Task 1, tests have been conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry-out, heat transfer equal to that obtained prior to condensation was again obtained. 8 figures, 1 table.

  3. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect (OSTI)

    N /A

    2000-06-30T23:59:59.000Z

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

  4. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect (OSTI)

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J. [Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217 (United States)

    2014-10-15T23:59:59.000Z

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  5. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  6. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    SciTech Connect (OSTI)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23T23:59:59.000Z

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  7. Foam Control using a Fluidized Bed of Hydrophobic Particles by Clara Mata*

    E-Print Network [OSTI]

    Joseph, Daniel D.

    distillation and Delay-Coker reactors. However, foaming and defoaming are not yet understood. Foams trap gas in oil reservoirs, insulation, construction and refining processes such as Vacuum distillation and Delay gas fraction than the bubbly mixture from which it comes. The high gas hold-up in foams is undesirable

  8. Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel

    SciTech Connect (OSTI)

    Smith, D.H.; Grimm, U.; Haddad, G.

    1995-12-31T23:59:59.000Z

    In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

  9. An experimental study of the hydrodynamics and cluster formation in a circulating fluidized bed. Topical report, January 1, 1991--June 30, 1992

    SciTech Connect (OSTI)

    Gautam, M.; Jurewicz, J.; Heping, Y.; Clifton, K.

    1992-07-01T23:59:59.000Z

    This research program involves two major aspects. First, to evaluate techniques to effectively probe the polydisperse gas-solid flows and second, to apply these techniques to study the gas-solid flow structure and clusters in the riser of a circulating fluidized bed riser. Amongst the non-intrusive techniques a modified laser Doppler technique based on the fluorescence-emission concept has been adopted and the other techniques involve pitot-static pressure probes. A circulating fluidized bed (CFB) facility has been designed, built and is currently operational at West Virginia University. The design provides for maximum versatility in investigating the hydrodynamics of the CFB riser. Two stage cyclones are employed to capture the particles exhausted from the riser. Measurements of gas velocity distribution were carried out in the circulating fluidized bed riser. with particles having a mean diameter of 112 {mu}m and a density of 2305 kg/m{sup 3} and another set of particles with a mean diameter of 145 {mu}m and a density of 2245 kg/m{sup 3}. The experimental results showed that the local gas velocity varied with the radial position, elevation, solids circulation rate, superficial velocity and particle size. A general formula for gas velocity distribution in the circulating fluidized bed riser was obtained based on the particle circulation, superficial velocity and particle diameter. The pressure drops across the L-valve were also studied for different particle sizes, L-valve diameters and aeration. The solids flowrate was found to be a function of the L-valve geometry, operating parameters and solids properties. Pressure drop of L-valve increases with increasing solids diameter and decreasing diameter of the L-valve. Pressure drop across standpipe increases as the solids diameter and diameter of the standpipe decrease.

  10. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect (OSTI)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  11. Method and apparatus for gasifying with a fluidized bed gasifier having integrated pretreating facilities

    DOE Patents [OSTI]

    Rice, Louis F. (Arcadia, CA)

    1981-01-01T23:59:59.000Z

    An integral gasifier including a pretreater section and a gasifier section separated by a distribution grid is defined by a single vessel. The pretreater section pretreats coal or other carbon-containing material to be gasified to prevent caking and agglomeration of the coal in the gasifier. The level of the coal bed of the pretreater section and thus the holding or residence time in said bed is selectively regulated by the amount of pretreated coal which is lifted up a lift pipe into the gasifier section. Thus, the holding time in the pretreater section can be varied according to the amount of pretreat necessary for the particular coal to be gasified.

  12. Fuel characteristics and theoretical performance of a fluidized bed combustor with manure as a fuel

    E-Print Network [OSTI]

    Park, Joon Hwa

    1984-01-01T23:59:59.000Z

    removal and the temperature of gasification and (c) the heat of pyrolysis. The results are shown in Figures 3a, 3b, 3c. Figure 3a shows the results of apparently a wet fresh manure at a heating rate of 80'C/min, while Figure 3b, 3c shows 24 00 2200... ( 'K) Time ( sec ) Temperature at any time Temperature of heat exchanger wall Initial temperature Bubble temperature Mix temperature Environmental temperature Xii NOMENCLATURE (Continued ) tm umin ubub Ve Time at the end of pyrolysis Time...

  13. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  14. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect (OSTI)

    Unknown

    1999-07-01T23:59:59.000Z

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  15. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31T23:59:59.000Z

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  16. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization - 13400

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla P.; Peterson, Reid A.; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland, WA (United States)] [Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. The goal of this campaign was to study the durability of the FBSR mineral product and the encapsulated FBSR product in a geo-polymer monolith. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory. (authors)

  17. Effect of modified phosphate rock saturated by various salts on stack gas desulfurization in a fluidized bed reactor

    SciTech Connect (OSTI)

    Kar, Y.; Kar, H. [Selcuk University, Konya (Turkey). Muhendislik Mimarlik Faculty

    2006-04-15T23:59:59.000Z

    In this work, the suitability of phosphate ore treated with the varied salts such as FeSO{sub 4}, NaCl, CaCl{sub 2}, Na{sub 2}SiO{sub 3}, and Na{sub 2}SO{sub 4} as an alternative material for limestone and dolomite in flue gas desulfurization has been investigated. Also, the effect of the varied salts on calcination and sulfation of the raw, calcine, and semicalcined phosphate samples has been investigated in a differential fluidized bed reactor at 700-800{sup o}C (4 min) in air and 0.3% SO{sub 2}. It was established that the salts have prominent effects on sulfation and calcination. The changes in the pore structure and products obtained at the end of sulfation were investigated using BET surface area method. In conclusion, it was observed that the sulfation and calcination conversion ratios generally increased when the phosphate rock was treated the varied salts.

  18. Initial test results from the Department of Energy`s pressurized fluidized bed combustion Hot Gas Cleanup Program

    SciTech Connect (OSTI)

    Dennis, R.A. [USDOE Morgantown Energy Technology Center, WV (United States); Lippert, T.E.; Bruck, G.J.; Alvin, M.A. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Mudd, M.J. [Ohio Power Co., Columbus, OH (United States)]|[American Electric Power Service Corp., Columbus, OH (United States)

    1993-06-01T23:59:59.000Z

    In August 1989 a cooperative agreement was signed between Ohio Power Company, through its agent the American Electric Power Service Corporation, and the United States Department of Energy to assess the readiness and economic viability of high-temperature and high-pressure (HTHP) particulate filter systems for pressurized fluidized bed combustion (PFBC) applications. In this agreement, known as the PFBC Hot Gas Cleanup (HGCU) Program, two HTHP particulate filtration systems are to be tested with one seventh of the flow from the Tidd 70-MWe PFBC Clean Coal Demonstration Plant. This paper describes the initial results from the first PFBC HGCU test and an additional proof-of-concept, pilot-scale test used to validate a ceramic candle filter element, which may be used in the second test of the PFBC HGCU Program. The first test consisted of a three-cluster filter system, incorporating 384, 1.5-meter long silicon carbide candle filters. This system utilized a one-seventh flow slipstream, approximately 7360 actual cubic feet per minute, from the Tidd 70-MWe PFBC. The proof-of-concept test is being used to qualify mullite candle filters as a potential candidate for the second test at the Tidd 70-MWe PFBC. Both filter systems were designed and fabricated by the Westinghouse Science and Technology Center.

  19. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01T23:59:59.000Z

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  20. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya [Department of Civil Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 (Thailand); Rattanasak, Ubolluk, E-mail: ubolluk@buu.ac.t [Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Burapha University, Chonburi 20131 (Thailand)

    2010-04-15T23:59:59.000Z

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  1. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect (OSTI)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14T23:59:59.000Z

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  2. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01T23:59:59.000Z

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  3. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01T23:59:59.000Z

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  5. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11T23:59:59.000Z

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  6. Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence

    SciTech Connect (OSTI)

    NONE

    1998-08-31T23:59:59.000Z

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  7. MRI Investigations of Particle Motion within a Three-Dimensional Vibro-Fluidized Granular Bed

    E-Print Network [OSTI]

    Mick D. Mantle; Andrew J. Sederman; Lynn F. Gladden; Jonathan M. Huntley; Tom W. Martin Ricky D. Wildman; Mark D. Shattuck

    2007-02-08T23:59:59.000Z

    The unique ability of magnetic resonance imaging (MRI) to provide spatial and temporal information from optically opaque systems, in three dimensions, make it an ideal tool to study the internal motion of rapid granular flows. This paper will focus on the use of ultra-fast velocity compensated MRI measurements to study particle velocity and density distributions in a granular gas, produced by vibrating vertically a bed of mustard seeds at 40 Hz. Specifically, a velocity compensated, double spin-echo, triggered, one-dimensional MRI profiling pulse sequence was developed. This gives an MRI temporal resolution of approximately 2 ms and also minimises MRI velocity artefacts. 12 phase measurements per vibration cycle were used. The data can be used to extract values of the mustard seed average velocity and velocity propagators (probability distributions functions) as a function of the phase of the vibration cycle and vertical height within the cell. The data show strong transient effects during the impact phase of the vibration. A detailed discussion of the temporal passage of the individual phase resolved, height resolved velocity distributions, along with seed velocity propagators at a fix height from the vibrating base is presented.

  8. MARKET ASSESSMENT AND TECHNICAL FEASIBILITY STUDY OF PRESSURIZED FLUIDIZED BED COMBUSTION ASH USE

    SciTech Connect (OSTI)

    A.E. Bland; T.H. Brown

    1997-04-01T23:59:59.000Z

    Western Research Institute, in conjunction with the Electric Power Research Institute, Foster Wheeler International, Inc. and the US Department of Energy, has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for PFBC ashes. Ashes from the Foster Wheeler Energia Oy pilot-scale circulating PFBC tests in Karhula, Finland, combusting (1) low-sulfur subbituminous and (2) high-sulfur bituminous coal, and ash from the AEP's high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at WR1. The technical feasibility study examined the use of PFBC ash in construction-related applications, including its use as a cementing material in concrete and use in cement manufacturing, fill and embankment materials, soil stabilization agent, and use in synthetic aggregate production. Testing was also conducted to determine the technical feasibility of PFBC ash as a soil amendment for acidic and sodic problem soils and spoils encountered in agricultural and reclamation applications. The results of the technical feasibility testing indicated the following conclusions. PFBC ash does not meet the chemical requirements as a pozzolan for cement replacement. However, it does appear that potential may exist for its use in cement production as a pozzolan and/or as a set retardant. PFBC ash shows relatively high strength development, low expansion, and low permeability properties that make its use in fills and embankments promising. Testing has also indicated that PFBC ash, when mixed with low amounts of lime, develops high strengths, suitable for soil stabilization applications and synthetic aggregate production. Synthetic aggregate produced from PFBC ash is capable of meeting ASTM/AASHTO specifications for many construction applications. The residual calcium carbonate and calcium sulfate in the PFE3C ash has been shown to be of value in making PFBC ash a suitable soil amendment for acidic and sodic problem soils and mine spoils. In conclusion, PFBC ash represents a viable material for use in currently established applications for conventional coal combustion ashes. As such, PFBC ash should be viewed as a valuable resource, and commercial opportunities for these materials should be explored for planned PFBC installations.

  9. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization: Final report, July 1, 1985-February 28, 1986

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1986-05-01T23:59:59.000Z

    This study program, funded by the US Department of Energy through the Southern Illinois University Coal Research Center's Coal Technology Laboratory, was conducted during the period from July 1984 through February 1986. Two lines of testing were carried out simultaneously. One consisted of using a laboratory-scale atmospheric fluidized bed combustor (AFBC) to acquire thermodynamic data and operating characteristics for Illinois coal combustion. The other included acquisition, installation, shakedown, and operation of a large one million Btu/h pilot-scale AFBC (plus boiler and associated instrumentation). Both programs were to study Illinois reference and gob (waste) type coals.

  10. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

  11. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

  12. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect (OSTI)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01T23:59:59.000Z

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26T23:59:59.000Z

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  14. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  16. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  17. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed reactor system at Building 9212. Draft environmental assessment

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is Iocated within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The current AHF supply and fluidized-bed reactor systems were designed and constructed more than 40 years ago. Because of their deteriorating condition, the corrosive nature of the materials processed, and the antiquated design philosophy upon which they are based, their long-term reliability cannot be assured. The current AHF supply system cannot mitigate an accidental release of AHF and vents fugitive AHF directly to the atmosphere during operations. the proposed action would reduce the risk of exposing the Y-12 Plant work force, the public, and the environment to an accidental release of AHF and would ensure the continuing ability of the Y-12 Plant to manufacture highly enriched uranium metal and process uranium from retired weapons for storage.

  18. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  19. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  20. Identification of data gaps found during the development of a zero-order model for a fluidized-bed retort/combustion process

    SciTech Connect (OSTI)

    Ammer, J.R.

    1986-01-01T23:59:59.000Z

    This technical note (TN) reports on the development of a zero-order ASPEN (Advanced System for Process Engineering) model for the fluidized-bed retort/combustion of an eastern oil shale. The objective of the work described was to identify data needs and to create a structure for future, more definitive models. New Albany shale was the initial reference eastern shale at the Department of Energy (DOE)/Morgantown Energy Technology Center (METC). A literature search on this shale was conducted to find the physical property data required for the ASPEN model. This TN discusses the types of missing or incomplete data, the process being modeled, and how process variables are affected by varying input parameters. The TN also presents recommendations for increasing the reliability of the simulation. 12 refs., 3 figs., 5 tabs.

  1. The Lakeland McIntosh Unit 4 demonstration project utilizing Foster Wheeler`s pressurized circulating fluidized-bed combustion technology

    SciTech Connect (OSTI)

    McClung, J.D.; Provol, S.J. [Foster Wheeler Development Corp., Livingston, NJ (United States); Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States); Dodd, A.M. [Lakeland Electric and Water, Lakeland, FL (United States)

    1997-12-31T23:59:59.000Z

    The City of Lakeland, Florida, Foster Wheeler and the Westinghouse Electric Corporation have embarked on the demonstration of a Clean Coal Technology at the City of Lakeland`s McIntosh Power Station in lakeland, Polk County, Florida. The project will demonstrate the Pressurized Circulating Fluidized Bed Combustion (PCFB) technology developed by Foster Wheeler and Westinghouse. The Lakeland McIntosh Unit 4 Project is a nominal 170 MW power plant designed to burn a range of low- to high-sulfur coals. The combined cycle plant employs a Westinghouse 251B12 gas turbine engine in conjunction with a steam turbine operating in a 2400/1000/1000 steam cycle. The plant will demonstrate both the PCFB and topped PCFB combustion technologies. This paper provides a process description of the Foster Wheeler PCFB and Topped PCFB technologies and their application to the Lakeland McIntosh Unit 4 Project.

  2. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-12-15T23:59:59.000Z

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  3. Engineering support services for the DOE/GRI coal-gasification research program. Evaluation of the data base for single-stage gasification of peat. [IGT 6 inch, single stage, fluidized bed (not PEATGAS)

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Shah, K.V.; Do, L.T.

    1982-03-01T23:59:59.000Z

    Kellogg has reviewed the data base generated by IGT in the 6 inch PDU for the single stage fluidized bed gasification of peat. Kellogg's central finding is that the existing data base should be expanded by further testing in the PDU, after necessary modifications, to investigate further the effects of operating parameters within the ranges of interest. The existing data base consists of 20 PDU runs. Kellogg has concentrated on the Minnesota peat data base, since an insufficient number of runs exist for Maine and North Carolina peats to establish any valid trends. Consequently, the evaluation presented concerns only the Minnesota peat data base with respect to ranges of operating parameters studied, the criteria for good fluidized-bed operation and the effects of the key operating parameters on the performance. In Kellogg's opinion the existing data base demonstrates that: gasification of peat at 90+% carbon conversion is possible in a single stage fluidized bed reactor; the most significant operating parameters have been identified; the single stage fluidized bed peat gasifier has merit because of simplicity of operation, near-zero production of liquids and potential of operation without steam and at low pressure. However, Kellogg notes the following shortcomings:relatively small number of experimental runs and lack of data at certain levels of operating parameters studied; sintering occurred in 35% of the runs; in all the 20 test runs, fines losses exceeded in 5% of the feed and for the Minnesota peat data base, fines losses averaged 12.8%; use of large amounts of fluidizing gas (in this case N/sub 2/), which does not reflect commercial operation; and lack of data with higher peat feed moisture content. Thus, in Kellogg's opinion, considerable advantage is to be gained by expanding the existing data base and lists its specific recommendations.

  4. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect (OSTI)

    Das, M.; Meikap, B.C.; Saha, R.K. [Indian Institute for Technology, Kharagpur (India). Dept. for Chemical Engineering

    2008-06-15T23:59:59.000Z

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  5. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30T23:59:59.000Z

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  6. Technical and economic evaluation of ten high temperature, high pressure particulate cleanup systems for pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Rubow, L.N.; Borden, M.; Buchanan, T.L.; Cramp, J.A.C.; Fischer, W.H.; Klett, M.G.; Maruvada, S.M.; Nelson, E.T.; Weinstein, R.E.; Zaharchuk, R.

    1984-07-01T23:59:59.000Z

    The objective of this analysis was to provide a technical and economic evaluation of the ten high temperature, high pressure (HTHP) systems for the purpose of prioritizing them according to performance, cost, and general viability of achieving commercial status. The scope primarily included reviewing/normalizing test experience to date, normalizing commercial designs, developing normalized capital and operating costs for each system, performing trade-off studies, and performing an evaluation utilizing in-house and outside inputs. The HTHP particulate cleanup system must be capable of the same stringent operating requirements as a conventional system, except it must do so at HTHP conditions. Utilities will demand nearly the same reliability as found in conventional equipment. Regarding particulate cleanup, the system must meet NSPS requirements at the stack, and also meet turbine inlet requirements. The ten devices evaluated were: Electrostatic Precipitator - Cottrell Environmental Sciences (CES); Ceramic Felt Filter - Acurex Corporation; Ceramic Cross Flow Filter - Westinghouse; Shallow Static Granular Bed Filter - Ducon/Westinghouse; Electrostatic Granular Bed Filter - General Electric (GE); Moving Granular Bed Filter - Combustion Power Company (CPC); Dry Plate Scrubber - Air Pollution Technology (APT); Magnetic Granular Bed Filter - Exxon; Electrocyclone - General Electric; and Acoustic Agglomerator - Aerojet/Pennsylvania State University (PSU). The test data for the ten devices were normalized to standard conditions with a reference inlet particle loading and size distribution. The purpose of system design normalization is to provide, for each of the HTHP concepts, a scaled-up commercial design which reflects a consistent design approach. 104 figures, 136 tables.

  7. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    SciTech Connect (OSTI)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10T23:59:59.000Z

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  8. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 1, Task 1, PFH scoping studies and Task 2, PFH optimization studies: Final report, September 1987--May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This project was conducted to establish the research base necessary to develop the new-generation pressurized fluidized-bed hydroretorting (PFH) process for retorting Eastern oil shales. The objective of Task 1, PFH Scoping Studies, was to determine the effects of process variables on Indiana New Albany shale product yields. The results of the lab-scale batch tests (Subtask 1.1) and lab-scale continuous tests (Subtask 1.2) were used in Task 2. The objective of Task 2, PFH Optimization Tests, was to obtain lab- and bench-scale data for optimizing the PFH process with six Eastern oil shales. Work in Task 2 included lab-scale batch tests with five key Eastern shales (Subtask 2.1), lab-scale continuous tests with the same five shales (Subtask 2.2), bench-scale tests with Indiana and Alabama shales (Subtask 2.3), and the analysis of data including development of carbon conversion and oil yield correlations (Subtask 2.4). Accomplishments for these tasks are presented in this report.

  9. Development of an alternative kraft black liquor recovery process based on low-temperature processing in fluidized beds. Final technical report on Annex 9, Task 1

    SciTech Connect (OSTI)

    Kubes, G.J.

    1994-03-24T23:59:59.000Z

    The overall objective of this research program was to provide the fundamental knowledge and experimental data from pilot scale operation for an alternative black liquor recovery technology which would have a higher overall energy efficiency, would not suffer from the smelt-water explosion hazard and would be lower in capital cost. In addition, the alternative process would be more flexible and well suited for incremental recovery capacity or for new pulping processes, such as the new sulfide-sulfide-AQ process. The research program consists of number of specific research objectives with the aim to achieve the ultimate objective of developing an alternative recovery process which is shown in Figure 1. The specific objectives are linked to individual unit operations and they represent the following research topics: (1) superheated steam drying of kraft black liquors; (2) fast pyrolysis of black liquor; (3) hydrogen sulfide absorption from flue gas; (4) reduction of sodium sulfate in solid phase with gaseous hydrogen; and (5) verification of the fundamental results in fluidized bed pilot plant. The accomplishments in each of these objectives are described.

  10. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  11. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect (OSTI)

    None

    1982-10-21T23:59:59.000Z

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  12. An analysis of ilmenite particles used as bed material for combustion of biomass in a CFB boiler.

    E-Print Network [OSTI]

    Corcoran, Angelica

    2013-01-01T23:59:59.000Z

    ??Combustion of biomass in a fluidized bed boiler with silica sand as bed material is related to problems such as agglomeration of bed material and… (more)

  13. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15T23:59:59.000Z

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  14. Effects of H{sub 2}O and particles on the simultaneous removal of SO{sub 2} and fly ash using a fluidized-bed sorbent/catalyst reactor

    SciTech Connect (OSTI)

    Rau, J.Y.; Chen, J.C.; Wey, M.Y.; Lin, M.D. [National Chung Hsing University, Taichung (Taiwan). Dept. of Environmental Engineering

    2009-12-15T23:59:59.000Z

    This study investigated the potential of a fluidized-bed sorbent/catalyst reactor for the simultaneous removals of SO{sub 2} and fly ash from a simulated flue gas containing different H{sub 2}O and particles. Experimental results showed that the removal efficiency of particles and SO{sub 2} was 85%-96% and 5.75-2.97 mg SO{sub 2}/g, respectively, as the H{sub 2}O content was 1.5-5.3%. The activities of sorbent/catalysts for simultaneous removals of SO{sub 2} and particles were inhibited by H{sub 2}O and particles, and the inhibition effects increased with the content of H{sub 2}O. As the H{sub 2}O content increased, the particle size distribution (PSD) of fine particles shifted to the coarse particles. The results of BET analysis show that the obstruction phenomenon of the sorbent/catalyst caused by the particles was diminished with the increased content of H{sub 2}O. The results showed this aggregation phenomenon of fine particles shifted to the coarse particles may cause increased water vapor content in fluidized-bed sorbent/catalyst reactor.

  15. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  16. Task II: evaluation of heat-exchanger and turbine materials for use in a coal-fired fluidized-bed-combustion environment. Final report, July 1, 1976-July 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-09-30T23:59:59.000Z

    Specific alloys were tested as in-bed and above-bed heat exchanger materials in the fireside environment of a pressurized fluidized bed coal combustor (PFBCC). Corrosion conditions on the alloys exposed to normal and very low oxygen pressures in the presence of calcium sulfate deposits were simulated. Bayonet-type specimen probes of selected alloys were exposed in the Exxon Miniplant at probe control temperatures representative of conventional steam, advanced steam, helium and liquid metal energy conversion cycles. Corrosion/erosion testing of the air cooled, welded samples consisted of a 117-hour shakedown run followed by an incremental 1000-hour exposure. Metallurgical analyses were run on removed specimens. The test matrix for in-bed and above-bed exposure was: 1050/sup 0/F (566/sup 0/C): 2.25 Cr-1Mo and 9Cr-1Mo steels (in-bed only); 1200/sup 0/F (649/sup 0/C): 304 SS and Incoloy-800; 1400/sup 0/F (760/sup 0/C): Incoloy-800 and Hastelloy-X; and 1600/sup 0/F (871/sup 0/C); Hastelloy-X and Haynes-188. Subscale sulfides formed in most of the alloys. The most severe corrosion was noted in the ferritic 2.25Cr-1Mo and 9Cr-1Mo steels at a nominal control temperature of 1050/sup 0/F (566/sup 0/C) and in Hastelloy-X at 1400/sup 0/F (760/sup 0/C) exposed in-bed. The best overall behavior of in-bed alloys was observed for Incoloy-800, which had a maximum metal loss of about .007 in (.18 mm) in 1117 hours of exposure at both 1200/sup 0/F (649/sup 0/C) and 1400/sup 0/F (760/sup 0/C) but averaged more nearly .001 in (.025 mm) to .002 in (.051 mm) and in Haynes-188 which showed maximum wall thinning of less than .003 in (.076 mm) at 1600/sup 0/F (871/sup 0/C) in the longest time exposure.

  17. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

  18. archean spherule beds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has the potential of supplementing the existing fossil fuels, but the heat content of manure is rather low. Since, the fluidized bed... Annamalai, K.; Colaluca, M. A.; Ibrahim,...

  19. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  20. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  1. Simulation of space particle bed reactors

    E-Print Network [OSTI]

    Vincendon, Isabelle R.

    1989-01-01T23:59:59.000Z

    ? dimensional fluidized bed codes called CHEhI- FLUB, FLAG and FLIrFIX. The FLUFIX code efl'ort actually began in 19ig with the development of a step ? by ? step building ? block approach to understand the hy- drodynamics of fluidized beds and close coupling... with validation experiments. In mid ? 1979, the IC ? FIXs computer program was modified so that it would model a fluidized bed with a. central jet This required transforming K ? FIX I'rom a gas ? liquid computer program to a. gas ? solia computer program. Later...

  2. Contributed papers Study of gas-fluidization dynamics with laser-polarized 129

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    Gas fluidization is a process in which solid particles experience fluid-like suspension in an upward. Bubbles, or void spaces with volume much larger than that of a single particle, emerge when the gas flowContributed papers Study of gas-fluidization dynamics with laser-polarized 129 Xe Ruopeng Wanga

  3. FLUIDIZED BED STEAM REFORMING (FBSR) OF HIGH LEVEL WASTE (HLW) ORGANIC AND NITRATE DESTRUCTION PRIOR TO VITRIFICATION: CRUCIBLE SCALE TO ENGINEERING SCALE DEMONSTRATIONS AND NON-RADIOACTIVE TO RADIOACTIVE DEMONSTRATIONS

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M; Gene Daniel, G; Paul Burket, P; Charles Crawford, C

    2009-02-07T23:59:59.000Z

    Over a decade ago, an in-tank precipitation process to remove Cs-137 from radioactive high level waste (HLW) supernates was demonstrated at the Savannah River Site (SRS). The full scale demonstration with actual HLW was performed in SRS Tank 48 (T48). Sodium tetraphenylborate (NaTPB) was added to enable Cs-137 extraction as CsTPB. The CsTPB, an organic, and its decomposition products proved to be problematic for subsequent processing of the Cs-137 precipitate in the SRS HLW vitrification facility for ultimate disposal in a HLW repository. Fluidized Bed Steam Reforming (FBSR) is being considered as a technology for destroying the organics and nitrates in the T48 waste to render it compatible with subsequent HLW vitrification. During FBSR processing the T48 waste is converted into organic-free and nitrate-free carbonate-based minerals which are water soluble. The soluble nature of the carbonate-based minerals allows them to be dissolved and pumped to the vitrification facility or returned to the tank farm for future vitrification. The initial use of the FBSR process for T48 waste was demonstrated with simulated waste in 2003 at the Savannah River National Laboratory (SRNL) using a specially designed sealed crucible test that reproduces the FBSR pyrolysis reactions, i.e. carbonate formation, organic and nitrate destruction. This was followed by pilot scale testing of simulants at the Science Applications International Corporation (SAIC) Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003-4 and then engineering scale demonstrations by THOR{reg_sign} Treatment Technologies (TTT) and SRS/SRNL at the Hazen Research, Inc. (HRI) test facility in Golden, CO in 2006 and 2008. Radioactive sealed crucible testing with real T48 waste was performed at SRNL in 2008, and radioactive Benchscale Steam Reformer (BSR) testing was performed in the SRNL Shielded Cell Facility (SCF) in 2008.

  4. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01T23:59:59.000Z

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  5. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29T23:59:59.000Z

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  6. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01T23:59:59.000Z

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  7. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01T23:59:59.000Z

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  8. Circulating Fluidized Bed Combustion Boiler Project

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01T23:59:59.000Z

    or turndown so we delayed consideration of installation of a FBC boil r. CIRCULATING FBC In early 1980 we became aware of the work by the Ahlstrom Company of Helsinki, Finland in the development of the circulating FBC boiler design. The PYROFLOW... layer is a lightweight insulating refractory. In 1979, Ahlstrom started up a 45,000 pound per hour PYROFLOW unIt at Pihlava, Finland. In 1981, 200,000 pound per hour boiler was started up 1 Kauttua, Finland as le b se load steam supply for paper...

  9. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

  10. Coal-Fired Fluidized Bed Combustion Cogeneration

    E-Print Network [OSTI]

    Thunem, C.; Smith, N.

    Plue Gal Temperature 300-350?' 300-350?' 300-350?' ea/S(lIlObr) Retio 1-2.5 1-2.5 1-2.5 Exce?? Air 15% 15% 15% Co.bultton Teaperature 1,550?P l,5S0?' 1,55"0?P Extraction Prell.ure 150 pIlg 150 pa1g Condenalng Pre??ure 3 1n. I1g aba. Source...

  11. State of Industrial Fluidized Bed Combustion

    E-Print Network [OSTI]

    Mesko, J. E.

    1982-01-01T23:59:59.000Z

    A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly...

  12. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  13. Fluidized Bed Technology - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for

  14. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect (OSTI)

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01T23:59:59.000Z

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor operating temperature data from the spouted bed monitoring system are used to determine the bed operating regime and monitor the particle characteristics. Tests have been conducted to determine the sensitivity of the monitoring system to the different operating regimes of the spouted particle bed. The pressure transducer signal response was monitored over a range of particle sizes and gas flow rates while holding bed height constant. During initial testing, the bed monitoring system successfully identified the spouting regime as well as when particles became interlocked and spouting ceased. The particle characterization capabilities of the bed monitoring system are currently being tested and refined. A feedback control module for the bed monitoring system is currently under development. The feedback control module will correlate changes in the bed response to changes in the particle characteristics and bed spouting regime resulting from the coating and/or conversion process. The feedback control module will then adjust the gas composition, gas flow rate, and run duration accordingly to maintain the bed in the desired spouting regime and produce optimally coated/converted particles.

  15. State-of-the-art review and report on critical aspects and scale-up considerations in the design of fluidized-bed reactors. Final report on Phase 1

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is given on the design of distributor plates and opening geometry to provide uniform flow over the reactor area. The design of granular bed filters is also considered. Pressure drops and particle size in the bed are discussed. (LTN)

  16. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, T.R.

    1990-04-17T23:59:59.000Z

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  17. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  18. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  19. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOE Patents [OSTI]

    Gamwo, Isaac K. (Murrysville, PA); Gidaspow, Dimitri (Northbrook, IL); Jung, Jonghwun (Naperville, IL)

    2009-11-17T23:59:59.000Z

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  20. Cold flow scaleup facility experimental results and comparison of performance at different bed configurations, Volume 1: Topical report, January--December 1983

    SciTech Connect (OSTI)

    Schmidt, D.K.; Yang, W.C.; Ettehadieh, B.; Anestis, T.C.; Haldipur, G.B.; Kettering, E.; O'Rourke, R.E.; Weigle, D.

    1988-12-01T23:59:59.000Z

    KRW Energy Systems Inc. is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-BTU fuel gas from a variety of fossilized carbonaceous feedstocks for electric power generation, synthetic natural gas, chemical feedstocks and industrial fuels. This report presents analysis of the Cold Flow Scaleup Facility (CFSF) operations. Included is work performed on the 3-meter CFSF model using four different bed configurations to check correlations and scale-up criteria developed from studies conducted in small-scale cold flow units and those available in open literature. The 3-meter model permits full front-face viewing of the fluidized bed through a transparent plastic window and with its instrumentation allows detailed studies of jet behavior, bubble dynamics, solid circulation, gas mixing, and related phenomena important to the design of a large-scale gasifier. 87 refs., 95 figs., 56 tabs.

  1. Standleg Moving Granular Bed Filter development program

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.

    1992-11-01T23:59:59.000Z

    The design, fabrication, and installation of the cold flow test facility has been completed. The SMGBF test facility shown in Figure 2 consists of a solids feed hopper, a transparent test vessel, a screw conveyor, a 55-gal drum for solids storage, a dust feeder, a baghouse filter, and the associated instrumentation for flow and pressure control and measurement. The standleg is 11-in ID by 3-ft long, and also transparent to facilitate observation. The crushed acrylic particles of characteristics shown in Table 1 are used as the bed media. The bed particles were selected, by maintaining the particle size while reducing the particle density, to simulate the minimum fluidization velocity expected under high-temperature, high-pressure conditions. By maintaining the particle size, the bed effectively simulates the bed packing and voidage in the moving bed which is directly related to the efficiency of particulate removal and pressure drop characteristics. The test facility performed as designed and no particular difficulties were encountered. The baseline data on pressure profiles across the stationary and the moving granular beds were obtained for gas face velocities up to 6 ft/s, higher than the minimum fluidization velocity of the bed material (5 ft/s), and no visible fluidization was observed at the base of the standleg. This confirms the operational feasibility of the compact SMGBF design.

  2. Standleg Moving Granular Bed Filter development program

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.

    1992-01-01T23:59:59.000Z

    The design, fabrication, and installation of the cold flow test facility has been completed. The SMGBF test facility shown in Figure 2 consists of a solids feed hopper, a transparent test vessel, a screw conveyor, a 55-gal drum for solids storage, a dust feeder, a baghouse filter, and the associated instrumentation for flow and pressure control and measurement. The standleg is 11-in ID by 3-ft long, and also transparent to facilitate observation. The crushed acrylic particles of characteristics shown in Table 1 are used as the bed media. The bed particles were selected, by maintaining the particle size while reducing the particle density, to simulate the minimum fluidization velocity expected under high-temperature, high-pressure conditions. By maintaining the particle size, the bed effectively simulates the bed packing and voidage in the moving bed which is directly related to the efficiency of particulate removal and pressure drop characteristics. The test facility performed as designed and no particular difficulties were encountered. The baseline data on pressure profiles across the stationary and the moving granular beds were obtained for gas face velocities up to 6 ft/s, higher than the minimum fluidization velocity of the bed material (5 ft/s), and no visible fluidization was observed at the base of the standleg. This confirms the operational feasibility of the compact SMGBF design.

  3. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect (OSTI)

    Jukkola, Glen

    2010-06-30T23:59:59.000Z

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas-to-solids heat transfer. A stress test rig was built and tested to provide validation data for a stress model needed to support high temperature finned surface design. Additional cold flow model tests and MTF tests were conducted to address mechanical and process design issues. This information was then used to design and cost a commercial CMB design concept. Finally, the MBHE was reconfigured into a slice arrangement and tested for an extended duration at a commercial CFB plant.

  4. Bubble diagnostics

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Mammini, Beth M. (Walnut Creek, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA)

    2003-01-01T23:59:59.000Z

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  5. Rotary bed reactor for chemical-looping combustion with carbon capture

    E-Print Network [OSTI]

    Zhao, Zhenlong

    2012-01-01T23:59:59.000Z

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed ...

  6. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    SciTech Connect (OSTI)

    Govind, R. [Cincinnati Univ., OH (United States). Dept. of Chemical Engineering

    1993-03-20T23:59:59.000Z

    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  7. The effect of cohesive forces on the fluidization of aeratable powders

    SciTech Connect (OSTI)

    Galvin, Janine F.; Benyahia, Sofiane

    2014-01-01T23:59:59.000Z

    The effects of cohesive forces of van der Waals type in the fluidization/defluidization of aeratable type A powders in the Geldart classification are numerically investigated. The effects of friction and particle-size distribution (PSD) on some design-significant parameters, such as minimum fluidization and bubbling velocities, are also investigated. For these types of particles, cohesive forces are observed as necessary to fully exhibit the role friction plays in commonly observed phenomena, such as pressure overshoot and hysteresis around minimum fluidization. This study also shows that a full-experimental PSD consisting of a dozen particle sizes may be sufficiently represented by a few particle diameters. Reducing the number of particle types may benefit the continuum approach, which is based on the kinetic theory of granular flow, by reducing computational expense, while still maintaining the accuracy of the predictions.

  8. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  9. Waste Heat Recovery in Cement Plants By Fluidized Beds

    E-Print Network [OSTI]

    Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

    1984-01-01T23:59:59.000Z

    combustor is classified as a nonhaz ardous waste similar to fly ash. As such, the sol ids may be disposed in a landfill after obtaining the appropriate permits. The waste solids are coal ash, calcium sulfate, cal cium oxide, and inerts, all ingredients...; a mix 0 clay, limestone, and fly ash is melted into clinker The recoverable waste heat streams from this proc shown in Figure 1. Both a traditional design integrated design are shown. II: W Z 2100? F o ...J

  10. Particle Receiver Integrated with Fluidized Bed (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    National Renewable Energy Laboratory is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

  11. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Unknown

    2003-01-30T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  12. Development of a Simulation Model for Fluidized Bed Mild Gasifier.

    E-Print Network [OSTI]

    Mazumder, AKM Monayem Hossain

    2010-01-01T23:59:59.000Z

    ?? A mild gasification method has been developed to provide an innovative clean coal technology. The objective of this study is to developed a numerical… (more)

  13. Robust techniques for developing empirical models of fluidized bed combustors

    E-Print Network [OSTI]

    Gruhl, Jim

    This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

  14. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2003-07-23T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  15. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2003-10-29T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  16. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2004-07-01T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

  17. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01T23:59:59.000Z

    below. a. Direct heat supply Combustion and gasificationgas. b. Indirect heat supply Combustion and gasificationunlike the direct heat supply method. The heat of combustion

  18. LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS

    Office of Scientific and Technical Information (OSTI)

    rods, and shell-side heat transfer coefficients were calculated u s i n g "Newton's Law o f Cooling": a c The horizontal tubes showed a definite angular dependence of the...

  19. EIS-0289: JEA Circulating Fluidized Bed Combustor Project

    Broader source: Energy.gov [DOE]

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the...

  20. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOE Hydrogen andTechnology

  1. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeThe 21st Century

  2. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    SciTech Connect (OSTI)

    A. Robertson

    2002-09-30T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

  3. Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)

    SciTech Connect (OSTI)

    A. Robertson

    2003-12-31T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

  4. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01T23:59:59.000Z

    Administration | Annual Energy Outlook 2014 Early ReleaseAdministration | Annual Energy Outlook 2014 Early ReleaseAdministration | Annual Energy Outlook 2014 Early Release

  5. Project Profile: Particle Receiver Integrated with a Fluidized Bed |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309DepartmentDepartmentPower Generation | Department

  6. LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _ _++,J 'U I .807

  7. KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL

    SciTech Connect (OSTI)

    Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

    2008-09-01T23:59:59.000Z

    Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

  8. Bed Bugs

    E-Print Network [OSTI]

    Gold, Roger E.; Howell Jr., Harry N.

    2001-11-15T23:59:59.000Z

    Bed Bugs L-1742 9-01 Roger Gold and Harry Howell* B ed bugs, generally called ?chinces? in Texas, feed on blood, principally that of humans, by piercing the skin with their elongated beaks. Although they inflict misery on their victims, it has never...

  9. The performance of fluidized beds, packed beds, and screens as fuel cell electrodes

    E-Print Network [OSTI]

    Ruflin, Justin, 1981-

    2006-01-01T23:59:59.000Z

    At present, most fuel cells employ porous gas diffusion (PGD) electrodes. Although much effort has been spent on their development, the performance and cost of PGD electrodes are still major obstacles to the successful ...

  10. Rotating bubble membrane radiator

    DOE Patents [OSTI]

    Webb, Brent J. (West Richland, WA); Coomes, Edmund P. (West Richland, WA)

    1988-12-06T23:59:59.000Z

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  11. Hydrodynamics and flue gas desulfurization characteristics of a three-phase, gas-continuous, cocurrent semifluidized bed

    SciTech Connect (OSTI)

    Beaver, L.E.

    1983-01-01T23:59:59.000Z

    The hydrodynamic characteristics of a gas-liquid-solid, gas-continuous, cocurrent semifluidized bed were defined. Five different particle types were used to characterize the hydrodynamics. Air and water were used as the gas and liquid streams, respectively. Six flow regimes were observed in the constrained gas-continuous, three-phase bed. These regimes are described in terms of the solids properties and the gas and liquid superficial velocities. The heights of the packed and fluidized beds and the solids holdup in the fluidized section of the semifluidized bed are discussed in terms of the superficial gas and liquid velocities, the solids density and diameter and the initial quantity of particles in the bed. The desulfurization characteristics of the gas-liquid-solid semifluidized bed were determined using a calcium carbonate slurry. Gas side mass transfer coefficients and the ratio of liquid side to gas side mass transfer coefficients were measured and correlated in terms of gas flow rate, liquid flow rate, bed height, calcium carbonate concentration and sulfur dioxide pressure for both the fluidized and packed sections of the semifluidized bed. The hydrodynamic and mass transfer characteristics were used to construct a mathematical model that predicted overall removal of sulfur dioxide from the simulated flue gas.

  12. The thermodynamics of bubbles

    E-Print Network [OSTI]

    Clark, John A.

    1956-01-01T23:59:59.000Z

    This paper outlines those concitions annanded by the laws of thermodynamics for equilibriza betwoen the vapor in a bubble and the surrounding liquid and then employs these concepts with a nucleation theory in an atteapt ...

  13. catalyst beds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyst beds catalyst beds Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate...

  14. The development of an integrated multistage fluid bed retorting process. [Kentort II process

    SciTech Connect (OSTI)

    Carter, S.D.; Taulbee, D.N.; Robl, T.L.; Hower, J.C.

    1992-08-01T23:59:59.000Z

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of April 1, 1992 through June 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The raw oil shale sample for the program was mined, prepared, characterized and stored this quarter. The shale that was chosen was from the high-grade zone of the Devonian Cleveland Member of the Ohio Shale in Montgomery County, Kentucky. The shale was mined and then transported to the contractor's crushing facility where it was crushed, double-screened, and loaded into 85 55-gal barrels. The barrels, containing a total of 25-30 tons of shale, were transported to the (CAER) Center for Applied Energy Research where the shale was double-screened, analyzed and stored. A major objective of the program is the study of solid-induced secondary coking and cracking reactions. A valved fluidized bed reactor has been the primary apparatus used for this study prior to this quarter, but two additional techniques have been initiated this quarter for the study of other aspects of this issue. First, the two-stage hydropyrolysis reactor at the University of Strathclyde, Glasgow, Scotland, was used to study the coking tendency of shale oil vapors under a wide range of pyrolysis and hydropyrolysis conditions. This work enabled us to examine secondary reactions under high pressure conditions (up to 150 bar) which were previously unavailable. Second, the development of a fixed bed reactor system was initiated at the CAER to study the coking and cracking characteristics of model compounds. A fixed bed apparatus was necessary because the conversion of model compounds was too low in the fluidized bed apparatus.

  15. Effect of bed pressure drop on performance of a CFB boiler

    SciTech Connect (OSTI)

    Hairui Yang; Hai Zhang; Shi Yang; Guangxi Yue; Jun Su; Zhiping Fu [Tsinghua University, Beijing (China). Department of Thermal Engineering

    2009-05-15T23:59:59.000Z

    The effect of bed pressure drop and bed inventory on the performances of a circulating fluidized bed (CFB) boiler was studied. By using the state specification design theory, the fluidization state of the gas-solids flow in the furnace of conventional CFB boilers was reconstructed to operate at a much lower bed pressure drop by reducing bed inventory and control bed quality. Through theoretical analysis, it was suggested that there would exist a theoretical optimal value of bed pressure drop, around which the boiler operation can achieve the maximal combustion efficiency and with significant reduction of the wear of the heating surface and fan energy consumption. The analysis was validated by field tests carried out in a 75 t/h CFB boiler. At full boiler load, when bed pressure drop was reduced from 7.3 to 3.2 kPa, the height of the dense zone in the lower furnace decreased, but the solid suspension density profile in the upper furnace and solid flow rate were barely influenced. Consequently, the average heat transfer coefficient in the furnace was kept nearly the same and the furnace temperature increment was less than 17{sup o}C. It was also found that the carbon content in the fly ash decreased first with decreasing bed pressure drop and then increased with further increasing bed pressure drop. The turning point with minimal carbon content was referred to as the point with optimal bed pressure drop. For this boiler, at the optimum point the bed pressure was around 5.7 kPa with the overall excess air ratio of 1.06. When the boiler was operated around this optimal point, not only the combustion efficiency was improved, but also fan energy consumption and wear of heating surface were reduced. 23 refs., 6 figs., 4 tabs.

  16. Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process

    SciTech Connect (OSTI)

    Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

  17. Fluidizable Catalysts for Hydrogen Production from Biomass

    E-Print Network [OSTI]

    Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

  18. Quantum Subcritical Bubbles

    E-Print Network [OSTI]

    Tomoko Uesugi; Masahiro Morikawa; Tetsuya Shiromizu

    1996-06-26T23:59:59.000Z

    We quantize subcritical bubbles which are formed in the weakly first order phase transition. We find that the typical size of the thermal fluctuation reduces in the quantum-statistical physics. We estimate the typical size and the amplitude of thermal fluctuations near the critical temperature in the electroweak phase transition using quantum statistical average. Furthermore based on our study, we give implication on the dynamics of phase transition.

  19. Helium bubble bursting in tungsten

    SciTech Connect (OSTI)

    Sefta, Faiza [University of California, Berkeley, California 94720 (United States); Juslin, Niklas [University of Tennessee, Knoxville, Tennessee 37996 (United States); Wirth, Brian D., E-mail: bdwirth@utk.edu [University of Tennessee, Oak Ridge National Laboratory, Knoxville, Tennessee 37996 (United States)

    2013-12-28T23:59:59.000Z

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  20. Microfluidic Actuation Using Electrochemically Generated Bubbles

    E-Print Network [OSTI]

    Sachs, Frederick

    Microfluidic Actuation Using Electrochemically Generated Bubbles Susan Z. Hua,*, Frederick Sachs, Buffalo, New York 14260 Bubble-based actuation in microfluidic applications is attractive owing closing) rate increases with applied voltage, small microfluidic dimensions accelerate bubble deflation

  1. The development of an integrated multistage fluid bed retorting process. Technical report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Carter, S.D.; Taulbee, D.N.; Robl, T.L.; Hower, J.C.

    1992-08-01T23:59:59.000Z

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of April 1, 1992 through June 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis, gasification, and combustion of the oil shale. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The raw oil shale sample for the program was mined, prepared, characterized and stored this quarter. The shale that was chosen was from the high-grade zone of the Devonian Cleveland Member of the Ohio Shale in Montgomery County, Kentucky. The shale was mined and then transported to the contractor`s crushing facility where it was crushed, double-screened, and loaded into 85 55-gal barrels. The barrels, containing a total of 25-30 tons of shale, were transported to the (CAER) Center for Applied Energy Research where the shale was double-screened, analyzed and stored. A major objective of the program is the study of solid-induced secondary coking and cracking reactions. A valved fluidized bed reactor has been the primary apparatus used for this study prior to this quarter, but two additional techniques have been initiated this quarter for the study of other aspects of this issue. First, the two-stage hydropyrolysis reactor at the University of Strathclyde, Glasgow, Scotland, was used to study the coking tendency of shale oil vapors under a wide range of pyrolysis and hydropyrolysis conditions. This work enabled us to examine secondary reactions under high pressure conditions (up to 150 bar) which were previously unavailable. Second, the development of a fixed bed reactor system was initiated at the CAER to study the coking and cracking characteristics of model compounds. A fixed bed apparatus was necessary because the conversion of model compounds was too low in the fluidized bed apparatus.

  2. A prediction for bubbling geometries

    E-Print Network [OSTI]

    Takuya Okuda

    2008-02-11T23:59:59.000Z

    We study the supersymmetric circular Wilson loops in N=4 Yang-Mills theory. Their vacuum expectation values are computed in the parameter region that admits smooth bubbling geometry duals. The results are a prediction for the supergravity action evaluated on the bubbling geometries for Wilson loops.

  3. The development of an integrated multistaged fluid bed retorting process. Annual report, October 1991--September 1992

    SciTech Connect (OSTI)

    Carter, S.; Vego, A.; Stehn, J.; Taulbee, D.; Robl, T.; Hower, J.; Mahboub, K.; Robertson, R.; Hornsberger, P.; Oduroh, P.; Simpson, A.

    1992-12-01T23:59:59.000Z

    This report summarizes the progress made on the development of an integrated multistage fluidized bed retorting process (KENTORT II) during the period of October 1, 1991 through September 30, 1992. The KENTORT II process includes integral fluidized bed zones for pyrolysis (shale oil production), gasification (synthesis gas production), and combustion of the spent oil shale for process heat. The purpose of this program is to design and test the KENTORT II process at the 50-lb/hr scale. The work completed this year involved several different areas. Basic studies of the cracking and coking kinetics of shale oil vapors were carried out in fluidized and fixed bed reactors using both freshly generated shale oil vapors and model compounds. The design and fabrication of the 50-lb/hr KENTORT II reactor was completed and installation of the process components was initiated. The raw oil shale sample (Cleveland Member from Montgomery County, Kentucky) for the program was mined, prepared, characterized and stored. A preliminary study of KENTORT II-derived oil for possible paving applications was completed, and it was concluded that the shale exhibits acceptable properties as an asphalt recycling agent.

  4. Moving Granular Bed Filter Development Program

    SciTech Connect (OSTI)

    Wilson, K.B.; Haas, J.C. [Combustion Power Co., San Mateo, CA (United States); Gupta, R.P.; Turk, B.S. [Research Triangle Inst., Research Triangle Park, NC (United States)

    1996-12-31T23:59:59.000Z

    For coal-fired power plants utilizing a gas turbine, the removal of ash particles is necessary to protect the turbine and to meet emission standards. Advantages are also evident for a filter system that can remove other coal-derived contaminants such as alkali, halogens, and ammonia. With most particulates and other contaminants removed, erosion and corrosion of turbine materials, as well as deposition of particles within the turbine, are reduced to acceptable levels. The granular bed filter is suitable for this task in a pressurized gasification or combustion environment. The objective of the base contract was to develop conceptual designs of moving granular bed filter (GBF) and ceramic candle filter technologies for control of particles from integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and direct coal-fueled turbine (DCFT) systems. The results of this study showed that the GBF design compared favorably with the candle filter. Three program options followed the base contract. The objective of Option I, Component Testing, was to identify and resolve technical issues regarding GBF development for IGCC and PFBC environments. This program was recently completed. The objective of Option II, Filter Proof Tests, is to test and evaluate the moving GBF system at a government-furnished hot-gas cleanup test facility. This facility is located at Southern Company Services (SCS), Inc., Wilsonville, Alabama. The objective of Option III, Multicontaminant Control Using a GBF, is to develop a chemically reactive filter material that will remove particulates plus one or more of the following coal-derived contaminants: alkali, halogens, and ammonia.

  5. EMSL - catalyst beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catalyst-beds en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defe...

  6. EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

  7. Dynamics of Gas-Fluidized Granular Rods

    E-Print Network [OSTI]

    L. J. Daniels; Y. Park; T. C. Lubensky; D. J. Durian

    2008-11-17T23:59:59.000Z

    We study a quasi-two-dimensional monolayer of granular rods fluidized by a spatially and temporally homogeneous upflow of air. By tracking the position and orientation of the particles, we characterize the dynamics of the system with sufficient resolution to observe ballistic motion at the shortest time scales. Particle anisotropy gives rise to dynamical anisotropy and superdiffusive dynamics parallel to the rod's long axis, causing the parallel and perpendicular mean squared displacements to become diffusive on different timescales. The distributions of free times and free paths between collisions deviate from exponential behavior, underscoring the non-thermal character of the particle motion. The dynamics show evidence of rotational-translational coupling similar to that of an anisotropic Brownian particle. We model rotational-translation coupling in the single-particle dynamics with a modified Langevin model using non-thermal noise sources. This suggests a phenomenological approach to thinking about collections of self-propelling particles in terms of enhanced memory effects.

  8. Bubble formation in Rangely Field, Colorado

    E-Print Network [OSTI]

    Wood, J. W

    1953-01-01T23:59:59.000Z

    tc Determine the Effect of Times Of. Standing on Time &equired for Bubble Formation at 67 psi Supersaturaticns. Page 20 Tests to Determine Bubble Frequency. Average Bubble Frequency Data. 23 27 The data reported in this thesis deal... if present, or would tend to form one. However, as the pressure on the saturated oil declines, the oil becomes supersatur- ated, except as bubbles may form and diffusion take place tc eliminate the supersaturation. This research is devoted to a study...

  9. Packed Bed Combustion: An Overview

    E-Print Network [OSTI]

    Hallett, William L.H.

    ;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

  10. Active microuidic mixer and gas bubble lter driven by thermal bubble micropump$

    E-Print Network [OSTI]

    Lin, Liwei

    to be proportional to the one-third power of the input pulse frequency. Furthermore, a gas bubble ®lter is integratedActive micro¯uidic mixer and gas bubble ®lter driven by thermal bubble micropump$ Jr-Hung Tsaia Abstract A micro¯uidic mixer with a gas bubble ®lter activated by a thermal bubble actuated nozzle

  11. Small-scale circulating fluidized bed combustor (CFBC) system for heat and power in remote areas

    SciTech Connect (OSTI)

    Stuart, J.M.; Korenberg, J. [DONLEE Technologies Inc., York, PA (United States)

    1995-12-31T23:59:59.000Z

    Demand for heating and electric power has steadily increased in remote areas. The use of locally available fuel to achieve self sufficiency has become an important objective. Energy demands may require steam generation for district heating, power generation and process consumption. In addition, the steam generation unit can also be required to burn waste that includes MSW and sewage sludge. To meet these demands, new systems must be installed that use local fuel. This paper describes a lower cost CFBC for use in remote areas. With the support of DOE METC, in late summer 1994, DONLEE performed a test burn at its 10 MM btu/hr pilot CFBC using subbituminous coal from Wyoming. The Wyoming coal`s sulfur dioxide emissions were very low due to the low sulfur content of the Wyoming coal and the excellent efficiency at temperatures as low as 1,500 F thereby indicating no limestone addition was needed for sulfur capture. The CFBC testing indicated emissions met all of the environmental requirements, both Federal and state. These requirements include: particulates, SO{sub 2}, CO, NO{sub x}, opacity, chlorinated dioxins/furans, etc. The unit can be fabricated in modules, making the installation easier and less expensive for use in remote areas. The design is highly reliable and can be fully automated thereby requiring limited staffing.

  12. E-Print Network 3.0 - atmospheric fluidized-bed cogeneration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics 34 Reproducedwith pennissionfrom ElsevierPergamon Biomass and Bioenerg..' Vol: 10, :os 2-3, pp..149-l66, 1996 Summary: ) in Chicago, with which extensive...

  13. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04T23:59:59.000Z

    temperature and pressure profile .................................. 24 Figure 14 Woodchips temperature and pressure profile .................................... 24 Figure 15 Gasification efficiency and reaction temperature, Tr vs the oxygen... Page Table 1 Modules used for CompactDAQ. ...................................................... 11 Table 2 Bulk density and loading factor ........................................................ 18 Table 3 Sample gasification data readings...

  14. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    are presented for a FBWHB system that would produce hot water by recovering part of the heat energy contained in a hot gas....

  15. Ref: RMM Program #301 Standard Operating Procedures Page 1 of 4 Name of SOP Fluidized bed

    E-Print Network [OSTI]

    Thompson, Michael

    with adequate training as defined above. PDFs Equipment and supplies required Ladder Personal protective several days to attain (heating) the specified temperature and cool down (cooling) to room temperature

  16. Catalytic conversion of methanol to low molecular weight olefins in a fluidized bed reactor

    E-Print Network [OSTI]

    Garza Tobias, Ricardo

    1983-01-01T23:59:59.000Z

    followed by a polimerization of the divalent carbenoid species to explain the olefinic formation. H-CH, -OH -----~ HaO + :CHa n:CH, -----~ (CH, )n n=2, 3, 4, 5 Swabb and Gates (1972), in their study of the dehydration of methanol over H...

  17. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    DeLallo, M.; Eshbach, R.

    1994-01-01T23:59:59.000Z

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  18. Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger

    SciTech Connect (OSTI)

    Gorzegno, W.P.

    1993-06-15T23:59:59.000Z

    A reactor is described comprising: a vessel; a first furnace section disposed in said vessel; a second furnace section disposed in said vessel; means in each of said furnace sections for receiving a combustible fuel for generating heat and combustion gases; a first heat recovery area located adjacent said furnace sections; a second heat recovery area located adjacent said furnace sections; means for passing said combustion gases from said first furnace section to said first heat recovery area; and means for passing said combustion gases from said second furnace section to said second heat recovery area.

  19. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01T23:59:59.000Z

    To accelerate the commercialization and deployment of carbon capture technologies, computational fuid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon cap-ture devices. This work presents multiphase CFD-based ow simulations for the regenerator|a device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aque-ous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The in uence of these plates on sorbent distribution is examined for varying sorbent holdup, uidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug ow or well-mixed ow. The purpose of this work is to better understand the sorbent ow characteristics before reaction kinetics of CO2 desorption can be implemented.

  20. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    Using Self-Sustained Hydro- Gasification." [0011] In aprocess, using a steam hydro-gasification reactor (SHR) thepyrolysis and hydro-gasification in a single step. This

  1. Evaluation of models for the prediction of fluidized-bed reactor performance

    E-Print Network [OSTI]

    Frederick, John Michael

    1980-01-01T23:59:59.000Z

    models w1th exper 1mental results are presented. Additional results are also presented in the following sections. 43 Jet penetration De th In order to correlate the jet penitration experimental results, several non-dimentional parameters were chosen...

  2. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1989 Annual report, [January 1989--December 1989

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association`s Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  3. EA-0646: Pulsed Atmospheric Fluidized-Bed Combustor Development Thermochem, Inc.

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to develop a more economical, efficient, and environmentally acceptable coal-fired combustion technology in Baltimore, Maryland that can be...

  4. Power plant computer aided design software char properties generated by a fluidized bed gasifier

    E-Print Network [OSTI]

    Siebold, Walter Joachim

    1987-01-01T23:59:59.000Z

    decomposition of organic material with a deficient oxidant supply. In other words, it is 1ncomplete combustion. Gasification is not a new process; coal was gasified before 1830 to produce gas for commercial and domestic use. Pyrolysis does not require.... CHAPTER II LITERATURE REVIEW THERMOCHEMICAL PROCESS Many books have been written on thermochemical processes. The most widely used technique of conversion is combustion. Other thermochemical conversion techniques are gasification and pyrolysis...

  5. atmospheric fluidized-bed combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to optical depth perturbations. In Earth-type atmospheres sustained planetary greenhouse effect with a stable ground surface temperature can only exist at a particular...

  6. DEVELOPMENT OF PRESSURIZED CIRCULATIONG FLUIDIZED BED PARTIAL GASIFICATION MODULE(PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2003-04-17T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the January 1--March 31, 2003 time period.

  7. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect (OSTI)

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24T23:59:59.000Z

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  8. Study of factors affecting syngas quality and their interactions in fluidized bed gasification of lignite coal

    E-Print Network [OSTI]

    Spiteri, Raymond J.

    gas emissions from coal-fired power plants has led to renewed interest in gasification as a clean-coal with the Canada's Clean Coal Technology Roadmap [2] and CO2 Capture and Storage Technology Roadmap [3], clean coal

  9. Fluidized Bed Technology - An R&D Success Story | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for EnergyofFluidAn

  10. Low Temperature Chemical Vapor Deposition of Zirconium Nitride in a Fluidized Bed

    E-Print Network [OSTI]

    Arrieta, Marie

    2012-10-19T23:59:59.000Z

    thick) on uranium-molybdenum (UMo) particulate fuel. Plate-type fuel with U-xMo (x = 3 to 10 wt.%) particle fuel dispersed in an aluminum matrix is under development at Idaho National Laboratory (INL) for the Reduced Enrichment for Research and Test...

  11. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-12-31T23:59:59.000Z

    A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), tire derived fuel (TDF), sewage sludge and industrial de-inking sludge. Conceptual designs of three power plants rated at 250 MWe, 150 MWe and 4 MWe were developed. The 4 MWe facility was chosen to represent a distributed power source for a remote location and designated to co-fire coal with MSW, TDF and sewage sludge while producing electricity for a small town. Heat and material balances were completed for each plant and costs determined including capital costs, operating costs and cost of electricity. With the PFBCs operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Since PFBCs have not been tested co-firing wastes, other critical performance factors were addressed and recommendations were provided for resolving potential technical issues. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12T23:59:59.000Z

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  13. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02T23:59:59.000Z

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.

  14. Bubble Universe Dynamics After Free Passage

    E-Print Network [OSTI]

    Pontus Ahlqvist; Kate Eckerle; Brian Greene

    2014-12-26T23:59:59.000Z

    We consider bubble collisions in single scalar field theories with multiple vacua. Recent work has argued that at sufficiently high impact velocities, collisions between such bubble vacua are governed by 'free passage' dynamics in which field interactions can be ignored during the collision, providing a systematic process for populating local minima without quantum nucleation. We focus on the time period that follows the bubble collision and provide evidence that, for certain potentials, interactions can drive significant deviations from the free-passage bubble profile, thwarting the production of bubbles with different field values.

  15. Tiny Bubbles in my BEC

    SciTech Connect (OSTI)

    Blinova, Alina A. [Los Alamos National Laboratory

    2012-08-01T23:59:59.000Z

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  16. METAL FILTERS FOR PRESSURIZED FLUID BED COMBUSTION (PFBC) APPLICATIONS

    SciTech Connect (OSTI)

    M.A. Alvin

    2004-01-02T23:59:59.000Z

    Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at the Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. As part of the demonstration effort, SWPC has been actively involved in the development of advanced filter materials and component configuration, has participated in numerous surveillance programs characterizing the material properties and microstructure of field-tested filter elements, and has undertaken extended, accelerated filter life testing programs. This report reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous commercial metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion (PFBC) conditions.

  17. Hydrodynamic models for slurry bubble column reactors. Seventh technical progress report, January--March 1996

    SciTech Connect (OSTI)

    Gidaspow, D.

    1996-04-01T23:59:59.000Z

    The objective of this investigation is to convert our ``learning gas solid-liquid`` fluidization model into a predictive design model. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid and particulate phase. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. A hydrodynamic model for multiphase flows, based on the principles of mass, momentum and energy conservation for each phase, was developed and applied to model gas-liquid, gas-liquid-solid fluidization and gas-solid-solid separation. To simulate the industrial slurry bubble column reactors, a computer program based on the hydrodynamic model was written with modules for chemical reactions (e.g. the synthesis of methanol), phase changes and heat exchangers. In the simulations of gas-liquid two phases flow system, the gas hold-ups, computed with a variety of operating conditions such as temperature, pressure, gas and liquid velocities, agree well with the measurements obtained at Air Products` pilot plant. The hydrodynamic model has more flexible features than the previous empirical correlations in predicting the gas hold-up of gas-liquid two-phase flow systems. In the simulations of gas-liquid-solid bubble column reactors with and without slurry circulation, the code computes volume fractions, temperatures and velocity distributions for the gas, the liquid and the solid phases, as well as concentration distributions for the species (CO, H{sub 2}, CH{sub 3}0H, ... ), after startup from a certain initial state. A kinetic theory approach is used to compute a solid viscosity due to particle collisions. Solid motion and gas-liquid-solid mixing are observed on a color PCSHOW movie made from computed time series data. The steady state and time average catalyst concentration profiles, the slurry height and the rates of methanol production agree well with the measurements obtained at an Air Products` pilot plant.

  18. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14T23:59:59.000Z

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  19. Collapse of Kaluza-Klein Bubbles

    E-Print Network [OSTI]

    Steven Corley; Ted Jacobson

    1994-03-09T23:59:59.000Z

    Kaluza-Klein theory admits ``bubble" configurations, in which the circumference of the fifth dimension shrinks to zero on some compact surface. A three parameter family of such bubble initial data at a moment of time-symmetry (some including a magnetic field) has been found by Brill and Horowitz, generalizing the (zero-energy) ``Witten bubble" solution. Some of these data have negative total energy. We show here that all the negative energy bubble solutions start out expanding away from the moment of time symmetry, while the positive energy bubbles can start out either expanding or contracting. Thus it is unlikely that the negative energy bubbles would collapse and produce a naked singularity.

  20. Bremsstrahlung Radiation At a Vacuum Bubble Wall

    E-Print Network [OSTI]

    Jae-Weon Lee; Kyungsub Kim; Chul H. Lee; Ji-ho Jang

    2007-04-06T23:59:59.000Z

    When charged particles collide with a vacuum bubble, they can radiate strong electromagnetic waves due to rapid deceleration. Owing to the energy loss of the particles by this bremsstrahlung radiation, there is a non-negligible damping pressure acting on the bubble wall even when thermal equilibrium is maintained. In the non-relativistic region, this pressure is proportional to the velocity of the wall and could have influenced the bubble dynamics in the early universe.

  1. The impact of bubble diffusivity on confined oscillated bubbly liquid Sergey Shklyaev1

    E-Print Network [OSTI]

    Straube, Arthur V.

    their volume. In other words, in a liquid containing bubbles the speed of sound cb can b oscillations4,5 to the frequency of external driving. Here, k= /c0 is the wave number, c0 is the speed of soundThe impact of bubble diffusivity on confined oscillated bubbly liquid Sergey Shklyaev1 and Arthur V

  2. Fluid mechanics of bubble capture by the diving bell spider

    E-Print Network [OSTI]

    Brooks, Alice (Alice P.)

    2010-01-01T23:59:59.000Z

    The water spider, a unique member of its species, is used as inspiration for a bubble capture mechanism. Bubble mechanics are studied in the pursuit of a biomimetic solution for transporting air bubbles underwater. Careful ...

  3. The incorporation of bubbles into a computer graphics fluid simulation

    E-Print Network [OSTI]

    Greenwood, Shannon Thomas

    2005-08-29T23:59:59.000Z

    We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid...

  4. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect (OSTI)

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2008-05-15T23:59:59.000Z

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  5. Granular-bed-filter development program, Phase II. Final report

    SciTech Connect (OSTI)

    Guillory, J.; Cooper, J.; Ferguson, J.; Goldbach, G.; Placer, F.

    1983-05-01T23:59:59.000Z

    The high-temperature moving bed granular filter (GBF) program at Combustion Power Company (CPC) commenced in 1977. Its purpose was to investigate, for the Department of Energy, the filtration performance of the GBF for application to coal-fired PFBC turbine systems. The GBF test system was successfully operated on 1500/sup 0/F to 1600/sup 0/F gases produced from an atmospheric pressure coal-fired fluidized bed combustor. Overall collection efficiencies above 99% and submicron collection efficiencies above 96% were consistently demonstrated in over 1500 hours of high-temperature testing. Alkali content of the hot gases was also measured to evaluate aluminosilicate additives for controlling alkali emissions. Operational and performance stability under upset conditions (ten times normal inlet loading and 125% of design gas flowrate) was also demonstrated experimentally. A computer-based GBF performance model was developed. It predicts overall particle capture within +- 5%. Gas flow streamlines and isobars are computer generated from theoretical principles and particle capture is based on the most recent empirical models. The effects of elevated pressure on efficiency and filter pressure drop are included in the model. A modular approach was adopted for GBF scale-up to commercial size systems using elements of the same size tested in this program. Elements can be readily packaged into 30,000 acfm modules at a projected equipment cost of approximately $27 per acfm.

  6. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electroche...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching. Abstract: Many...

  7. Oscillating plasma bubbles. II. Pulsed experiments

    SciTech Connect (OSTI)

    Stenzel, R. L.; Urrutia, J. M. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547 (United States)

    2012-08-15T23:59:59.000Z

    Time-dependent phenomena have been investigated in plasma bubbles which are created by inserting spherical grids into an ambient plasma and letting electrons and ions form a plasma of different parameters than the ambient one. There are no plasma sources inside the bubble. The grid bias controls the particle flux. There are sheaths on both sides of the grid, each of which passes particle flows in both directions. The inner sheath or plasma potential develops self consistently to establish charge neutrality and divergence free charge and mass flows. When the electron supply is restricted, the inner sheath exhibits oscillations near the ion plasma frequency. When all electrons are excluded, a virtual anode forms on the inside sheath, reflects all ions such that the bubble is empty. By pulsing the ambient plasma, the lifetime of the bubble plasma has been measured. In an afterglow, plasma electrons are trapped inside the bubble and the bubble decays as slow as the ambient plasma. Pulsing the grid voltage yields the time scale for filling and emptying the bubble. Probes have been shown to modify the plasma potential. Using pulsed probes, transient ringing on the time scale of ion transit times through the bubble has been observed. The start of sheath oscillations has been investigated. The instability mechanism has been qualitatively explained. The dependence of the oscillation frequency on electrons in the sheath has been clarified.

  8. Giant bubble pinch-off

    E-Print Network [OSTI]

    Raymond Bergmann; Devaraj van der Meer; Mark Stijnman; Marijn Sandtke; Andrea Prosperetti; Detlef Lohse

    2006-01-24T23:59:59.000Z

    Self-similarity has been the paradigmatic picture for the pinch-off of a drop. Here we will show through high-speed imaging and boundary integral simulations that the inverse problem, the pinch-off of an air bubble in water, is not self-similar in a strict sense: A disk is quickly pulled through a water surface, leading to a giant, cylindrical void which after collapse creates an upward and a downward jet. Only in the limiting case of large Froude number the neck radius $h$ scales as $h(-\\log h)^{1/4} \\propto \\tau^{1/2}$, the purely inertial scaling. For any finite Froude number the collapse is slower, and a second length-scale, the curvature of the void, comes into play. Both length-scales are found to exhibit power-law scaling in time, but with different exponents depending on the Froude number, signaling the non-universality of the bubble pinch-off.

  9. Gas bubble dynamics in soft materials

    E-Print Network [OSTI]

    J. M. Solano-Altamirano; John D. Malcolm; Saul Goldman

    2014-10-14T23:59:59.000Z

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic medium. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the elastic medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a Generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to a simple liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the Generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  10. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  11. Breakout SessionIII,Bed-Materialand Bed-TopographyMeasurement

    E-Print Network [OSTI]

    as independent variables. 2. Does your organization have any accuracy standards for collecting theses types (bed topography or bed material) of sediment data? National and international mapping standards such as those of Standards and Technology, and the North Atlantic Treaty Organization's Digital Geographic Information

  12. Microfluidics Formation of Bubbles in a Multisection Flow-Focusing

    E-Print Network [OSTI]

    Prentiss, Mara

    Microfluidics Formation of Bubbles in a Multisection Flow-Focusing Junction Michinao Hashimoto the stable formation of trains of mono-, bi-, and tri-disperse bubbles in microfluidic flow- focusing (FF-assembly through the patterns of flow created by the bubbles. 1.1 Bubbles and Droplets in Microfluidics

  13. Air fluidized balls in a background of smaller beads

    E-Print Network [OSTI]

    M. E. Beverland; L. J. Daniels; D. J. Durian

    2010-12-02T23:59:59.000Z

    We report on quasi-two-dimensional granular systems in which either one or two large balls is fluidized by an upflow of air in the presence of a background of several hundred smaller beads. A single large ball is observed to propel ballistically in nearly circular orbits, in direct contrast to the Brownian behavior of a large ball fluidized in the absence of this background. Further, the large ball motion satisfies a Langevin equation with an additional speed-dependent force acting in the direction of motion. This results in a non-zero average speed of the large ball that is an order of magnitude faster than the root mean square speed of the background balls. Two large balls fluidized in the absence of the small-bead background experience a repulsive force depending only on the separation of the two balls. With the background beads present, by contrast, the ball-ball interaction becomes velocity-dependent and attractive. The attraction is long-ranged and inconsistent with a depletion model; instead, it is mediated by local fluctuations in the density of the background beads which depends on the large balls' motion.

  14. Propagating Waves in a Monolayer of Gas-Fluidized Rods

    E-Print Network [OSTI]

    L. J. Daniels; D. J. Durian

    2010-11-12T23:59:59.000Z

    We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.

  15. A new bed elevation dataset for Greenland

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    A new bed elevation dataset for Greenland J. L. Bamber 1 ,al. : A new bed elevation dataset for Greenland Howat, I. M.al. : A new bed elevation dataset for Greenland Fig. 3. (a)

  16. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  17. REVIEW ARTIC LE MICROSCALE THERMAL BUBBLE FORMATION

    E-Print Network [OSTI]

    Lin, Liwei

    8 C a thermal diffusivity, m r s 8 C 2 F excess heat conduction shape factor e variable in the heat, and this article discusses microscale bubble formation by using polysilicon microheaters. Figure 1a shows

  18. Nucleate boiling bubble growth and departure

    E-Print Network [OSTI]

    Staniszewski, Bogumil E.

    1959-01-01T23:59:59.000Z

    The vapor bubble formation on the heating surface during pool boiling has been studied experimentally. Experiments were made at the atmospheric pressure 28 psi and 40 psi, using degassed distilled water and ethanol. The ...

  19. Analytical Modeling of a Bubble Column Dehumidifier

    E-Print Network [OSTI]

    Tow, Emily W.

    Bubble column dehumidifiers are a compact, inexpensive alternative to conventional fin-tube dehumidifiers for humidification-dehumidification (HDH) desalination, a technology that has promising applications in small-scale ...

  20. aBubbleTree? Thomas H. Parker

    E-Print Network [OSTI]

    Parker, Thomas H.

    on Rn \\ {0}. That limit loses energy. A bubble tree is a way of recovering the lost energy by keepingaBubbleTree? Thomas H. Parker 666 NOTICES OF THE AMS VOLUME 50, NUMBER 6 Some of the most important for functions u on a domain in R2, which arises as the variational equation of the energy (2) E(u) = |du|2 dvol

  1. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01T23:59:59.000Z

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  2. DIMUON PRODUCTION BY HIGH ENERGY NEUTRINOS AND ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

    E-Print Network [OSTI]

    Orthel, John L.

    2010-01-01T23:59:59.000Z

    ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBERANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER*ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

  3. MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-24T23:59:59.000Z

    The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particle’s hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

  4. Pressure Drop in a Pebble Bed Reactor

    E-Print Network [OSTI]

    Kang, Changwoo

    2011-10-21T23:59:59.000Z

    Pressure drops over a packed bed of pebble bed reactor type are investigated. Measurement of porosity and pressure drop over the bed were carried out in a cylindrical packed bed facility. Air and water were used for working fluids. There are several...

  5. Multiphase Equilibrium of Fluids Confined in Fisher-Tropsch Catalytic Systems

    E-Print Network [OSTI]

    Warrag, Samah

    2014-04-23T23:59:59.000Z

    . Although this technology was discovered in 1923, commercialization and scale up are limited to the use of few reactor configurations (e.g. multi-tubular fixed-bed reactor, Slurry-bubble column reactor, and fluidized bed reactors). In order to improve...

  6. Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface

    E-Print Network [OSTI]

    Montgomery, David R.

    Stream-bed scour, egg burial depths, and the influence of salmonid spawning on bed surface mobility-Hames, and Thomas P. Quinn Abstract: Bed scour, egg pocket depths, and alteration of stream-bed surfaces by spawning chum salmon (Onchorhynchus keta) were measured in two Pacific Northwest gravel-bedded streams. Close

  7. On the (im)possibility of warp bubbles

    E-Print Network [OSTI]

    Chris Van Den Broeck

    2000-05-18T23:59:59.000Z

    Various objections against Alcubierre's warp drive geometry are reviewed. Superluminal warp bubbles seem an unlikey possibility within the framework of general relativity and quantum field theory, although subluminal bubbles may still be possible.

  8. On acoustic cavitation of slightly subcritical bubbles Anthony Harkin

    E-Print Network [OSTI]

    Kaper, Tasso J.

    On acoustic cavitation of slightly subcritical bubbles Anthony Harkin Department of Mathematics, such as submicron air bubbles in water, where the natural oscilla- tion frequencies are high. In contrast, when

  9. Bubble Coalescence DOI: 10.1002/anie.201006552

    E-Print Network [OSTI]

    Chan, Derek Y C

    by the surface tension of the liquid. They are vital components in foams, microflui- dics,[1] sonochemical cantilever to pick one bubble up in the size range 50­ 200 mm from a glass substrate, and drive this bubble

  10. Bubble visualization in a simulated hydraulic jump

    E-Print Network [OSTI]

    Witt, Adam; Shen, Lian

    2013-01-01T23:59:59.000Z

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  11. Engineering development of a bubble tray structure

    E-Print Network [OSTI]

    Glitsch, Hans C

    1954-01-01T23:59:59.000Z

    ~ ~ ~ e r ~ a e e a pl STRUC'FURRS e ~ ~ ~ e e ~ ~ ~ a ~ e ~ ~ * * ~ ~ 9efkoitkoa end Pox'yoee. Ms@@v@nCages 08 Pxevtouely Existing Marble TII'@g 84~55'gt'SSe Reeogniaatlon oZ @he Need toe a New 98@83, 09$fLCa XX. FRELXKX?ARV X~STXGATXOH AH9... ~ Glibsoh Truss-Type Bubble Tray * ~ ?ultiple Gang Punching oi' Tx'ay Parts. . . . . , . . . . . Special Automatic Slotting Yiachine for Bubble Caps. Special Kulti-spindle Tapping I~iachine. . . . . Special Continuous Conveyor Furnace for Heat Tx...

  12. Three-dimensional reconstruction of bubble distribution in two-phase bubbly flows with the dynamic programming method

    E-Print Network [OSTI]

    Furukawa, Toru

    2002-01-01T23:59:59.000Z

    A three-dimensional bubble reconstruction method is proposed in this thesis to analyze two-phase bubbly flows. Gas/liquid two-phase flows have important roles in the nuclear and chemical industries and other engineering fields...

  13. Heart-shaped bubbles rising in anisotropic liquids Chunfeng Zhou

    E-Print Network [OSTI]

    Feng, James J.

    Heart-shaped bubbles rising in anisotropic liquids Chunfeng Zhou Department of Chemical of an unusual inverted-heart shape for bubbles rising in an anisotropic micellar solution. We explain the bubble heart or a spade a . The upper sur- face has sloped shoulders that join in a point. The bottom

  14. Learning Overcomplete Spatiotemporal Bubbles from Natural Image Sequences

    E-Print Network [OSTI]

    Zhang, Liqing

    of this dot product is given. Simulation results suggest that the overcomplete bubble coding can be achievedLearning Overcomplete Spatiotemporal Bubbles from Natural Image Sequences Libo Ma, and Liqing Zhang, China malibo@sjtu.edu.cn zhang-lq@cs.sjtu.edu.cn Abstract Recently, bubble coding for natural image

  15. FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS

    E-Print Network [OSTI]

    FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

  16. Do subcritical bubbles hinder first order phase transition?

    E-Print Network [OSTI]

    K. Enqvist; A. Riotto; I. Vilja

    1995-05-19T23:59:59.000Z

    We consider the role played by subcritical bubbles during the electroweak phase transition, estimate their average size, amplitude and formation rate taking into account the crucial role played by thermalization. We also study the influence of subcritical bubbles on the formation of critical bubbles in the thin wall regime and show that, contrary to some recent claims, subcritical bubbles do not affect the nucleation of critical bubbles in an appreciable way. From this fact we conclude that the electroweak baryogenesis scenarios associated with a first order electroweak phase transition still remain an attractive possibility.

  17. Maximal air bubble entrainment at liquid drop impact

    E-Print Network [OSTI]

    Bouwhuis, Wilco; Tran, Tuan; Keij, Diederik L; Winkels, Koen G; Peters, Ivo R; van der Meer, Devaraj; Sun, Chao; Snoeijer, Jacco H; Lohse, Detlef

    2012-01-01T23:59:59.000Z

    At impact of a liquid drop on a solid surface an air bubble can be entrapped. Here we show that two competing effects minimize the (relative) size of this entrained air bubble: For large drop impact velocity and large droplets the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity and small droplets capillary forces minimize the entrained bubble. However, we demonstrate experimentally, theoretically, and numerically that in between there is an optimum, leading to maximal air bubble entrapment. Our results have a strong bearing on various applications in printing technology, microelectronics, immersion lithography, diagnostics, or agriculture.

  18. Novel Magnetically Fluidized Bed Reactor Development for the Looping Process: Coal to Hydrogen Production R&D

    SciTech Connect (OSTI)

    Mei, Renwei; Hahn, David; Klausner, James; Petrasch, Jorg; Mehdizadeh, Ayyoub; Allen, Kyle; Rahmatian, Nima; Stehle, Richard; Bobek, Mike; Al-Raqom, Fotouh; Greek, Ben; Li, Like; Chen, Chen; Singh, Abhishek; Takagi, Midori; Barde, Amey; Nili, Saman

    2013-09-30T23:59:59.000Z

    The coal to hydrogen project utilizes the iron/iron oxide looping process to produce high purity hydrogen. The input energy for the process is provided by syngas coming from gasification process of coal. The reaction pathways for this process have been studied and favorable conditions for energy efficient operation have been identified. The Magnetically Stabilized Porous Structure (MSPS) is invented. It is fabricated from iron and silica particles and its repeatable high performance has been demonstrated through many experiments under various conditions in thermogravimetric analyzer, a lab-scale reactor, and a large scale reactor. The chemical reaction kinetics for both oxidation and reduction steps has been investigated thoroughly inside MSPS as well as on the surface of very smooth iron rod. Hydrogen, CO, and syngas have been tested individually as the reducing agent in reduction step and their performance is compared. Syngas is found to be the most pragmatic reducing agent for the two-step water splitting process. The transport properties of MSPS including porosity, permeability, and effective thermal conductivity are determined based on high resolution 3D CT x-ray images obtained at Argonne National Laboratory and pore-level simulations using a lattice Boltzmann Equation (LBE)-based mesoscopic model developed during this investigation. The results of those measurements and simulations provide necessary inputs to the development of a reliable volume-averaging-based continuum model that is used to simulate the dynamics of the redox process in MSPS. Extensive efforts have been devoted to simulate the redox process in MSPS by developing a continuum model consist of various modules for conductive and radiative heat transfer, fluid flow, species transport, and reaction kinetics. Both the Lagrangian and Eulerian approaches for species transport of chemically reacting flow in porous media have been investigated and verified numerically. Both approaches lead to correct prediction of hydrogen production rates over a large range of experimental conditions in the laboratory scale reactor and the bench-scale reactor. In the economic analysis, a comparison of the hydrogen production plants using iron/iron oxide looping cycle and the conventional process has been presented. Plant configurations are developed for the iron/iron oxide looping cycle. The study suggests a higher electric power generation but a lower hydrogen production efficiency comparing with the conventional process. Additionally, it was shown that the price of H{sub 2} obtained from our reactor can be as low as $1.7/kg, which is 22% lower than the current price of the H{sub 2} obtained from reforming plants.

  19. Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel

    SciTech Connect (OSTI)

    Dr. Wei-Ping Pan; Dr. John T. Riley

    2005-10-10T23:59:59.000Z

    Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

  20. Fluidized Bed Steam Reformer (FBSR) Na-AI-SI (NAS) Waste Form for Hanford LAW and Secondary Waste

    SciTech Connect (OSTI)

    Jantzen, C.; Pierce, E.

    2010-11-01T23:59:59.000Z

    FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW and/or Waste Treatment Plant Secondary Waste (WTP-SW). Objectives of the project: 1) Prove the robustness of FBSR as a waste form for either LAW and/or WTP-SW; 2) Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW and/or WTP-SW; 3) Conduct two treatability studies with SRS radioactive wastes that have been shimmed to look like Hanford WTP-SW and LAW; 4) Conduct three treatability studies with actual Hanford tank wastes; 5) Fill key data gaps; 6) Link previous and new results together.

  1. Dynamic simulation of a circulating fluidized bed boiler of low circulating ratio with wide particle size distributions

    SciTech Connect (OSTI)

    Lu Huilin; Yang Lidan; Bie Rushan; Zhao Guangbo

    1999-07-01T23:59:59.000Z

    A steady state model of a coal fired CFB boiler considering the hydrodynamics, heat transfer and combustion is presented. This model predicts the flue gas temperature, the chemical gas species (O{sub 2}, H{sub 2}O, CO, CO{sub 2} and SO{sub 2}) and char concentration distributions in both the axial and radial location along the furnace including the bottom and upper portion. The model was validated against experimental data generated in a 35 t/h commercial CFB boiler with low circulating ratio.

  2. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOE Patents [OSTI]

    Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

    2010-08-10T23:59:59.000Z

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  3. The development of a cyclonic combustor for high particulate, low caloric value gas produced by a fluidized bed

    E-Print Network [OSTI]

    Cardenas, Manuel Moises

    1985-01-01T23:59:59.000Z

    methods, utilizing a biomass source, are: combustion, pyrolysis, gasification, and bio-degradation processes. Direct combustion is envisioned as the most immediately available conversion technology. However, there is considerable interest... the combustion of a low caloric value (LCV) and high particulate gas. Performance tests were conducted to verify the cyclone combustor design flexibility by identifying satisfactory performance characteristics. The LCV gas was produced from the gasification...

  4. Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable Projects HTS Cable Projects FactHandbook|AWasteLow

  5. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  6. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic

    E-Print Network [OSTI]

    ) are a promising technology for energy-efficient domestic wastewater treatment, but the effluent quality has having a total chemical oxygen demand (tCOD) of 210 ± 11 mg/L. At a combined hydraulic retention time developed as a sustainable energy technology, as they can directly produce electricity from wastewater

  7. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable1234Department ofTechnology FactKey

  8. COMPUTATIONAL AND EXPERIMENTAL MODELING OF SLURRY BUBBLE COLUMN REACTORS

    SciTech Connect (OSTI)

    Paul Lam; Dimitri Gidaspow

    2001-08-01T23:59:59.000Z

    This project is a collaborative effort between the University of Akron, Illinois Institute of Technology and two industries: UOP and Energy International. The tasks involve the development of transient two and three dimensional computer codes for slurry bubble column reactors, optimization, comparison to data, and measurement of input parameters, such as the viscosity and restitution coefficients. To understand turbulence, measurements were done in the riser with 530 micron glass beads using a PIV technique. This report summarizes the measurements and simulations completed as described in details in the attached paper, ''Computational and Experimental Modeling of Three-Phase Slurry-Bubble Column Reactor.'' The Particle Image Velocimetry method described elsewhere (Gidaspow and Huilin, 1996) was used to measure the axial and tangential velocities of the particles. This method was modified with the use of a rotating colored transparent disk. The velocity distributions obtained with this method shows that the distribution is close to Maxwellian. From the velocity measurements the normal and the shear stresses were computed. Also with the use of the CCD camera a technique was developed to measure the solids volume fraction. The granular temperature profile follows the solids volume fraction profile. As predicted by theory, the granular temperature is highest at the center of the tube. The normal stress in the direction of the flow is approximately 10 times larger than that in the tangential direction. The <{nu}{prime}{sub z}{nu}{prime}{sub z}> is lower at the center where the <{nu}{prime}{sub {theta}}{nu}{prime}{sub {theta}}> is higher at that point. The Reynolds shear stress was small, producing a restitution coefficient near unity. The normal Reynolds stress in the direction of flow is large due to the fact that it is produced by the large gradient of velocity in the direction of flow compared to the small gradient in the {theta} and r directions. The kinetic theory gives values of viscosity that agree with our previous measurements (Gidaspow, Wu and Mostofi, 1999). The values of viscosity obtained from pressure drop minus weight of bed measurements agree at the center of the tube.

  9. A new bed elevation dataset for Greenland

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and bed data set for the Greenland ice sheet 1. Measure-bed elevation dataset for Greenland J. L. Bamber 1 , J. A.face mass balance of the Greenland ice sheet revealed by

  10. Best Management Practices for Bedding and

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    1 Best Management Practices for Bedding and Container Color Plant Production in California #12 in California Bedding and Container Color Plant Production 5 Best Management Practices for Disease Prevention 16 Best Management Practices For Insect And Mite Prevention 19 Impact of Common Bedding And Container

  11. Bubbling the Newly Grown Black Ring Hair

    E-Print Network [OSTI]

    Orestis Vasilakis

    2012-02-08T23:59:59.000Z

    New families of BPS black ring solutions with four electric and four dipole magnetic charges have recently been explicitly constructed and uplifted to M-theory. These solutions were found to belong to a CFT with central charge different compared to the one of the STU model. Because of their importance to AdS/CFT, here we give the microstate description of these geometries in terms of topological bubbles and supertubes. The fourth charge results in an additional flux through the topological cycles that resolve the brane singularities. The analog of these solutions in the IIB frame yield a generalized regular supertube with three electric charges and one dipole charge. Direct comparison is also made with the previously-known bubbled geometries.

  12. Bubble Radiation Detection: Current and Future Capability

    SciTech Connect (OSTI)

    AJ Peurrung; RA Craig

    1999-11-15T23:59:59.000Z

    Despite a number of noteworthy achievements in other fields, superheated droplet detectors (SDDs) and bubble chambers (BCs) have not been used for nuclear nonproliferation and arms control. This report examines these two radiation-detection technologies in detail and answers the question of how they can be or should be ''adapted'' for use in national security applications. These technologies involve closely related approaches to radiation detection in which an energetic charged particle deposits sufficient energy to initiate the process of bubble nucleation in a superheated fluid. These detectors offer complete gamma-ray insensitivity when used to detect neutrons. They also provide controllable neutron-energy thresholds and excellent position resolution. SDDs are extraordinarily simple and inexpensive. BCs offer the promise of very high efficiency ({approximately}75%). A notable drawback for both technologies is temperature sensitivity. As a result of this problem, the temperature must be controlled whenever high accuracy is required, or harsh environmental conditions are encountered. The primary findings of this work are listed and briefly summarized below: (1) SDDs are ready to function as electronics-free neutron detectors on demand for arms-control applications. The elimination of electronics at the weapon's location greatly eases the negotiability of radiation-detection technologies in general. (2) As a result of their high efficiency and sharp energy threshold, current BCs are almost ready for use in the development of a next-generation active assay system. Development of an instrument based on appropriately safe materials is warranted. (3) Both kinds of bubble detectors are ready for use whenever very high gamma-ray fields must be confronted. Spent fuel MPC and A is a good example where this need presents itself. (4) Both kinds of bubble detectors have the potential to function as low-cost replacements for conventional neutron detectors such as {sup 3}He tubes. For SDDs, this requires finding some way to get boron into the detector. For BCs, this requires finding operating conditions permitting a high duty cycle.

  13. Deformed bubble growth and coalescence in polymer foam processing

    E-Print Network [OSTI]

    Allaboun, Hussein Raji

    1996-01-01T23:59:59.000Z

    34 4. 2 4. 3 4. 4 4. 5 4. 6 4. 7 Effect of viscosity on bubble pressure Effect of viscosity on bubble growth . . Effect of viscosity on film thinning Effect of viscosity on film rupture Effect of thc Hamaker number on bubble pressure... studies are markedly different in many aspects: Kramer (1) did not use the lubrication theory approximation; (2) included all of the normal stresses; (3) used convected coordinates which made it easier to use a more complete constitutive description...

  14. Bubble coalescence dynamics and supersaturation in electrolytic gas evolution

    SciTech Connect (OSTI)

    Stover, R.L. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-08-01T23:59:59.000Z

    The apparatus and procedures developed in this research permit the observation of electrolytic bubble coalescence, which heretofore has not been possible. The influence of bubble size, electrolyte viscosity, surface tension, gas type, and pH on bubble coalescence was examined. The Navier-Stokes equations with free surface boundary conditions were solved numerically for the full range of experimental variables that were examined. Based on this study, the following mechanism for bubble coalescence emerges: when two gas bubbles coalesce, the surface energy decreases as the curvature and surface area of the resultant bubble decrease, and the energy is imparted into the surrounding liquid. The initial motion is driven by the surface tension and slowed by the inertia and viscosity of the surrounding fluid. The initial velocity of the interface is approximately proportional to the square root of the surface tension and inversely proportional to the square root of the bubble radius. Fluid inertia sustains the oblate/prolate oscillations of the resultant bubble. The period of the oscillations varies with the bubble radius raised to the 3/2 power and inversely with the square root of the surface tension. Viscous resistance dampens the oscillations at a rate proportional to the viscosity and inversely proportional to the square of the bubble radius. The numerical simulations were consistent with most of the experimental results. The differences between the computed and measured saddle point decelerations and periods suggest that the surface tension in the experiments may have changed during each run. By adjusting the surface tension in the simulation, a good fit was obtained for the 150-{micro}m diameter bubbles. The simulations fit the experiments on larger bubbles with very little adjustment of surface tension. A more focused analysis should be done to elucidate the phenomena that occur in the receding liquid film immediately following rupture.

  15. The hydrogen bubble chamber and the strange resonances

    SciTech Connect (OSTI)

    Alvarez, L.W.

    1985-06-01T23:59:59.000Z

    The author's recollections of his experience in the use of bubble chambers and the discoveries of strange resonances are given. (LEW)

  16. Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation was conducted using a specialized low Mach number hydrodynamics code for thermonuclear flames. Adaptive mesh refinement was used to focus resolution on the bubble,...

  17. Thermonuclear Supernovae: Is Deflagration Triggered by Floating Bubbles?

    E-Print Network [OSTI]

    Eduardo Bravo; Domingo Garcia-Senz

    2002-11-13T23:59:59.000Z

    In recent years, it has become clear from multidimensional simulations that the outcome of deflagrations depends strongly on the initial configuration of the flame. We have studied under which conditions this configuration could consist of a number of scattered, isolated, hot bubbles. Afterwards, we have calculated the evolution of deflagrations starting from different numbers of bubbles. We have found that starting from 30 bubbles a mild explosion is produced M(Ni56)=0.56 solar masses, while starting from 10 bubbles the star becomes only marginally unbound (K = 0.05 foes).

  18. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect (OSTI)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es [Departamento de Química Fsica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Menzl, Georg; Geiger, Philipp; Dellago, Christoph, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es [Faculty of Physics and Center for Computational Materials Science, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Aragones, Juan L. [Departamento de Química Fsica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Caupin, Frederic [Laboratoire de Physique de la Matiere Condensee et Nanostructures, Universite Claude Bernard, Lyon 1 et CNRS, Institut Universitaire de France, 43 boulevard du 11 novembre 1918, 69100 Villeurbanne (France)

    2014-11-14T23:59:59.000Z

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  19. COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS

    E-Print Network [OSTI]

    Howard, John

    COLD BUBBLE FORMATION DURING TOKAMAK DENSITY LIMIT DISRUPTIONS J. HOWARD, M. PERSSON* Plasma Research Laboratory, Research School of Physical Sciences, Australian National University, Canberra

  20. Numerical Simulation of Bubble Formation in Co-Flowing Mercury

    SciTech Connect (OSTI)

    Abdou, Ashraf A [ORNL; Wendel, Mark W [ORNL; Felde, David K [ORNL; Riemer, Bernie [ORNL

    2008-01-01T23:59:59.000Z

    In this work, we present computational fluid dynamics (CFD) simulations of helium bubble formation and detachment at a submerged needle in stagnant and co-flowing mercury. Since mercury is opaque, visualization of internal gas bubbles was done with proton radiography (pRad) at the Los Alamos Neutron Science Center (LANSCE2). The acoustic waves emitted at the time of detachment and during subsequent oscillations of the bubble were recorded with a microphone. The Volume of Fluid (VOF) model was used to simulate the unsteady two-phase flow of gas injection in mercury. The VOF model is validated by comparing detailed bubble sizes and shapes at various stages of the bubble growth and detachment, with the experimental measurements at different gas flow rates and mercury velocities. The experimental and computational results show a two-stage bubble formation. The first stage involves growing bubble around the needle, and the second follows as the buoyancy overcomes wall adhesion. The comparison of predicted and measured bubble sizes and shapes at various stages of the bubble growth and detachment is in good agreement.