National Library of Energy BETA

Sample records for btu year hydroelectric

  1. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  2. S ENERGY POLICY ACT OF 2005 SECTION 242 HYDROELECTRIC INCENTIVE...

    Broader source: Energy.gov (indexed) [DOE]

    HYDROELECTRIC INCENTIVE PROGRAM CALENDAR YEAR 2013 INCENTIVE PAYMENTS Payee (Applicant) Hydro Facility Albany Engineering Corporation (AEC) Mechanicville Hydroelectric Project...

  3. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  4. Optimizing Profits from Hydroelectricity Production

    E-Print Network [OSTI]

    Leclercq, Remi

    Optimizing Profits from Hydroelectricity Production Daniel De Ladurantaye Michel Gendreau Jean the profits obtained by the stochastic model. Keywords: Hydroelectricity, electricity market, prices, dams countries deregulate their electricity market, new challenges appear for hydroelectricity producers

  5. U.S. Energy Information Administration / Annual Energy Review 2011 341 Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945

    E-Print Network [OSTI]

    Hansen, James E.

    Renewable Energy Electricity Net Imports TotalCoal Natural Gas Petroleum Total Conventional Hydroelectric in the American Economy, 1850-1975, Table VII. Conventional Hydroelectric Power: Energy in the American Economy as the difference between hydroelectric consumption and hydroelectric production times 3,412 Btu per kilowatthour

  6. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    SciTech Connect (OSTI)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as vegetation height, shrub cover, or other parameters, which are known to provide life history requisites for mitigation species. Habitat Suitability Indices range from 0 to 1, with an HSI of 1 providing optimum habitat conditions for the selected species. One acre of optimum habitat provides one Habitat Unit. The objective of continued management of the Wanaket Wildlife Mitigation Area, including protection and enhancement of upland and wetland/wetland associated cover types, is to provide and maintain 2,334 HU's of protection credit and generate 2,495 HU's of enhancement credit by the year 2004.

  7. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to: navigation, searchSecurities CorporationBTU Jump

  8. Environmental Impacts of Increased Hydroelectric Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Increased Hydroelectric Development at Existing Dams Environmental Impacts of Increased Hydroelectric Development at Existing Dams This report describes the...

  9. Potential for hydroelectric development in Alaska

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Testimony concerning Alaskan hydroelectricity development is presented. Various public and private organizations were represented.

  10. Hydroelectric dams need billions for rehab

    SciTech Connect (OSTI)

    Carr, F.H.; Soast, A.

    1993-01-11

    Many of the Corps of Engineers older hydroelectric dams will require major rehabilitation over the next ten years. Preventive maintenance, repair work, and major rehabilitation of the Corp's hydro dams in inadequate because the revenue generated by sales of electricity, by law, is returned to the Treasury. Most multimillion dollar rehabilitation projects require specific approval for funding by Congress and securing it is a long and difficult process. It is hoped the funding problem will soon be addressed by the Clinton administration. Already, nearly one-sixth of the 2,154 Mw of hydro is unavailable because with hydro units are either out of service or operating at less than full capacity.

  11. Analysis of ReservoirBased Hydroelectric versus RunofRiver Hydroelectric Energy Production

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    of ReservoirBased Hydroelectric versus RunofRiver Hydroelectric Energy Production By: Cassie Modal, Morgan hydroelectric projects are economically lucrative due to their sustainable and multifunctional nature. As reservoirbased hydroelectric project utilizes but does not consume a continually flowing river, there is no net

  12. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  13. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

  14. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  16. Image courtesy of the Image Science & Analysis Laboratory, NASA Johnson Space Center (ISS006-E-42326). The hydroelectrical potential of North-Western

    E-Print Network [OSTI]

    Borsdorf, Axel

    -42326). #12;The hydroelectrical potential of North-Western Patagonia ­ balancing economic development and ecological protection axel borsdorf #12;156 The hydroelectrical potential of North-Western Patagonia the rest an expansion of the hydroelectric potential, first proposed 30 years ago (Borsdorf 1987: 156ff), can

  17. Hydroelectric Webinar Presentation Slides and Text Version

    Broader source: Energy.gov [DOE]

    Download presentation slides and a text version of the audio from the DOE Office of Indian Energy webinar on hydroelectric renewable energy. 

  18. Vermont Water Quality Certification Application for Hydroelectric...

    Open Energy Info (EERE)

    Vermont Water Quality Certification Application for Hydroelectric Facilities Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Vermont Water Quality...

  19. EPAct 2005 Section 242 Hydroelectric Incentive Program - 2013...

    Broader source: Energy.gov (indexed) [DOE]

    for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits...

  20. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive Program This document contains the Final...

  1. 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC...

    Energy Savers [EERE]

    2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM 2014 ELECTRICAL PRODUCTION: EPACT 2005 SECTION 242 HYDROELECTRIC INCENTIVE PROGRAM In 2015,...

  2. Fish and hydroelectricity; Engineering a better coexistence

    SciTech Connect (OSTI)

    Zorpette, G.

    1990-12-01

    This paper reports on the problems that hydroelectric plants have regarding fish populations. The utilities that operate these plants are finding that accommodating migrating fish presents unique engineering challenges, not the least of which involves designing and building systems to protect fish species whose migratory behavior remains something of a mystery. Where such systems cannot be built, the status of hydroelectric dams may be in doubt, as is now the case with several dams in the United States. A further twist in some regions in the possibility that certain migratory fish will be declared threatened or endangered-a development that could wreak havoc on the hydroelectric energy supply in those regions.

  3. Indian River Hydroelectric Project Grant

    SciTech Connect (OSTI)

    Rebecca Garrett

    2005-04-29

    This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

  4. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    SciTech Connect (OSTI)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  5. Low-Infrastructure Hydroelectric Generator To design and build a portable, self

    E-Print Network [OSTI]

    van den Berg, Jur

    !! Low-Infrastructure Hydroelectric Generator To design and build a portable, self contained, hydroelectric generator that functions without the requisite infrastructure of today's more common hydroelectric

  6. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  7. What is the role of hydroelectric power in the United States?

    Reports and Publications (EIA)

    2011-01-01

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  8. Managing water temperatures below hydroelectric facilities

    SciTech Connect (OSTI)

    Johnson, P.L.; Vermeyen, T.B.; O`Haver, G.G.

    1995-05-01

    Due to drought-related water temperature problems in the Bureau of Reclamation`s California Central Valley Project in the early 1990`s, engineers were forced to bypass water from the plants during critical periods. This was done at considerable cost in the form of lost revenue. As a result, an alternative method of lowering water temperature was developed and it has successfully lowered water temperatures downstream from hydroelectric facilities by using flexible rubber curtains. This innovative technology is aiding the survival of endangered fish populations. This article outlines the efforts and discusses the implementation of this method at several hydroelectric facilities in the area.

  9. EPAct 2005 Section 242 Hydroelectric Incentive Program- 2013 Electrical Production

    Broader source: Energy.gov [DOE]

    In 2014, Congress appropriated funds for Hydroelectric Production Incentives under Section 242 of the Energy Policy Act of 2005. Qualified hydroelectric facilities–existing powered or non-powered...

  10. Final Guidance for EPAct 2005 Section 242 Hydroelectric Incentive...

    Broader source: Energy.gov (indexed) [DOE]

    Policy Act of 2005. Qualified hydroelectric facilities-existing powered or non-powered dams and conduits that added a new turbine or other hydroelectric generating device-may...

  11. ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America: modelling service services provided to the Costa Rican and Nicaraguan hydroelectric sectors, which are crucial sectors for the conservation and restoration of forests for the services they provide to the hydroelectric sector. As such

  12. Hybrid Modeling and Control of a Hydroelectric Power Plant

    E-Print Network [OSTI]

    Ferrari-Trecate, Giancarlo

    Hybrid Modeling and Control of a Hydroelectric Power Plant Giancarlo Ferrari-Trecate, Domenico,mignone,castagnoli,morari}@aut.ee.ethz.ch Abstract In this work we present the model of a hydroelectric power plant in the framework of Mixed Logic with a model predictive control scheme. 1 Introduction The outflow control for hydroelectric power plants

  13. Hydroelectric redevelopment maintains heritage values

    SciTech Connect (OSTI)

    Bulkovshteyn, L.; Chidiac, M.; Hall, W.

    1995-12-31

    The Seymour GS is an 80 year old generating station on the historic Trent-Severn Waterway in Ontario, Canada. The rehabilitation at Seymour was approved by Provincial and Federal authorities on condition that the original appearance of the building be maintained. The capacity of the Generating Station (GS) is being uprated from 3.15 MW to 5.7 MW, by replacing five vertical double runner Francis units with five horizontal Kaplan turbines. The replacement of vertical Francis units with horizontal Kaplan units, necessitated an extensive and innovative demolition approach for the substructure modification. The new turbines required a powerhouse base slab 3.5 m below the grade of the original slab. This required removal of the existing slabs and foundation rock along with most of the interior powerhouse walls. The type of modification and demolition were carefully chosen to accommodate a very tight schedule dictated by the requirement of the Federal Department of Fisheries and Oceans (DFO), where in-water work is restricted to certain months of the year.

  14. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, search This is aAnnualGenGwhYr Jump to:CapacityBtuHr

  15. Accepting Applications: $3.96 Million Hydroelectric Production...

    Energy Savers [EERE]

    of cost-competitive, renewable energy at a lower cost than creating new powered dam structures. Under the Section 242 Hydroelectric Production Incentive program, on December 16,...

  16. 2013 Electrical Production: EPAct 2005 Section 242 Hydroelectric...

    Broader source: Energy.gov (indexed) [DOE]

    generated by the facility during the incentive period. This page contains all 2013 electrical production documentation for the Hydroelectric Production Incentives under Section...

  17. FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions...

    Open Energy Info (EERE)

    FERC Handbook for Hydroelectric Project Licensing and 5 MW Exemptions from Licensing Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  18. FERC Hydroelectric Project Handbook for Filings other than Licenses...

    Open Energy Info (EERE)

    FERC Hydroelectric Project Handbook for Filings other than Licenses and Exemptions Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance...

  19. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  20. 8. Hydroelectricity Hydroelectric plants transform the gravitational power of rainfall into

    E-Print Network [OSTI]

    Ernst, Damien

    into electricity For hydroelectricity, you need altitude and rainfall. The upper limit on the amount of energy). Led lamp. Solid-state lamp that uses light-emitting diodes. 5 #12;Luminous efficiency Luminous efficiency is a measure of how well a light source produces light. It is the ratio of luminous power (the

  1. Marine Hydroelectric Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios TowardsInformationMarietta, Georgia: EnergyHydroelectric

  2. Energy 101: Hydroelectric Power | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureElyElectroEnergy Energy 101:Hydroelectric

  3. PP-89-1 Bangor Hydro-Electric Company | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-89-1 Bangor Hydro-Electric Company PP-89-1 Bangor Hydro-Electric Company Presidental permit authorizing Bangor Hydro-Electric Company to construc, operate and maintain electric...

  4. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  5. GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian Aquatic Ecosystems

    E-Print Network [OSTI]

    Cooke, Steven J.

    GRADUATE RESEARCH OPPORTUNITIES IN APPLIED SCIENCE Effects of Hydroelectric Operations in Canadian with Fisheries and Oceans Canada (6 scientists) and 3 major hydroelectric companies (Nalcor, Manitoba Hydro

  6. Energy Department Seeks Feedback on Draft Guidance for the Hydroelectr...

    Office of Environmental Management (EM)

    period. Any qualified owner or operator of a hydroelectric facility who added hydropower to non-powered dams or conduits between 2005 and 2015, but where the original dam...

  7. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  8. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  9. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  10. Impact of High Wind Power Penetration on Hydroelectric Unit Operations

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-01-01

    The Western Wind and Solar Integration Study (WWSIS) investigated the operational impacts of very high levels of variable generation penetration rates (up to 35% by energy) in the western United States. This work examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators. The cost impacts of maintaining hydro unit flexibility are assessed and compared for a number of different modes of system operation.

  11. Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project in Bolivia

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Rent sharing in the Clean Development Mechanism The Case of the Tahumanu Hydroelectric Project a hydroelectric power plant instead of subsidized diesel plants in the Bolivian Pando Province. Simulations show

  12. Impact of High Wind Power Penetration on Hydroelectric Unit Operations: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2011-10-01

    This paper examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating unit patterns are examined for an aggregation of all hydro generators.

  13. Impact of High Wind Power Penetration on Hydroelectric Unit Operations in the WWSIS

    SciTech Connect (OSTI)

    Hodge, B.-M.; Lew, D.; Milligan, M.

    2011-07-01

    This report examines the impact of this large amount of wind penetration on hydroelectric unit operations. Changes in hydroelectric unit operating patterns are examined both for an aggregation of all hydro generators and for select individual plants.

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  1. DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN

    E-Print Network [OSTI]

    DOWNSTREAM PASSAGE FOR SALMON AT HYDROELECTRIC PROJECTS IN THE COLUMBIA RIVER BASIN: DEVELOPMENT ..........................................................................25 Division Barriers Upstream of the Powerhouse

  2. Federal Register Notice EPAct 2005 Section 242 Hydroelectric Incentive Program: January 2015

    Broader source: Energy.gov [DOE]

    Federal Register Notice for the EPAct 2005 Section 242 Hydroelectric Incentive Program application period announcement: January, 2015.

  3. Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera

    E-Print Network [OSTI]

    Jüttler, Bert

    Medial design of blades for hydroelectric turbines and ship propellers M. Rossgatterera , B. J Abstract We present a method for constructing blades of hydroelectric turbines and ship propellers based. Keywords: CAD-model, B-spline representation, hydroelectric turbine blade, propeller blade, medial axis

  4. Model-Free Based Water Level Control for Hydroelectric Power Plants

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Model-Free Based Water Level Control for Hydroelectric Power Plants Cédric JOIN Gérard ROBERT for hydroelectric run-of-the river power plants. To modulate power generation, a level trajectory is planned, the set-point is followed even in severe operating conditions. Keywords: Hydroelectric power plants

  5. The net carbon footprint of a newly created boreal hydroelectric reservoir

    E-Print Network [OSTI]

    The net carbon footprint of a newly created boreal hydroelectric reservoir Cristian R. Teodoru,1 of a boreal hydroelectric reservoir (Eastmain-1 in northern Québec, Canada). This is the result of a large. Citation: Teodoru, C. R., et al. (2012), The net carbon footprint of a newly created boreal hydroelectric

  6. Abstract --This paper describes the development of a sequential decision support system to promote hydroelectric

    E-Print Network [OSTI]

    MacDonald, Mark

    hydroelectric power in North-West England. The system, composed of integrated models, addresses barriers to the installation of hydroelectric power schemes. Information is linked through an economic assessment which of hydro power technology are considered. Index Terms -- Flow duration curve, Hydroelectric power, North

  7. PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric reservoirs

    E-Print Network [OSTI]

    Cole, Jonathan J.

    LETTERS PUBLISHED ONLINE: 31 JULY 2011 | DOI: 10.1038/NGEO1211 Carbon emission from hydroelectric * Hydroelectric reservoirs cover an area of 3.4 × 105 km2 and comprise about 20% of all reservoirs. In addition dioxide and methane from hydroelectric reservoirs, on the basis of data from 85 globally distributed

  8. Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control Approach

    E-Print Network [OSTI]

    Forsyth, Peter A.

    Pricing Hydroelectric Power Plants with/without Operational Restrictions: a Stochastic Control of Waterloo, Waterloo ON, Canada N2L 3G1 Abstract. In this paper, we value hydroelectric power plant cash operational constraints may considerably overestimate the value of hydroelectric power plant cashflows. 1

  9. THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION

    E-Print Network [OSTI]

    THE LOW-TEMPERATURE THRESHOLD FOR PINK SALMON EGGS IN RELATION TO A PROPOSED HYDROELECTRIC INSTALLATION JACK E. BAILEY' AND DALE R. EVANS' ABSTRACT A proposed hydroelectric installation in southeastern hydroelectric installation could result in temperatures as low as 4.5 0 C during spawning and initial incubation

  10. FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995

    E-Print Network [OSTI]

    FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995 Section 12 FUTURE HYDROELECTRIC DEVELOPMENT Much of this program has focused on mitigating damage done for additional federal hydroelectric projects and to plan for new development in the basin. The Federal Energy

  11. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric

    E-Print Network [OSTI]

    Kohfeld, Karen

    The Impacts of Wind Speed Trends and Long- term Variability in Relation to Hydroelectric Reservoir and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific through diversification. In hydroelectric dominated systems, like the PNW, the benefits of wind power can

  12. Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including a

    E-Print Network [OSTI]

    Oliveira, Aurélio R. L.

    Primal-Dual Interior Point Method Applied to the Short Term Hydroelectric Scheduling Including that minimizes losses in the transmission and costs in the generation of a hydroelectric power system, formulated such perturbing parameter. Keywords-- Hydroelectric power system, Network flow, Predispatch, Primal-dual interior

  13. RETURN TO THE RIVER -2000 Chapter 6 Hydroelectric System Development187

    E-Print Network [OSTI]

    RETURN TO THE RIVER - 2000 Chapter 6 Hydroelectric System Development187 Return to Table of Contents Go to Next Chapter CHAPTER 6. HYDROELECTRIC SYSTEM DEVELOPMENT: EFFECTS ON JUVENILE AND ADULT of the Hydroelectric System Development of the hydropower system in the Columbia River basin began in the late

  14. An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System

    E-Print Network [OSTI]

    DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This model simulates the operation of the major hydroelectric projects over a one-week (168 hour) period

  15. EIS-0184: South Fork Tolt River Hydroelectric Project

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

  16. Hydroelectric power in Hawaii. A report on the statewide survey of potential hydroelectric sites

    SciTech Connect (OSTI)

    Beck, C. A.

    1981-02-01

    An assessment was made of the hydropower potential in Hawaii. The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 MW of potential generating capacity. Combined with the 18 MW of existing hydropower capacity, hydropower resources potentially could generate about 307 million kWh of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands, Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%, on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. A summary of existing and future (potential) hydropower capacities and estimated annual outputs for each island is presented. How much of the potential capacity is being actively considered for development and how much is only tentatively proposed at the time is indicated. The economics of hydropower at specific sites were analyzed. The major conclusion of this analysis is that hydropower development costs vary widely among the different sites, but that generally the cost of hydroelectric power is either less than or comparable to the cost of oil-fired power.

  17. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska Native...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  11. A Study of United States Hydroelectric Plant Ownership

    SciTech Connect (OSTI)

    Douglas G Hall

    2006-06-01

    Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

  12. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousand CubicHealthYear-Month Week 1 Week

  13. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  14. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas 

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01

    -Btu (Lignite) Gas. (August 1979) James Richard Blacksmith, B. S. , Texas ASM University Chairman of Advisory Committee: Dr. Francis W. Holm An experimental investigation was conducted to deter- mine the dual-fuel performance characteristics of a one...- cylinder diesel engine modified to burn low-Btu gas, such as would be obtained from the underground gasification of lignite. Conventional diesel and dual-fuel engine performance tests were conducted with the engine coupled to a station- ary water...

  15. Performance of an industrial type combustor burning simulated fuels of medium BTU content 

    E-Print Network [OSTI]

    Goehring, Howard Lee

    1983-01-01

    I I ~ THEORETICAL CON SIDERAT IQN S Page v1 A. COMBUSTION CHAMBER OPERATING PRINCIPLES, . 4 B. PERFORMANCE REQUIREMENTS C. AFFECT QF CHANGING ENGINE CONDITIONS ON COMBUSTOR PERFORMANCE D. HOW LOW BTU FUELS AFFECT COMBUSTOR PERFO RMAN C E... CHAPTER III . EXPERIMENTATION A. INTRODUCTION 15 20 28 B. CONDITIONS TO BE TESTED C. EXPERIMENTAL SET-UP D. EXPERIMENTAL PROCEDURE CHAPTER IV . SUMMARY A. RESULTS AND CONCLUSIONS B. RECOMMENDAT ION S RE FEREN CE S 75 TABLE OF CONTENTS...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  20. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in NevadaYear-Month Week 1 Week 2 Week 3 Week

  1. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in NevadaYear-Month Week 1 Week 2 Week 3

  2. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in NevadaYear-Month Week 1 Week 2 Week

  3. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in NevadaYear-Month Week 1 Week 2 WeekDecade

  4. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in NevadaYear-Month Week 1 Week 2

  5. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousand CubicHealth

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR93

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR93

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26 YEAR9374

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268 YEAR

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268 YEAR17

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268255 YEAR

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 1626

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 16268

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 16268563

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males 162685638

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR 2014 Males

  18. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubicthrough 1996) in Arkansasthrough 1996)Year Jan Feb Mar Apr May

  19. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubicthrough 1996) in Arkansasthrough 1996)Year Jan Feb Mar

  20. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in Nevada

  1. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillion Cubic Feet) Havre, MTCitygateYear Jan Feb

  2. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO),7F e28 3.24 3.23 3.22 3.19Year

  3. Investigation of Fuel Quality Impact on the Combustion and Exhaust Emissions of a Turbo-Charged SI Engine Operated on Low BTU Gases

    Broader source: Energy.gov [DOE]

    Research results validate an engine simulation model and provide guidelines for the improved control of combustion stability of SI engines operated on low-BTU gaseous fuels.

  4. Bihar State Hydroelectric Power Corp BSHPC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpower SrlHydroelectric Power Corp BSHPC Jump

  5. Qiyang Yangguang Hydroelectric Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLCALLETE IncScience and Technology Co LtdHydroelectric

  6. List of Small Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedList of RefuelingRoom AirHydroelectric

  7. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015"Separation, Proved Reserves(Million Barrels) Reserves inBarrels, Except(BTU

  8. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  9. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  10. Hydroelectric power: Technology and planning. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning hydroelectric power technology and planning. Reservoir, dam, water tunnel, and hydraulic gate design, construction, and operation are discussed. Water supply, flood control, irrigation programs, and environmental effects of hydroelectric power plants are presented. Mathematical modeling and simulation analysis are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  11. Dam and Hydroelectric Powerplant University of Hawai`i CEE 491University of Hawai`i CEE 491

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    Karun 3 Dam and Hydroelectric Powerplant University of Hawai`i ­ CEE 491University of Hawai`i ­ CEE;Location #12;Description/Background Hydroelectric dam on Karun River Help with national energy needs

  12. Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India, NW Himalaya)

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Holocene versus modern catchment erosion rates at 300 MW Baspa II hydroelectric power plant (India private hydroelectric facility, located at the Baspa River which is an important left-hand tributary

  13. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Office of Energy Efficiency and Renewable Energy (EERE)

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  14. 14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir in

    E-Print Network [OSTI]

    Long, Bernard

    14 Diffusive CO2 Flux at the Air-Water Interface of the Robert-Bourassa Hydroelectric Reservoir Hydroelectric reservoirs and lakes in boreal Québec produce greenhouse gases (GHG) mainly in the form of CO2 of the interface. When applied to the Robert- Bourassa hydroelectric reservoir in boreal Québec, this model

  15. Proceedings of: ''Formal Methods Europe'', March 1996, Oxford, UK, LNCS 1051, Springer Automatic Verification of a Hydroelectric Power

    E-Print Network [OSTI]

    Tronci, Enrico

    Verification of a Hydroelectric Power Plant 1 Rosario Pugliese Enrico Tronci Dip. di Scienze dell@univaq.it Abstract. We analyze the specification of a hydroelectric power plant by ENEL (the Italian Electric Company we report on the analysis of a hydroelectric power plant by ENEL (the Italian Electric Company). Our

  16. Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada: an isotopic approach

    E-Print Network [OSTI]

    Long, Bernard

    Sources and fluxes of carbon in a large boreal hydroelectric reservoir of eastern Canada Hydroelectric reservoirs emit greenhouse gases (GHGs). Although a few hypothesis have been put forward at the surface of a large boreal hydroelectric reservoir of eastern Canada (Robert-Bourassa) as well

  17. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  18. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  19. Project design criteria manual: Upper Mechanicville Hydroelectric Redevelopment Project

    SciTech Connect (OSTI)

    None

    1980-12-01

    The design criteria presented in this manual are to be used as the bases for the detailed design for the Upper Mechanicville (NY) Hydroelectric Redevelopment Project. The manual refers to codes and standards which are to be used in the design of the project. Design approaches not covered by existing codes and standards are also given for all phases of the project. The manual is divided into six sections: civil design, hydraulic design, geotechnical design, electrical systems, mechanical systems, and major equipment. These design criteria are to be used as a guide for design. When changes become necessary, these shall be documented by the engineer responsible for the design. This documentation shall be sent to the Project Engineer and Project Manager for submission to the client for reference. The documentation shall specify the reason for the change and shall be routed to all Department Coordinators.

  20. ''Rancho Hydro'': a low-head, high volume residential hydroelectric power system, Anahola, Kauai, Hawaii

    SciTech Connect (OSTI)

    Harder, J.D.

    1982-07-01

    The site is a 1.75 acre residential site with two households. The Anahola stream intersects the property line. Design of the proposed hydroelectric system is described, along with the permit process. Construction is in progress. (DLC)

  1. Storing hydroelectricity to meet peak-hour demand

    SciTech Connect (OSTI)

    Valenti, M.

    1992-04-01

    This paper reports on pumped storage plants which have become an effective way for some utility companies that derive power from hydroelectric facilities to economically store baseload energy during off-peak hours for use during peak hourly demands. According to the Electric Power Research Institute (EPRI) in Palo Alto, Calif., 36 of these plants provide approximately 20 gigawatts, or about 3 percent of U.S. generating capacity. During peak-demand periods, utilities are often stretched beyond their capacity to provide power and must therefore purchase it from neighboring utilities. Building new baseload power plants, typically nuclear or coal-fired facilities that run 24 hours per day seven days a week, is expensive, about $1500 per kilowatt, according to Robert Schainker, program manager for energy storage at the EPRI. Schainker the that building peaking plants at $400 per kilowatt, which run a few hours a day on gas or oil fuel, is less costly than building baseload plants. Operating them, however, is more expensive because peaking plants are less efficient that baseload plants.

  2. Final Technical Report - Modernization of the Boulder Canyon Hydroelectric Project

    SciTech Connect (OSTI)

    Joe Taddeucci, P E

    2013-03-29

    The Boulder Canyon Hydroelectric Project (BCH) was purchased by the City of Boulder, CO (the city) in 2001. Project facilities were originally constructed in 1910 and upgraded in the 1930s and 1940s. By 2009, the two 10 MW turbine/generators had reached or were nearing the end of their useful lives. One generator had grounded out and was beyond repair, reducing plant capacity to 10 MW. The remaining 10 MW unit was expected to fail at any time. When the BCH power plant was originally constructed, a sizeable water supply was available for the sole purpose of hydroelectric power generation. Between 1950 and 2001, that water supply had gradually been converted to municipal water supply by the city. By 2001, the water available for hydroelectric power generation at BCH could not support even one 10 MW unit. Boulder lacked the financial resources to modernize the facilities, and Boulder anticipated that when the single, operational historical unit failed, the project would cease operation. In 2009, the City of Boulder applied for and received a U.S. Department of Energy (DOE) grant for $1.18 million toward a total estimated project cost of $5.155 million to modernize BCH. The federal funding allowed Boulder to move forward with plant modifications that would ensure BCH would continue operation. Federal funding was made available through the American Recovery and Reinvestment Act (ARRA) of 2009. Boulder determined that a single 5 MW turbine/generator would be the most appropriate capacity, given the reduced water supply to the plant. Average annual BCH generation with the old 10 MW unit had been about 8,500 MW-hr, whereas annual generation with a new, efficient turbine could average 11,000 to 12,000 MW-hr. The incremental change in annual generation represents a 30% increase in generation over pre-project conditions. The old turbine/generator was a single nozzle Pelton turbine with a 5-to-1 flow turndown and a maximum turbine/generator efficiency of 82%. The new unit is a double nozzle Pelton turbine with a 10-to-1 flow turndown and a maximum turbine/generator efficiency of 88%. This alone represents a 6% increase in overall efficiency. The old turbine operated at low efficiencies due to age and non-optimal sizing of the turbine for the water flow available to the unit. It was shut down whenever water flow dropped to less than 4-5 cfs, and at that flow, efficiency was 55 to 60%. The new turbine will operate in the range of 70 to 88% efficiency through a large portion of the existing flow range and would only have to be shut down at flow rates less than 3.7 cfs. Efficiency is expected to increase by 15-30%, depending on flow. In addition to the installation of new equipment, other goals for the project included: �¢���¢ Increasing safety at Boulder Canyon Hydro �¢���¢ Increasing protection of the Boulder Creek environment �¢���¢ Modernizing and integrating control equipment into Boulder�¢����s municipal water supply system, and �¢���¢ Preserving significant historical engineering information prior to power plant modernization. From January 1, 2010 through December 31, 2012, combined consultant and contractor personnel hours paid for by both the city and the federal government have totaled approximately 40,000. This equates roughly to seven people working full time on the project from January 2010 through December 2012. This project also involved considerable material expense (steel pipe, a variety of valves, electrical equipment, and the various components of the turbine and generator), which were not accounted for in terms of hours spent on the project. However, the material expense related to this project did help to create or preserve manufacturing/industrial jobs throughout the United States. As required by ARRA, the various components of the hydroelectric project were manufactured or substantially transformed in the U.S. BCH is eligible for nomination to

  3. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  4. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  5. Design of a hydro-electric plant on the Mattawamkeag River

    E-Print Network [OSTI]

    Hazen, Daniel Francis

    1915-01-01

    stream_size 74828 stream_content_type text/plain stream_name hazen_1915_3424074.pdf.txt stream_source_info hazen_1915_3424074.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 DESIGN of a HYDRO... Engineering. June 5, 1915. DESIGN of a HYDRO-ELECTRIC PLANT on the MATTAWAMKBAG RIVER PREFACE This thesis•contains all the preliminary work necessary to show the feasibility of the construction and operation of a hydro-electric plant on the Mattawamkeag...

  6. Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson, Ginny Llewellyn, Dean Simmonds, Aaron Wernerehl

    E-Print Network [OSTI]

    van den Berg, Jur

    PowerPail Low Infrastructure Hydro-Electric Power Generation Team Trevor Doney, Tyler Hogenson near potential hydro-electric power generation sources. There are several disadvantages to hydro Pipe PowerPail http://mrenergy.co.in/run-of-river-hydro.html #12;

  7. Effects of Climate Change on the Hydroelectric The Council is not tasked, nor does it have the resources to resolve existing uncertainties

    E-Print Network [OSTI]

    Effects of Climate Change on the Hydroelectric System SUMMARY The Council is not tasked, nor does at hydroelectric dams when Northwest demands and power market values are likely to grow due to higher air

  8. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  9. Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

  10. Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. The National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP conducts research on new

    E-Print Network [OSTI]

    , and ecosystem research effort for sustainable hydroelectricity generation and water management. The NHAAP

  13. Water quality and sedimentation implications of installing a hydroelectric dam on the Río Baker in Chilean Patagonia

    E-Print Network [OSTI]

    Leandro, Gianna Dee

    2009-01-01

    HidroAysen, a Chilean corporation operated by energy giant Endesa, has proposed to build two hydroelectric dams on the Rio Baker in the Aysin Region of Chilean Patagonia. The proposed dams have been met with a variety of ...

  14. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year6-2015Cubic Foot)

  15. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year6-2015Cubic

  16. Water management for hydroelectric power generation at Matera and Kidatu in Tanzania

    SciTech Connect (OSTI)

    Matondo, J.I.; Rutashobya, D.G.

    1995-12-31

    The major sources of power in Tanzania are hydropower and thermo power. Most of the hydroelectric power is generated in the Great Ruaha river system (280 MW) and in the Pangani river system (46 MW). However, the generated power (hydro and thermo) does not meet the power demand and as a result, an accute power shortage occurred in August 1992. This paper explores the hydropower generation mechanism at Mtera and Kidatu hydroelectric power plants. It also looks into what measures could have been taken in order to avoid the massive power shedding which officially lasted for about six months, although unofficially, power shedding was continued well beyond that period. Strategies for future water management in the Great Ruaha river system for efficient generation of power are also presented.

  17. Rio Hondo hydroelectric project (Guatemala) Volume 1. Desk-study report. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-07-12

    The Project is a hydroelectric development on the Rio Colorado, upstream of, but separate from, a small existing hydroelectric system. The Group states that goods and services will be furnished by U.S. sources except for items which are locally produced or unavailable from the U.S. In those terms and round numbers, export of goods would amount to $11.0 million and export of engineering services would amount to $3.3 million. The value of the construction contract would be $11.5 million. Deducting 15 percent for contingencies from those items, the return to the U.S. would amount to $21.9 million. The writer recommends that the U.S. Trade and Development Program (TDP) grant funds for the Feasibility Study.

  18. Legal obstacles and incentives to the development of small scale hydroelectric potential in Wisconsin

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level are discussed. The Federal government also exercises extensive regulatory in the area, and the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC is examined. The initial obstacle that all developers confront in Wisconsin is obtaining the authority to utilize the bed, banks, and flowing water at a proposed dam site. This involves a determination of ownership of the stream banks and bed and the manner of obtaining either their title or use; and existing constraints with regard to the use of the water. Wisconsin follows the riparian theory of water law.

  19. Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility

    SciTech Connect (OSTI)

    Jack Q. Richardson

    2012-06-28

    Final Technical Report for the Recovery Act Project for the Installation of a Low Flow Unit at the Abiquiu Hydroelectric Facility. The Abiquiu hydroelectric facility existed with two each 6.9 MW vertical flow Francis turbine-generators. This project installed a new 3.1 MW horizontal flow low flow turbine-generator. The total plant flow range to capture energy and generate power increased from between 250 and 1,300 cfs to between 75 and 1,550 cfs. Fifty full time equivalent (FTE) construction jobs were created for this project - 50% (or 25 FTE) were credited to ARRA funding due to the ARRA 50% project cost match. The Abiquiu facility has increased capacity, increased efficiency and provides for an improved aquatic environment owing to installed dissolved oxygen capabilities during traditional low flow periods in the Rio Chama. A new powerhouse addition was constructed to house the new turbine-generator equipment.

  20. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  1. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  2. Legal obstacles and incentives to the development of small scale hydroelectric power in West Virginia

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric in West Virginia at the state level are described. The Federal government also exercises extensive regulatory authority in the area. The introductory section examines the dual regulatory system from the standpoint of the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and concludes with an inquiry into the practical use of the doctrine by FERC. The development of small-scale hydroelectric energy depends on the selection of a site which will produce sufficient water power capacity to make the project economically attractive to a developer. In West Virginia, the right to use the flowing waters of a stream, creek, or river is appurtenant to the ownership of the lands bordering the watercourse. The lands are known as riparian lands. The water rights are known as riparian rights. Thus, the first obstacle a developer faces involves the acquisition of riparian lands and the subsequent right to the use of the water. The water law in West Virginia is discussed in detail followed by discussions on direct and indirect regulations; continuing obligations; financial considerations; and interstate organizations.

  3. Relative cost and precision of hydroacoustic and net sampling at hydroelectric facilities

    SciTech Connect (OSTI)

    Wells, A.W.; Matousek, J.A.; Metzger, S.G. [Lawler, Matusky & Skelly Engineers, Pearl River, NY (United States)] [and others

    1995-12-31

    Estimating the number of fish passing through a hydroelectric facility is often an important aspect of hydroelectric project relicensing. The number of fish per unit volume, and ultimately the total number of fish entrained, is usually obtained from hydroacoustic methods or tailrace nets. Data collected at several small hydroelectric projects in Michigan gave us the opportunity to compare the sampling precision of these two methods. This comparison can be useful in formulating future sampling programs as the degree of sampling precision relates directly to the sampling effort and program cost. Individual hydroacoustic samples covered small volumes of water. This resulted in a high degree of variability among samples and a less precise estimate of total entrainment for a given number of samples. In contrast, net samples filtered greater volumes of water and had lower variability among samples. To examine the trade-off between precision and program cost, we computed the 95% confidence interval for the annual estimated entrainment and cost of the associated sampling program. The results suggested that the most cost-effective sampling method depends on the desired precision of the entrainment estimate. For low precision estimates, hydroacoustic sampling was most advantageous. Net sampling would be advantageous when precise entrainment estimates are required and when species composition must be obtained.

  4. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  5. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  6. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Net+ LeaseCubic Foot) Decade

  7. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5Net+ LeaseCubic Foot)

  8. Reducing the Impacts of Hydroelectric Dams on Juvenile Anadromous Fishes: Bioengineering Evaluations Using Acoustic Imaging in the Columbia River, USA

    SciTech Connect (OSTI)

    Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.; Khan, Fenton; Mueller, Robert P.; Nagy, William T.; Richmond, Marshall C.; Weiland, Mark A.

    2008-07-29

    Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to merging and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.

  9. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead%TexasCubicDecade Year-0

  10. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6ProvedDecade Year-0

  11. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2 Year-3December 9,to

  12. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2Year Jan FebBarrels)DecadeCubic

  13. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWestern States

  14. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate ProvedFoot) Decade

  15. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate ProvedFoot)

  16. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead PriceProvedExpectedFoot)

  17. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead

  18. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead%TexasCubicDecade

  19. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7, 2013WindperDecade Year-0

  20. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010

  1. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7, 2013Wind Industry: OnAsianCubic

  2. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot) Decade Year-0 Year-1 Year-2

  3. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1Expected Future Production

  4. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  5. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  6. Can Fish Morphological Characteristics be Used to Re-design Hydroelectric Turbines?

    SciTech Connect (OSTI)

    Cada, G. F.; Richmond, Marshall C.

    2011-07-19

    Safe fish passage affects not only migratory species, but also populations of resident fish by altering biomass, biodiversity, and gene flow. Consequently, it is important to estimate turbine passage survival of a wide range of susceptible fish. Although fish-friendly turbines show promise for reducing turbine passage mortality, experimental data on their beneficial effects are limited to only a few species, mainly salmon and trout. For thousands of untested species and sizes of fish, the particular causes of turbine passage mortality and the benefits of fish-friendly turbine designs remain unknown. It is not feasible to measure the turbine-passage survival of every species of fish in every hydroelectric turbine design. We are attempting to predict fish mortality based on an improved understanding of turbine-passage stresses (pressure, shear stress, turbulence, strike) and information about the morphological, behavioral, and physiological characteristics of different fish taxa that make them susceptible to the stresses. Computational fluid dynamics and blade strike models of the turbine environment are re-examined in light of laboratory and field studies of fish passage effects. Comparisons of model-predicted stresses to measured injuries and mortalities will help identify fish survival thresholds and the aspects of turbines that are most in need of re-design. The coupled model and fish morphology evaluations will enable us to make predictions of turbine-passage survival among untested fish species, for both conventional and advanced turbines, and to guide the design of hydroelectric turbines to improve fish passage survival.

  7. Legal obstacles and incentives to the development of small scale hydroelectric power in Maryland

    SciTech Connect (OSTI)

    None,

    1980-05-01

    The legal and institutional obstacles to the development of small-scale hydroelectric energy at the state level in Maryland are described. The Federal government also exercises extensive regulatory authority in the area. The dual regulatory system is examined with the aim of creating a more orderly understanding of the vagaries of the system, focusing on the appropriate legal doctrine, the law of pre-emption, application of the law to the case of hydroelectric development, and an inquiry into the practical use of the doctrine by the FERC. In Maryland, by common law rule, title to all navigable waters and to the soil below the high-water mark of those waters is vested in the state as successor to the Lord Proprietary who had received it by grant from the Crown. Rights to non-navigable water, public trust doctrine, and eminent domain are also discussed. Direct and indirect regulations, continuing obligations, loan programs, and regional organizations are described in additional sections.

  8. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot)Decade Year-0 Year-1Texas Intermediate3766220044

  9. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015"Separation, Proved Reserves(Million2009 2010 2011 2012 2013Decade Year-0 Year-1

  10. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33Cubic Foot) Decade Year-0 Year-1

  11. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYear Jan Feb Mar

  12. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear JanYear Jan Feb

  13. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot) Decade Year-0 Year-1

  14. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)YearFoot) Year Jan Feb

  15. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1Plant Processing Definitions Keycontains contentDecade

  16. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million(MillionReservesDecade

  17. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010 2011204,348Receipts (MillionYear Jan

  18. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009ReservesThousandFoot) Decade Year-0

  19. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  20. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  1. S. 737: A Bill to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill was proposed to extend the deadlines applicable to certain hydroelectric projects, and for other purposes. The bill proposes extending the deadlines applying to certain hydroelectric projects in West Virginia, Kentucky, Washington, Oregon, and Arkansas. It proposes limited exemptions for licensing provisions for a power transmission project in New Mexico, extends Alaska`s state jurisdiction over small hydroelectric projects in the state, and amends the jurisdiction of FERC for licensing fresh water hydroelectric projects in Hawaii.

  2. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheastThousand Cubic Feet)8 Year inB89.2 88.7

  3. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheastThousand Cubic Feet)8 Year8129 1,027

  4. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot)Decade Year-0Proved Reserves32 1,030 1,030 1,029

  5. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot)Decade Year-0Proved Reserves32WellheadThousand24

  6. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubic Foot)Decade Year-0ProvedDecadeProved

  7. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for5Year Jan FebShale ProvedCrude01

  8. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for5Yearand Foreign1 st Coal 1 stYear

  9. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for5YearandWellheadYear Jan Feb Mar

  10. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard ErrorsYearReserves (Billion Cubic3 1,037

  11. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative StandardFeet)61,124 135,252 133,821Decade Year-0Cubic

  12. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November18.5Gross Withdrawals (Million Cubic Feet per

  13. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReservesFoot) Decade Year-0

  14. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUM FOR:DecadeCubic Foot) Decade Year-0

  15. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,Proved ReservesYear Jan Feb

  16. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,Proved ReservesYear Jan

  17. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46ProductionCrude Oil +Year Jan

  18. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46ProductionCrude Oil +Year

  19. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural Gas 2014 Million Cu. FeetYear

  20. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas WellsFoot) Decade Year-0

  1. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992 ConsumptionYear Jan

  2. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992 ConsumptionYear JanCubic

  3. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00 p.m.,9,7,3,Foot) Year

  4. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetper Thousand Cubic Feet) Year

  5. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (nextNetper Thousand Cubic Feet) YearCubic

  6. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226UndergroundProductionProvedCrudeFoot) Year

  7. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year

  8. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData FilesAdjustmentsOriginOriginReserves2009

  9. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2. Number+Foot) Decade

  10. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009Reserves Based38(Million2,856 2,764

  11. Turbulence at Hydroelectric Power Plants and its Potential Effects on Fish.

    SciTech Connect (OSTI)

    Cada, Glenn F.; Odeh, Mufeed

    2001-01-01

    The fundamental influence of fluid dynamics on aquatic organisms is receiving increasing attention among aquatic ecologists. For example, the importance of turbulence to ocean plankton has long been a subject of investigation (Peters and Redondo 1997). More recently, studies have begun to emerge that explicitly consider the effects of shear and turbulence on freshwater invertebrates (Statzner et al. 1988; Hart et al. 1996) and fishes (Pavlov et al. 1994, 1995). Hydraulic shear stress and turbulence are interdependent natural fluid phenomena that are important to fish, and consequently it is important to develop an understanding of how fish sense, react to, and perhaps utilize these phenomena under normal river flows. The appropriate reaction to turbulence may promote movement of migratory fish or prevent displacement of resident fish. It has been suggested that one of the adverse effects of flow regulation by hydroelectric projects is the reduction of normal turbulence, particularly in the headwaters of reservoirs, which can lead to disorientation and slowing of migration (Williams et al. 1996; Coutant et al. 1997; Coutant 1998). On the other hand, greatly elevated levels of shear and turbulence may be injurious to fish; injuries can range from removal of the mucous layer on the body surface to descaling to torn opercula, popped eyes, and decapitation (Neitzel et al. 2000a,b). Damaging levels of fluid stress can occur in a variety of circumstances in both natural and man-made environments. This paper discusses the effects of shear stress and turbulence on fish, with an emphasis on potentially damaging levels in man-made environments. It defines these phenomena, describes studies that have been conducted to understand their effects, and identifies gaps in our knowledge. In particular, this report reviews the available information on the levels of turbulence that can occur within hydroelectric power plants, and the associated biological effects. The final section provides the preliminary design of an experimental apparatus that will be used to expose fish to representative levels of turbulence in the laboratory.

  12. BTU Accounting for Industry 

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01

    Today, as never before, American industry needs to identify and control their most critical resources. One of these is energy. In 1973 and again in 1976, the American public and business was confronted with critical energy supply problems. As a...

  13. Kainji hydroelectric project: a socio-economic post-impact assessment

    SciTech Connect (OSTI)

    Ugochuku, R.O.

    1987-01-01

    The Kainji hydroelectric dam was conceived in the early 1950s as a solution to Nigeria's urgent power needs. Considerable controversy surrounded the dam project. The initial controversial issue associated with the dam was centered on a decision whether to develop a thermal or hydro technology and whether the Federal Government's money was being used to develop a particular region to the economic disadvantage of other regions. When the power problems persisted even after the dam started operation, the question of whether the dam was delivering its projected functions also became an issue. This study is in the area of Social Management of Technology which is a concept that deals with decision processes for guiding technological changes such as those associated with the Kainji Dam, to derive maximum socioeconomic benefit from the technology and to minimize the undersirable side effects. The study found that electric power problems of Nigeria can be attributed to institutional problems and the general level of the country's development. This study also found that all the additional benefits of the dam have been overestimated and those reaping the additional benefits are different from those bearing the cost.

  14. Observations of Velocity Conditions near a Hydroelectric Turbine Draft Tube Exit using ADCP Measurements

    SciTech Connect (OSTI)

    Cook, Christopher B.; Richmond, Marshall C.; Serkowski, John A.

    2007-10-01

    Measurement of flow characteristics near hydraulic structures is an ongoing challenge because of the need to obtain rapid measurements of time-varying velocity over a relatively large spatial domain. This paper discusses use of an acoustic Doppler current profiler (ADCP) to measure the rapidly diverging flow exiting from an operating hydroelectric turbine draft tube exit. The resolved three-dimensional velocity vectors show a highly complex and helical flow pattern developed near to and downstream of the exit. Velocity vectors were integrated across the exit and we computed an uneven percentage of flow (67%/33%) passing through the two draft tube barrels at a mid-range turbine discharge, consistent with physical model results. In addition to the three-dimensional velocity vectors, the individual one-dimensional velocities measured by each of the four ADCP beams can be separately used as calibration and validation datasets for numerical and physical models. This technique is demonstrated by comparing along-beam ADCP velocity measurements to data collected in a scaled physical model.

  15. Turbine entrainment at six hydroelectric projects located on the AuSable River, Michigan

    SciTech Connect (OSTI)

    Matousek, J.A.; Metzger, S.G.; Wells, A.W. [Lawler, Matusky & Skelly Engineers, Pearl River, NY (United States)] [and others

    1995-12-31

    Turbine entrainment monitoring was conducted by Lawler, Matusky & Skelly Engineers for Consumers Power Company as part of relicensing activities at six hydroelectric projects located on Michigan`s AuSable River. The number and species of fish passing through the Francis turbines of the projects were determined through continuous hydroacoustic monitoring, with the transducers located upstream of the turbines, and through biweekly diel collections using partial-coverage turbine discharge draft tube nets. Although the nets were intended to supply information on species composition, both techniques were ultimately used to estimate turbine entrainment. Comparisons of entrainment abundance estimates were made among projects (location, physical equipment, and operating conditions) and between data collection techniques (hydroacoustics and nets). Species composition and size, based on the partial-coverage draft tube net collections, were also examined. The locations of the projects (along the lower section of the river) permitted evaluation of entrainment data related to morphometric characteristics of the respective impoundments, stream conditions, and water quality parameters.

  16. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    SciTech Connect (OSTI)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently had an IMD installed. This further study of facilities revealed that the implementation of the project as originally described, while proving the benefits described in the original grant application, would likely intensify sand intake. Increased sand intake would lead to an increase in required shutdowns for maintenance and more rapid depreciation of key equipment which would result in a loss of generation capacity. A better solution to the problem, one that continued to meet the criteria for the original grant and ARRA standards, was developed. A supporting day trip was planned to visit other facilities located on the Arkansas River to determine how they were coping with the same strong amounts of sand, silt, and debris. Upon returning from the trip to other Arkansas River facilities it was extremely clear what direction to go in order to most efficiently address the issue of generator capacity and efficiency. Of the plants visited on the Arkansas River, every one of them was running what is called a rope packing shaft sealing system as opposed to mechanical shaft seals, which the facility was running. Rope packing is a time proven sealing method that has been around for centuries. It has proved to perform very well in dirty water situations just like that of the Arkansas River. In April of 2012 a scope change proposal was submitted to the DOE for approval. In August of 2012 the City received word that the change of scope had been approved. Plans were immediately set in motion to begin the conversion from mechanical seals to a packing box at the facility. Contractors arrived on October 1st, 2012 and the project team began unwatering the unit for disassembly. The seal conversion was completed on February 29th, 2013 with start-up of the unit. Further testing and adjusting was done throughout the first two weeks of March.

  17. Images of energy: Policy perspectives on the introduction of hydroelectricity in Italy, 1882-1914

    SciTech Connect (OSTI)

    Laszlo, A.R.

    1992-01-01

    This study considers the link between energy technologies and cultural attitudes. Contemporary energy policy makers lack the conceptual tools with which to evaluate culturally appropriate energy choices. A way to regain a contextual capability is needed; that is, the capacity to recognize and avert situations where technological advance is insufficiently harmonized with its embedding environment. This study explores how both policy makers and the general public form their [open quotes]images of energy.[close quotes] It does so in three parts, beginning with an examination of the concepts of [open quotes]technology,[close quotes] [open quotes]culture[close quotes] and [open quotes]cognitive map,[close quotes] and an explanation of their interrelationship. The second part presents two historical case-studies of the introduction of hydroelectricity in Italy from 1882-1914. It considers how a relatively unknown technology made its way into urban and rural life, who its primary surveyors were, and how it shaped and was shaped by the cognitive maps of those into whose lives it marched. The final part extends the investigation to contemporary socio-cultural dynamics. Through concepts derived from General System Theory, the process of technological integration is interpreted in light of events that shape the world today. The design of a model to be used by energy makers and educators alike in conceiving culturally attuned energy alternatives is proposed. Such a model would describe energy-related cognitive maps and could serve as the basis for informed decision-making on energy choice at all levels of society. The study concludes with suggestions for a research agenda to further explore individual and collective energy-related cognitive maps.

  18. UT-Battelle Department of Energy

    E-Print Network [OSTI]

    Quadrillion Btu Solar, 0.07 Wind, 0.258 Geothermal, 0.349 Hydroelectric, 2.889 Biomass, 3.227 Coal, 23

  19. U.S. Energy Information Administration | State Energy Data 2013...

    Gasoline and Diesel Fuel Update (EIA)

    in British thermal units (Btu). Because comparable measures in physical units for nuclear power, hydroelectric, wood, waste, geothermal, wind, photovoltaic, and solar...

  20. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  1. Analysis of environmental issues related to small-scale hydroelectric development. VI. Dissolved oxygen concentrations below operating dams

    SciTech Connect (OSTI)

    Cada, G.F.; Kumar, K.D.; Solomon, J.A.; Hildebrand, S.G.

    1982-01-01

    Results are presented of an effort aimed at determining whether or not water quality degradation, as exemplified by dissolved oxygen concentrations, is a potentially significant issue affecting small-scale hydropower development in the US. The approach was to pair operating hydroelectric sites of all sizes with dissolved oxygen measurements from nearby downstream US Geological Survey water quality stations (acquired from the WATSTORE data base). The USGS data were used to calculate probabilities of non-compliance (PNCs), i.e., the probabilities that dissolved oxygen concentrations in the discharge waters of operating hydroelectric dams will drop below 5 mg/l. PNCs were estimated for each site, season (summer vs remaining months), and capacity category (less than or equal to 30 MW vs >30 MW). Because of the low numbers of usable sites in many states, much of the subsequent analysis was conducted on a regional basis. During the winter months (November through June) all regions had low mean PNCs regardless of capacity. Most regions had higher mean PNCs in summer than in winter, and summer PNCs were greater for large-scale than for small-scale sites. Among regions, the highest mean summer PNCs were found in the Great Basin, the Southeast, and the Ohio Valley. To obtain a more comprehensive picture of the effects of season and capacity on potential dissolved oxygen problems, cumulative probability distributions of PNC were developed for selected regions. This analysis indicates that low dissolved oxygen concentrations in the tailwaters below operating hydroelectric projects are a problem largely confined to large-scale facilities.

  2. The Influence of Tag Presence on the Mortality of Juvenile Chinook Salmon Exposed to Simulated Hydroturbine Passage: Implications for Survival Estimates and Management of Hydroelectric Facilities

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Brown, Richard S.; Stephenson, John R.; Pflugrath, Brett D.; Colotelo, Alison HA; Gingerich, Andrew J.; Benjamin, Piper L.; Langeslay, Mike; Ahmann, Martin L.; Johnson, Robert L.; Skalski, John R.; Seaburg, Adam; Townsend, Richard L.

    2012-05-01

    Each year, millions of fish have telemetry tags (acoustic, radio, inductive) surgically implanted to assess their passage and survival through hydropower facilities. One route of passage of particular concern is through hydro turbines, in which fish may be exposed to a range of potential injuries, including barotraumas from rapid decompression. The change in pressure from acclimation to exposure (nadir) has been found to be an important factor in predicting the likelihood of mortality and injury for juvenile Chinook salmon undergoing rapid decompression associated with simulated turbine passage. The presence of telemetry tags has also been shown to influence the likelihood of injury and mortality for juvenile Chinook salmon. This research investigated the likelihood of mortality and injury for juvenile Chinook salmon carrying telemetry tags and exposed to a range of simulated turbine passage. Several factors were examined as predictors of mortal injury for fish undergoing rapid decompression, and the ratio of pressure change and tag burden were determined to be the most predictive factors. As the ratio of pressure change and tag burden increase, the likelihood of mortal injury also increases. The results of this study suggest that previous survival estimates of juvenile Chinook salmon passing through hydro turbines may have been biased due to the presence of telemetry tags, and this has direct implications to the management of hydroelectric facilities. Realistic examples indicate how the bias in turbine passage survival estimates could be 20% or higher, depending on the mass of the implanted tags and the ratio of acclimation to exposure pressures. Bias would increase as the tag burden and pressure ratio increase, and have direct implications on survival estimates. It is recommended that future survival studies use the smallest telemetry tags possible to minimize the potential bias that may be associated with carrying the tag.

  3. Pollution prevention opportunity assessment of the United States Army Corps of Engineers Garrison Dam Hydroelectric Powerplant, Riverdale, North Dakota. Report for March-September 1994

    SciTech Connect (OSTI)

    Bowman, D.; Buschow, R.; Smith, J.

    1995-08-01

    The report describes the results of pollution prevention opportunity assessments conducted at a representative U.S. Army Corps of Engineers civil works dam and hydroelectric power plant. Recommended methods for reducing pollution resulting primarily from the operation of these facilities are addressed.

  4. Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-04-01

    Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

  5. ABSTRACT: A network of 32 drought sensitive tree-ring chronolo-gies is used to reconstruct mean water year flow on the Columbia

    E-Print Network [OSTI]

    Gedalof, Ze'ev

    - ing hydroelectric production, agricultural irrigation, navigation, fish stocks (including endangered vulnerable to low flow years (Cohen et al., 2000; Miles et al., 2000). The storage potential of the Columbia contingency plans for extreme events by providing a longer con- text for drought assessment (Stockton, 1990

  6. E F tE F tEnergy FactsEnergy Facts Gloria and John L. Blackburn Academic Symposium

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    .very much a part of today's infrastructure and fuels mix. Hydroelectric P Natural Gas 30 nBtu Hydroelectric P Natural Gas 30 nBtu Power Natural Gas 20 Quadrillion Power Natural Gas 20 Quadrillion Coal Nuclear Consumption 4.6% 100 Quads China RussiaRussia 5 Some equivalent ways of referring to the energy used by the U

  7. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Martinson, Rick D.; Kovalchuk, Gregory M.; Ballinger, Dean

    2006-04-01

    2005 was an average to below average flow year at John Day and Bonneville Dams. A large increase in flow in May improved migration conditions for that peak passage month. Spill was provided April through August and averaged about 30% and 48% of river flow at John Day and Bonneville Dams, respectively. Water temperature graphs were added this year that show slightly lower than average water temperature at John Day and slightly higher than average temperatures at Bonneville. The number of fish handled at John Day decreased from 412,797 in 2004 to 195,293 this year. Of the 195,293 fish, 120,586 (61.7%) were collected for researchers. Last year, 356,237 (86.3%) of the fish sampled were for researchers. This dramatic decline is the result of (1) fewer research fish needed (2) a smaller, lighter tag which allowed for tagging of smaller fish, and (3) a larger average size for subyearling chinook. These factors combined to reduce the average sample rate to 10.8%, about half of last year's rate of 18.5%. Passage timing at John Day was similar to previous years, but the pattern was distinguished by larger than average passage peaks for spring migrants, especially sockeye. The large spike in mid May for sockeye created a very short middle 80% passage duration of just 16 days. Other spring migrants also benefited from the large increase in flow in May. Descaling was lower than last year for all species except subyearling chinook and below the historical average for all species. Conversely, the incidence of about 90% of the other condition factors increased. Mortality, while up from last year for all species and higher than the historical average for all species except sockeye, continued to be low, less than 1% for all species. On 6 April a slide gate was left closed at John Day and 718 fish were killed. A gate position indicator light was installed to prevent reoccurrences. Also added this year was a PIT tag detector on the adult return-to-river flume. For the first time this year, we successfully held Pacific lamprey ammocetes. The number of fish sampled at Bonneville Dam was also down this year to 260,742, from 444,580 last year. Reasons for the decline are the same as stated above for John Day. Passage timing at Bonneville Dam was quite similar to previous years with one notable exception, sockeye. Sockeye passage was dominated by two large spikes in late May that greatly condensed the passage pattern, with the middle 80% passing Bonneville in just 18 days. Unlike John Day, passage for the rest of the species was well disbursed from late April through early June. Fish condition was good, with reductions in descaling rates for all species except unclipped steelhead and sockeye. Sockeye mortality matched last year's rate but was considerably lower for all other species. Rare species sampled at Bonneville this year included a bull trout and a eulachon.

  8. The Application of Traits-Based Assessment Approaches to Estimate the Effects of Hydroelectric Turbine Passage on Fish Populations

    SciTech Connect (OSTI)

    Cada, Glenn F; Schweizer, Peter E

    2012-04-01

    One of the most important environmental issues facing the hydropower industry is the adverse impact of hydroelectric projects on downstream fish passage. Fish that migrate long distances as part of their life cycle include not only important diadromous species (such as salmon, shads, and eels) but also strictly freshwater species. The hydropower reservoirs that downstream-moving fish encounter differ greatly from free-flowing rivers. Many of the environmental changes that occur in a reservoir (altered water temperature and transparency, decreased flow velocities, increased predation) can reduce survival. Upon reaching the dam, downstream-migrating fish may suffer increased mortality as they pass through the turbines, spillways and other bypasses, or turbulent tailraces. Downstream from the dam, insufficient environmental flow releases may slow downstream fish passage rates or decrease survival. There is a need to refine our understanding of the relative importance of causative factors that contribute to turbine passage mortality (e.g., strike, pressure changes, turbulence) so that turbine design efforts can focus on mitigating the most damaging components. Further, present knowledge of the effectiveness of turbine improvements is based on studies of only a few species (mainly salmon and American shad). These data may not be representative of turbine passage effects for the hundreds of other fish species that are susceptible to downstream passage at hydroelectric projects. For example, there are over 900 species of fish in the United States. In Brazil there are an estimated 3,000 freshwater fish species, of which 30% are believed to be migratory (Viana et al. 2011). Worldwide, there are some 14,000 freshwater fish species (Magurran 2009), of which significant numbers are susceptible to hydropower impacts. By comparison, in a compilation of fish entrainment and turbine survival studies from over 100 hydroelectric projects in the United States, Winchell et al. (2000) found useful turbine passage survival data for only 30 species. Tests of advanced hydropower turbines have been limited to seven species - Chinook and coho salmon, rainbow trout, alewife, eel, smallmouth bass, and white sturgeon. We are investigating possible approaches for extending experimental results from the few tested fish species to predict turbine passage survival of other, untested species (Cada and Richmond 2011). In this report, we define the causes of injury and mortality to fish tested in laboratory and field studies, based on fish body shape and size, internal and external morphology, and physiology. We have begun to group the large numbers of unstudied species into a small number of categories, e.g., based on phylogenetic relationships or ecological similarities (guilds), so that subsequent studies of a few representative species (potentially including species-specific Biological Index Testing) would yield useful information about the overall fish community. This initial effort focused on modifying approaches that are used in the environmental toxicology field to estimate the toxicity of substances to untested species. Such techniques as the development of species sensitivity distributions (SSDs) and Interspecies Correlation Estimation (ICE) models rely on a considerable amount of data to establish the species-toxicity relationships that can be extended to other organisms. There are far fewer studies of turbine passage stresses from which to derive the turbine passage equivalent of LC{sub 50} values. Whereas the SSD and ICE approaches are useful analogues to predicting turbine passage injury and mortality, too few data are available to support their application without some form of modification or simplification. In this report we explore the potential application of a newer, related technique, the Traits-Based Assessment (TBA), to the prediction of downstream passage mortality at hydropower projects.

  9. Legal obstacles and incentives to the third development of small-scale hydroelectric potential in the six New England states: executive summary

    SciTech Connect (OSTI)

    None,

    1980-05-01

    This executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities. It also highlights important features of the constitutional law, statutory law, case law, and regulations of each of the six New England states. The summary may serve as a concise overview of and introduction to the detailed reports prepared by the Energy Law Institute on the legal and regulatory systems of each of the six states. The dual regulatory system is a function of the federalist nature of our government. This dual system is examined from the standpoint of the appropriate legal doctrine, i.e., the law of pre-emption, and the application of this law to the case of hydroelectric development. The regulation of small dams are discussed and flow diagrams of the regulations are presented for each of the six states - Maine, Massachusetts, Vermont, New Hampshire, Vermont, and Connecticut.

  10. Dragon Year

    E-Print Network [OSTI]

    Hacker, Randi

    2012-01-11

    Broadcast Transcript: Can you believe it? It's New Year again. It seems like only yesterday we were celebrating the advent of the year of the Rabbit and now, here it is, the year of the Dragon. January 22nd is New Year's Eve according to the Lunar...

  11. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect (OSTI)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  12. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  13. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    Oil ICE Running cost Coal ST Hydroelectric Nuclear ImportsPumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (Pumped Hydro Coal Nuclear Hydroelectric Imports Hours/year (

  14. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana)District OfficeLLC Jump to:

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  17. Student ID Advisor 1st Year Fall __________ (year) 1st Year Spr. __________ (year) 1st Year Sum. __________ (year)

    E-Print Network [OSTI]

    Barrash, Warren

    . HRS. 2nd Year Fall __________ (year) 2nd Year Spr. _________ (year) 2nd Year Sum. _________ (yearName Major Student ID Advisor 1st Year Fall __________ (year) 1st Year Spr. __________ (year) 1st Year Sum. __________ (year) SUBJECT COURSE # CR. HRS. SUBJECT COURSE # CR. HRS. SUBJECT COURSE # CR

  18. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  19. REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES

    E-Print Network [OSTI]

    Kooser, J.C.

    2013-01-01

    nuclear, geothermal and hydroelectric power plants, isENERGY Nuclear Natural gas Hydroelectric Year Notes: a) Coalclusters. First, the hydroelectric plants are clustered in

  20. GRADUATE POPULATION: Spring, 2014 First Year Second Year Third Year Fourth Year Fifth Year DCE Status*

    E-Print Network [OSTI]

    GRADUATE POPULATION: Spring, 2014 First Year Second Year Third Year Fourth Year Fifth Year DCE Program ABX = DCE Absentia *DCE status is assigned to post-5th year enrolled students, whether still 2.5 years) VSRCs: Christine Angel Mc Lauren de Riordan mclderio@princeton.edu (7/31/13 ­ 6

  1. GRADUATE POPULATION: Fall, 2014 First Year Second Year Third Year Fourth Year Fifth Year DCE Status*

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    GRADUATE POPULATION: Fall, 2014 First Year Second Year Third Year Fourth Year Fifth Year DCE Status Nathaniel (Nat) Tabris Daniel Wolt (Grad Rep) *DCE status is assigned to post-5th year enrolled students Program ABX = DCE Absentia ON LEAVE: Josh O'Rourke (Fall 2014; completed 2.5 years) VSRC: Neil Dewar

  2. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  3. Year 1 Year 2 Anne 3 Anne 4 Year 5 Year 6 Year 7Year 3 Year 4 INGENIEUR POLYTECHNICIENINGENIEUR POLYTECHNICIEN

    E-Print Network [OSTI]

    Cengarle, María Victoria

    Languages, Sport EP Third Year: - First 2 trimesters of courses (specialization) - Third trimester: researchYear 1 Year 2 Année 3 Année 4 Year 5 Year 6 Year 7Year 3 Year 4 «« INGENIEUR POLYTECHNICIENINGENIEUR POLYTECHNICIEN »» MASTERMASTER PhDPhD Two to three years of undergraduate studies Education

  4. Credit Points Overview Year 1 Year 2 Year 3

    E-Print Network [OSTI]

    Manstein, Dietmar J.

    6. Public Presentations / Project Reports (i.e. Retreats) All N/A N/A 10 0 2nd Year Second N/A N/A 5 First N/A N/A 3,33 2nd Year Second N/A N/A 3,33 3rd Year Third N/A N/A 3,33 8. Presentation of Manuscripts at Journal Club All N/A N/A 3 0 1st Year First N/A N/A 1 2nd Year Second N/A N/A 1 3rd Year Third

  5. Fiscal Year 2012 | 1 FISCAL YEAR

    E-Print Network [OSTI]

    Napp, Nils

    Fiscal Year 2012 | 1 NPR ANNUAL REPORT 2012 #12;12 FISCAL YEAR Fiscal Year 2012 | 2 TABLE Supporters Statement of Financial Position Statement of Activities 3 5 6 7 9 14 15 #12;12 FISCAL YEAR Fiscal the most dynamic and informative content to the air and on NPR.org in accordance with our mission

  6. Fiscal Year 2014 | 1 FISCAL YEAR

    E-Print Network [OSTI]

    Napp, Nils

    Fiscal Year 2014 | 1 NPR ANNUAL REPORT 2014 #12;14 FISCAL YEAR Fiscal Year 2014 | 2 TABLE Supporters Statement of Financial Position Statement of Activities 3 6 7 8 10 15 16 #12;14 FISCAL YEAR Fiscal radio news and stories curated for them. Informing, engaging, inspiring and surprising, it's an entirely

  7. Fourth Year Curriculum Fourth Year (IE)

    E-Print Network [OSTI]

    + 2013/14 Fourth Year Curriculum #12;+ Fourth Year (IE) ! Core ! MIE463F Integrated System Design ! CS Elective (1) #12;+ Fourth Year (ME): Fall ! Core ! MIE491Y Capstone ! Stream Courses (2) ! MIE422F * : Students may take only one of MIE422 and AER525; AER525 has limited enrolment. #12;+ Fourth Year (ME

  8. First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall1

    E-Print Network [OSTI]

    Auerbach, Scott M.

    First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year For your Freshman and Sophomore years, students should follow the appropriate flow chart based on your year Experience (IE) course is a senior year requirement for all students who entered

  9. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Pflugrath, Brett D.; Brown, Richard S.; Brauner, Colin J.; Mueller, Robert P.; Carlson, Thomas J.; Deng, Zhiqun; Ahmann, Martin L.; Trumbo, Bradly A.

    2012-10-01

    Fish passing downstream through hydroelectric facilities may pass through hydroturbines where they experience a rapid decrease in barometric pressure as they pass by turbine blades, which can lead to barotraumas including swim bladder rupture, exopthalmia, emboli, and hemorrhaging. In juvenile Chinook salmon, the main mechanism for injury is thought to be expansion of existing gases (particularly those present in the swim bladder) and the rupture of the swim bladder ultimately leading to exopthalmia, emboli and hemorrhaging. In fish that lack a swim bladder, such as lamprey, the rate and severity of barotraumas due to rapid decompression may be reduced however; this has yet to be extensively studied. Another mechanism for barotrauma can be gases coming out of solution and the rate of this occurrence may vary among species. In this study, juvenile brook and Pacific lamprey acclimated to 146.2 kPa (equivalent to a depth of 4.6 m) were subjected to rapid (<1 sec; brook lamprey only) or sustained decompression (17 minutes) to a very low pressure (13.8 kPa) using a protocol previously applied to juvenile Chinook salmon. No mortality or evidence of barotraumas, as indicated by the presence of hemorrhages, emboli or exopthalmia, were observed during rapid or sustained decompression, nor following recovery for up to 120 h following sustained decompression. In contrast, mortality or injury would be expected for 97.5% of juvenile Chinook salmon exposed to a similar rapid decompression to these very low pressures. Additionally, juvenile Chinook salmon experiencing sustained decompression died within 7 minutes, accompanied by emboli in the fins and gills and hemorrhaging in the tissues. Thus, juvenile lamprey may not be susceptible to barotraumas associated with hydroturbine passage to the same degree as juvenile salmonids, and management of these species should be tailored to their specific morphological and physiological characteristics.

  10. Statistics & Actuarial Science "23% of students smoked marijuana last year."

    E-Print Network [OSTI]

    Brennand, Tracy

    . Some recent projects include estimating fish survival as they go over hydro-electric dams, designing experiments to optimize quality of paper from a paper mill, and analyzing the results from a survey of members

  11. First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall Spring Fall

    E-Print Network [OSTI]

    Mountziaris, T. J.

    First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall1 Spring1 Fall Spring Fall For your Freshman and Sophomore years, students should follow the appropriate flow chart based on your year of graduation. C O O P 63 Credits 16 Credits 16

  12. First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall Spring Fall

    E-Print Network [OSTI]

    Mountziaris, T. J.

    First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall1 Spring1 Fall Spring Fall For your Freshman and Sophomore years, students should follow the appropriate flow chart based on your year of graduation. C O O P 63 Credits 16

  13. First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall Spring Fall

    E-Print Network [OSTI]

    Mountziaris, T. J.

    First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall1 Spring1 Fall Spring Fall For your Freshman and Sophomore years, students should follow the appropriate flow chart based on your year of graduation. C O O P 66 Credits

  14. First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall Spring Fall

    E-Print Network [OSTI]

    Mountziaris, T. J.

    First & Second Years Third Year (Junior) Forth Year (Senior) Fifth Year Fall1 Spring1 Fall Spring Fall For your Freshman and Sophomore years, students should follow the appropriate flow chart based on your year of gaduation. C O O P 66 Credits 16 Credits 13

  15. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01

    and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing...6 (g) n m +CH8 (g) + Reactions (1) and (2) were reported to be rapid and proceed to completion. Jensen (1975) studied the gasifi- cation of coal with steam. A batch fluidized bed re- actor was used to alleviate the fusion problem usually...

  16. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  17. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuels Brasil Jump to: navigation,BROAD USABSSTBTMInc

  18. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas: EnergyHunterdonHutto,Fuel CellHydrodynamic

  19. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolar JumpSloan, New York:Sluneta sroSmall

  20. Small Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH JumpSlough Heat and Power Jump to:Small

  1. Hydroelectric energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,MagazineTechnologies Jump to:

  2. Fiscal Year 2008 | 1 FISCAL YEAR

    E-Print Network [OSTI]

    Napp, Nils

    Fiscal Year 2008 | 1 SPONSORS 08 FISCAL YEAR $1 million+ Angie's List General Motors Corporation Earth Share Ethanol Promotion and Information Council FOX Broadcasting Company #12;SPONSORS 08 FISCAL Motor Corporation Union of Concerned Scientists Universal Music Group University of Michigan School

  3. Hydrology and Earth System Sciences, 9, 95109, 2005 www.copernicus.org/EGU/hess/hess/9/95/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    varying little from year to year. For hydroelectricity production, the water management therefore rather

  4. Accomplishments Fiscal Year 2012

    E-Print Network [OSTI]

    Yorke, James

    18 Accomplishments Fiscal Year 2012 #12;Office of Information Technology: Providing Computing of MarylandAccomplishment Highlights -- Fiscal Year 2012 For many years, the Office of Information Technology. This publication will inform you about the organization's accomplishments during fiscal year 2012 -- or July 1

  5. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years

    E-Print Network [OSTI]

    Gilli, Adrian

    , numerous hydroelectric dams have been constructed on the course of the Rhone River tributaries. At present hydroelectric dams have been constructed on tributaries of the Upper Rhone River, the principal river electric power supply, have been reviewed by Grandjean (1990). These include both flood control (cf

  6. ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    world oil prices). Btu/year) Coal Oil Natural gas Nuclear (fuel) Total imports Total Regional production Coal Crude oil

  7. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  8. The Second Year Progression

    E-Print Network [OSTI]

    Martin, Ralph R.

    Second Year Progression Looking forward In the Second Year You Learn: The Nuts and Bolts of Computer Floor/via email/ (on Blackboard). Support of group work in Software Engineering! Discussion of work Floor/via email/ (on Blackboard). Support of group work in Software Engineering! Discussion of work

  9. PROVISIONAL TERM & VACATION -2014 First Year Second Year Third Year Fourth and Fifth

    E-Print Network [OSTI]

    Jarrett, Thomas H.

    January 2014 BSc AUDIOLOGY AND BSc SPEECH-LANGUAGE PATHOLOGY 1st Year 2nd Year 3rd Year 4th Year 17 Feb 2nd Year 3rd Year 4th Year 17 Feb ­ 04 Apr 13 Jan ­ 04 Apr 14 Apr ­ 13 Jun 21 Jul ­ 29 Aug 08 Sep 2014 13 January 2014 BSc PHYSIOTHERAPY 1st Year 2nd Year 3rd Year 4th Year 17 Feb ­ 04 Apr 13 Jan ­ 04

  10. FISCAL YEAR ACKNOWLEDGEMENTS

    E-Print Network [OSTI]

    Su, Xiao

    FISCAL YEAR 2013 -2014 #12;1 ACKNOWLEDGEMENTS Report completed by Daniel Newell Program Manager Workforce & Economic Development SJSU Career Center Staff Thank you for providing expertise and information Staffing ....................................................................... 9 Information Sessions

  11. Biochemistry Biochemist 6 years

    E-Print Network [OSTI]

    Groisman, Pablo

    Biochemistry Biochemist ­ 6 years Objective To train professionals of a high scientific of studies has the following orientations: Vegetal and Ground Biochemistry; Microbiology and Inmunobiology ; Basic Biochemistry, Biotechnology; Clinic Biochemistry; Food Science and Nutrition. Besides, students

  12. Welcome Year in Review

    National Nuclear Security Administration (NNSA)

    Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Welcome & Year In Review Peter Dessaules...

  13. Project Year Project Team

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2001 Project Team Faculty: Grace Brush, Geography & Environmental Engineering, Whiting School of Engineering Fellow: Dan Bain, Geography & Environmental Engineering, Whiting School. Through this project, the team proposes to develop a variety of resources: a set of general, web

  14. Modeling of Tropical Forcing of Persistent Droughts and Pluvials over Western North America: 18562000*

    E-Print Network [OSTI]

    Gordon, Arnold L.

    year. This is causing significant difficulties in meeting river flow and hydroelectric power generation

  15. Outlook: The Next Twenty Years

    E-Print Network [OSTI]

    Murayama, Hitoshi

    2009-01-01

    all this discussion, the outlook for the next twenty yearsLBNL-54470 OUTLOOK: THE NEXT TWENTY YEARS H. MURAYAMAUniversity of California. OUTLOOK: THE NEXT TWENTY YEARS H.

  16. Feasibility Study of Economics and Performance of a Hydroelectric Installation at the Jeddo Mine Drainage Tunnel. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2013-02-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Jeddo Tunnel discharge site for a feasibility study of renewable energy potential. The purpose of this report is to assess technical and economic viability of the site for hydroelectric and geothermal energy production. In addition, the report outlines financing options that could assist in the implementation of a system.

  17. BSME Curriculum Freshman Year

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Manufacturing Practices 3 ME 350 Static Machine Components 3 ME 360 Control and Instrumentation Components (W) 3 Year First Semester Hours ME 415 Energy Systems Design OR ME 407 Heating Ventilation and Air Conditioning 2 or 3 ME 450 Dynamic Machine Components 3 ME 460 Thermal Systems Instrumentation (W) 3 ME 489

  18. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  19. 2013 Year in Review

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i sEnergy ItMisc.theTechnology LaboratoryYear

  20. Planning for Years to Come

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education...

  1. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  2. 2004 YEAR IN TORNADOES: WHAT A YEAR IT WAS!

    E-Print Network [OSTI]

    2004 YEAR IN TORNADOES: WHAT A YEAR IT WAS! Daniel McCarthy and Joseph Schaefer NOAA/NWS Storm Prediction Center, Norman, OK 1. INTRODUCTION 2004 will be known as the biggest tornado year since to remain the last tornado to cause such devastation. In 2004, there were 1,688 weak tornadoes (F0 and F1

  3. Year's End 2012 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    year from Oct. 1 to Sept. 30. So, this is the last week of Fiscal Year 2012, and all books must be brought into balance. Of course, there are several books - the federal books,...

  4. MSU Bozeman Year Founded: 1893

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    : Frontier Conference MSU Great Falls College of Tecnology Year Founded: 1969 Fall 2012 Headcount: 1,873 2010

  5. Annual Report Fiscal Year 2007

    E-Print Network [OSTI]

    Technology Transfer Annual Report Fiscal Year 2007 (July 1, 2006 - June 30, 2007) #12;CONTENTS as the primary source of quantitative data to report. This survey collects yearly information on the number for new ways to foster and encourage industry. This report shows the results achieved in Fiscal Year 2007

  6. Vermont Water Quality Certification Application for Hydroelectric

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:

  7. Hydroelectric power in Hawaii: a reconnaissance survey

    SciTech Connect (OSTI)

    1981-02-01

    The major conclusion of this study is that hydropower resources in the State of Hawaii are substantial, and they offer the potential for major increases in hydropower generating capacity. Hydropower resources on all islands total about 50 megawatts of potential generating capacity. Combined with the 18 megawatts of existing hydropower capacity, hydropower resources potentially could generate about 307 million kilowatt-hours of electric energy annually. This represents about 28% of the present combined electricity needs of the Neighbor Islands - Kauai, Molokai, Maui, and the Big Island. Hydropower resources on Kauai equal 72% of that island's electricity needs; on Molokai, 40%; on the Big Island, 20%; and on Maui, 18%. The island of Oahu, however, has only small hydropower resources, and could only generate a negligible portion of its electricity needs from this energy source. Existing and future (potential) hydropower capacities are summarized, and annual outputs for each island are estimated. Future hydropower facilities are subdivided into two categories, which show how much of the potential capacity is being actively considered for development, and how much is only tentatively proposed at the time.

  8. Federal financial assistance for hydroelectric power

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The Rural Energy Initiative seeks to maximize the effectiveness of Federal programs in developing certain energy resources, including small-scale hydropower. The REI target is to arrange financing for 100 hydro sites by 1981, with about 300 MWe of additional capacity. The REI financial assistance programs for small hydropower development in the US DOE; Economic Development Administration; REA; HUD; Farmers Home Administration; DOI; DOL's CETA programs; and the Community Services Administration are described. (MCW)

  9. Wenatchee Subbasin Plan EFFECTS OF HYDROELECTRIC DAMS

    E-Print Network [OSTI]

    of anadromous salmonids. Run-of river dams present passage obstacles to both adult and juvenile migrantsAnalysts April 2004 The existence and operation of the Columbia River Hydrosystem poses risks to wild populations focuses on Upper Columbia River populations, but in some cases refers to data from the Snake River

  10. List of Hydroelectric Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy ResourcesGrove, Iowa:Lisle, Illinois:

  11. Energy 101: Hydroelectric Power | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES ScienceInformationInformation AdministrationHeavy Duty101:

  12. China Hydroelectric Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing WorldCalifornia:DialogueNew Energy

  13. Hebei Hydroelectric Company Limited | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen River Power CoHawaii/Incentives

  14. Huaiji Hydroelectric Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimen RiverScoring Tool Jump to:EthanolHua

  15. Lessons Learned: Pangue Hydroelectric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervarLeeds, United Kingdom: Energy ResourcesEnergyCo

  16. Exploring Hydroelectricity (9 activities) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order 13514 Federal Leadership Lessons LearnedExploring

  17. Compost 101Turn this year's trash into next year's treasure

    E-Print Network [OSTI]

    Hutcheon, James M.

    Compost 101Turn this year's trash into next year's treasure Filling and Maintaining Compost Georgia://ceps.georgiasouthern.edu/garden This brochure is funded in part by a grant from a Museums for America Grant. Types of Composting Bins To fill your compost bin, alternate brown and green materials. Keep in mind that the ideal ratio is three

  18. Fiscal Year 2004 Annual Report

    E-Print Network [OSTI]

    Salvaggio, Carl

    NTID Fiscal Year 2004 Annual Report (Click here to jump to the Table of Contents) #12;#12;-1- FY ................... 17 Assessment Information on Entering Class

  19. Fiscal Year 2012 Peer Institution

    E-Print Network [OSTI]

    Fiscal Year 2012 Highlights Peer Institution Comparisons Cost to Students Economic Impact access to the University's audited financial information and openly share how we deploy resources

  20. YEAR

    National Nuclear Security Administration (NNSA)

    2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    SES 1 2 100.00% EJEK 2 2 0.00% EN 04 1 1 0.00% EN 03 1 0 -100.00% NN (Engineering) 12 11 -8.33% NQ (ProfTechAdmin) 216 218 0.93% NU (TechAdmin Support) 2...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    2013 SES 2 2 0.00% EJEK 7 8 14.29% EN 04 11 11 0.00% EN 03 1 1 0.00% NN (Engineering) 23 24 4.35% NQ (ProfTechAdmin) 35 32 -8.57% NU (TechAdmin Support) 3 2...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26825

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National268255

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National2682559

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26825595

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National2682559589

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3 6370-Rev.National26825595893

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3

  12. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 Cooling Degree-Days by038.2Natural gas

  13. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01

    plan indicating the design of the landfill, description of the surface and subsurface hydrology and any unique environmental problems or constraints. A detailed plan of operation, closure and part closure activities had to also be prOVided as part... Quality Discharge Natural Resources Permit Solid Waste Permits Louisiana Department Solid Waste Landfill Con of Natural Resources, struction Permit Solid Waste Management Division Since the project was conceived as a modifica tion to an existing...

  14. Lowest Pressure Steam Saves More BTU's Than You Think 

    E-Print Network [OSTI]

    Vallery, S. J.

    1985-01-01

    the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat...

  15. Electrical Generation Using Non-Salable Low BTU Natural Gas

    SciTech Connect (OSTI)

    Scott Corsair

    2005-12-01

    High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

  16. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  17. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for pages...

  18. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, search This is a

  19. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 RelativeSoutheastThousand Cubic Feet) DecadeThousand

  20. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7Cubicthrough 1996) in Arkansasthrough 1996) inthroughDecade

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week Of Mon Tue

  2. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week Of Mon

  3. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week Of MonWeek

  4. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week Of

  5. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week OfWeek Of

  6. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYearthrough2,290,489 2,249,187Week OfWeek

  7. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana)District Office

  8. DYNAMIC MANUFACTURING ENERGY FLOWS TOOL (2010, UNITS: TRILLION BTU) |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOEAnalysis,Department of U.S.DURA URBAN HOUSEDepartment of

  9. Microfabricated BTU monitoring device for system-wide natural gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent) |

  10. Microfabricated BTU monitoring device for system-wide natural gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent) |monitoring. (Technical Report) | SciTech

  11. DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153 METHODSDOE/LaborSeptemberEnergy DS02:

  12. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions forHeavy-Duty WasteHelpingHenry C. Honeck,

  13. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO),7F e28 3.24 3.23 3.22 3.19

  14. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO),7F e28 3.24 3.23 3.22

  15. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodology forNYMEX FuturesWeek Of

  16. FISCAL YEAR 20042005 FINANCIAL REPORT

    E-Print Network [OSTI]

    Schrag, Daniel

    FISCAL YEAR 2004­2005 FINANCIAL REPORT to the board of overseers of HARVARD COLLEGE #12;2 Letter Financial statements 55 Supplemental information #12;renovations at schlesinger library The Radcliffe Harvard University's financial report for fiscal 2005. It was a strong year financially. The University

  17. M1 Year -Regular Curriculum ^

    E-Print Network [OSTI]

    Alford, Simon

    M1 Year - Regular Curriculum ^ Satisfactorily complete all requirements Pass at least 67% of weighted curriculum Take make-up exam(s) or approved summer course Satisfactorily complete all requirements ¹ Fail any requirement ² If No Previous Repeat Year Pass 40% to 66% of weighted curriculum * Students who

  18. University Housing! First Year Experience

    E-Print Network [OSTI]

    community -Committed faculty member for academic success -Group Work focused -Learning Community Assistant for academic success -Group Work focused -Learning Community Assistant (LCA) Living Learning Communities (LLCs) + + The choice is yours! First Year Experience Thematic First Year Student Housing focused around development

  19. GLOBE Presentations YEARS 1995 2000

    E-Print Network [OSTI]

    Gilbes, Fernando

    GLOBE Presentations YEARS 1995 ­ 2000 YEAR 97-98 "Science on Wheels", National Chemistry Week, UPR Ponce, PR, Nov.1995. "Science on Wheels: A Link between Educational Cultures", J. Lopez- Garriga, I. Muñoz, and Y. Echevarria. Chem. Ed. 1995, Old Dominion Univ. Norfolk, Virginia, August 1995. "Importance

  20. NETL: The First 100 Years

    SciTech Connect (OSTI)

    2015-07-21

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  1. Queen's Engineering First Year Handbook

    E-Print Network [OSTI]

    Fletcher, Robin

    Queen's Engineering First Year Handbook First year program structure Faculty regulations Academic & Engineering Johana Ng johana@mast.queensu.ca Dr. Andrew Lewis andrew@mast.queensu.ca Mechanical & Materials selection in soLUs · February 17-21: extended Program (J-section) course examinations · February 17-21: Mid

  2. Visualizing Twenty Years of Applications

    SciTech Connect (OSTI)

    Potel, Mike; Wong, Pak C.

    2014-11-01

    This issue of IEEE Computer Graphics and Applications marks the 20th anniversary of the Applications department as a regular feature of the magazine. We thought it might be interesting to look back at the 20 years of Applications department articles to assess its evolution over that time. By aggregating all twenty years of articles and applying a little statistical and visual analytics, we’ve uncovered some interesting characteristics and trends we thought we’d share to mark this 20 year milestone.

  3. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    per square foot CIEE California Institute for Energy andper square foot per year (kBtu/ft 2 /yr)), site energy.

  4. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    Price ($/MMBtu) Heat Rate(Btu/kWh) Capacity Factor (%) Power generation unit Gasifiers and other system Life(Years) EOR revenues – Carbon

  6. Chapeau! First-Year French

    E-Print Network [OSTI]

    Dinneen, David A.; Kernen, Madeleine

    1989-01-01

    Chapeau! is a first-year college text. Although it may appear, at first glance, o move very fast and introduce a large amount of material early, the vocabulary and grammatical structures that we expect students to control ...

  7. String Theory: The Early Years

    E-Print Network [OSTI]

    John H. Schwarz

    2000-07-26

    Lenny Susskind has made many important contributions to theoretical physics during the past 35 years. In this talk I will discuss the early history of string theory (1968-72) emphasizing Susskind's contributions.

  8. An International Year of Light

    E-Print Network [OSTI]

    Faure, Claudie

    of light-based technologies for the equitable development of global society. The project received, renewable energy and energy efficiency, and for PROSPECTUS An International Year of Light Science ­ Technology ­ Nature ­ Culture ­ Development

  9. SMESA PUBLICATIONS YEARS 2000 2004

    E-Print Network [OSTI]

    Gilbes, Fernando

    SMESA PUBLICATIONS YEARS 2000 ­ 2004 YEAR 00-01 S.B. Majumder, S. Bhaskar, P.S. Dobal, A.L. Morales-Gel Derived Lead Lanthanum Titanate Thin Films", Proceedings of Materials Research Society, 596, 375 (2000). P Studies of (Ta2O5)1-x(TiO2)x Ceramics", Journal of Applied Physics, 87, 8688 (2000). S.B. Majumder, S

  10. HYDROLOGY OF BISHOP CREEK, CALIFORNIA: AN ISOTOPIC ANALYSIS 1

    E-Print Network [OSTI]

    diverting Bishop creek water for hydroelectric power for many years. Recently there has been concern that must be released from the hydroelectric power plants to the channel, during certain times of the year

  11. Arrow Lakes Reservoir Fertilization Experiment; Years 4 and 5, Technical Report 2002-2003.

    SciTech Connect (OSTI)

    Schindler, E.

    2007-02-01

    This report presents the fourth and fifth year (2002 and 2003, respectively) of a five-year fertilization experiment on the Arrow Lakes Reservoir. The goal of the experiment was to increase kokanee populations impacted from hydroelectric development on the Arrow Lakes Reservoir. The impacts resulted in declining stocks of kokanee, a native land-locked sockeye salmon (Oncorhynchus nerka), a key species of the ecosystem. Arrow Lakes Reservoir, located in southeastern British Columbia, has undergone experimental fertilization since 1999. It is modeled after the successful Kootenay Lake fertilization experiment. The amount of fertilizer added in 2002 and 2003 was similar to the previous three years. Phosphorus loading from fertilizer was 52.8 metric tons and nitrogen loading from fertilizer was 268 metric tons. As in previous years, fertilizer additions occurred between the end of April and the beginning of September. Surface temperatures were generally warmer in 2003 than in 2002 in the Arrow Lakes Reservoir from May to September. Local tributary flows to Arrow Lakes Reservoir in 2002 and 2003 were generally less than average, however not as low as had occurred in 2001. Water chemistry parameters in select rivers and streams were similar to previous years results, except for dissolved inorganic nitrogen (DIN) concentrations which were significantly less in 2001, 2002 and 2003. The reduced snow pack in 2001 and 2003 would explain the lower concentrations of DIN. The natural load of DIN to the Arrow system ranged from 7200 tonnes in 1997 to 4500 tonnes in 2003; these results coincide with the decrease in DIN measurements from water samples taken in the reservoir during this period. Water chemistry parameters in the reservoir were similar to previous years of study except for a few exceptions. Seasonal averages of total phosphorus ranged from 2.11 to 7.42 {micro}g/L from 1997 through 2003 in the entire reservoir which were indicative of oligo-mesotrophic conditions. Dissolved inorganic nitrogen concentrations have decreased in 2002 and 2003 compared to previous years. These results indicate that the surface waters in Arrow Lakes Reservoir were approaching nitrogen limitation. Results from the 2003 discrete profile series indicate nitrate concentrations decreased significantly below 25 {micro}g/L (which is the concentration where nitrate is considered limiting to phytoplankton) between June and July at stations in Upper Arrow and Lower Arrow. Nitrogen to phosphorus ratios (weight:weight) were also low during these months indicating that the surface waters were nitrogen deficient. These results indicated that the nitrogen to phosphorus blends of fertilizer added to the reservoir need to be fine tuned and closely monitored on a weekly basis in future years of nutrient addition. Phytoplankton results shifted during 2002 and 2003 compared to previous years. During 2002, there was a co-dominance of potentially 'inedible' diatoms (Fragilaria spp. and Diatoma) and 'greens' (Ulothrix). Large diatom populations occurred in 2003 and these results indicate it may be necessary to alter the frequency and amounts of weekly loads of nitrogen and phosphorus in future years to prevent the growth of inedible diatoms. Zooplankton density in 2002 and 2003, as in previous years, indicated higher densities in Lower Arrow than in Upper Arrow. Copepods and other Cladocera (mainly tiny specimens such as Bosmina sp.) had distinct peaks, higher than in previous years, while Daphnia was not present in higher numbers particularly in Upper Arrow. This density shift in favor to smaller cladocerans was mirrored in a weak biomass increase. In Upper Arrow, total zooplankton biomass decreased from 1999 to 2002, and in 2003 increased slightly, while in Lower Arrow the biomass decreased from 2000-2002. In Lower Arrow the majority of biomass was comprised of Daphnia throughout the study period except in 2002, while in Upper Arrow the total biomass was comprised of copepods from 2000-2003.

  12. Characteristics RSE Column Factor: All Model Years Model Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948CaliforniaFeet) (Million CubicYear Jan. U.S.

  13. hundred years. Ralph M. Parsons Inc., Los Angeles, Calif., 22 p.

    E-Print Network [OSTI]

    . A pre- liminary evaluation report on the fish and wildlife resources affected by the proposed Truckee causing potential problems are two industrial activities of great importance to the region under been generated in northwestern North America by hydroelectric means in the past, the problems connected

  14. Ocean Wave Converters: State of the Art and Current Status

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to 8x106 TWh/year, which is about 100 times the total hydroelectricity generation of the whole planet

  15. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  16. Upper Year Progression YWA 5059% for

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    5059% for 2nd time YWA >60% Continue to next year Adjudication comments: Failed year Must Upper Year Progression YWA repeat all courses under 60% (including labs and tutorials) Leave UWO for one year ­ reapply

  17. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    by end of 2nd year. Rev.05/10 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20 take either 112 or 122 second year and the other, third year. 309 Instrumentation 2 310 Orchestration 2

  18. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20

  19. Hydrography Goals Fiscal Year 201520162017

    E-Print Network [OSTI]

    Hydrography Goals Fiscal Year 201520162017 Future Vision To drive new discoveries Elevation Program (3DEP) will provide a geospatial framework for a National water information system that will provide interoperable water data and information through easily accessible outlets. The NHD and WBD

  20. Education, Early Years, Childhood, Youth

    E-Print Network [OSTI]

    Education, Early Years, Childhood, Youth and Community Postgraduate 2013 #12;Welcome Manchester childhood specialists, careers advisors and education managers. We also offer an extensive and flexible of Education has a global vision which can help you realise your ambitions. Studying within a lively

  1. HAPPY NEW YEAR! Semiconductor Spintronics

    E-Print Network [OSTI]

    Nikolic, Branislav K.

    HAPPY NEW YEAR! #12;Semiconductor Spintronics Niu Burkov Culcer Nunez Nomura Yao Sinova Sinitsyn Dietl Koenig Lin Timm Jungwirth Lee Fernandez-Rossier U. Texas at Austin 2005 Taiwan Spintronics Workshop #12;Spintronics Toolbag Ferromagnetic Semiconductors (Ga,Mn)As .... others Coupled Spin Charge

  2. FEMP Year in Review 2009

    SciTech Connect (OSTI)

    2009-12-01

    In 2009, the Federal Energy Management Program (FEMP)undertook an ambitious reorganization of its program structure to be more responsive to the needs of its Federal agency customers. In this Year in Review 2009, you will learn more about FEMP achievements under its new program areas.

  3. ENVIRONMENTAL ENGINEERING CURRICULUM FRESHMAN YEAR

    E-Print Network [OSTI]

    Chandy, John A.

    ENVIRONMENTAL ENGINEERING CURRICULUM FRESHMAN YEAR First Semester Second Semester MATH 1131Q Elective (3) (Take as an on-line course) CE 2110 ­ Applied Mechanics I (3) ENVE 2310 ­ Environmental Engineering (3) ENVE 2330 ­ Decision Analysis in Civil & Environmental Engineering (3) ENVE 3200

  4. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  5. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  6. Fiscal Year 2013 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2013-11-01

    This report summarizes the Fiscal Year 2013 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: Summary of each site Assessment of vegetation status and site stabilization at each location Actions and Resolutions for each site. Six disturbed sites were evaluated for this assessment. One has achieved final stabilization. The remaining five sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

  7. Fiscal Year 2012 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2012-11-01

    This report summarizes the Fiscal Year 2012 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Ten disturbed sites were evaluated for this assessment. Six have achieved final stabilization. The remaining four sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

  8. Quantum Tomography twenty years later

    E-Print Network [OSTI]

    M. Asorey; A. Ibort; G. Marmo; F. Ventriglia

    2015-10-28

    A sample of some relevant developments that have taken place during the last twenty years in classical and quantum tomography are displayed. We will present a general conceptual framework that provides a simple unifying mathematical picture for all of them and, as an effective use of it, three subjects have been chosen that offer a wide panorama of the scope of classical and quantum tomography: tomography along lines and submanifolds, coherent state tomography and tomography in the abstract algebraic setting of quantum systems.

  9. Earth: 15 Million Years Ago

    E-Print Network [OSTI]

    Masataka Mizushima

    2008-10-13

    In Einstein's general relativity theory the metric component gxx in the direction of motion (x-direction) of the sun deviates from unity due to a tensor potential caused by the black hole existing around the center of the galaxy. Because the solar system is orbiting around the galactic center at 200 km/s, the theory shows that the Newtonian gravitational potential due to the sun is not quite radial. At the present time, the ecliptic plane is almost perpendicular to the galactic plane, consistent with this modification of the Newtonian gravitational force. The ecliptic plane is assumed to maintain this orientation in the galactic space as it orbits around the galactic center, but the rotational angular momentum of the earth around its own axis can be assumed to be conserved. The earth is between the sun and the galactic center at the summer solstice all the time. As a consequence, the rotational axis of the earth would be parallel to the axis of the orbital rotation of the earth 15 million years ago, if the solar system has been orbiting around the galactic center at 200 km/s. The present theory concludes that the earth did not have seasons 15 million years ago. Therefore, the water on the earth was accumulated near the poles as ice and the sea level was very low. Geological evidence exists that confirms this effect. The resulting global ice-melting started 15 million years ago and is ending now.

  10. Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002

    SciTech Connect (OSTI)

    Truett, LF

    2003-09-24

    Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

  11. Fourth Year -34 Credits Cr FA SP Fifth Year 29 Credits Cr FA SP

    E-Print Network [OSTI]

    Fourth Year - 34 Credits Cr FA SP Fifth Year ­ 29 Credits Cr FA SP Students: Please note Credits First Year - 28 Credits ­ Courses (prereqs) Cr FA SP Third Year ­ 35 Credits Cr FA SP Second Year

  12. Fiscal Year 2010 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom; Mike Lewis

    2010-11-01

    This report summarizes the Fiscal Year 2010 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

  13. Fiscal Year 2009 Revegetation Assessment

    SciTech Connect (OSTI)

    Michael Lewis

    2009-10-01

    This report summarizes the Fiscal Year 2009 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

  14. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998

  15. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 - - -

  16. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 - -

  17. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 - -20

  18. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 -

  19. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 -41 -

  20. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29 -41

  1. Year STB EIA STB EIA

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3Additions (Million2.8 2.6103.5 91.8 91.91998$11.15 - $12.29

  2. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnologyTel:FebruaryEIA'sTrainingActivity Historical Yearly

  3. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan 15-1

    E-Print Network [OSTI]

    ....................................................................................................................2 Hydroelectric Generation

  4. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan 13-1

    E-Print Network [OSTI]

    .....................................................................................................................30 Hydroelectric Power

  5. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan 15-1

    E-Print Network [OSTI]

    ....................................................................................................................4 Hydroelectric Generation

  6. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    be waived when Minimum Achievements for 2 nd year secondary piano have already been met. 153 or 154 Large be completed by end of 2nd year. #12;Rev.05/11 ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1

  7. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20__/__

    E-Print Network [OSTI]

    Pulfrey, David L.

    Minimum Achievements for 2 nd year secondary piano have already been met. Note: Secondary Piano credits Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20

  8. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    for 2 nd year secondary piano have already been met. 150 Large Instrumental Ensemble 4 150 Large Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20

  9. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20__/__

    E-Print Network [OSTI]

    Pulfrey, David L.

    Minimum Achievements for 2 nd year secondary piano have already been met. Large Ensemble at least 3 Large Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20

  10. Ten Year Site Plans | Department of Energy

    Energy Savers [EERE]

    Ten Year Site Plans Ten Year Site Plans A Ten Year Site Plan (TYSP) is the essential planning document linking a site's real property requirements to its mission in support of the...

  11. Fourth Year Pure Mathematics 2011 Handbook

    E-Print Network [OSTI]

    Du, Jie

    Fourth Year Pure Mathematics 2011 Handbook School of Mathematics and Statistics University descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1. Fourth Year Courses -- Semester I . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2. Fourth Year Courses -- Semester II

  12. Happy New Year - First Blog Entry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Happy New Year Happy New Year - First Blog Entry January 2, 2015 by Richard Gerber (0 Comments) Happy New Year to all Some users have asked for NERSC staff blogs on current...

  13. 2014 THIRD YEAR THEME PAPER GUIDELINES

    E-Print Network [OSTI]

    Rose, Michael R.

    2014 THIRD YEAR THEME PAPER GUIDELINES Students will complete a Theme Paper requirement in their third year of study. The Theme Paper can take. SUBMISSION GUIDELINES Students may submit their Third Year Theme Paper anytime from

  14. Third Year Projects (~40 credits) MEng Students

    E-Print Network [OSTI]

    Miall, Chris

    Third Year Projects (~40 credits) MEng Students For a number of years the Royal Academy that although completed at third year they are set at level M. BEng Students All final stage BEng students

  15. I. Purpose

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    operator of qualified hydroelectric facilities for electric energy generated and sold from a qualified hydroelectric facility for a specified 10-year period. (See 42 U.S.C. 15881)...

  16. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20__/__

    E-Print Network [OSTI]

    Pulfrey, David L.

    The Writing Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20

  17. Twenty Years of Tevatron Operation

    SciTech Connect (OSTI)

    Jay C. Theilacker

    2004-07-15

    The superconducting Tevatron accelerator at Fermi National Accelerator Laboratory (Fermilab) has surpassed twenty years of operation. The Tevatron is still the highest energy particle accelerator in the world and will remain so until the commissioning of the LHC in Europe later this decade. The Tevatron has operated in a Fixed Target mode, accelerating a proton beam into stationary targets/detectors, as well as a Colliding Beam mode, continuously colliding counter rotating beams of protons and antiprotons. Upon completion, the Tevatron cryogenic system became the world's largest helium refrigeration system. In 1993, the Tevatron cryogenic system was given the designation of International Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers. The operational history, experiences and statistics of the Tevatron, with an emphasis on the cryogenic system, is presented. Improvements, upgrades and current challenges of the cryogenic system are discussed.

  18. Fiscal Year 2014 Revegetation Assessment

    SciTech Connect (OSTI)

    Nordstrom, Jenifer

    2015-03-01

    This report summarizes the Fiscal Year 2014 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to document revegetation efforts at Idaho National Laboratory to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Five disturbed sites were evaluated for this assessment. Four sites are recommended to be removed from the annual assessment, and one is recommended for continued evaluation. New sites are also identified for future monitoring as part of the annual assessment.

  19. A summary of 22 Years of Fish Screen Evaluation in the Yakima River Basin, Summary Report 1985-2007.

    SciTech Connect (OSTI)

    Chamness, Mickie A. [Pacific Northwest National Laboratory

    2007-12-03

    Sixty fish screen facilities were constructed in the Yakima River basin between 1985 and 2006 as part of the Northwest Power and Conservation Council plan to mitigate the effects of federal hydroelectric projects on fish and wildlife populations. This report summarizes evaluations of some of those and other fish screen facilities conducted by Pacific Northwest National Laboratory (PNNL) from 1985 through 2006. The objective of these studies was to determine if the newly designed and constructed fish screens were effective at providing juvenile salmonids safe passage past irrigation diversions. To answer that question, PNNL conducted release-and-catch studies at eight Phase I sites in the Yakima River basin. Increasing concerns about the impacts of hatchery fish releases on the wild fish population, as well as the cost and time necessary to perform these kinds of biological studies at more than 60 planned Phase II sites, required development of techniques to evaluate the effectiveness of the sites without releasing fish. The new techniques involved collecting information on screen design, operation, and effectiveness at guiding fish safely through the fish screen facility. Performance measures including water velocities and passage conditions provide a good alternative to biological studies at significantly lower cost and time. Physical techniques were used at all 10 Phase I and 28 Phase II sites evaluated by PNNL over the following 19 years. Results of these studies indicate the Phase I and II fish screen facilities are designed and capable of providing safe passage for juvenile salmonids so long as construction, maintenance, and operations meet the criteria used in the design of each site and the National Marine Fisheries Service criteria for juvenile fish screen design.

  20. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20 Woodwinds 2 Note: Must take either 112 or 122 second year and the other, third year. 309 Instrumentation 2

  1. Webtrends Archives by Fiscal Year — Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Geothermal Technologies Office, Webtrends archives by fiscal year.

  2. HMS Second-Year Financial Aid Update

    E-Print Network [OSTI]

    Goodrich, Lisa V.

    /BS Waivers Resident Tutors #12;3rd Year Budget 2014-15 3rd Year Budget is 12 months! Complete cash advance NOTE: Step2b Clinical Skills Exam fee included in 3rd year budget with travel expenses added in 4thHMS Second-Year Financial Aid Update February 2014 #12;Today's Agenda 2014-15 Financial Aid

  3. SpringFall Summ SpringFall Summ SpringFall Summ SpringFall Summ Year #1 Year #2 Year #3 Year #4

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    . (if needed) Events During Defense-Semester ECE PhD Time-LinePost-MS 3rd Week Week N - 7 Week N - 1SpringFall Summ SpringFall Summ SpringFall Summ SpringFall Summ Year #1 Year #2 Year #3 Year #4

  4. Webtrends Archives by Fiscal Year — FEMP

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Federal Energy Management Program, Webtrends archives by fiscal year.

  5. 2014 THIRD YEAR THEME PAPER Scoring Policy

    E-Print Network [OSTI]

    Loudon, Catherine

    2014 THIRD YEAR THEME PAPER Scoring Policy SCHOOL OF EDUCATION 4/8/2014 Ph.D. in Education FIRST ROUND SUBMISSION: Rolling Deadline from passing SYRP to September 15, 2014 of Year 4 Third Year Theme the student's paper advisor and an anonymous faculty reader, shall grade each Third Year Theme Paper and each

  6. Webtrends Archives by Fiscal Year — Bioenergy

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year.

  7. Fiscal year 1987 program plan

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy in national planning, integration, operation, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY 87 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Operations, and Research Development (R D), the organizational interfaces and communication channels for R D and the establishment of procedures for planning, reporting, and budgeting of Operations and R D activities meet requirements stated in the Technical Management Plan for the Transuranic Waste Management Program. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY 87; outyear budget projections are presented for future years.

  8. Year in Industry Scheme The Year in Industry Scheme allows you to spend

    E-Print Network [OSTI]

    Haase, Markus

    -time paid employment, returning to the University for a final fourth year. You are awarded a BSc (IndustryYear in Industry Scheme The Year in Industry Scheme allows you to spend your third year in full second year. To be allowed to make the transfer, you must do sufficiently well in your year 1 and 2

  9. Annual energy review 2003

    SciTech Connect (OSTI)

    Seiferlein, Katherin E.

    2004-09-30

    The Annual Energy Review 2003 is a statistical history of energy activities in the United States in modern times. Data are presented for all major forms of energy by production (extraction of energy from the earth, water, and other parts of the environment), consumption by end-user sector, trade with other nations, storage changes, and pricing. Much of the data provided covers the fossil fuels—coal, petroleum, and natural gas. Fossil fuels are nature’s batteries; they have stored the sun’s energy over millennia past. It is primarily that captured energy that we are drawing on today to fuel the activities of the modern economy. Data in this report measure the extraordinary expansion of our use of fossil fuels from 29 quadrillion British thermal units (Btu) in 1949 to 84 quadrillion Btu in 2003. In recent years, fossil fuels accounted for 86 percent of all energy consumed in the United States. This report also records the development of an entirely new energy industry—the nuclear electric power industry. The industry got its start in this country in 1957 when the Shippingport, Pennsylvania, nuclear electric power plant came on line. Since that time, the industry has grown to account for 20 percent of our electrical output and 8 percent of all energy used in the country. Renewable energy is a third major category of energy reported in this volume. Unlike fossil fuels, which are finite in supply, renewable energy is essentially inexhaustible because it can be replenished. Types of energy covered in the renewable category include conventional hydroelectric power, which is power derived from falling water; wood; waste; alcohol fuels; geothermal; solar; and wind. Together, these forms of energy accounted for about 6 percent of all U.S. energy consumption in recent years.

  10. Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve

    SciTech Connect (OSTI)

    Jager, Yetta; Smith, Brennan T

    2008-02-01

    Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

  11. Life Cycle Assessment Applied to 95 Representative U.S. Farms 

    E-Print Network [OSTI]

    Rutland, Christopher T.

    2012-10-19

    slightly different approach was proposed by Rossing et al. (1997) to evaluate flower bulb production systems in the Netherlands. They used multi-goal linear programming to optimize ecological objectives subject to a set of environmental, economic... fission, natural gas, coal, woody biomass, herbaceous biomass, hydroelectric, and wind. The CO2 equivalent per million Btu is a weighted average of emission factors, with weights assigned according to the power mix in the area of the farm...

  12. Working Gas % Change from Year Ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWesternYear Jan1,29823

  13. Working Gas Volume Change from Year Ago

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2YearWesternYear Jan1,29823751,045

  14. Program Year 2008 State Energy Program Formula

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) State Energy Program (SEP), SEP Program Guidance Fiscal Year 2008, Program Year 2008, energy efficiency and renewable energy programs in the states, DOE Office of Energy Efficiency and Renewable Energy

  15. Budget estimates, fiscal year 1997. Volume 12

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    This report contains the fiscal year budget justification to Congress. The budget provides estimates for salaries and expenses and for the Office of the Inspector General for fiscal year 1997.

  16. Fiscal Year 2007 budget-in-brief

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Fiscal Year 2007 budget request from the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

  17. Fiscal Year 2009 budget-in-brief

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Fiscal Year 2009 budget request from the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

  18. HMS Second-Year Financial Aid Update

    E-Print Network [OSTI]

    Lahav, Galit

    for institutional funds) IRS Data Retrieval Process on FAFSA ­ Do it! Stafford Subsidy ­ available next year for 3rd-Need-Based Funding with FAO #12;3rd Year Budget 2012-13 3rd Year Budget is 12 months! Complete cash advance form Residency Loans NOTE: Step2b Clinical Skills Exam fee included in 3rd year budget with travel expenses added

  19. Fiscal Year 2008 budget-in-brief

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Fiscal Year 2008 budget request from the Department of Energy’s Office of Energy Efficiency and Renewable Energy.

  20. Webtrends Archives by Fiscal Year — Education

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Education site by fiscal year.

  1. Webtrends Archives by Fiscal Year — Business Administration

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Office of Business Administration (later renamed to Business Operations), Webtrends archives by fiscal year.

  2. Google Archives by Fiscal Year — Solar

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Solar Energy Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  3. Google Archives by Fiscal Year — FEMP

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Federal Energy Management Program, retired Google Analytics profiles for the sites by fiscal year.

  4. Google Archives by Fiscal Year — Energy Saver

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profiles for the Energy Saver sites by fiscal year.

  5. Google Archives by Fiscal Year — Buildings

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Building Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  6. Secretary Chu Celebrates NNSA's 10-Year Anniversary

    ScienceCinema (OSTI)

    Department of Energy Secretary Steven Chu

    2010-09-01

    Department of Energy Secretary Steven Chu speaks at NNSA's 10-year anniversary celebration on April 28, 2010.

  7. Webtrends Archives by Fiscal Year — Financial Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Financial Opportunities site by fiscal year.

  8. Webtrends Archives by Fiscal Year — Earth Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Earth Day site by fiscal year.

  9. Webtrends Archives by Fiscal Year — Communication Standards

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Communication Standards site by fiscal year.

  10. Webtrends Archives by Fiscal Year — Solar

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Solar Energy Technologies Office / Sunshot sites, Webtrends archives by fiscal year.

  11. Webtrends Archives by Fiscal Year — International Activities

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the International Activities site for fiscal year 2011.

  12. ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20___/___

    E-Print Network [OSTI]

    Pulfrey, David L.

    Requirement must be completed by end of 2nd year. Rev.05/11 #12;ADVISOR YEAR NAME OF STUDENT __________________________________ ___________________ (1) 20 Composition IV (Arts Research Requirement) 6 Note: In each year of the program, there must be at least one

  13. ** Attention 3rd Year Psychology Majors**

    E-Print Network [OSTI]

    Sherman, S. Murray

    ** Attention 3rd Year Psychology Majors** SUMMER RESEARCH SUPPORT Earl R. Franklin Research Fellowship Summer 2012 This research award will provide $3,000-$4,000 to support third year students majoring in Psychology to carry out psychological research during the summer before their fourth year. The stipend

  14. Final Year Project Report Supervisor: Dr. MWMak

    E-Print Network [OSTI]

    Mak, Man-Wai

    98/99 Final Year Project Report Supervisor: Dr. MWMak Co­examiner: Dr. Vincent Ng Student: Kwok Kin #12; 98/99 Final Year Project Report Internet Phone Abstract This project is to develop a software. #12; 98/99 Final Year Project Report Internet Phone Acknowledgments While I retrospect the time

  15. BA: Art History Fall--First Year

    E-Print Network [OSTI]

    Gering, Jon C.

    BA: Art History Fall--First Year · ART 127 New Major Seminar · ART 222 Caves to Cathedrals · Liberal Studies Program (LSP) coursework Fall--Second Year · ART 101 Art Studio Foundations I · ART 324 Renaissance Art · Liberal Studies Program (LSP) coursework Fall--Third Year · ART 328 Art of Greece & Rome

  16. BA: Art History Fall--First Year

    E-Print Network [OSTI]

    Gering, Jon C.

    · ART 3/4xx (Art History) · Elective(s) (advisor approval) and/or LSP coursework Fall--Fourth Year · ART(s) and/or LSP coursework Spring--Fourth Year · ART 437 Senior Thesis II OR ART 3/4xx (Art HistoryBA: Art History Fall--First Year · ART 127 New Major Seminar · ART 222 Caves to Cathedrals

  17. Marr's vision: 25 years on Andrew Glennerster

    E-Print Network [OSTI]

    Glennerster, Andrew

    Marr's vision: 25 years on Andrew Glennerster It is 25 years since the posthumous publication of David Marr's book on Vision [1]. Only 35 years old when he died, Marr had already dramatically that "Even if no single one of Marr's detailed hypotheses ultimately survives...[his] lifework will have been

  18. QUARTER Year 2: Understanding Civic Engagement Year 3: Developing Individual Scholarship

    E-Print Network [OSTI]

    Mills, Allen P.

    year, total is 14 units 2 units* of required UH core course + any UH electives not completed by 2nd *Note: 0 units if HNPG151 taken in 2nd year Required UH core courses (0) + any UH electives : 22 Units 2nd year entry cohort: 14 Units 3rd year entry cohort: 4 Units 4th year entry cohort: UH

  19. Fifth Year -29 Credits Cr FA SP Fourth Year 32 Credits Cr FA SP

    E-Print Network [OSTI]

    Fifth Year - 29 Credits Cr FA SP Fourth Year ­ 32 Credits Cr FA SP Students: Please note Engineering First Year - 31 Credits ­ (prereqs) CR FA SP Third Year - 32 Credits Cr FA SP 3B Arts _____________ _______________ 6 Second Year - 34 Credits Cr FA SP Rev 5/18/2012 Courses are planned to be first be offered: BIOM

  20. First Year SAMPLE FOUR YEAR SCHEDULE FOR POLITICS MAJOR FALL SPRING

    E-Print Network [OSTI]

    Galles, David

    FALL SPRING 1 1 2 2 3 3 4 4 Third Year FALL SPRING 1 1 2 2 3 3 4 4 Fourth Year FALL SPRING 1 1 2 2 3 3First Year SAMPLE FOUR YEAR SCHEDULE FOR POLITICS MAJOR FALL SPRING 1 1 2 2 3 3 4 4 Second Year

  1. FIRST YEAR-FALL HOURS FIRST YEAR-SPRING HOURS GT 1000 FRESHMAN SEMINAR* 1

    E-Print Network [OSTI]

    Gaucher, Eric

    ELECTIVE(S) 3 TOTAL SEMESTER HOURS 15 or 16 TOTAL SEMESTER HOURS 15 or 16 FOURTH YEAR-FALL HOURS FOURTHFIRST YEAR-FALL HOURS FIRST YEAR-SPRING HOURS GT 1000 FRESHMAN SEMINAR* 1 ENGL 1101 ENGLISH YEAR-FALL HOURS SECOND YEAR-SPRING HOURS BIOL 2335 ECOLOGY OR BIOL 2354 HONORS GENETICS 3 BIOL 2337

  2. Year in Industry Scheme The Year in Industry Scheme allows you to spend

    E-Print Network [OSTI]

    Haase, Markus

    Year in Industry Scheme The Year in Industry Scheme allows you to spend your third year in full whether or not to transfer to this scheme during your second year. To be allowed to make the transfer, you must do sufficiently well in your year 1 and 2 examinations; a typical grade average of at least 55

  3. 66 ieee power & energy magazine may/june 20131540-7977/13/$31.002013IEEE By Pablo Varas, Manuel Tironi,

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    of publication: 17 April 2013 ©artville,llC. H Hydroelectricity was, for many years, one of tHe main ways to meet of the larger plants worldwide and the high hydroelectric participation in all electricity matrices (figure 1 by these projects. while in the past, large-scale hydroelectricity was the successful response to higher electricity

  4. November, 2010 J. E. Cherry, International Arctic Research Center and Institute of Northern

    E-Print Network [OSTI]

    ;#12;TABLE OF CONTENTS 1. Introduction 1 2. A Description of the Hydroelectric Power Facilities in Southeast and Their Robustness 18 6. Discussion: Impacts of Climate Variability and Change on Existing and Future Hydroelectric). ABSTRACT: The useful lifespan of hydroelectric power infrastructure is 50 years or more; this is long

  5. Electronics - Key to Energy Control 

    E-Print Network [OSTI]

    Nelson, K. P.

    1981-01-01

    planned by 1985. The goal of this program is a 50% reduction in energy consumption when measured in terms of BTU'S consumed per square foot and BTU'S consumed per dollar of business. Taking 1973 as the base year, the reduction through 1980 is 38% with a 50...

  6. BACHELOR OF SCIENCE IN BIOLOGY (Suggested 4 Year Plan)

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    Credit hours per academic year 32-33 FOURTH YEAR, 1ST TERM CREDITS FOURTH YEAR, 2ND TERM CREDITS UpperBACHELOR OF SCIENCE IN BIOLOGY (Suggested 4 Year Plan) FIRST YEAR, 1ST TERM CREDITS FIRST YEAR, 2ND hours per academic year 30 SECOND YEAR, 1ST TERM CREDITS SECOND YEAR, 2ND TERM CREDITS BIOL 0203

  7. BACHELOR OF SCIENCE MATH EDUCATION (Suggested 4 Year Plan)

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    Credits Per Academic Year 32 FOURTH YEAR, 1ST TERM CREDITS FOURTH YEAR, 2ND TERM CREDITS EDUC 1307BACHELOR OF SCIENCE MATH EDUCATION (Suggested 4 Year Plan) FIRST YEAR, 1ST TERM CREDITS FIRST YEAR 19 Total Credits Per Academic Year 36 SECOND YEAR, 1ST TERM CREDITS SECOND YEAR, 2ND TERM CREDITS

  8. BACHELOR OF ARTS IN SOCIAL SCIENCES (Suggested 4 Year Plan

    E-Print Network [OSTI]

    Benos, Panayiotis "Takis"

    Academic Year 30 FOURTH YEAR, 1ST TERM CREDITS FOURTH YEAR, 2ND TERM CREDITS Major Elective 3 ANTH, ECONBACHELOR OF ARTS IN SOCIAL SCIENCES (Suggested 4 Year Plan FIRST YEAR, 1ST TERM CREDITS FIRST YEAR Term 15 Credits Per Term 15 Credits Per Academic Year 30 SECOND YEAR, 1ST TERM CREDITS SECOND YEAR, 2ND

  9. 1999 Commercial Building Characteristics--Detailed Tables--Year...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed > Detailed Tables-Year Constructed Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Year Constructed Table B8. Year Constructed, Number of Buildings...

  10. Webtrends Archives by Fiscal Year — EERE Totals

    Broader source: Energy.gov [DOE]

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  11. EMSL Fiscal Year 2008 Annual Report

    SciTech Connect (OSTI)

    Showalter, Mary Ann

    2009-01-23

    This annual report provides details on the research conducted at EMSL--the Environmental Molecular Sciences Laboratory in Fiscal Year 2008.

  12. Google Archives by Fiscal Year — Mobile Site

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profile for the Mobile site for fiscal year 2012-13.

  13. Webtrends Archives by Fiscal Year — WIP

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: WIP, Webtrends archives for the site, including EECBG, Solution Center, and Weatherization Assistance Program, by fiscal year.

  14. Webtrends Archives by Fiscal Year - Commercialization | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Webtrends Archives by Fiscal Year - Commercialization From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Commercialization site by...

  15. Webtrends Archives by Fiscal Year — Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Fuel Cell Technologies Office, Webtrends archives for the site, including the Annual Merit Review and DOE Hydrogen Program, by fiscal year.

  16. Google Archives by Fiscal Year — Earth Day

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profiles for the Earth Day site for fiscal year 2012-13.

  17. Google Archives by Fiscal Year — ERAC

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profile for the Efficiency and Renewables Advisory Committee site for fiscal year 2012-13.

  18. Google Archives by Fiscal Year — Information Center

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profiles for the Information Center site for fiscal year 2012.

  19. Google Archives by Fiscal Year — Multimedia Site

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Corporate sites, retired Google Analytics profile for the Multimedia site for fiscal years 2012-14.

  20. After 5 Years, NERSC's Franklin Retires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are some science highlights from five years in production: Refining and Designing Clean Coal Technology This is an image of predicted coal particle concentration in a coal gasifier...