Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

2

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

3

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

4

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

5

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

6

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

7

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

8

Sulfidation-oxidation of advanced metallic materials in simulated low-Btu coal-gasifier environments  

Science Journals Connector (OSTI)

The corrosion behavior of structural alloys in complex multicomponent gas environments is of considerable interest for their effective utilization in coal conversion schemes. Little understanding...

T. C. Tiearney Jr.; K. Natesan

1982-02-01T23:59:59.000Z

9

Year Average Transportation Cost of Coal  

Gasoline and Diesel Fuel Update (EIA)

delivered costs of coal, by year and primary transport mode Year Average Transportation Cost of Coal (Dollars per Ton) Average Delivered Cost of Coal (Dollars per Ton)...

10

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

11

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect (OSTI)

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

12

Classes of compounds responsible for mutagenic and cytotoxic activity in tars and oils formed during low BTU gasification of coal  

SciTech Connect (OSTI)

The Lovelace Inhalation Toxicology Research Institute (ITRI), in cooperation with the Morgantown Energy Technology Center (METC), has completed toxicity screening of vapors, liquids and solids formed during operation of an experimental pressurized, stirred-bed, coal gasifier at METC. Vapors collected from the cooled process stream on Tenax resins had no mutagenic activity in the Ames Salmonella assay. Dichloromethane extracts of liquids and solids collected from the effluent or process streams were fractionated by gel chromatography into fractions containing mostly aliphatic compounds; neutral polycyclic aromatic hydrocarbons (PAH); polar (PAH) and heterocyclic compounds; and salts. The polar fraction was partitioned into acids, bases, water soluble compounds and phenols. Bacterial mutagenic activity was highest in the basic fraction with additional activity in the neutral PAHs. Highest cytotoxicity toward both the bacteria and canine alveolar macrophages was in the phenolic fraction. Treatment of the gasifier tars by nitrosation or by acetylation to remove primary aromatic amines (PAA) reduced the bacterial mutagenicity by 50-60%, indicating that some, but not all, of the mutagenicity was due to PAA.

Henderson, R.F.; Bechtold, W.F.; Benson, J.M.; Newton, G.J.; Hanson, R.L.; Brooks, A.L.; Dutcher, J.S.; Royer, R.E.; Hobbs, C.H.

1986-04-01T23:59:59.000Z

13

EIA - Annual Energy Outlook 2008 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2008 with Projections to 2030 Coal Production Figure 93. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 94. U.S. coal production, 2006, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Western Coal Production Continues To Increase Through 2030 In the AEO2008 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 0.3 percent per year from 2006 to 2015, when total production is 24.5 quadrillion Btu. In the absence of restrictions on CO2 emissions, the growth in coal production

14

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

15

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

16

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

17

METC ceramic corrosion/erosion studies: turbine-material screening tests in high-temperature, low-Btu, coal-derived-gas combustion products  

SciTech Connect (OSTI)

The Morgantown Energy Technology Center, through its Ceramics Corrosion/Erosion Studies, has participated in the United States Department of Energy's High-Temperature Turbine Technology Program, Ceramic Technology Readiness. The program's overall objective is to advance the turbine firing temperature to a range of 2600/sup 0/ to 3000/sup 0/F (1700 to 1922K) with a reasonable service life using coal or coal-derived fuel. The Ceramics Corrosion/Erosion Studies' major objective was to conduct a screening test for several ceramic materials to assess their probability of survival in turbine applications. The materials were exposed to combustion products from low heating value coal-derived gas and air at several high temperatures and velocities. The combustion product composition and temperatures simulated actual environment that may be found in stationary power generating gas turbines except for the pressure levels. The results of approximately 1000 hours of accumulative exposure time of material at the specific test conditions are presented in this report.

Nakaishi, C.V.; Waltermire, D.M.; Hawkins, L.W.; Jarrett, T.L.

1982-05-01T23:59:59.000Z

18

Coal operators prepare for a prosperous new year  

SciTech Connect (OSTI)

Results are given of the Coal Age 2008 annual Forecast Survey of 17 coal mining executives which reinforces that 2008 could be a very good year. Coal operators are planning to invest in new equipment, development and new coal mine start-ups, based on a number of demand- and supply-side fundamentals. 71% of those surveyed thought coal production in 2008 would increase from 2007 levels and US exports are expected to climb due to the weak dollar. If the tax credit on synfuels expires on 31 December 2007 production of coal synfuel will likely cease. Asked about expensive planned purchases, companies answers ranged from $80,000 for an underground scoop to $500 m for a new mine installation. However, most producers admit they will not be able to operate at full capacity. 7 figs.

Fiscor, S.

2008-01-15T23:59:59.000Z

19

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

20

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start-up  

E-Print Network [OSTI]

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start approximately 370 million tons of coal reserves, Armstrong operates six active mines in Western Kentucky, along the U.S. Midwest and Southeast. Armstrong is fully committed to meeting strict environmental standards

Fisher, Kathleen

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

22

Prestigious Coal-Fired Project of the Year Award Goes to Plant  

Broader source: Energy.gov (indexed) [DOE]

Prestigious Coal-Fired Project of the Year Award Goes to Plant Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology December 16, 2010 - 12:00pm Addthis Washington, DC - An innovative project demonstrating DryFining™ technology, a more cost-effective way to control coal-based power plant emissions while improving fuel quality, has been named the 2010 Coal-Fired Project of the Year by the editors of Power Engineering magazine. The project, managed by the Office of Fossil Energy's National Energy Technology Laboratory, was developed with funding from the Department of Energy's Clean Coal Power Initiative and was originally implemented at Great River Energy's Coal Creek Station in Underwood, ND, in 2009. The

23

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

U.S. Coal Supply and Demand: 2010 Year in Review U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Introduction Coal production in the United States in 2010 increased to a level of 1,085.3 million short tons according to preliminary data from the U.S. Energy Information Administration (EIA), an increase of 1.0 percent, or 10.4 million short tons above the 2009 level of 1,074.9 million short tons (Table 1). In 2010 U.S. coal consumption increased in all sectors except commercial and institutional while total coal stocks fell slightly for the year. Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector increased by 7.1 percent. The commercial and

24

Sulfidation of coal gasifier heat exchanger alloys  

Science Journals Connector (OSTI)

Three steels, viz., INCOLOY* 800H, Fecralloy,† and AlSI 310, were exposed to a simulated low Btu coal gasifier product gas at 450 °C. Sulfidation...

S. R. J. Saunders; S. Schlierer

1986-03-01T23:59:59.000Z

25

Advanced Coal-Extraction-Systems Project: report of activities for fiscal year 1980-1981. [By coal field and basin  

SciTech Connect (OSTI)

The Advanced Coal Extraction Systems Project completed several major accomplishments in the definition of target resources, definition of conceptual design requirements for Central Appalachia coals, and initiation of the conceptual design effort. Geologically and economically significant resources were characterized, resulting in recommendations for additional target resources; conceptual design requirements for Central Appalachia coals in the areas of production cost, safety, health, environmental impact, and coal conservation were formulated; and strategies for internal and external design efforts were defined. In addition, an in-depth health and safety evaluation of a modified tunnel borer design for coal mining was completed. At the end of fiscal year 1980-1981, the project was prepared to begin evolution and evaluation of conceptual designs for advanced coal mining systems. The selection of Central Appalachia as the target region automatically imposes certain restrictions and constraints, pertinent to the geology, geography, and other aspects of the operating environment. Requirements imposed by the target resource are summarized. Figure 2-1 presents an overview of the relationship between the conceptual design requirements and the constraints imposed by the Central Appalachian target resource.

Dutzi, E.J.

1982-03-15T23:59:59.000Z

26

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

27

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

28

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

29

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

30

DOE-FE: 20th Year of University Coal Research Grants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 5, 1999 May 5, 1999 DOE Funds 20th Year of University Coal Grants Students, Teachers Team to Explore Greenhouse Gas Reduction, Coal Science and Technologies for Pollution Free Power Plant The U.S. Department of Energy announced today that 17 university-proposed projects will share in $2.8 million in federal coal research funds - marking the 20th year of a program that combines science education for students with research that can reveal cleaner and more effective ways to use the nation's plentiful coal reserves. The winning colleges and universities include: Arizona State University Brigham Young University Brown University Carnegie Mellon University Clarkson University Colorado School of Mines Georgia Institute of Technology Kansas State University Ohio University

31

Coal Power Systems strategic multi-year program plans  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Fossil Energy (FE), through the Coal and Power Systems (C and PS) program, funds research to advance the scientific knowledge needed to provide new and improved energy technologies; to eliminate any detrimental environmental effects of energy production and use; and to maintain US leadership in promoting the effective use of US power technologies on an international scale. Further, the C and PS program facilitates the effective deployment of these technologies to maximize their benefits to the Nation. The following Strategic Plan describes how the C and PS program intends to meet the challenges of the National Energy Strategy to: (1) enhance American's energy security; (2) improve the environmental acceptability of energy production and use; (3) increase the competitiveness and reliability of US energy systems; and (4) ensure a robust US energy future. It is a plan based on the consensus of experts and managers from FE's program offices and the National Energy Technology Laboratory (NETL).

None

2001-02-01T23:59:59.000Z

32

EIA - Annual Energy Outlook 2009 - Coal Production  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2009 with Projections to 2030 Coal Production Figure 78. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 79. U.S. coal production in four cases, 2007, 2015, and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 80. Average minemouth coal prices by regionCoal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. figure data Total Coal Production Increases at a Slower Rate Than in the Past In the AEO2009 reference case, increasing coal use for electricity generation at both new and existing plants and the startup of several CTL

33

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

34

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

35

Coal/biomass gasifier lab tests are a success  

Science Journals Connector (OSTI)

Coal/biomass gasifier lab tests are a success ... The process produces a medium-Btu gas from a mixture of coal, municipal solid waste, and dewatered sewage sludge. ...

1980-02-25T23:59:59.000Z

36

Analyses of tipple and delivered samples of coal collected during fiscal year 1985  

SciTech Connect (OSTI)

This Department of Energy (DOE) publication updates a series of Topical Reports (formerly ''Reports of Investigation'') on the quality of coal purchases under specifications for government use. Listed in alphabetical order by state, county, town, and mine are analytical data on the composition and quality of tipple and delivered samples of coal collected during the fiscal year 1985. Tipple samples were collected by certified commercial laboratories in accordance with instructions given by the Analytical Research Branch (ARB), Coal Science Division (CSD). The delivered samples were collected at destination by installation personnel, and all samples were analyzed under the supervision of the DOE-CSD located at the Pittsburgh Energy Technology Center (PETC), Pittsburgh, Pennsylvania, or the US Army General Material and Petroleum Activity Laboratory, located at New Cumberland, Pennsylvania.

Schultz, H.; Retcofsky, H.L.; Davis, L.R.

1988-01-01T23:59:59.000Z

37

International Energy Outlook 1999 - Coal  

Gasoline and Diesel Fuel Update (EIA)

coal.jpg (1776 bytes) coal.jpg (1776 bytes) CoalÂ’s share of world energy consumption falls slightly in the IEO99 forecast. Coal continues to dominate many national fuel markets in developing Asia, but it is projected to lose market share to natural gas in some other areas of the world. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1996. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union. In Western Europe, coal consumption declined by 30

38

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State 3. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 43. Average Quality of Coal Received at Manufacturing and Coke Plants by Census Division and State U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division and State 1 April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change New England Btu 13,323 13,196 13,391 13,253 13,339 -0.6 Sulfur 0.84 0.89 0.72 0.87 0.72 20.3 Ash 5.95 5.81 5.93 5.87 6.09 -3.6 Maine Btu w w w w w w Sulfur w w w w w w Ash w w w w w w Massachusetts Btu 13,503 13,570 13,592 13,535 13,516 0.1 Sulfur 0.78 0.78 0.75 0.78 0.73 7.7 Ash 5.89 5.55 5.66

39

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

40

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Energy Outlook 2000 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Although coal use is expected to be displaced by natural gas in some parts of the world, Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. Historically, trends in coal consumption have varied considerably by region. Despite declines in some regions, world coal consumption has increased from 84 quadrillion British thermal units (Btu) in 1985 to 93 quadrillion Btu in 1997. Regions that have seen increases in coal consumption include the United States, Japan, and developing Asia. Declines have occurred in Western Europe, Eastern Europe, and the countries of the former Soviet Union (FSU). In Western Europe, coal consumption declined by 33 percent between 1985 and 1997, displaced in considerable measure by

42

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

43

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

44

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

45

EIA - International Energy Outlook 2008-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2008 Chapter 4 - Coal In the IEO2008 reference case, world coal consumption increases by 65 percent and international coal trade increases by 53 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2005 to 29 percent in 2030. Figure 46. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 47. Coal Share of World Energy Consumption by Sector, 2005, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 48. OECD Coal Consumption by Region, 1980, 2005, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

46

EIA - International Energy Outlook 2007 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2007 Chapter 5 - Coal In the IEO2007 reference case, world coal consumption increases by 74 percent from 2004 to 2030, international coal trade increases by 44 percent from 2005 to 2030, and coalÂ’s share of world energy consumption increases from 26 percent in 2004 to 28 percent in 2030. Figure 54. World Coal Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy at 202-586-8800. Figure Data Figure 55. Coal Share of World Energy Consumption by Sector, 2004, 2015, and 2030 (Percent). Need help, contact the National Energy at 202-586-8800. Figure Data In the IEO2007 reference case, world coal consumption increases by 74 percent over the projection period, from 114.4 quadrillion Btu in 2004 to

47

Multi-parameter on-line coal bulk analysis  

SciTech Connect (OSTI)

This was a four-year grant that was given a no cost extension for one more year. The purpose of the grant was to develop a pulsed neutron-based technique that could measure on-line all the major and minor elements in coal. Such measurements would allow the continuous monitoring of bulk parameters such as coal heating value (BTU/lb), volatile matter, moisture etc., deemed important to the coal industry. Such parameters, along with the continuous measurement of elements such as sulfur and sodium, are of major economic and environmental concern, and their measurement would assist in a more efficient use of the coal-fired boilers, as well as limiting emissions controlled by the 1990 Clean Air Act Amendments. It was hoped that this study would lead to the development of a technique able to create a marketable product, an On-Line Elemental Coal Analyzer. The study was separated in the following major parts: (1) Devise an efficient system for the detection of gamma rays; (2) Prior to experimentation, perform modeling and simulations for items such as detector shielding, coal sample configuration, and neutron tube collimation; (3) Develop a computer code for data reduction and analysis; (4) Measure the elemental composition of various coal samples; and (5) Design a prototype, on-line elemental coal analyzer, based on the PFTNA principle.

NONE

1999-02-01T23:59:59.000Z

48

Appalachian coal miner mortality study: a 14-year follow-up  

SciTech Connect (OSTI)

From 1963 to 1965, the U.S. Public Health Service examined 3,726 underground Appalachian bituminous coal miners who were living in 1962. Their vital status was verified on January 1, 1973 (10 years of follow-up) and again on January 1, 1976 (14 years of follow-up). Mortality was studied after 10 years and results were published by Ortmeyer (1974) and Costello (1974, 1975). The results of a study of the mortality after 14 years are the subject of this report. The cause of death was determined from the underlying cause recorded on the death certificate. Death from all causes, ischemic heart disease, non-malignant respiratory disease (NMRD), cancer of the trachea, bronchus, and lung, digestive cancer, and accidents were studied.

Amandus, H.

1982-06-08T23:59:59.000Z

49

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect (OSTI)

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

50

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect (OSTI)

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

51

EIA - International Energy Outlook 2009-Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2009 Chapter 4 - Coal In the IEO2009 reference case, world coal consumption increases by 49 percent from 2006 to 2030, and coalÂ’s share of world energy consumption increases from 27 percent in 2006 to 28 percent in 2030. Figure 42. World Coal Consumption by Country Grouping, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 43. Coal Share of World Energy Consumption by Sector, 2006, 2015, and 2030 (Percent). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 44. OECD Coal Consumption by Region, 1980, 2006, 2015, and 2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

52

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

53

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

54

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

55

Forecast of Advanced Technology for Coal Power Generation Towards the Year of 2050 in CO2 Reduction Model of Japan  

Science Journals Connector (OSTI)

Abstract In the fossil fuel, coal is enough to get easily because it has supply and price stability brought about its ubiquitously. Coal is used for power generation as the major fuel in the world. However it is true that control of global warming should be applied to coal power generations. Therefore, many people expect CO2 reduction by technical innovation such as efficiency improvement, Carbon dioxide Capture and Storage (CCS). In case of coal power plant are considered for improving efficiency. Some of them have already put into commercial operation but others are still under R&D stage. Especially, the technical development prospect of the power plant is very important for planning the energy strategy in the resource-importing country. Japan Coal Energy Center (JCOAL) constructed a program to forecast the share of advanced coal fired plants/natural gas power plants towards the year of 2050. Then, we simulated the future prediction about 2 cases (the Japanese scenario and the world scenario). The fuel price and the existence of CCS were considered in the forecast of the technical development of the thermal power generation. Especially in the Japanese scenario, we considered the CO2 reduction target which is 80% reduction in 1990. In the world scenario, coal price had almost no influence on the share of coal fired plant. However, when the gas price increased 1.5% or more, the share of coal fired plant increased. In that case, CO2 emissions increased because coal-fired plant increased. Compared with both cases, the amount of CO2 in 2050 without CCS case was 50% higher than that of with CCS case. In Japanese scenario, achievement of 80% CO2 reduction target is impossible without CCS. If CCS is introduced into all the new establishment coal fired plant, CO2 reduction target can be attained. In the Japanese scenario, the gas price more expensive than a coal price so that the amount of the coal fired plant does not decline. Since the reduction of the amount of CO2 will be needed in all over the world, introductory promotion and technical development of CCS are very important not only Japan but also all over the world.

Takashi Nakamura; Keiji Makino; Kunihiko Shibata; Michiaki Harada

2013-01-01T23:59:59.000Z

56

U.S. Coal Supply and Demand: 2010 Year in Review - Energy Information...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Coal consumption in the electric power sector in 2010 was higher by 4.5 percent, while coking coal consumption increased by 37.9 percent and the other industrial sector...

57

The Hobbling of Coal: Policy and Regulatory Uncertainties  

Science Journals Connector (OSTI)

...use coal and that, after 1 January 1990, gas use...arid then providing tax rebates equal to the amount of...reduction that is set at $1.05 in 1979, falls to...Those us-ing less than 500 billion Btu would be ex-empt...larger users and those using 1.5 trillion Btu or more...

Richard L. Gordon

1978-04-14T23:59:59.000Z

58

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State 4. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 44. Average Quality of Coal Received at Commercial and Institutional Users by Census Division and State U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Census Division and State 1 April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Middle Atlantic Btu 12,906 12,815 11,709 12,844 12,440 3.2 Sulfur 1.03 0.92 0.99 0.96 0.97 -1.0 Ash 8.94 8.62 10.00 8.72 9.11 -4.3 Pennsylvania Btu 12,906 12,815 11,709 12,844 12,440 3.2 Sulfur 1.03 0.92 0.99 0.96 0.97 -1.0 Ash 8.94 8.62 10.00 8.72 9.11 -4.3 East North Central

59

Coal geology of the U.S. Gulf Coastal region  

SciTech Connect (OSTI)

The US Geological Survey (USGS) is conducting a comprehensive assessment of the major coal regions of the country. In this program, known as the National Coal Resource Assessment, the quantity and quality of coals that are expected to be mined during the next 30 years will be characterized. For the Gulf Coast region, the evaluation will include reviews of the stratigraphic setting, resource potential, and the quality of the lignites in four coal-producing areas. These areas are: the Sabine Uplift (including parts of Texas and Louisiana), Northeast Texas, Central Texas, and South Texas. The results of these efforts will be a series of digital Geographic Information System (GIS) maps, text, and tables that will be published in a CD-ROM format. These products, along with a national summary CD-ROM, are expected to be completed in 1999. This paper is to present a review of Gulf Coast coal geology and to outline the USGS assessment efforts for the Gulf Coast region. Most coal in the Gulf Coast area is produced from the Paleocene Wilcox Group, and minor amounts of coal are produced from the Ecocene Jackson and Claiborne Groups. Initial results indicate that for coals being mined in the Sabine Uplift, Northeast, and Central Texas areas mean moisture values are about 34%, mean ash yields range from 12 to 15%, and mean calorific values range from about 5,800 to 6,900 Btu/lb (all data are on an as-received basis). Detailed bed and zone analysis in all areas indicate that resource figures will be greater than previous estimates that have usually combined multiple coal horizons to estimate cumulative coal thicknesses for a formation. Ongoing research in the Sabine Uplift and Northeast study areas suggests that coal zones in both the upper and lower Wilcox may be more laterally extensive than previous studies indicate.

Warwick, P.D.; Aubourg, C.E.; Crowley, S.S. [and others

1999-07-01T23:59:59.000Z

60

Coal consumption | OpenEI  

Open Energy Info (EERE)

consumption consumption Dataset Summary Description Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords coal Coal consumption EIA world Data text/csv icon total_coal_consumption_1980_2009quadrillion_btu.csv (csv, 38.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of Gas Turbine Combustors for Low BTU Gas  

Science Journals Connector (OSTI)

Large-capacity combined cycles with high-temperature gas turbines burning petroleum fuel or LNG have already ... the other hand, as the power generation technology utilizing coal burning the coal gasification com...

I. Fukue; S. Mandai; M. Inada

1992-01-01T23:59:59.000Z

62

Imminence of peak in US coal production and overestimation of reserves  

E-Print Network [OSTI]

. The estimated energy ultimate recoverable reserves (URR) from the logistic model is 2750 quadrillion BTU (2900, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 reported coal reserves of any nation, containing approximately 28% of the world

Khare, Sanjay V.

63

Forecast of Advanced Technology Adoption for Coal Fired Power Generation Towards the Year of 2050  

Science Journals Connector (OSTI)

The considered systems of coal fired power generation are Supercritical Unit, Ultra Supercritical Unit, ... . In order to compare with the natural gas case, Natural Gas Combined Cycle (NGCC) is included. Evaluati...

Keiji Makino

2013-01-01T23:59:59.000Z

64

Opportunities for coal to methanol conversion  

SciTech Connect (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

65

Gasifier feed: Tailor-made from Illinois coals. Final technical report, September 1, 1991--December 31, 1992  

SciTech Connect (OSTI)

The main purpose of this project was to produce a feedstock from preparation plant fines from an Illinois (IL) coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high-sulfur content and high-Btu value of IL coals are Particularly advantageous in such a gasifier; preliminary-calculations indicate that the increased cost of removing sulfur from the gas from a high-sulfur coal is more than offset b the increased revenue from the sale of the elemental sulfur; additionally the high-Btu IL coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is--higher not only because of the hither Btu value of the coal but also because IL coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for IL coal as compared to approximately 45% for most western coals. During the contract extension, additional coal testing was completed confirming the fact that coal concentrates can be made from plant waste under a variety of flotation conditions 33 tests were conducted, yielding an average of 13326 Btu with 9.6% ash while recovering 86.0%-Of the energy value.

Ehrlinger, H.P. III [Illinois State Geological Survey, Champaign, IL (United States); Lytle, J.M.; Frost, R.R.; Lizzio, A.A.; Kohlenberger, L.B.; Brewer, K.K. [Illinois State Geological Survey, Champaign, IL (United States)]|[DESTEC Energy (United States)]|[Williams Technologies, Inc. (United States)]|[Illinois Coal Association (United States)

1992-12-31T23:59:59.000Z

66

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

67

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

68

Coal gasification power generation, and product market study. Topical report, March 1, 1995--March 31, 1996  

SciTech Connect (OSTI)

This Western Research Institute (WRI) project was part of a WRI Energy Resource Utilization Program to stimulate pilot-scale improved technologies projects to add value to coal resources in the Rocky Mountain region. The intent of this program is to assess the application potential of emerging technologies to western resources. The focus of this project is on a coal resource near the Wyoming/Colorado border, in Colorado. Energy Fuels Corporation/Kerr Coal Company operates a coal mine in Jackson County, Colorado. The coal produces 10,500 Btu/lb and has very low sulfur and ash contents. Kerr Coal Company is seeking advanced technology for alternate uses for this coal. This project was to have included a significant cost-share from the Kerr Coal Company ownership for a market survey of potential products and technical alternatives to be studied in the Rocky Mountain Region. The Energy Fuels Corporation/Kerr Coal Company and WRI originally proposed this work on a cost reimbursable basis. The total cost of the project was priced at $117,035. The Kerr Coal Company had scheduled at least $60,000.00 to be spent on market research for the project that never developed because of product market changes for the company. WRI and Kerr explored potential markets and new technologies for this resource. The first phase of this project as a preliminary study had studied fuel and nonfuel technical alternatives. Through related projects conducted at WRI, resource utilization was studied to find high-value materials that can be targeted for fuel and nonfuel use and eventually include other low-sulfur coals in the Rocky Mountain region. The six-month project work was spread over about a three-year period to observe, measure, and confirm over time-any trends in technology development that would lead to economic benefits in northern Colorado and southern Wyoming from coal gasification and power generation.

Sheesley, D.; King, S.B.

1998-12-31T23:59:59.000Z

69

Small boiler uses waste coal  

SciTech Connect (OSTI)

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

70

Compilation of data on strippable Fort Union coals in the northern Rocky Mountains and Great Plains region: A CD-ROM presentation  

SciTech Connect (OSTI)

The Fort Union Formation and equivalent formations of Paleocene age in the northern Rocky Mountains and Great Plains region contain 14 strippable coals that yielded more than 30 percent of the 1.03 billion short tons produced in the United States in 1996. These thick, low contaminant, compliant coals, which are utilized by electric power plants in 28 States, are being assessed by the US Geological Survey. The minable coals occur in the Powder River Basin in Wyoming and Montana, Hanna, Carbon and Greater Green River Basins in Wyoming, and Williston Basin in North Dakota. Production during the past 25 years of thick, high quality Fort Union and equivalent coal beds and zones in the region increased from 40 to more than 340 million short tons. The Powder River Basin is projected to produce 416 million short tons of coal in 2015. Major production in the Powder River Basin is from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal deposits. Producing Fort Union coals in the Williston Basin include the Beulah-Zap, Hagel, and Harmon coal deposits. Producing Fort Union coals in the Greater Green River Basin are in five beds of the Deadman coal zone. Coal production in the Hanna Basin is from eight beds in the Ferris and Hanna Formations. Coals in the Powder River Basin and Williston Basin contain much less sulfur and ash than coals produced in other regions in the conterminous US. When sulfur values are compared as pounds of SO{sub 2} per million Btu (as received basis), Powder River Basin and Williston Basin coals have the lowest amounts of any coals in the conterminous US.

Flores, R.M.; Bader, L.R.; Cavaroc, V.V. [Geological Survey, Denver, CO (United States)] [and others

1998-04-01T23:59:59.000Z

71

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,024...

72

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,016...

73

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,029...

74

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,022...

75

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,037...

76

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,028...

77

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,034...

78

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,018...

79

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012...

80

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,046...

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal Gasification Report.indb  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Booz Allen Hamilton Booz Allen Hamilton Final Report, September 3, 2004 list of acronyms List of Acronyms AEO Annual Energy Outlook ASU Air Separation Unit BACT Best Available Control Technology BTU British Thermal Unit CCPI Clean Coal Power Initiative CFB Circulating Fluidized Bed CO Carbon Monoxide CO 2 Carbon Dioxide COE Cost of Electricity Co-Op Co-Operative CRS Congressional Research Service DG Distributed Generation

82

Industrial coking of coal batch without bituminous coal  

Science Journals Connector (OSTI)

For many years, Kuznetsk-coal batch has always included bituminous coal. Depending on the content of such coal, the batch may be characterized as lean ... classification was adopted by specialists of the Eastern

P. V. Shtark; Yu. V. Stepanov; N. K. Popova; D. A. Koshkarov…

2008-03-01T23:59:59.000Z

83

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

84

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

85

Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

2012-04-30T23:59:59.000Z

86

Coal Market Module This  

Gasoline and Diesel Fuel Update (EIA)

51 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2012, DOE/EIA-M060(2012) (Washington, DC, 2012). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

87

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 153 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2011, DOE/EIA-M060(2011) (Washington, DC, 2011). Key assumptions Coal production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty-one separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations

88

EIA -Quarterly Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Distribution Coal Distribution Home > Coal> Quarterly Coal Distribution Back Issues Quarterly Coal Distribution Archives Release Date: June 27, 2013 Next Release Date: September 2013 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf October-December pdf xls pdf 2010 January-March pdf xls pdf xls April-June pdf xls pdf xls July-September pdf xls pdf xls

89

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

90

Chemical-looping combustion of Victorian brown coal.  

E-Print Network [OSTI]

??Victoria has over 500 years of brown coal resources at present consumption rate. Current utilization of brown coal through conventional pulverized coal-fired power generation results… (more)

Saha, Chiranjib

2012-01-01T23:59:59.000Z

91

STEO November 2012 - coal supplies  

U.S. Energy Information Administration (EIA) Indexed Site

Despite drop in domestic coal production, U.S. coal exports to reach Despite drop in domestic coal production, U.S. coal exports to reach record high in 2012. While U.S. coal production is down 7 percent this year due in part to utilities switching to low-priced natural gas to generate electricity, American coal is still finding plenty of buyers in overseas markets. U.S. coal exports are expected to hit a record 125 million tons in 2012, the U.S. Energy Information Administration says in its new monthly short-term energy outlook. Coal exports are expected to decline in 2013, primarily because of continuing economic weakness in Europe, lower international coal prices, and higher coal production in Asia. However, U.S. coal exports next year are still expected to top 100 million tons for the third year in a row

92

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network [OSTI]

in the Czech setting, where coal is still com- monly used inwe found exposure to coal home heating and ETS increasewell studied, residential coal combustion in economically

2006-01-01T23:59:59.000Z

93

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

1990-08-15T23:59:59.000Z

94

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

95

MS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

96

Savannah River Site Retires Coal-Fired D-Area Powerhouse after Nearly 60 Years of Service  

Broader source: Energy.gov [DOE]

AIKEN, S.C. – The Savannah River Site (SRS) has shut down the massive, coal-powered D-Area powerhouse as the site turns to new, clean and highly efficient power generation technology.

97

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

98

Coal Gasification  

Broader source: Energy.gov [DOE]

DOE's Office of Fossil Energy supports activities to advance coal-to-hydrogen technologies, specifically via the process of coal gasification with sequestration. DOE anticipates that coal...

99

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033...

100

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038...

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005...

102

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043...

103

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025...

104

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053...

105

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001...

106

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031...

107

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033...

108

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029...

109

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

110

High-pressure coal fuel processor development  

SciTech Connect (OSTI)

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

111

coking coal  

Science Journals Connector (OSTI)

coking coal [A caking coal suitable for the production of coke for metallurgical use] ? Kokskohle f, verkokbare Kohle

2014-08-01T23:59:59.000Z

112

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31T23:59:59.000Z

113

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

114

Gasifier feed: Tailor-made from Illinois coals. Interim final technical report, September 1, 1991--August 31, 1992  

SciTech Connect (OSTI)

The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. The Btu is higher not only because of the higher Btu value of the coal but also because Illinois coal requires less water to produce a pumpable slurry than western coal, i.e., as little as 30--35% water may be used for Illinois coal as compared to approximately 45% for most western coals. Destec Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technologies, Inc., will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handleability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals.

Ehrlinger, H.P. III; Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. [Illinois State Geological Survey, Champaign, IL (United States)

1992-12-31T23:59:59.000Z

115

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

116

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

117

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

118

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

119

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

120

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Weekly Coal Production by State  

U.S. Energy Information Administration (EIA) Indexed Site

Weekly Coal Production Weekly Coal Production Data for week ended: December 14, 2013 | Release date: December 19, 2013 | Next release date: December 30, 2013 For the week ended December 14, 2013: U.S. coal production totaled approximately 18.9 million short tons (mmst) This production estimate is 3.1% higher than last week's estimate and 2.9% lower than the production estimate in the comparable week in 2012 Coal production east of the Mississippi River totaled 8.2 mmst Coal production west of the Mississippi River totaled 10.8 mmst U.S. year-to-date coal production totaled 957.1 mmst, 1.9% lower than the comparable year-to-date coal production in 2012 EIA revises its weekly estimates of state-level coal production using Mine Safety and Health Administration (MSHA) quarterly coal production data.

122

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

123

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

124

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

125

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

126

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect (OSTI)

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

127

A case history of a fixed bed, coal-derived oil hydrotreater  

Science Journals Connector (OSTI)

With the apparent shrinkage in the worldwide supply of liquid hydrocarbon fuels, upgrading of coal-derived liquids to synthetic crude oils will eventually emerge as a commercial entity. Although the Char-Oil-Energy Development (COED) Project has been shelved in the short term, information about the reaction engineering of the upgrading of coal-derived liquids by hydrotreatment in the COED Process should be relevant to upgrading technologies for other coal liquefaction processes. The COED Process was developed by FMC Corporation and the Office of Coal Research (now DOE) in the late 1960's and early 1970's. The process produced a synthetic crude oil, medium Btu gas and char by multi-stage, fluidized bed pyrolysis of coal. The raw coal-tar produced by pyrolysis was upgraded to synthetic crude oil by catalytic, fixed-bed hydrotreatment. Raw coal-tar has different properties from petroleum-derived oils, and upgrading by hydrotreatment is not an off-the-shelf technology. A 30 barrel per day fixed-bed hydrotreater was constructed and operated at the COED pilot plant site. The pilot plant hydrotreater design was based on conventional petroleum residua hydrotreatment technology together with bench-scale hydrotreatment tests performed by ARCO in the 1960's utilizing coal-tars produced in a process development unit. The pilot plant hydrotreater did operate for about four years providing valuable information about the reaction engineering of the hydrotreatment process as well as providing numerous samples for applications studies performed by other DOE contractors and interested potential users of the COED syncrude. Of note, 50,000 gallons of COED syncrude were supplied to the U.S. Naval Ship Engineering Center for shipboard testing in the boilers of the U.S.S. Johnston on November 15–16th, 1973. This paper deals with the reaction engineering of the guard chamber and fixed-bed hydrotreatment reactors at the COED facility. Of major importance is the study of the role of the feedstock (pyrolysis coal-tar) properties and their effects on the catalysts utilized in the reactors. A working kinetic model has been derived that could allow a designer to optimize a particular set of design parameters and a plant operator to determine catalyst life. A quantitative comparison has been made of the effect of metals content of coal-derived oils and petroleum resids on catalyst deactivation.

Marvin I. Greene

1981-01-01T23:59:59.000Z

128

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending £120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board £680,000 and ... coal utilization. The Gas Council is spending about £230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

129

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

130

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

current Coal Distribution Report current Coal Distribution Report Annual Coal Distribution Report Release Date: November 7, 2012 | Next Release Date: November 2013 | full report Archive Domestic coal distribution by origin State, destination State, consumer category, method of transportation; foreign coal distribution by major coal-exporting state and method of transportation; and domestic and foreign coal distribution by origin state. Year Domestic and foreign distribution of U.S. coal by State of origin Foreign distribution of U.S. coal by major coal-exporting States and destination Domestic distribution of U.S. coal by origin State, consumer, destination and method of transportation1 Domestic distribution of U.S. coal by destination State, consumer, destination and method of transportation1

131

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

132

Coal-to-liquids bill introduced in the Senate  

SciTech Connect (OSTI)

Of immense importance to the coal industry is the announcement, on 7 June 2006 by US Senators Barack Obama (D-IL) and Jim Bunning (R-KY) of S.3325, the 'Coal-to-Liquid Fund Promotion Act of 2006'. This legislation creates tax incentives for coal-to-liquids (CTL) technologies and construction of CTL plants. If passed, this will create the infrastructure needed to make CTL a viable energy resource throughout America. The article gives comment and background to this proposed legislation. Illinois Basin coal is well suited for CTL because of its high Btu content. If Sasol constructs a proposed plant in Illinois it would increase coal production in the state by 10 mt. 1 fig.

Buchsbaum, L.

2006-06-15T23:59:59.000Z

133

4 - Coal resources and reserves  

Science Journals Connector (OSTI)

Abstract: Coal resources still make up a significant proportion of the world’s energy supplies. Coal resources are estimated to be 860 billion tonnes. These resources are geographically well distributed and current production provides fuel for 29% of the world’s primary energy consumption. The classification of coal resources and reserves has been redefined in recent years, with the standards and codes of practice adopted by the principal coal-producing countries being equated on a global basis. Details of the principal classifications are given, together with their international equivalents. Reporting of resources and reserves plus methods of calculation are also given, together with recent assessments of global coal reserves.

L.P. Thomas

2013-01-01T23:59:59.000Z

134

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

also be affected by higher coal prices. II "Current Factors$/year Change in Clean Coal Price, $/ton (FOB Plant) Cost ofcoal production capacities and coal prices. Coal Production

Ferrell, G.C.

2010-01-01T23:59:59.000Z

135

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

136

Report of Shelton wood-coal firing tests conducted March 16-April 2, 1980  

SciTech Connect (OSTI)

Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood and coal combinations were tested at representative steam rates while boiler performance, gaseous and particulate emissions were measured. Wood contributed up to 50% of the Btu requirements of the boilers during the tests. The Quinault-Pacific system will permit selected green mill residues to be used in place of coal at the rate of 2.5 tons of wood per ton of coal. Green wood and coal are compatible fuels. Heat provided by the coal and other combustion effects are enough to offset the effects of moisture in green wood and in some cases improve boiler performance. The combined firing of wood with coal at typical steam rates results in better flyash collection, lower emissions, improved opacity, better cinder recovery and lower steam costs.

Not Available

1980-05-09T23:59:59.000Z

137

EIA - AEO2010 - Coal projections  

Gasoline and Diesel Fuel Update (EIA)

Coal Projections Coal Projections Annual Energy Outlook 2010 with Projections to 2035 Coal Projections Figure 88. Coal production by region, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 89. U.S. coal production in six cases, 2008, 2020, and 2035 Click to enlarge » Figure source and data excel logo Figure 90. Average annual minemouth coal prices by region, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 91. Average annual delivered coal prices in four cases, 1990-2035 Click to enlarge » Figure source and data excel logo Figure 92. Change in U.S. coal consumption by end use in two cases, 2008-2035 Click to enlarge » Figure source and data excel logo Coal production increases at a slower rate than in the past In the AEO2010 Reference case, increasing coal use for electricity generation, along with the startup of several CTL plants, leads to growth in coal production averaging 0.2 percent per year from 2008 to 2035. This is significantly less than the 0.9-percent average growth rate for U.S. coal production from 1980 to 2008.

138

YEAR  

National Nuclear Security Administration (NNSA)

96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

139

Method for producing and treating coal gases  

DOE Patents [OSTI]

A method of generating a de-sulphurized volatile matter and a relatively low Btu gas includes the initial step of pyrolyzing coal to produce volatile matter and a char. The volatile matter is fed to a first de-sulphurizer containing a de-sulphurizing agent to remove sulphur therefrom. At the same time, the char is gasified to produce a relatively low Btu gas. The low Btu gas is fed to a second de-sulphurizer containing the de-sulphurizing agent to remove sulphur therefrom. A regenerator is provided for removing sulphur from the de-sulphurizing agent. Portions of the de-sulphurizing agent are moved among the first de-sulphurizer, the second de-sulphurizer, and the regenerator such that the regenerator regenerates the de-sulphurizing agent. Preferably, the portions of the de-sulphurizing agent are moved from the second de-sulphurizer to the first de-sulphurizer, from the first de-sulphurizer to the regenerator, and from the regenerator to the second de-sulphurizer.

Calderon, Albert (P.O. Box 126, Bowling Green, OH 43402)

1990-01-01T23:59:59.000Z

140

Assumptions to the Annual Energy Outlook 1999 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

coal.gif (4423 bytes) coal.gif (4423 bytes) The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Model Documentation: Coal Market Module of the National Energy Modeling System, DOE/EIA-MO60. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

142

High-pressure coal fuel processor development  

SciTech Connect (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

143

Coal home heating and environmental tobacco smoke in relation to lower respiratory illness in Czech children, from birth to 3 years of age  

E-Print Network [OSTI]

electricity, natural gas, or propane) were not associatedcoal, wood, natural gas, and propane for heating or cooking.fuel used for cooking Gas Propane Electricity Coal Wood

2006-01-01T23:59:59.000Z

144

Coal Survey Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

Survey FAQ Survey FAQ Available FAQ: Q. Whom do I contact if I need assistance completing a survey form? Q. Whom do I contact if I require assistance with the registration process, log-in process, instructions pertaining to JavaScript or cookies? Q. What unit of measurement should be used to calculate Btu? Q. How do I update the information that appears under Item I on IDC? Q. Under "Item II: Coal Receipts, Consumption and Stocks," can a value be negative? Q. How do I convert between short tons and metric tons? Vice Versa. Q. How do I convert between pounds to short tons? Vice Versa. Q. How do I correct a mistake on the Survey Form once I have submitted the data? Q. How do I log in if forgot my password? Q. If I accidently deleted the registration letters, how can I get my Mail ID and Code?

145

Definition: Coal | Open Energy Information  

Open Energy Info (EERE)

Coal Coal Jump to: navigation, search Dictionary.png Coal A combustible black or brownish-black sedimentary rock composed mostly of carbon and hydrocarbons. It is formed from plant remains that have been compacted, hardened, chemically altered, and metamorphosed by heat and pressure over geologic time (typically millions of years). It is the most abundant fossil fuel produced in the United States.[1][2] View on Wikipedia Wikipedia Definition Coal (from the Old English term col, which has meant "mineral of fossilized carbon" since the 13th century) is a combustible black or brownish-black sedimentary rock usually occurring in rock strata in layers or veins called coal beds or coal seams. The harder forms, such as anthracite coal, can be regarded as metamorphic rock because of later

146

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

147

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

148

Washability of trace elements in product coals from Illinois mines. Technical report, September 1--November 30, 1993  

SciTech Connect (OSTI)

The existing trace element washability data on Illinois coals are based on float-sink methods, and these data are not applicable to modern froth flotation or column flotation processes. Particularly, there is a lack of washability data on samples from modern preparation plants, as well as other product (as-shipped) coals. The goal of this project is to provide the needed trace element washability data on as-shipped coals that were collected during 1992--1993 from Illinois mines. The results generated by this project will promote Illinois coals for such prospective new markets as feed materials for advanced gasification processes, for synthetic organic chemicals, and to meet new environmental requirements for their use in utility steam generation. During the first quarter, each of 34 project samples were ground to about {approximately}100 mesh size and cleaned by use of a special froth flotation technique (release analysis). The flotation products were analyzed for ash, moisture, and heating value (BTU). The data were then used to construct a series of different-washability curves. For example, these curves can show variation in BTU or combustible recovery as a function of the amount of ash or S rejected, or as a function of the weight of the flotation products. From the relationship between %cumulative BTU and %cumulative weight, nine composite samples each having 80% of the total BTU were prepared from the individual flotation products and submitted for trace element analysis.

Demir, I.; Ruch, R.R.; Harvey, R.D.; Steele, J.D. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey

1993-12-31T23:59:59.000Z

149

Coal and the Present Energy Situation  

Science Journals Connector (OSTI)

...heating value. High-Btu gas, commonly...substitute natural gas (SNG...ago, when natural gas was cheap and...cubic foot. High-Btu Gas...developed a high-pressure, stirred...low-Btu gas (14). A...

Elburt F. Osborn

1974-02-08T23:59:59.000Z

150

The US coal industry 1996  

SciTech Connect (OSTI)

Several years ago a friend and former classmate, Dr. Doug Dahl, put the coal industry into perspective. At that time he worked for Consol, whose parent company was DuPont. I will use his story, but update it with today`s statistics. As can be seen in Figure 1, total US coal production continues to show healthy growth. In 1995 we produced 1,032,000,000 tons, and 1,046,000,000 tons are projected for 1996. Unfortunately as seen in Figure 2, the average price per ton of coal sold is still dropping. The coal industry is experiencing the unusual situation of falling coal prices with increasing coal demand! In 1994 (1995 data not available) the average price for a ton of coal was only $19.41. Multiplying the two numbers, yields the total sales value for our entire industry, $20.1 billion in 1994. That`s roughly half the approximately $40 billion per year sales value for a single chemical company, DuPont, Dr. Dahl`s parent company. As Dr. Dahl pointed out, the coal industry just isn`t that big. As we can see in Figure 3, the yearly trends show that the total value of the US coal production is shrinking. The total value has fallen through the 90`s and follows the average price per ton trend. Even increases in production have generally not been enough to offset the falling prices.

Campbell, J.A.L. [Custom Coals International, Inc., Oklahoma City, OK (United States)

1996-12-31T23:59:59.000Z

151

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

152

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

153

YEAR  

National Nuclear Security Administration (NNSA)

2540 YEAR 2013 Males 1677 Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV...

154

FE Clean Coal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2011 5, 2011 Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems. January 4, 2011 DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy supported project. December 16, 2010 Prestigious Coal-Fired Project of the Year Award Goes to Plant Demonstrating Innovative DOE-Funded Technology

155

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

156

Effects on Design and Operation of Coal-Fired Utility Boilers with Changes of Coal Qualities  

Science Journals Connector (OSTI)

In recent years, with the development of economic, large-scale coal-fired utility power plants got a rapid ... the situation for the transportation and supply of coal for power plants is still in tense. The actua...

Cao Yu-chun; Wang Zheng-wei

2013-01-01T23:59:59.000Z

157

Assumptions to the Annual Energy Outlook 2001 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2001, DOE/EIA-M060(2001) January 2001. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

158

Assumptions to the Annual Energy Outlook 2002 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2002, DOE/EIA-M060(2002) (Washington, DC, January 2002). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves

159

COAL & POWER SYSTEMS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

160

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

YEAR  

National Nuclear Security Administration (NNSA)

1 1 YEAR 2011 Males 18 Females 23 YEAR 2011 SES 2 EJ/EK 2 NQ (Prof/Tech/Admin) 35 NU (Tech/Admin Support) 2 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 9 Asian Male 0 Asian Female 0 Hispanic Male 2 Hispanic Female 6 White Male 12 White Female 6 DIVERSITY Workforce Diversity Associate Administrator for Information Management & Chief Information Officer, NA-IM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 18 43.9% 23 56.1% Gender Males Females 4.9% 4.9% 85.4% 4.9% Pay Plan SES EJ/EK NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 2.4% 4.9% 7.3% 22.0% 0.0% 0.0% 4.9% 14.6% 29.3% 14.6% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

162

YEAR  

National Nuclear Security Administration (NNSA)

4 4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 31 NU (Tech/Admin Support) 5 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 2 Asian Male 1 Asian Female 1 Hispanic Male 6 Hispanic Female 10 White Male 13 White Female 10 DIVERSITY Workforce Diversity Office of General Counsel, NA-GC As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 21 47.7% 23 52.3% Gender Males Females 6.8% 2.3% 2.3% 6.8% 70.5% 11.4% Pay Plan SES EJ/EK EN 03 NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.0% 0.0% 2.3% 4.5% 2.3% 2.3% 13.6% 22.7% 29.5% 22.7% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male

163

YEAR  

National Nuclear Security Administration (NNSA)

6 6 YEAR 2011 Males 7 Females 9 YEAR 2011 SES 1 NQ (Prof/Tech/Admin) 9 GS 15 2 GS 13 2 GS 12 1 GS 11 1 YEAR 2011 American Indian Male 0 American Indian Female 0 African American Male 1 African American Female 3 Asian Male 1 Asian Female 0 Hispanic Male 1 Hispanic Female 0 White Male 4 White Female 6 DIVERSITY Workforce Diversity Associate Administrator of External Affairs, NA-EA As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 7 43.8% 9 56.3% Gender Males Females 6.3% 56.3% 12.5% 12.5% 6.3% 6.3% Pay Plan SES NQ (Prof/Tech/Admin) GS 15 GS 13 GS 12 GS 11 0.0% 0.0% 6.3% 18.8% 6.3% 0.0% 6.3% 0.0% 25.0% 37.5% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male Asian Female Hispanic Male Hispanic Female White Male White Female FY11 Workforce Diversity

164

YEAR  

National Nuclear Security Administration (NNSA)

40 40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJ/EK 1 NN (Engineering) 16 NQ (Prof/Tech/Admin) 115 NU (Tech/Admin Support) 3 YEAR 2011 American Indian Male 1 American Indian Female 2 African American Male 3 African American Female 7 Asian Male 4 Asian Female 0 Hispanic Male 25 Hispanic Female 26 White Male 35 White Female 37 DIVERSITY Workforce Diversity Associate Administrator for Acquistion & Project Management, NA-APM As of Sep 24, 2011 PAY PLAN TOTAL WORKFORCE GENDER 68 48.6% 72 51.4% Gender Males Females 3.6% 0.7% 11.4% 82.1% 2.1% Pay Plan SES EJ/EK NN (Engineering) NQ (Prof/Tech/Admin) NU (Tech/Admin Support) 0.7% 1.4% 2.1% 5.0% 2.9% 0.0% 17.9% 18.6% 25.0% 26.4% Race and Gender American Indian Male American Indian Female African American Male African American Female Asian Male

165

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

166

Quarterly Coal Distribution Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Distribution Report Quarterly Coal Distribution Report Release Date: October 01, 2013 | Next Release Date: January 3, 2014 | full report The Quarterly Coal Distribution Report (QCDR) provides detailed U.S. domestic coal distribution data by coal origin state, coal destination state, mode of transportation, and consuming sector. Quarterly data for all years are preliminary and will be superseded by the release of the corresponding "Annual Coal Distribution Report." Highlights for the second quarter 2013: Total domestic coal distribution was an estimated 205.8 million short tons (mmst) in the second quarter 2013. This value is 0.7 mmst (i.e. 0.3 percent) higher than the previous quarter and 6.3 mmst (i.e. 3.1 percent) higher than the second quarter of 2012 estimates.

167

Annual Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Report Annual Coal Report Release Date: December 12, 2013 | Next Release Date: November 2014 | full report Previous Annual Coal / Coal Industry Annual Reports historical data (PDF): 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 before 2001 Industry Annual 2000 1999 1998 1997 1996 1995 1994 Go The Annual Coal Report (ACR) provides annual data on U.S. coal production, number of mines, productive capacity, recoverable reserves, employment, productivity, consumption, stocks, and prices. All data for 2012 and prior years are final. Highlights for 2012: U.S. coal production decreased 7.2 percent from 2011, driven by lower electric power sector demand, to roughly 1.02 billion short tons. Productive capacity of U.S. coal mines decreased 3.5 percent to 1.28

168

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

169

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

170

Years  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Technology in and Technology in the National Interest 60 Years of Excellence Lawrence Livermore National Laboratory FY 2012 Annual Report About the Cover: Lawrence Livermore National Laboratory (LLNL) engineers Chris Spadaccini (left) and Eric Duoss are shown experimenting with direct ink-writing to create micro- to macroscale structures with extreme precision. The Laboratory is advancing this process and other additive manufacturing technologies to develop new materials with extraordinary properties for use in a wide range of national-security and other applications. About the Laboratory: Lawrence Livermore National Laboratory was founded in 1952 to enhance the security of the United States by advancing nuclear weapons science and technology. With a talented and dedicated workforce and

171

Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980  

SciTech Connect (OSTI)

This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

Not Available

1981-01-20T23:59:59.000Z

172

Assumptions to the Annual Energy Outlook 2000 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2000, DOE/EIA-M060(2000) January 2000. Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions, and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of coal production, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

173

High temperature properties and reactivity of coal and coke for ironmaking.  

E-Print Network [OSTI]

??Rapid growth of the steel industry in coming years will be strongly dependent upon coal. Understanding of coal behavior in current or emerging ironmaking processes… (more)

Kim, Byong-Chul

2012-01-01T23:59:59.000Z

174

Development of a coal reserve GIS model and estimation of the recoverability and extraction costs.  

E-Print Network [OSTI]

??The United States has the world largest coal resource and coal will serve as the major and dependable energy source in the coming 200 years… (more)

Apala, Chandrakanth, Reddy.

2009-01-01T23:59:59.000Z

175

Rail Coal Transportation Rates  

U.S. Energy Information Administration (EIA) Indexed Site

reports reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

176

coal | OpenEI  

Open Energy Info (EERE)

coal coal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 32.3 KiB)

177

Market and equipment performance analysis for the application of coal-based fuels/advanced combustion systems: Commercial and small industrial applications: Volume B, Appendices  

SciTech Connect (OSTI)

In March 1985, Burns and Roe Services Corporation (BRSC) under Contract No. AC22-84PC72571 with the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) initiated a task entitled ''Market and Equipment Performance Analysis for the Application of Coal-Based Fuels/Advanced Combustion Systems.'' This volume contains the following Appendices: Commercial sector applications of coal based fuels and advanced technologies, EOS Technologies, Inc.; Estimation of fuel use and population for industrial boilers <50 mm Btu/hr and direct fired combustors <100 mm Btu/hr firing oil and gas, PEI Associates; Characteristics of oil and gas fired boilers; Characteristics of oil and gas fired process heaters; Environmental permitting considerations; States air emission rules and regulations applying to commercial/industrial boilers and process heaters <100 mm Btu/hr heat input; Advanced coal combustion systems; Application of advanced coal combustion systems to watertube boilers; Application of advanced coal combustion systems to firetube boilers; and Application of advanced coal combustion systems to process heaters.

Not Available

1986-05-01T23:59:59.000Z

178

NETL: News Release - From Coal to Chemicals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 13, 2003 May 13, 2003 From Coal to Chemicals... Successful Clean Coal-to-Methanol Project Boosts Prospects For "Multi-Product" Coal Plant - The Liquid Phase Methanol Plant at the Eastman Chemicals-from-Coal Complex - The Kingsport, Tenn., clean coal project operated virtually flawlessly throughout its demonstration period and continues its steady operations today. - KINGSPORT, TN - It was 35 years ago that a single word in the smash hit, coming-of-age movie The Graduate made cinema history: "plastics." As a baby-faced Dustin Hoffman learned, the future was "plastics." Now, largely because of one of the Department of Energy's most successful Clean Coal Technology projects, in the next 35 years, the future may well be "plastics?from coal."

179

Planning the future of Botswana's coal  

Science Journals Connector (OSTI)

Botswana has vast proven deposits of steam coal, which, for a long time, the government has wanted to develop but without much success. The main objectives of this study are: to forecast possible coal exports from Botswana and the land routes for these exports; to determine the competitiveness of Botswana's coal in world steam coal trade; to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the global steam coal trade and apply this model to forecast the likely optimal size of mine, timing of capacity, and choice of export port for the years 2005 and 2010 from a 2000 base forecast year. The results of our regional analysis suggest that Botswana's coal exports are competitive in Asia and Western Europe. These results are shown to be least sensitive to changes in rail transportation costs and marginal supply costs but more sensitive to changes in capital costs for mine development.

Khaulani Fichani; Walter C. Labys

2006-01-01T23:59:59.000Z

180

Coal flows | OpenEI  

Open Energy Info (EERE)

Coal flows Coal flows Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 142, and contains only the reference case. The dataset uses million short tons. The data is broken down into steam coal exports to Europe, Asia and America. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal flows countries EIA exporting importing Data application/vnd.ms-excel icon AEO2011: World Steam Coal Flows By Importing Regions and Exporting Countries- Reference Case (xls, 103.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

coal supply | OpenEI  

Open Energy Info (EERE)

coal supply coal supply Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

182

Today's high coal prices: correction or crisis?  

SciTech Connect (OSTI)

Eastern spot prices for coal have risen 25% since the start of 2004, reaching their highest levels in more than 25 years. This spike represents the second time in four years that coal prices have risen to more than double their pre-2000 price levels. Years of famine (from a coal producer's point of view) have been replaced by periods of plenty, with increasing consequences for coal's customers. How long will this spike last? This article, based on studies carried out by EPRI, attempts to answer this question. 3 figs., 1 tab.

Platt, J. [EPRI (US)

2005-06-01T23:59:59.000Z

183

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect (OSTI)

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

184

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

sulfur plus 10 to 40% of the coal ash. It also increases theto extract most of the coal ash. Heavy metals are alsotons of scrubber and coal ash sludge per year. By 1980, a

Ferrell, G.C.

2010-01-01T23:59:59.000Z

185

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

IISolvent Refining for Clean Coal Combustion,1I Walk, R. ,of Equipment (Percent of Clean Coal Produced) Year Type Jigs$1.50-$2.00 per ton of clean coal. In comparison, the cost

Ferrell, G.C.

2010-01-01T23:59:59.000Z

186

DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants  

Broader source: Energy.gov [DOE]

Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

187

High-pressure coal fuel processor development. Task 1, Proof of principle testing  

SciTech Connect (OSTI)

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

188

Patterns of coal workers' pneumoconiosis in Appalachian former coal miners  

SciTech Connect (OSTI)

To aid in diagnostic chest film interpretation of coal workers' pneumoconiosis, a composite profile of common radiologic patterns was developed in 98 Appalachian former coal miners who were diagnosed as having coal miner's pneumoconiosis and who applied for black lung benefits. The mean age was 61 years, with a lifetime coal mine dust exposure of 18.7 years. Results showed that chest radiographs of coal workers' simple pneumoconiosis contained small irregular linear opacities more frequently (47%) than small rounded opacities. Sparse profusion of all small opacities was the rule. Small opacities involved two out of six lung zones simultaneously 39% of the time while other combinations occurred less frequently. Lower zones were involved more frequently than upper ones. Thickened pleura occurred in 18% of radiographs. Other frequent radiographic abnormalities were parenchymal calcifications (19%), marked emphysema (12%), and inactive tuberculosis (12%). Calcification of the aortic knob, a degenerative process reflecting age, occurred in 9%. Only one instance of complicated coal workers' pneumoconiosis (progressive massive fibrosis) was encountered (0.7%). Many of the descriptive features of coal workers' pneumoconiosis noted in the literature were not observed in this study. Only one instance of complicated pneumoconiosis was encountered.43 references.

Young, R.C. Jr.; Rachal, R.E.; Carr, P.G.; Press, H.C. (College of Pharmacy, Xavier University of Louisiana, New Orleans (United States))

1992-01-01T23:59:59.000Z

189

Coal and Coal-Biomass to Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

190

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network [OSTI]

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

191

Coal development plans in southeast Asia  

SciTech Connect (OSTI)

The author reviews coal production and consumption over recent years in Indonesia, Thailand and the Philippines. Projections of coal supply and demand for these countries to 1995 are also shown. Over-ambitious plans have been announced during the past 5 years, which have mostly been revised downwards. An attempt is made to provide realistic figures.

Lootens, D.J.

1985-09-01T23:59:59.000Z

192

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

NONE

1997-05-01T23:59:59.000Z

193

High-pressure coal fuel processor development. Final report  

SciTech Connect (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

194

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

195

Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel spreadsheets, or as pdf files. The user interface provides stepwise guides with built-in checks for efficient entry of required input data on fuels of interest to allow a successful execution of the model. The model was developed with data from several fuels selected by the sponsors, including bituminous coal, subbituminous coal, lignite, and petroleum coke (petcoke). The data from these fuels were obtained using small pilot-scale entrained-flow and fluidized-bed gasifiers at the Energy & Environmental Research Center (EERC). The CABRE III model is expected to further advance the knowledge base for the NCHT® Program and, more importantly, allow for prediction of the slagging and fouling characteristics of fuels in reducing environments. The information obtained from this program will potentially also assist in maintaining prolonged gasifier operation free from failure or facilitate troubleshooting to minimize downtime in the event of a problem.

Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

2012-03-31T23:59:59.000Z

196

Quarterly Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Quarterly Coal Report Quarterly Coal Report Release Date: October 02, 2013 | Next Release Date: December 2013 | full report Previous Quarterly Coal Data historical data (PDF): 1st quarter 2013 4th quarter 2012 3rd quarter 2012 2nd quarter 2012 1st quarter 2012 4th quarter 2011 3rd quarter 2011 2nd quarter 2011 1st quarter 2011 prior to 2011 Go The Quarterly Coal Report (QCR) provides detailed quarterly data on U.S. coal production, exports, imports, receipts, prices, consumption, quality, stocks, and refined coal. Data on U.S. coke production, consumption, stocks, imports, and exports are also provided. All data for 2011 and prior years are final. All data for 2012 and 2013 are preliminary. Highlights for second quarter 2013: U.S. coal production during second quarter 2013 totaled 243.1

197

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

198

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

199

Annual Energy Outlook with Projections to 2025-Market Trends - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Index (click to jump links) Coal Production and Prices Coal Mining Labor Productivity Coal Consumption Coal Production and Prices Emissions Caps Lead to More Use of Low-Sulfur Coal From Western Mines Continued improvements in mine productivity (which have averaged 5.9 percent per year since 1980) are projected to cause falling real minemouth prices throughout the forecast relative to historical levels. Higher electricity demand and lower prices, in turn, are projected to yield increasing coal demand, but the demand is subject to the overall sulfur emissions cap in the Clean Air Act Amendments of 1990, which encourages progressively greater reliance on the lowest sulfur coals (from Wyoming, Montana, Colorado, and Utah). Figure 106. Coal production by region, 1970-2025 (million short tons). Having problems, call our National Energy Information Center at 202-586-8800 for help.

200

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal Cleaning Using Resonance Disintegration for Mercury and Sulfur Reduction Prior to Combustion  

SciTech Connect (OSTI)

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

Andrew Lucero

2005-04-01T23:59:59.000Z

202

Annual Energy Outlook 2006 with Projections to 2030 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Annual Energy Outlook 2006 with Projections to 2030 Market Share of Western Coal Continues To Increase U.S. coal production has remained near 1,100 million tons annually since 1996. In the AEO2006 reference case, increasing coal use for electricity generation at existing plants and construction of a few new coal-fired plants lead to annual production increases that average 1.1 percent per year from 2004 to 2015, when total production is 1,272 million tons. The growth in coal production is even stronger thereafter, averaging 2.0 percent per year from 2015 to 2030, as substantial amounts of new coal-fired generating capacity are added, and several CTL plants are brought on line. Figure 97. Coal production by region, 1970-2030 (million short tons). Need help, contact the National Energy Information Center at 202-586-8800 for help.

203

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

SciTech Connect (OSTI)

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

204

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect (OSTI)

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

205

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

206

Chemical structure of coal tar during devolatilization  

SciTech Connect (OSTI)

Enormous progress has been made in coal pyrolysis research during the last two decades. Models of coal devolatilization have progressed from simple rate expressions based on total mass release to empirical relationships based on the elemental composition of the parent coal to models that attempt to describe the macromolecular network of the coal. In the last several years, advancements in chemical analysis techniques have allowed quantitative investigations of the chemical structure of both coal and its pyrolysis products, including the nature of the resulting char. A prominent research goal is to accurately predict the rates, yields, and products of devolatilization from measurements of the parent coal structure. The prediction of nitrogen species evolved during devolatilization is of current interest. These goals necessitate modeling the reaction processes on the molecular scale, with activation energies that relate to chemical bond breaking rather than to the mass of products released from the coal. Solid-state {sup 13}C NMR spectroscopy has proven particularly useful in obtaining average values of chemical structure features of coal and char, while liquid phase {sup 1}H NMR spectroscopy has been used to determine some of the chemical features of coal tar. Pyridine extract residues from coal and partially-pyrolyzed coal chars have also been analyzed by solid-state {sup 13}C NMR spectroscopy, and the extracts have been analyzed by {sup 1}H NMR spectroscopy.

Fletcher, T.H.; Watt, M. [Bringham Young Univ., Provo, UT (United States); Bai, S.; Solum, M.S. [Univ. of Utah, Salt Lake City, UT (United States)] [and others

1996-12-31T23:59:59.000Z

207

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Alabama" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",184,181,173,176,167,156,154,154,157,148,141,141,142,147,152,179,211,206,271,268,282 " Average heat value (Btu per pound)",12094,12107,12061,12092,12088,11861,11794,11584,11519,10963,10951,10990,10828,10977,10878,10950,10879,10644,10659,10507,10633 " Average sulfur Content (percent)",1.51,1.4,1.43,1.33,1.3,1.2,1.24,1.13,1.13,1.02,0.91,0.92,0.94,0.95,0.84,0.97,0.94,0.88,0.89,0.92,0.99 "Petroleum (cents per million Btu)1",507,512,460,425,402,376,446,405,288,326,652,552,509,560,754,1148,1327,1107,1672,1249,1589 " Average heat value (Btu per gallon)",130098,137126,137164,137671,137864,138276,139383,139645,139510,139140,137395,144286,140588,141395,142757,141012,140469,143452,140050,137243,137733

208

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Nebraska" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",75,75,75,75,77,75,72,59,59,55,56,57,58,60,66,71,80,88,90,133,142 " Average heat value (Btu per pound)",8561,8542,8553,8561,8571,8594,8599,8595,8584,8498,8632,8585,8654,8673,8574,8570,8514,8511,8496,8544,8547 " Average sulfur Content (percent)",0.35,0.35,0.37,0.35,0.35,0.33,0.34,0.32,0.27,0.3,0.3,0.31,0.3,0.29,0.32,0.31,0.3,0.31,0.31,0.31,0.28 "Petroleum (cents per million Btu)1",703,457,465,248,402,224,511,450,333,432,649,656,555,457,712,1343,1534,1669,1772,1056,1711 " Average heat value (Btu per gallon)",138043,137600,137586,107945,137640,103081,137621,137567,132550,137671,137750,138571,138043,138040,136976,138119,138124,138007,139452,140500,137895

209

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Louisiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",170,165,153,158,154,155,151,148,143,140,132,131,127,134,138,151,166,185,210,204,216 " Average heat value (Btu per pound)",8194,8223,8122,8092,8136,8110,8171,8102,8097,8149,7933,8030,8095,8023,8146,8136,8205,8246,8183,8201,8114 " Average sulfur Content (percent)",0.49,0.49,0.5,0.52,0.51,0.58,0.57,0.64,0.56,0.58,0.63,0.74,0.52,0.5,0.51,0.54,0.49,0.39,0.41,0.39,0.39 "Petroleum (cents per million Btu)1",371,413,388,223,269,348,327,302,222,204,459,519,63,247,286,427,300,196,425,195,296 " Average heat value (Btu per gallon)",144962,143214,141950,152148,147869,141543,147221,153519,153400,154469,149843,145238,140393,145807,147379,147057,142607,139310,140002,136969,136986

210

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "North Carolina" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,178,173,170,168,163,148,143,144,144,143,159,176,178,200,240,269,274,326,359,352 " Average heat value (Btu per pound)",12544,12506,12456,12465,12416,12461,12422,12368,12398,12450,12448,12380,12422,12423,12345,12309,12268,12374,12243,12333,12270 " Average sulfur Content (percent)",0.96,0.94,0.92,0.96,0.95,0.86,0.89,0.9,0.89,0.85,0.82,0.86,0.85,0.87,0.86,0.88,0.91,1.01,1.01,1.04,1.01 "Petroleum (cents per million Btu)1",512,473,441,405,384,382,468,428,311,398,616,584,467,623,715,997,1356,1042,1513,1014,1433 " Average heat value (Btu per gallon)",138229,138317,138450,138610,138238,138148,138298,138264,138167,138169,138360,145952,144098,140848,141338,142869,139114,146617,146483,146243,144814

211

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Wisconsin" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,136,133,121,121,114,106,109,107,102,102,105,112,112,118,129,150,170,198,206,218 " Average heat value (Btu per pound)",9642,9643,9725,9490,9565,9351,9222,9375,9299,9115,9165,9500,9089,9006,9030,9088,8975,8967,9025,8920,8964 " Average sulfur Content (percent)",0.81,0.81,0.71,0.49,0.51,0.46,0.46,0.5,0.46,0.39,0.35,0.37,0.41,0.38,0.39,0.38,0.36,0.36,0.37,0.38,0.4 "Petroleum (cents per million Btu)1",526,312,310,153,221,177,193,180,83,81,88,146,111,108,109,150,203,204,356,222,240 " Average heat value (Btu per gallon)",139200,113495,110433,92736,103860,95883,91924,90760,75079,73869,74440,139048,133712,134343,135093,135238,134333,134845,136126,134033,131245

212

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Indiana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",136,134,131,127,127,125,119,116,112,111,108,114,117,120,121,140,152,161,193,202,214 " Average heat value (Btu per pound)",10562,10569,10628,10539,10535,10338,10357,10461,10517,10620,10604,10540,10593,10550,10601,10756,10638,10588,10486,10470,10498 " Average sulfur Content (percent)",2.06,1.98,1.88,1.78,1.76,1.57,1.59,1.61,1.63,1.58,1.51,1.43,1.48,1.5,1.53,1.72,1.61,1.74,1.71,1.73,1.76 "Petroleum (cents per million Btu)1",191,297,218,365,390,298,198,150,184,170,245,220,208,311,330,803,1394,1337,2002,1002,1571 " Average heat value (Btu per gallon)",89740,105529,96317,126976,137426,115914,90057,81174,100264,90095,90071,149762,142836,138660,135267,139405,139621,140607,139538,139436,139390

213

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Texas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,150,149,144,135,134,129,126,124,120,123,133,126,125,131,129,139,149,162,168,184 " Average heat value (Btu per pound)",7291,7225,7234,7284,7346,7346,7440,7423,7509,7506,7548,7635,7677,7605,7641,7611,7665,7681,7759,7787,7705 " Average sulfur Content (percent)",0.74,0.75,0.76,0.75,0.73,0.77,0.71,0.75,0.71,0.65,0.65,0.67,0.68,0.78,0.77,0.74,0.67,0.6,0.56,0.61,0.61 "Petroleum (cents per million Btu)1",517,471,399,179,211,283,473,342,113,96,617,556,200,423,171,248,267,240,312,213,423 " Average heat value (Btu per gallon)",141838,139760,140129,112764,120681,117555,138383,114810,99067,80493,135419,141905,140340,139979,137700,137955,137876,136814,136638,136569,135686

214

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Missouri" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",135,134,134,124,110,98,95,93,92,93,92,96,90,92,93,101,111,133,151,153,159 " Average heat value (Btu per pound)",10400,10298,10321,9860,9718,9216,9063,8994,8938,8948,8913,8940,8875,8865,8838,8854,8808,8825,8837,8802,8801 " Average sulfur Content (percent)",2.01,1.84,1.8,1.02,1.03,0.57,0.58,0.47,0.37,0.34,0.3,0.36,0.36,0.37,0.38,0.37,0.36,0.38,0.38,0.38,0.36 "Petroleum (cents per million Btu)1",280,230,210,113,101,110,183,292,118,88,263,134,118,348,279,1236,1457,1713,1829,1022,1607 " Average heat value (Btu per gallon)",107890,131371,136233,83795,79640,79069,95638,123143,89640,76829,94214,136667,136381,137769,139288,137693,137188,137476,137340,137948,137655

215

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Iowa" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",112,110,110,101,99,99,94,94,88,82,82,81,89,89,93,98,105,108,127,134,142 " Average heat value (Btu per pound)",8892,8890,8867,8660,8783,8678,8658,8662,8636,8581,8626,9000,8648,8705,8665,8668,8612,8619,8605,8657,8585 " Average sulfur Content (percent)",0.7,0.67,0.67,0.52,0.57,0.49,0.45,0.45,0.44,0.4,0.35,0.37,0.39,0.43,0.44,0.42,0.44,0.41,0.41,0.42,0.37 "Petroleum (cents per million Btu)1",518,355,158,127,144,96,117,141,141,399,643,617,579,635,459,1077,474,603,1023,1038,878 " Average heat value (Btu per gallon)",137943,123305,84117,83079,86795,77324,78400,83517,88176,139340,138731,139524,139667,139171,137162,139200,134952,135219,133214,136726,133860

216

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

50 PM)" 50 PM)" "Georgia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",179,180,180,178,169,167,158,159,155,155,154,166,168,172,180,218,240,261,307,362,390 " Average heat value (Btu per pound)",11893,11936,12039,12148,11774,11576,11581,11755,11750,11740,11559,11730,11686,11668,11024,11058,10994,10983,10947,10933,10891 " Average sulfur Content (percent)",1.63,1.63,1.68,1.37,1.05,0.81,0.83,0.84,0.85,0.8,0.76,0.81,0.79,0.82,0.78,0.81,0.82,0.78,0.78,0.76,0.78 "Petroleum (cents per million Btu)1",486,474,434,347,396,378,431,421,328,390,691,668,549,268,289,433,356,537,838,552,667 " Average heat value (Btu per gallon)",139812,138000,140514,142390,138483,139631,140676,140471,138495,138495,138498,145714,138348,134648,136533,141855,135864,141493,138081,138371,137129

217

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Arizona" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",143,141,137,135,137,139,144,142,133,133,124,125,126,127,130,141,144,159,174,181,180 " Average heat value (Btu per pound)",10482,10356,10303,10271,10281,10274,10232,10159,10186,10257,10229,10145,10232,10081,10211,10088,10011,9946,9828,9712,9685 " Average sulfur Content (percent)",0.49,0.51,0.51,0.49,0.51,0.53,0.55,0.54,0.55,0.55,0.56,0.58,0.6,0.64,0.57,0.57,0.57,0.57,0.59,0.65,0.66 "Petroleum (cents per million Btu)1",446,499,467,511,428,510,539,532,429,480,860,706,654,767,859,1403,1625,1671,2102,1300,1807 " Average heat value (Btu per gallon)",142831,139662,140379,140533,142148,139933,142293,140336,138850,138690,138607,143333,139567,139550,133595,140912,139114,140914,138424,135340,135993

218

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

0 PM)" 0 PM)" "Pennsylvania" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,155,148,144,143,136,138,136,135,130,115,121,125,122,137,159,172,175,210,230,241 " Average heat value (Btu per pound)",12241,12302,12399,12443,12368,12315,12321,12279,12323,12552,12670,11240,12111,11733,11615,11741,11459,11400,11079,10940,11063 " Average sulfur Content (percent)",2.16,2.14,2.12,2.07,2.11,2.12,2.09,2.13,2.19,2.15,2.26,2.12,1.95,1.95,2,1.94,2.09,2.08,2.09,2.21,2.39 "Petroleum (cents per million Btu)1",322,247,236,236,249,224,289,225,184,186,292,373,464,467,451,746,762,916,1181,762,1484 " Average heat value (Btu per gallon)",140462,137574,132824,141621,141245,128574,132045,126590,121550,112919,125114,146429,145976,144660,144343,146174,139310,139290,138850,138731,139112

219

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

47 PM)" 47 PM)" "Florida" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",185,186,182,177,178,179,174,173,165,159,157,172,176,176,192,231,256,256,297,339,347 " Average heat value (Btu per pound)",12364,12351,12370,12332,12293,12296,12193,12122,12144,12299,12330,12105,12263,12281,12249,12227,12142,12116,11929,11957,12024 " Average sulfur Content (percent)",1.73,1.73,1.68,1.57,1.6,1.47,1.55,1.59,1.55,1.53,1.59,1.54,1.55,1.44,1.44,1.38,1.37,1.35,1.38,1.45,1.67 "Petroleum (cents per million Btu)1",302,225,242,220,226,247,278,254,193,236,409,339,324,389,392,581,568,712,1003,727,856 " Average heat value (Btu per gallon)",151010,151217,151471,151660,151248,150633,148417,143486,143812,147529,147162,150000,149657,148431,148183,147510,146124,147276,146433,144745,143138

220

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",155,152,147,147,145,145,142,139,138,134,133,159,169,167,195,233,245,249,277,308,328 " Average heat value (Btu per pound)",12714,12768,12830,12817,12778,12743,12597,12554,12603,12702,12814,12730,12845,12826,12713,12650,12592,12531,12492,12501,12476 " Average sulfur Content (percent)",0.96,1,1.03,1,0.99,1.03,0.99,1.01,0.97,1.3,0.98,1.02,1.16,0.97,0.94,1,1.04,0.94,0.92,1,1.02 "Petroleum (cents per million Btu)1",384,223,247,213,216,251,290,282,204,230,424,357,380,499,497,761,875,922,1380,978,1315 " Average heat value (Btu per gallon)",146360,146626,148881,150319,149743,146179,146988,148219,150157,150660,151002,148810,149779,149367,150757,149019,150090,148238,147390,145531,145626

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Minnesota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",125,126,119,113,114,114,107,109,107,110,111,102,106,108,107,113,122,150,169,164,174 " Average heat value (Btu per pound)",8788,8802,8838,8844,8821,8828,8914,8895,8883,8883,8929,8930,8860,8895,8914,8909,8911,8853,8902,8878,8812 " Average sulfur Content (percent)",0.51,0.48,0.45,0.44,0.46,0.47,0.45,0.45,0.44,0.44,0.43,0.47,0.45,0.46,0.44,0.44,0.44,0.45,0.46,0.46,0.43 "Petroleum (cents per million Btu)1",93,88,83,80,85,85,90,78,74,76,54,65,60,85,110,157,152,444,941,1210,1568 " Average heat value (Btu per gallon)",73719,72052,72467,71631,73031,73310,74050,72267,72781,71055,72531,132857,131267,133093,134967,133848,134976,132929,136357,139955,140595

222

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Washington" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",158,155,137,136,136,144,157,163,149,156,169,146,140,143,133,154,173,217,216,227 " Average heat value (Btu per pound)",8135,8014,8189,8125,8400,8267,7936,8043,8215,8224,8310,8014,8052,8151,8131,8532,9211,8366,8403,8391 " Average sulfur Content (percent)",0.7,0.66,0.66,0.71,0.65,0.69,0.71,0.62,0.59,0.75,0.73,1.01,1,0.93,0.75,0.69,0.34,0.32,0.33,0.34 "Petroleum (cents per million Btu)1",511,573,466,469,472,485,509,499,405,479,664,241,325,412,562,1629,663,1229,965,1383 " Average heat value (Btu per gallon)",140948,140176,139924,139936,139933,139952,139931,139943,139907,140000,140000,137098,145438,139331,137340,142807,138598,139040,139905,130674

223

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

7 PM)" 7 PM)" "West Virginia" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",147,152,147,142,139,127,125,124,122,118,120,125,121,125,135,153,167,173,222,254,239 " Average heat value (Btu per pound)",12452,12505,12524,12489,12468,12418,12378,12398,12305,12361,12281,12085,12103,12166,12061,11976,11967,12046,11897,11959,12034 " Average sulfur Content (percent)",1.89,1.92,2.05,1.94,1.87,1.98,1.93,1.95,1.86,1.84,1.42,1.19,1.71,1.69,1.75,1.78,1.79,2.04,2,2.13,2.4 "Petroleum (cents per million Btu)1",572,537,484,462,442,439,529,464,371,463,721,666,543,725,785,959,901,1063,2146,1434,1738 " Average heat value (Btu per gallon)",139293,139090,139486,139229,139324,138988,138655,138883,139186,139100,139324,137143,122840,140526,140943,141667,143471,143817,135557,137855,138536

224

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

32 PM)" 32 PM)" "Wyoming" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",84,83,76,80,80,82,82,81,79,76,78,77,79,82,87,95,100,105,117,120,132 " Average heat value (Btu per pound)",8811,8756,8840,8779,8766,8738,8716,8787,8794,8784,8803,8880,8759,8826,8826,8814,8708,8684,8769,8791,8806 " Average sulfur Content (percent)",0.54,0.51,0.52,0.51,0.52,0.5,0.52,0.54,0.53,0.51,0.5,0.48,0.49,0.49,0.48,0.49,0.51,0.49,0.51,0.51,0.53 "Petroleum (cents per million Btu)1",527,494,479,473,444,445,546,517,406,476,724,707,553,714,950,1317,1628,1772,2146,1369,1736 " Average heat value (Btu per gallon)",138848,139167,139150,139060,138986,139281,139171,138821,139138,139102,139219,146905,139448,139593,139338,139638,139333,139448,139926,139824,139238

225

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Delaware" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",181,178,173,169,162,162,159,157,156,159,152,217,178,190,220,281,308,286,352,334,355 " Average heat value (Btu per pound)",13035,13053,13064,13027,12954,13085,13020,13062,12962,12935,12995,11495,12858,12803,12530,12222,12401,12524,12452,12567,12550 " Average sulfur Content (percent)",0.97,0.96,1.03,0.94,0.92,1,1.01,0.99,0.98,0.97,1.01,0.67,0.91,0.9,0.83,0.67,0.74,0.73,0.74,0.8,0.77 "Petroleum (cents per million Btu)1",278,238,242,230,259,261,321,278,215,244,446,380,406,576,611,863,1351,1304,1811,1120,1624 " Average heat value (Btu per gallon)",151269,151483,150760,151286,149733,152012,151900,151464,150957,150998,150486,148095,148964,147895,146312,147248,139117,144114,143781,137938,136498

226

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "New Jersey" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",180,178,173,177,182,178,175,176,159,145,139,227,187,180,205,218,273,289,333,401,416 " Average heat value (Btu per pound)",13429,13402,13465,13397,13341,13282,12993,13084,13113,13150,13153,13000,13137,13056,12868,12644,12770,11890,12073,11491,11758 " Average sulfur Content (percent)",1.16,1.27,1.29,1.29,1.29,1.21,1.36,1.24,1.13,1.14,1.13,1.57,1.23,1.11,1.58,1.14,1.17,0.88,1.03,0.9,1.05 "Petroleum (cents per million Btu)1",360,302,303,268,290,286,359,299,242,288,484,454,468,604,602,985,970,1147,1547,1011,1495 " Average heat value (Btu per gallon)",148298,148469,148864,149283,148376,149310,147321,148488,148655,149295,149557,141667,143162,139250,135095,134802,141505,136271,138217,136595,139952

227

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "New York" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",161,159,149,150,145,141,143,142,143,145,149,142,155,159,176,213,240,241,257,273,305 " Average heat value (Btu per pound)",12846,12923,12978,12914,12959,13051,13013,13105,13052,13034,13117,13025,13019,12545,12063,11832,11584,11382,11248,11187,10982 " Average sulfur Content (percent)",1.84,1.77,1.65,1.55,1.71,1.79,1.8,1.8,1.75,1.67,1.12,1.97,1.78,1.8,1.66,1.4,1.36,1.37,1.43,1.29,1.31 "Petroleum (cents per million Btu)1",360,272,264,257,251,263,319,284,203,237,431,350,366,493,486,731,800,799,1390,811,1144 " Average heat value (Btu per gallon)",150036,150812,150898,151012,149567,148624,149671,150326,150740,150569,151162,149286,149371,149998,149024,148914,150136,151036,148410,146824,144319

228

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "New Mexico" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",132,138,132,137,141,142,143,134,131,133,138,147,153,143,148,151,156,179,199,190,206 " Average heat value (Btu per pound)",9117,9092,9013,8991,9043,9033,9116,9069,9082,9132,9206,9250,9444,9164,9225,9173,9282,9198,9173,9226,8963 " Average sulfur Content (percent)",0.79,0.8,0.81,0.81,0.82,0.8,0.8,0.81,0.8,0.8,0.8,0.72,0.73,0.73,0.72,0.79,0.76,0.77,0.75,0.77,0.75 "Petroleum (cents per million Btu)1",525,535,516,506,465,490,587,575,439,502,758,631,614,754,956,1293,1695,1879,2353,1526,1942 " Average heat value (Btu per gallon)",138098,136000,135676,136000,136000,136000,136000,136000,136000,136000,136000,139524,136000,136048,136007,136252,136024,136026,134186,134086,134219

229

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "Kentucky" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",119,118,116,117,116,111,106,105,106,106,102,110,119,123,137,152,170,175,214,217,226 " Average heat value (Btu per pound)",11558,11552,11620,11697,11683,11625,11536,11571,11579,11582,11604,11425,11464,11498,11550,11620,11568,11661,11534,11472,11460 " Average sulfur Content (percent)",2.59,2.53,2.44,2.39,2.34,2.42,2.47,2.5,2.37,2.27,2.29,2.15,2.16,2.12,2.09,2.21,2.23,2.22,2.33,2.54,2.58 "Petroleum (cents per million Btu)1",575,505,479,204,153,318,310,361,278,275,559,567,465,227,127,117,127,127,203,168,217 " Average heat value (Btu per gallon)",138943,138998,138993,90574,87876,118024,105736,116976,115748,110888,125371,139286,137640,132664,131967,132710,132305,134155,134110,134810,135140

230

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "United States" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",145,145,141,139,136,132,129,127,125,122,120,123,125,128,136,154,169,177,207,221,227 " Average heat value (Btu per pound)",10465,10378,10395,10315,10338,10248,10263,10275,10241,10163,10115,10200,10168,10137,10074,10107,10063,10028,9947,9902,9843 " Average sulfur Content (percent)",1.35,1.3,1.29,1.18,1.17,1.08,1.1,1.11,1.06,1.01,0.93,0.89,0.94,0.97,0.97,0.98,0.97,0.96,0.97,1.01,1.04 "Petroleum (cents per million Btu)1",335,253,251,237,242,257,303,273,202,236,418,369,334,433,429,644,623,717,1087,702,954 " Average heat value (Btu per gallon)",149536,150093,150293,149983,149324,149371,149367,149838,149736,149407,149857,147857,147902,147086,147286,146481,143883,144545,142205,141321,140598

231

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

3 PM)" 3 PM)" "Kansas" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",124,123,118,102,102,102,99,102,98,95,98,105,98,101,103,112,119,123,141,143,151 " Average heat value (Btu per pound)",8948,8998,8900,8654,8708,8730,8827,8766,8696,8628,8672,8700,8571,8619,8626,8569,8607,8582,8545,8526,8569 " Average sulfur Content (percent)",0.58,0.59,0.49,0.43,0.49,0.43,0.49,0.48,0.45,0.43,0.42,0.43,0.44,0.48,0.44,0.44,0.45,0.41,0.39,0.4,0.38 "Petroleum (cents per million Btu)1",540,432,438,402,397,212,412,282,266,319,400,336,273,362,407,556,485,340,711,428,569 " Average heat value (Btu per gallon)",138176,138367,139117,138633,138890,104067,141940,154117,144688,147607,154871,154286,157186,156948,156855,155174,144821,137017,136552,137645,137600

232

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

5 PM)" 5 PM)" "Illinois" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",175,171,174,170,161,163,163,155,156,144,115,119,119,116,115,119,126,134,158,165,170 " Average heat value (Btu per pound)",10789,10721,10666,10362,10181,9970,9878,9781,9700,9560,9690,9555,9253,9176,9120,9015,8937,8962,8892,8876,8896 " Average sulfur Content (percent)",2.07,2,1.91,1.63,1.46,1.14,1.16,1.17,1.1,1.03,1.11,1.1,0.7,0.66,0.65,0.62,0.53,0.52,0.5,0.48,0.5 "Petroleum (cents per million Btu)1",395,309,304,297,280,232,298,309,234,291,324,579,524,540,464,1286,1465,1744,2432,1505,1765 " Average heat value (Btu per gallon)",148831,149029,149843,148693,148945,124129,128245,126779,130829,130367,96874,153333,140345,147876,143595,137405,141102,137319,137310,137181,137507

233

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Mississippi" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",165,167,160,164,157,153,151,155,154,155,152,163,159,154,169,210,231,271,301,301,289 " Average heat value (Btu per pound)",12543,12555,12507,12338,11312,11221,11023,10486,10569,11062,11549,11670,9723,9235,9087,8993,8961,9290,9276,8541,8519 " Average sulfur Content (percent)",1.64,1.56,1.69,1.41,1.02,1.04,0.93,0.68,0.75,0.74,0.85,0.7,0.63,0.59,0.57,0.57,0.6,0.59,0.55,0.53,0.69 "Petroleum (cents per million Btu)1",243,216,200,176,164,374,224,269,199,154,333,377,428,412,465,651,830,763,1042,1193,1076 " Average heat value (Btu per gallon)",151229,151257,152595,153436,152705,139507,154381,156867,157169,157967,155569,154524,145986,155336,155638,155064,155619,154738,149826,142902,151357

234

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "New Hampshire" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",178,174,169,161,152,159,161,163,161,152,148,167,180,170,202,244,256,290,353,366,380 " Average heat value (Btu per pound)",13303,13247,13260,13179,13032,13111,13146,13054,13133,13133,13114,13050,13245,13262,13199,13087,13196,13109,12886,12849,12922 " Average sulfur Content (percent)",1.81,1.43,1.61,1.62,1.52,1.38,1.56,1.42,1.4,1.35,1.34,1.34,1.17,1.09,1.16,1.32,1.29,1.51,1.2,1.44,1.44 "Petroleum (cents per million Btu)1",227,180,186,184,200,233,254,264,187,214,345,337,371,374,406,595,782,914,1069,717,1345 " Average heat value (Btu per gallon)",154329,156712,156757,154129,153464,154402,154517,152621,151850,153221,153740,151190,152400,152724,152883,154024,155071,152450,152379,151240,146800

235

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

9 PM)" 9 PM)" "Montana" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",67,67,71,69,69,67,71,68,67,73,92,95,61,62,64,71,85,93,102,107,111 " Average heat value (Btu per pound)",8564,8522,8576,8496,8500,8520,8439,8426,8433,8435,6618,8380,8482,8515,8504,8447,8428,8426,8347,8409,8375 " Average sulfur Content (percent)",0.63,0.65,0.66,0.65,0.66,0.68,0.68,0.72,0.72,0.73,0.52,0.53,0.64,0.62,0.63,0.66,0.66,0.61,0.69,0.67,0.69 "Petroleum (cents per million Btu)1",543,472,509,526,463,491,565,529,466,491,"-","-",219,746,948,1274,173,90,135,83,73 " Average heat value (Btu per gallon)",141000,141000,141000,141000,141000,141000,141000,141000,141000,140100,"-","-",137148,136574,137064,126095,130833,137343,136819,139021,138571

236

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

4 PM)" 4 PM)" "Nevada" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",149,141,146,147,143,131,137,139,130,129,126,126,134,142,136,154,173,188,220,222,244 " Average heat value (Btu per pound)",11122,11121,11051,11012,11291,11075,11140,11169,11199,11257,11211,11210,11284,11120,11118,11176,11495,11151,10664,10505,10626 " Average sulfur Content (percent)",0.53,0.5,0.49,0.49,0.49,0.48,0.49,0.5,0.47,0.46,0.47,0.51,0.53,0.5,0.54,0.53,0.54,0.46,0.44,0.42,0.47 "Petroleum (cents per million Btu)1",314,393,331,358,329,337,552,508,380,453,722,585,600,601,473,990,1270,"-",2360,1382,1751 " Average heat value (Btu per gallon)",148233,147538,147779,148545,148195,146667,136898,138760,138845,139110,139110,151667,139110,138548,149914,141760,140610,"-",138938,138386,138452

237

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

2 PM)" 2 PM)" "Ohio" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",152,148,144,141,144,142,134,132,136,136,146,131,123,121,133,154,170,171,205,239,224 " Average heat value (Btu per pound)",11882,11945,11983,12049,12052,12122,12056,11891,11913,11918,11823,11550,12143,12160,12098,12097,11525,11495,11444,11768,11563 " Average sulfur Content (percent)",2.44,2.63,2.57,2.39,2.34,1.89,2.08,2.01,2.01,1.98,1.92,2.07,1.98,2.14,2.25,2.16,1.68,1.7,1.96,2.2,2.28 "Petroleum (cents per million Btu)1",459,381,233,187,197,349,347,426,202,348,635,601,532,731,777,1291,1224,1619,591,488,760 " Average heat value (Btu per gallon)",142917,131114,93026,81274,82224,128733,105121,135936,105736,128624,133586,142143,125426,137810,137986,138193,138150,138026,134567,136305,136052

238

Coal liquefaction process streams characterization and evaluation  

SciTech Connect (OSTI)

CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

1992-03-01T23:59:59.000Z

239

Coal Ash and Clean Coal  

Science Journals Connector (OSTI)

... IT is the normal view that the incombustible part of coal is not only a useless but even objectionable diluent. At times in the past, ... , familiar with the theory of contact catalysis of gas reactions, have speculated that the ash constituents might well play an active role in the processes of carbonisation and combustion. ...

H. J. HODSMAN

1926-09-04T23:59:59.000Z

240

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

242

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

243

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

244

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

245

USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS  

SciTech Connect (OSTI)

This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

2005-04-01T23:59:59.000Z

246

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

247

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

248

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect (OSTI)

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

249

Appalachian coal awareness conference: promoting Eastern coal  

SciTech Connect (OSTI)

Promoting the development and use of coal, especially coal from the Appalachian region, was the focus of introductory and keynote speeches and a discussion by representatives of the Virginia Coal Council, mining engineers, industry, and the Edison Electric Institute. Governor Dalton's keynote address noted that both producers and consumers attending the conference should work together to promote coal as a solution to the US energy future, and reported the impact that a commitment to coal has had on Virginia's economic growth. Participants in the coal consumers panel discussion raised various economic and regulatory issues.

Not Available

1984-01-01T23:59:59.000Z

250

FE Clean Coal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal News Clean Coal News FE Clean Coal News RSS February 9, 2009 DOE Award Results in Several Patents, Potential Increased Coal Recovery A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. February 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase The U.S. Department of Energy has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. February 3, 2009

251

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. In addition, the report

252

Clean Coal Power Initiative  

Broader source: Energy.gov [DOE]

"Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants.

253

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

254

Development of an Advanced Fine Coal Suspension Dewatering Process  

SciTech Connect (OSTI)

With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake is subjected to pressure for a short time, the free water present is released from the filter cake. Laboratory studies have shown that depending on the coal type a filter cake containing about 15% moisture could be obtained using the two-stage filtration technique. It was also noted that applying intermittent breaks in vacuum force during cake formation, which disturbed the cake structure, helped in removing moisture from the filter cakes. In this project a novel approach of cleaning coal using column flotation was also developed. With this approach the feed capacity of the column is increased significantly, and the column was also able to recover coarser size coal which usually gets lost in the process. The outcome of the research benefits the coal industry, utility industry, and indirectly the general public. The benefits can be counted in terms of clean energy, cleaner environment, and lower cost power.

B. K. Parekh; D. P. Patil

2008-04-30T23:59:59.000Z

255

American Coal Council 2004 Spring Coal Forum  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

American Coal Council American Coal Council 2004 Spring Coal Forum Dallas, Texas May 17-19, 2004 Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory ACC Spring Coal Forum, 2004 Presentation Outline * Background * Power plant-water issues * DOE/NETL R&D program * Conclusion/future plans ACC Spring Coal Forum, 2004 Global Water Availability Ocean 97% Fresh Water 2.5% 0 20 40 60 80 100 Ice Groundwater Lakes and Rivers ACC Spring Coal Forum, 2004 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water ACC Spring Coal Forum, 2004 Freshwater Withdrawals and Consumption Mgal / Day Irrigation 81,300 Irrigation 81,300 Thermoelectric 3,310 Consumption Sources: "Estimated Use of Water in the United States in 1995," USGS Circular 1200, 1998

256

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

257

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Clean Coal 101 Lesson 2: The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada decided that something had to be done about the "acid rain" that was believed to be damaging rivers, lakes, forests, and buildings in both countries. Since many of the pollutants that formed "acid rain" were coming from big coal-burning power plants in the United States, the U.S. Government took the lead in finding a solution. One of the steps taken by the U.S. Department of Energy was to create a partnership program between the Government, several States, and private companies to test new methods developed by scientists to make coal burning much cleaner. This became the "Clean Coal Technology Program."

258

Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumption to the Annual Energy Outlook Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2004, DOE/EIA-M060(2004) (Washington, DC, 2004). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Separate supply curves are developed for each of 11 supply regions and 12 coal types (unique combinations of thermal grade, sulfur content, and mine type). The modeling approach used to construct regional coal supply curves addresses the relationship between the minemouth price of coal and corresponding levels of capacity utilization of mines, mining capacity, labor productivity, and the cost of factor inputs (mining equipment, mine labor, and fuel requirements).

259

Coal liquefaction  

DOE Patents [OSTI]

In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

Schindler, Harvey D. (Fairlawn, NJ)

1985-01-01T23:59:59.000Z

260

Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%–15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

Dunham, Grant

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Paradigm Shift: Burning Coal to Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

262

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

263

Coal ban could heat up electricity prices  

Science Journals Connector (OSTI)

Coal ban could heat up electricity prices ... The U.S. EPA’s new report on the economic impact of the bill suggests it would cost households $100?140 per year by 2030. ...

Janet Pelley

2009-05-13T23:59:59.000Z

264

Cooperative research in coal liquefaction  

SciTech Connect (OSTI)

Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

Huffman, G.P.; Sendlein, L.V.A. (eds.)

1991-05-28T23:59:59.000Z

265

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

266

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

267

Is Selective Catalytic Reduction (SCR) an attractive option for NO{sub x} control in coal-fired power plants?  

SciTech Connect (OSTI)

Economics have been estimated for Selective Catalytic Reduction (SCR) for NO{sub x} control on power plant boilers burning high sulfur bituminous coals. Costs are based on an SCR unit installed in the hot flue gas on the high-dust side of a 500 MW greenfield plant with a capacity factor of 65%. Uncontrolled NO{sub x} emissions are 1.0 lb/10{sup 6} Btu, with 80% removal of the inlet NO{sub x}. At a space velocity of 2,500/hr and a catalyst price of $370/ft{sup 3}, the total capital requirement is $55/kW. Recent improvements indicate that space velocity can be increased by about 30%, to about 3250/hr. Incorporating this value reduces total capital to about $50/kW. With a 4-year catalyst life, the levelized cost (on a current dollar basis) is 3.4 mills/kWh,m or $870/ton of NO{sub x} removed.

Baldwin, A.L.; Smith, D.N. [Department of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Mann, A.N.; McIlvried, H.G.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1995-12-31T23:59:59.000Z

268

Coal in the United States: A Status Report  

Science Journals Connector (OSTI)

...coal and lignite production, selected years...1981.(33). Production Year (thousands...192 1972 595,386 1973 591,000 1974 603...percent of total coal production (3). During the...years-from 15.6 tons per man-day in 1969 to a low...

Harry Perry

1983-10-28T23:59:59.000Z

269

NETL: Clean Coal Demonstrations - Coal 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A "Bed" for Burning Coal A "Bed" for Burning Coal Clean Coal 101 Lesson 4: A "Bed" for Burning Coal? It was a wet, chilly day in Washington DC in 1979 when a few scientists and engineers joined with government and college officials on the campus of Georgetown University to celebrate the completion of one of the world's most advanced coal combustors. It was a small coal burner by today's standards, but large enough to provide heat and steam for much of the university campus. But the new boiler built beside the campus tennis courts was unlike most other boilers in the world. A Fluidized Bed Boiler A Fluidized Bed Boiler In a fluidized bed boiler, upward blowing jets of air suspend burning coal, allowing it to mix with limestone that absorbs sulfur pollutants.

270

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect (OSTI)

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

271

Coal: An energy bridge to the future  

SciTech Connect (OSTI)

For years, coal drove the transportation business in this country and it may be poised for a comeback when it comes to moving people and things. A hundred years ago, steam engines burned tons of coal as they pulled trains across the country. Now researchers are looking at converting that coal to liquid fuel that would fill up our gas tanks and move our cars and trucks. The technology already exists to transform coal into a liquid fuel. In fact, Pacific Northwest National Laboratory scientists and engineers have researched forms of coal and hydrocarbon gasification on and off for more than 30 years. But oil has never sustained a high enough price to kick start a coal-to-liquid fuel industry. That may be changing now. In addition to high crude oil prices, experts agree worldwide petroleum resources won’t last forever, and hydrocarbon resources like coal may be the only resource available, at a large enough scale, to off-set oil consumption, in the near term.

Bauer, Susan J.

2006-09-29T23:59:59.000Z

272

Lead contents of coal, coal ash and fly ash  

Science Journals Connector (OSTI)

Flameless atomic absorption spectrometry is applied for the determination of Pb in coal, coal ash and fly ash. Lead concentrations in coal and coal ash ranging from respectively 7 to 110 µg...?1 and 120 to 450 µg...

C. Block; R. Dams

1975-12-01T23:59:59.000Z

273

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

274

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect (OSTI)

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

275

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

276

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Distribution of U.S. Coal by Origin State, Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables Introduction The Coal Distribution Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing State. This Final 2009 Coal Distribution Report - Annual, supersedes the data contained in the four Quarterly Coal Distribution Reports previously issued for 2009. This report relies on the most current data available from EIA's various monthly, quarterly and annual surveys

277

Hydrogen from Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

278

Russian metallurgical coal supplies. A near-term perspective  

SciTech Connect (OSTI)

Calculations were made to estimate the changes in metallurgical coal supplies during the next 10 years. These calculations are based on three sets of data for the forecast period: (1) estimated changes in production at existing coal production and cleaning facilities in Kuznetsk, Pechora, and South Yakutsk basins; (2) production from new facilities as stipulated in licensing agreements for metallurgical coal production; and (3) Russian output of coke and washed coals. Estimates are given for two years: 2010 and 2015. A two-year base period of 2004 and 2005 was chosen because production was low in 2005 due to poor market conditions in the metal industry.

B.P. Kiselev; S.A. Liskovets [FGUP Eastern Coal Chemistry Research Institute (Russian Federation)

2007-01-15T23:59:59.000Z

279

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

280

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

282

U.S. Coal Supply and Demand: 2003 Review  

Gasoline and Diesel Fuel Update (EIA)

3 Review 3 Review 1 U.S. Coal Supply and Demand: 2003 Review by Fred Freme U.S. Energy Information Administration Overview U.S. coal production fell for the second year in a row in 2003, declining by 24.8 million short tons to end the year at 1,069.5 million short tons according to preliminary data from the Energy Information Administration (Table 1), down 2.3 percent from the 2002 level of 1,094.3 million short tons. (Note: All percentage change calculations are done at the short ton level.) Total U.S. coal consumption rose in 2003, with all coal-consuming sectors increasing or remaining stable for the year. Coal consumption in the electric power sector increased by 2.4 percent. However, there were only slight gains in consumption by the other sectors. U.S. coal exports rose in 2003 for the first time in

283

Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas  

E-Print Network [OSTI]

d = standard deviation INTRODUCTION The United States' vast lignite reserves' energy po- tential, while not commanding the public interest as much as the more "exotic" forms of energy conversion (solar, geothermal, wave energy, etc. ), has been... viewed with in- creasing interest by the technical community. Although a tremendous amount of energy is totalled in this country' s lignite coal reserves (Texas deposits alone are estimated at 100 billion tons [1] ), the energy is low-grade; i. e...

Blacksmith, James Richard

2012-06-07T23:59:59.000Z

284

The First Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Plants Coal Plants Nature Bulletin No. 329-A January 25, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation THE FIRST COAL PLANTS Coal has been called "the mainspring" of our civilization. You are probably familiar, in a general way, with the story of how it originated ages ago from beds of peat which were very slowly changed to coal; and how it became lignite or brown coal, sub-bituminous, bituminous, or anthracite coal, depending on bacterial and chemical changes in the peat, how much it was compressed under terrific pressure, and the amount of heat involved in the process. You also know that peat is formed by decaying vegetation in shallow clear fresh-water swamps or bogs, but it is difficult to find a simple description of the kinds of plants that, living and dying during different periods of the earth's history, created beds of peat which eventually became coal.

285

Coal gasification: Belgian first  

Science Journals Connector (OSTI)

... hope for Europe's coal production came with the announcement this month that the first gasification of coal at depths of nearly 1,000 metres would take place this May in ... of energy.

Jasper Becker

1982-03-04T23:59:59.000Z

286

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

287

“From Coal to Coke”  

Science Journals Connector (OSTI)

... IN the Sixth Coal Science Lecture, organized by the British ... Science Lecture, organized by the British Coal Utilization Research Association, and given at the Institution of Civil Engineers on October 16, ...

1957-11-02T23:59:59.000Z

288

Coal Production 1992  

SciTech Connect (OSTI)

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

Not Available

1993-10-29T23:59:59.000Z

289

Chemicals from coal  

SciTech Connect (OSTI)

This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

2004-12-01T23:59:59.000Z

290

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

291

Indonesian coal mining  

SciTech Connect (OSTI)

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

292

Coal: evolving supply and demand in world seaborne steam coal trade. [1975 to 1985; forecasting to 1995  

SciTech Connect (OSTI)

This paper describes the evolution of world seaborne steam coal trade since 1975. It highlights current trends and the historic and present sources of supply and demand and discusses selected factors that may affect future world trade patterns. It concludes with a general discussion on the prospects for United States participation in the growing world markets for steam coal. Worldwide seaborne steam coal trade is linked very closely to the generation of electricity and industrial use of process heat in cement and other manufacturing plants. The main factors that influence this trade are: economic growth, electricity demand, indigenous coal production (and degree of protection from lower cost coal imports), and the delivered costs of coal relative to other substitutable fuels. It may be of interest to know how these factors have changed seaborne steam coal trade in the past twelve years. In 1970, the total world use of steam coal was about two billion short tons. International trade in steam coal was only 80 million tons or about 4% of the total. Seaborne trade accounted for about 30% of international trade, or about 25 million tons. In 1982, the latest year for which good statistics are available, total world use of steam coal was about 3.6 billion tons. Seaborne steam coal trade was 110 million tons which is about 3% of the total and 37% of the international trade. 11 figs., 2 tabs.

Yancik, J.

1986-01-01T23:59:59.000Z

293

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

294

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

295

Coal gasification development intensifies  

Science Journals Connector (OSTI)

Coal gasification development intensifies ... Three almost simultaneous developments in coal gasification, although widely divergent in purpose and geography, rapidly are accelerating the technology's movement into an era of commercial exploitation. ... A plant to be built in the California desert will be the first commercialsize coal gasification power plant in the U.S. In West Germany, synthesis gas from a coal gasification demonstration plant is now being used as a chemical feedstock, preliminary to scaleup of the process to commercial size. ...

1980-02-25T23:59:59.000Z

296

Ore components in coal  

SciTech Connect (OSTI)

The dependence of the mineral content in coal and concentrates on the degree of metamorphism is analyzed.

Kh.A. Ishhakov [Russian Academy of Sciences, Kemerovo (Russian Federation). Institute of Coal and Coal Chemistry, Siberian Branch

2009-05-15T23:59:59.000Z

297

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

298

Pricing of Australia's coking coal exports: A regional hedonic analysis  

Science Journals Connector (OSTI)

Black coal is Australia's most important export commodity, but the profitability of the domestic coal industry has been low relative to the mining sector average. As a consequence, a key policy issue in Australia has been the extent to which Japan's coal pricing and investment policies have influenced coal market outcomes. In this paper, a regional hedonic pricing model of Australia's coking coal exports is estimated for the period JFY1989 to 1996. Non-Japan regional intercept dummy variables were found to be significantly different from zero, although these varied across coal categories and years. However, the empirical evidence indicates that Japan does not pay significantly lower prices relative to other major export markets for coking coal of a given quality.

Lindsay Hogan; Sally Thorpe; Anthony Swan; Simon Middleton

1999-01-01T23:59:59.000Z

299

CO2 Sequestration Potential of Texas Low-Rank Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

300

Coal Study Guide for Elementary School  

Broader source: Energy.gov [DOE]

Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The status of coal briquetting technology in Korea  

SciTech Connect (OSTI)

Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

Choi, Woo-Zin

1993-12-31T23:59:59.000Z

302

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

303

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

304

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

305

NETL: IEP - Coal Utilization By-Products Current Regulations Governing Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Products Current Regulations Governing Coal Combustion By-Products - Database of State Regulations Database of State Regulations Affecting Disposal and Utilization of Coal Combustion By-Products A Summary Provided by the National Energy Technology Laboratory and the American Coal Ash Association Coal Combustion By-Products (CCBs) are generated when coal is used to generate electricity and power industrial processes. Tens of millions of tons of these materials are produced each year. Many uses of these byproducts are possible, but currently most of them wind up in landfills. Previous work at the National Energy Technology Laboratory (NETL) identified regulatory issues as one factor preventing more widespread reuse of CCBs. CCBs are generally regulated by state authorities, and the various states have developed widely differing rules. This web site was developed as one way to help CCB generators, users, and regulators share information across state boundaries.

306

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

307

Coal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Coal Coal Coal is the largest domestically produced source of energy in America and is used to generate a significant chunk of our nation's electricity. The Energy Department is working to develop technologies that make coal cleaner, so we can ensure it plays a part in our clean energy future. The Department is also investing in development of carbon capture, utilization and storage (CCUS) technologies, also referred to as carbon capture, utilization and sequestration. Featured Energy Secretary Moniz Visits Clean Coal Facility in Mississippi On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. A small Mississippi town is making history with the largest carbon capture

308

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

309

Coal dust explosibility  

Science Journals Connector (OSTI)

This paper reports US Bureau of Mines (USBM) research on the explosibility of coal dusts. The purpose of this work is to improve safety in mining and other industries that process or use coal. Most of the tests were conducted in the USBM 20 litre laboratory explosibility chamber. The laboratory data show relatively good agreement with those from full-scale experimental mine tests. The parameters measured included minimum explosible concentrations, maximum explosion pressures, maximum rates of pressure rise, minimum oxygen concentrations, and amounts of limestone rock dust required to inert the coals. The effects of coal volatility and particle size were evaluated, and particle size was determined to be at least as important as volatility in determining the explosion hazard. For all coals tested, the finest sizes were the most hazardous. The coal dust explosibility data are compared to those of other hydrocarbons, such as polyethylene dust and methane gas, in an attempt to understand better the basics of coal combustion.

Kenneth L. Cashdollar

1996-01-01T23:59:59.000Z

310

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-10-20T23:59:59.000Z

311

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

2003-08-04T23:59:59.000Z

312

Modernization of Ohio's coal reserves, Phase 1  

SciTech Connect (OSTI)

The objectives of this project were to determine state-level totals of the estimated economic resource, minable reserve base, and recoverable coal in Ohio, allocated to specified ranges of sulfur and heat content. In addition, resources and reserves were to be categorized by mining methods (surface and underground). Land use and environmental restrictions, needed to determine remaining minable reserves, were to be delineated and percentages of restricted coal calculated. In context of a Phase 1, one-year project, the objectives of this project were to update Ohio's coal reserves and resources for as many counties as time allowed, and to deplete production tonnages to January 1, 1991, on the remaining coal-producing counties. For the depleted counties, only estimated economic resources were required or possible with the data available. 24 refs., 9 figs., 3 tabs.

Carlton, R.W.

1991-09-27T23:59:59.000Z

313

Coal Storage and Transportation  

Science Journals Connector (OSTI)

Abstract Coal preparation, storage, and transportation are essential to coal use. Preparation plants, located near to the mine, remove some inorganic minerals associated with raw coal. Coal is transported from the mines to the point of consumption, often an electric generating plant, by rail, barge and trucks. Railroads are the predominant form of coal transportation within a country. Global coal trade, movement by large ocean-going vessels, continues to increase. At the end use site, the coal is crushed, ground, and the moisture content reduced to the proper specifications for end use. Coal is stored at various points in the supply chain. Processed coal will weather and oxidize, changing its properties; it can self-ignite, unless precautions are taken. Technology in use today is similar to that used in previous decades. Performance improvements have come from improved software and instruments that deliver real-time data. These improve management of sub-processes in the coal supply chain and reduce costs along the supply chain.

J.M. Ekmann; P.H. Le

2014-01-01T23:59:59.000Z

314

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

fixation in slag or bottom ash, coal gasification, or coallimestone and coal that form little fly ash and trap sulfurSulfate Organic Ash (%) "Organic Sulfur", in Wheelock, Coal

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

315

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

316

EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS  

SciTech Connect (OSTI)

Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed. An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.

Kevin C. Galbreath

2002-08-01T23:59:59.000Z

317

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

4Q 2009 4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by transportation mode. The data sources beginning with the 2008 Coal Distribution Report

318

WCI Case for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Coal The role of as an energy source The role of coal as an energy source Key Messages * Energy demand has grown strongly and will continue to increase, particularly in developing countries where energy is needed for economic growth and poverty alleviation. * All energy sources will be needed to satisfy that demand by providing a diverse and balanced supply mix. * Coal is vital for global energy security. It is abundantly available, affordable, reliable and easy and safe to transport. * In an energy hungry world the challenge for coal, as for other fossil fuels, is to further substantially reduce its greenhouse gas and other emissions, while continuing to make a major contribution to economic and social development and energy security. * Coal is part way down a technology pathway that has already delivered major

319

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2003-01-20T23:59:59.000Z

320

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally-acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national perspective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan

2002-04-15T23:59:59.000Z

322

BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS  

SciTech Connect (OSTI)

The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

R. Viswanathan; K. Coleman

2002-07-15T23:59:59.000Z

323

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

324

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

325

Clinkering properties of rammed coking coal and coal batches  

Science Journals Connector (OSTI)

The clinkering properties of rammed coking coal and coal batches are investigated. There is a close relation between the clinkering properties and coke quality.

V. M. Shmal’ko; M. A. Solov’ev

2009-03-01T23:59:59.000Z

326

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

327

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

328

The Economic Impact of Coal Mining in New Mexico  

SciTech Connect (OSTI)

The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

Peach, James; Starbuck, C.

2009-06-01T23:59:59.000Z

329

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

330

Catalytic steam gasification of coals  

Science Journals Connector (OSTI)

Catalytic steam gasification of coals ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ... Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture ...

P. Pereira; G. A. Somorjai; H. Heinemann

1992-07-01T23:59:59.000Z

331

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

332

Weekly Coal Production Estimation Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

333

Sandia National Laboratories: Clean Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

334

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

335

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

336

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

337

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

338

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

339

Spitsbergen Tertiary Coal Fossils  

Science Journals Connector (OSTI)

... grains and spores to be observed in coal deposits of Tertiary age in west Spitsbergen (Norsk Polarinstitutt, Med. 79, pp. 1-9; 1954; English summary).

1955-08-06T23:59:59.000Z

340

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Coal liquefaction quenching process  

DOE Patents [OSTI]

There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

1983-01-01T23:59:59.000Z

342

Handbook of coal analysis  

SciTech Connect (OSTI)

The Handbook deals with the various aspects of coal analysis and provides a detailed explanation of the necessary standard tests and procedures that are applicable to coal in order to help define usage and behavior relative to environmental issues. It provides details of the meaning of various test results and how they might be applied to predict coal behavior during use. Emphasis is on ASTM standards and test methods but ISO and BSI standards methods are included. Chapter headings are: Coal analysis; Sampling and sample preparation; Proximate analysis; Ultimate analysis; Mineral matter; Physical and electrical properties; Thermal properties; Mechanical properties; Spectroscopic properties; Solvent properties; and Glossary.

James G. Speight

2005-05-01T23:59:59.000Z

343

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

344

Annual Coal Distribution Report  

Gasoline and Diesel Fuel Update (EIA)

Distribution Report Release Date: December 19, 2013 | Next Release Date: December 12, 2014 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report...

345

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

Not Available

1993-02-01T23:59:59.000Z

346

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

347

Coal resource assessments: Calculating resources by GIS at the USGS  

SciTech Connect (OSTI)

Recent projections as to the future of coal are, for the most part, in general agreement that the production will continue to increase at approximately the current rate for the next 16 to 21 years. A very different view of the future resulted from recent analyses done by the EIA for the US House of Representatives Committee on Science. In these analyses the impacts of the Kyoto Protocol on US energy markets were modeled using six scenarios that reduced the carbon emission to varying levels below the reference case (carbon emissions in the reference case are 33% above the 1990 levels in 2020) The six scenarios resulted in projections that coal consumption in the US in 2010 would be reduced by between 18 and 77% with further significant decreases by 2020. This paper discusses national coal resource assessments by the USGS; coal resource data handling and analyses by GIS; coal assessments from resources to reserves; and coal resource information delivery.

Gluskoter, H.; Tewalt, S.J.; Levine, M.

1999-07-01T23:59:59.000Z

348

Cooperative coal marketing arrangement in eastern Kentucky: a feasibility report  

SciTech Connect (OSTI)

The purpose of this study is to assess the feasibility of establishing coal cooperatives in Appalachian Kentucky. To survive in today's coal market, the small independent sector of the coal industry, defined as operators producing no more than two-hundred thousand tons per year, must gain access to long-term contract markets and to economies of scale in coal transportation. In both of these areas, the larger coal producers enjoy a substantial competitive advantage. Also, the small operators must find ways of coping with drastically increased costs of permitting, production and reclamation. In recent years, cooperative marketing and production arrangements have increasingly been seen as possible mechanisms for enabling small operators to remain viable in today's coal market while retaining for the coal industry and the economy in general the independence, efficient production, recovery of coal from marginal deposits, and local orientation and entrepreneurship of the small operator. Although cooperative endeavors in permitting, meeting health and safety requirements, increasing mining efficiency, and joint purchase of materials and equipment can decrease costs for the small operator, the greatest need is for cooperative marketing mechanisms which will enable small operators to amass sufficient reserves and productive capacity to jointly gain large-volume, long-term sales contracts and to command the efficiencies and lower costs of coal shipment by unit train.

Not Available

1981-07-01T23:59:59.000Z

349

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

350

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

351

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

352

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

353

NETL: Clean Coal Demonstrations - Clean Coal Today Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Today Newsletter Clean Coal Today Newsletter Clean Coal Demonstrations Clean Coal Today Newsletter Clean Coal Today is a quarterly newsletter of the U.S. Department of Energy, Office of Fossil Energy (FE), Office of Clean Coal. Among other things, Clean Coal Today highlights progress under the Clean Coal Power Initiative, the Power Plant Improvement Initiative, and the few remaining projects of the original Clean Coal Technology Demonstration Program. Reporting on coal R&D performed at government laboratories, as well as in conjunction with stakeholders, it provides key information on FE's coal-related activities, most of which are directed toward near-zero emissions, ultra-efficient technologies of the future. Subscriptions are free – to have your name placed on the mailing list, contact the Editor at Phoebe.Hamill@hq.doe.gov.

354

Progress in the China Shenhua coal liquefaction project  

SciTech Connect (OSTI)

Hydrocarbon Technologies, Inc. (HTI) signed an agreement with Shenhua Group, Ltd. (Shenhua) and China Coal Research Institute (CCRI) to conduct a feasibility study of a coal liquefaction commercial plant to be built in Shaanxi Province of People`s Republic of China. Coals produced in the Shenhua coal field, China`s largest developing coal field located in northern China, will be used as feedstock. HTI`s coal direct liquefaction process, HTI Coal, which incorporates a two-stage reactor system with interstage separator and an in-line fixed-bed hydrotreater, will be employed in the plant design. HTI`s proprietary iron-based catalyst, GelCat will be used in the process. The feasibility study includes two phases. Phase 1 work involves a bench-scale liquefaction testing of Shenhua coals from two seams and a preliminary economic evaluation. The results show that Shenhua coals, despite their low volatile matter and high inert macerals contents among the 14 Chinese coals studies by CCRI, demonstrated very good performance: fairly high coal conversions (up to 93%) and high distillate yields (63--68 wt%). Preliminary economic evaluation conducted on the basis of the bench-scale testing results and local economic data appear to be favorable. The Phase 2 work includes a 3--5 ton/day process development unit (PDU) testing Shenhua coals to confirm and improve the bench-scale performance, to collect a large product sample for refining studies, to obtain process data for an in-depth techno-economic analysis, and to provide engineering data for scale-up design. This run is scheduled in the middle of the year, and feed coal collection and run plan preparation are currently under way. The test results will be presented in this conference.

Zhou, P.; Popper, G.; Lee, L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

1998-12-31T23:59:59.000Z

355

Iron Minerals in Coal, Weathered Coal and Coal Ash – SEM and Mössbauer Results  

Science Journals Connector (OSTI)

The aim of the present investigation was to identify and quantify the iron mineral phases present in South African coal from various coal fields and in coal ash, after industrial and laboratory combustion process...

F. B. Waanders; E. Vinken; A. Mans; A. F. Mulaba-Bafubiandi

356

METC research on coal-fired diesels  

SciTech Connect (OSTI)

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

357

Sulfur and ash reduction potential and selected chemical and physical properties of United States coals. [Contains glossary  

SciTech Connect (OSTI)

This report presents the washability and comprehensive characterization results of 247 raw coal channel samples, including anthracite, bituminous and lignite coals, collected from the Western Region of the United States. Although the Western Region includes Alaska, coal data from this state will often be cited apart from the Western Region data from the lower United States. This is the third of a three volume report on the coals of the United States. All the data are presented in six appendices. Statistical techniques and definitions are presented in Appendix A, and a glossary of terms is presented in Appendix B. The complete washability data and an in-depth characterization of each sample are presented alphabetically by state in Appendix C. In Appendix D, a statistical evaluation is given for the composited washability data, selected chemical and physical properties, and washability data interpolated at various levels of Btu recovery. This presentation is shown by state, section, and region where four or more samples were collected. Appendix E presents coalbed codes and names for the Western Region coals. Graphical summations are presented by state, rank, and region showing the effects of crushing on impurity reductions, and the distribution of raw and clean coal samples meeting various levels of SO{sub 2} emissions. 35 figs., 3 tabs.

Cavallaro, J.A.; Deurbrouck, A.W.; Killmeyer, R.P.; Fuchs, W. (USDOE Pittsburgh Energy Technology Center, PA (USA). Coal Preparation Div.); Jacobsen, P.S. (Burns and Roe Services Corp., Pittsburgh, PA (USA))

1991-06-01T23:59:59.000Z

358

EIA-Assumptions to the Annual Energy Outlook - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2007 Coal Market Module The NEMS Coal Market Module (CMM) provides forecasts of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2007, DOE/EIA-M060(2007) (Washington, DC, 2007). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the forecast. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

359

EIA - Assumptions to the Annual Energy Outlook 2010 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2010 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2010, DOE/EIA-M060(2010) (Washington, DC, 2010). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, the cost of factor inputs (labor and fuel), and other mine supply costs.

360

EIA - Assumptions to the Annual Energy Outlook 2008 - Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module Assumptions to the Annual Energy Outlook 2008 Coal Market Module The NEMS Coal Market Module (CMM) provides projections of U.S. coal production, consumption, exports, imports, distribution, and prices. The CMM comprises three functional areas: coal production, coal distribution, and coal exports. A detailed description of the CMM is provided in the EIA publication, Coal Market Module of the National Energy Modeling System 2008, DOE/EIA-M060(2008) (Washington, DC, 2008). Key Assumptions Coal Production The coal production submodule of the CMM generates a different set of supply curves for the CMM for each year of the projection. Forty separate supply curves are developed for each of 14 supply regions, nine coal types (unique combinations of thermal grade and sulfur content), and two mine types (underground and surface). Supply curves are constructed using an econometric formulation that relates the minemouth prices of coal for the supply regions and coal types to a set of independent variables. The independent variables include: capacity utilization of mines, mining capacity, labor productivity, the user cost of capital of mining equipment, and the cost of factor inputs (labor and fuel).

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Profitability analysis of non-coking coal preparation for power plants in India  

SciTech Connect (OSTI)

Currently coal-based power plants produce about 70% of the total electricity generated in India, where non-coking (steam) coals are utilized mostly without any preparation. A massive capacity addition of at least 140,000 MWe is required (over the 81,000 MWe of current installed capacity) during the next 15 years to meet growing energy demand. Such a rapid expansion of power generation capacity poses a serious challenge to the environment (at emission controls) and transportation infrastructure in India. Furthermore, the high ash content of indigenous coals and concentration of coal mines in central and northeastern India away from urban centers exacerbate the problem. Thus, coal preparation is envisioned to play a major role in shaping the energy future of India. Under the Indo-US Coal Preparation Program, the US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is coordinating coal preparation activities for the US Agency for International Development. In this context, a detailed analysis of the washability characteristics of non-coking coals was performed using the PETC Coal Preparation Plant Simulator (CPPS) to identify coal preparation strategies for India. Based on these strategies, a profitability analysis of non-coking coal preparation has been conducted considering coal preparation and transportation costs, and coal quality impacts on power plant operations. This paper summarizes the results of this analysis and quantifies the significance of coal preparation for the Indian power sector.

Gollakota, S.V.; Rao, S.N. [Burns and Roe Services Corp., Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Staats, G.E. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center

1996-12-31T23:59:59.000Z

362

"Modern" Coal Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Modern" Coal Plants "Modern" Coal Plants Nature Bulletin No. 331-A February 7, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation "MODERN" COAL PLANTS The Age of Cycads, when those strange tree-like plants predominated, began during the Triassic Period of the earth's geological history, reached its peak during the 60 million years of the Jurassic Period which followed, and ended during the first part of the Cretaceous Period that began about 95 million years ago. During the Jurassic, in addition to Cycades, there were also many species of ginkgos, and conifers which were the ancestors of our modern sequoias and pines. The ginkgo or "Maidenhair Tree", which we have imported from China and Japan, is the only one remaining of that tribe -- "a living fossil".

363

Coal Gasification in Australia  

Science Journals Connector (OSTI)

... P. S. Andrews gave a full account of the Federal project for the pressure gasification of non-coking coals for the combined purpose of town's gas ' and the ... of town's gas ' and the production of synthetic liquid fuel. Work on the gasification of brown coal in. Victoria was commenced in 1931 by the technical staff of ...

1955-06-11T23:59:59.000Z

364

Chemicals from Coal  

Science Journals Connector (OSTI)

...Mas-sachusetts Institute of Technology, 1974; J. B. Howard...Petras, in Coal Pro-cessing Technology (American Institute of Chem-ical...with the solidifcation of a fluid bituminous coal as it undergoes...Policy Analyst, Science and Technology Policy Office (Staff to the...

Arthur M. Squires

1976-02-20T23:59:59.000Z

365

Incentives boost coal gasification  

SciTech Connect (OSTI)

Higher energy prices are making technologies to gasify the USA's vast coal reserves attractive again. The article traces the development of coal gasification technology in the USA. IGCC and industrial gasification projects are now both eligible for a 20% investment tax credit and federal loan guarantees can cover up to 80% of construction costs. 4 photos.

Hess, G.

2006-01-16T23:59:59.000Z

366

HS_Coal_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

367

Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991  

SciTech Connect (OSTI)

The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

Huffman, G.P. [ed.

1992-02-15T23:59:59.000Z

368

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Origin State, Origin State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

369

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Distribution Category UC-950 Quarterly Coal Report April-June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed to Paulette Young at (202) 426-1150, email

370

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Colorado Total 2,113 - - - 2,113 Colorado Railroad 2,113 - - - 2,113 Illinois Total 336 - - - 336 Illinois River 336 - - - 336 Indiana Total 1,076

371

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Distribution Category UC-950 Quarterly Coal Report January-March 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This publication was prepared by Paulette Young under the direction of B.D. Hong, Leader, Coal Infor- mation Team, Office of Coal, Nuclear, Electric and Alternate Fuels. Questions addressing the Appendix A, U.S. Coal Imports section should be directed

372

Coal Distribution Database, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

Destination State, Destination State, Consumer, Destination and Method of Transportation 3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal Distribution Report is a preliminary report, based on the most current data available from EIA's various monthly, quarterly and annual surveys of the coal industry and electric power generation industry. The final report will rely on the receipt of annual data to replace the imputed monthly data for smaller electric generation plants that are excluded from the monthly filing requirement, and final data for all other respondents. The Coal Distribution Report traces coal from the origin State to the destination State by

373

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

374

By Coal Origin State  

Gasoline and Diesel Fuel Update (EIA)

Annual Coal Distribution Report 2010 Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 7,906 821 1,242 - 9,969 Alabama Railroad 3,604 49 285 - 3,938 Alabama River 3,979 - - - 3,979 Alabama Truck 322 773 957 - 2,051 Florida Total - - 15 - 15 Florida Railroad - - 11 - 11 Florida Truck - - 3 - 3 Georgia Total 196 - 15 - 211 Georgia Railroad 189 - 1 - 190 Georgia Truck

375

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal  

Science Journals Connector (OSTI)

Ash Deposition Behavior of Upgraded Brown Coal and Bituminous Coal ... Ash with a low melting point causes slagging and fouling problems in pulverized coal combustion boilers. ... The ash composition in coal and operational conditions in boilers such as heat load greatly affect the ash deposition behavior. ...

Katsuya Akiyama; Haeyang Pak; Toshiya Tada; Yasuaki Ueki; Ryo Yoshiie; Ichiro Naruse

2010-07-22T23:59:59.000Z

376

Adsorption Behavior of CO2 in Coal and Coal Char  

Science Journals Connector (OSTI)

Coals of diverse characteristics have been chosen to provide a better understanding on the influence of various coal properties, such as maceral, volatile matter, and ash contents. ... In addition, char samples from two of these coals (a non-coking coal A and a coking coal B) were prepared by pyrolysis at 800 and 1000 °C in a nitrogen atmosphere and were tested for CO2 adsorption capacity. ... As stated earlier, virgin coal samples considered for the adsorption measurements include coals A, C, and D, which are of low-, high-, and medium-volatile sub-bituminous rank, respectively. ...

Shanmuganathan Ramasamy; Pavan Pramod Sripada; Md Moniruzzaman Khan; Su Tian; Japan Trivedi; Rajender Gupta

2014-07-01T23:59:59.000Z

377

Uncovering Coal's Secrets Through the University Coal Research Program |  

Broader source: Energy.gov (indexed) [DOE]

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

378

Coal combustion by-products: State regulatory overview  

SciTech Connect (OSTI)

Coal combustion by-products (CCBs) are generated from the combustion of coal for energy production. Approximately 82 million tons of CCBs are produced each year by electric utilities. (1991 Coal Combustion By-Product Production and Use, American Coal Ash Association, 1992.) There are several common types of CCBs produced by coal combustion--fly ash, bottom ash, boiler slag, flue gas desulfurization material (FGD) and fluidized bed combustion byproducts (FBC). Some CCBs, such as fly ash, have pozzolanic properties and may have cementitious properties, both of which are advantageous for engineering, construction and waste remediation applications. The American Society for Testing Materials (ASTM) in ASTM C-618 has created two classifications of useful and quality coal ash, Class F ash and Class C ash. Each class of coal ash has different pozzolanic and cementitious characteristics. Coal ash can be utilized in many manufacturing, mining, agricultural, engineering, construction and waste remediation applications. This is a review by state of regulations concerning coal combustion by-products.

Jagiella, D. [Howard and Howard Attorneys, Peoria, IL (United States)

1996-11-01T23:59:59.000Z

379

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

380

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Coal Science: Basic Research Opportunities  

Science Journals Connector (OSTI)

...carbon is arranged in coal becomes real. What...NMR experiments at high temperatures. This...of characterizing high-boiling coal "liquids" which...reactions. Coal mineral matter. Most U.S. coals...burned is called ash. Techniques are...

Martin L. Gorbaty; Franklin J. Wright; Richard K. Lyon; Robert B. Long; Richard H. Schlosberg; Zeinab Baset; Ronald Liotta; Bernard G. Silbernagel; Dan R. Neskora

1979-11-30T23:59:59.000Z

382

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network [OSTI]

??Coal plays a significant role in meeting the world’s need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P 1980-

2008-01-01T23:59:59.000Z

383

Measurements and Modeling of Coal Ash Deposition in an Entrained-Flow Reactor.  

E-Print Network [OSTI]

??Coal plays a significant role in meeting the world's need for energy and will continue to do so for many years to come. Economic, environmental,… (more)

Blanchard, Ryan P.

2008-01-01T23:59:59.000Z

384

Planning and setup for the implementation of coal and wood co-fired boilers.  

E-Print Network [OSTI]

??Coal and wood co-fired boiler technology has been significantly advancing in the past years, but many of their capabilities remain unknown to much of the… (more)

Gump, Christopher D.

2007-01-01T23:59:59.000Z

385

Characterization of Pennsylvania Coal Combustion Products for Beneficial Use in Mine Land Reclamation.  

E-Print Network [OSTI]

??Over 130 million tons of coal combustion products (CCPs) are produced each year in the U.S. Less than half of these CCPs will be utilized… (more)

Braun, Gregory

2012-01-01T23:59:59.000Z

386

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network [OSTI]

": lignite, subbituminous, bituminous, and anthracite. Indiana coals are bituminous and composed of 55 to 79 nearly 17 billion tons is recoverable. These reserves could last another 585 years at the current rate

Polly, David

387

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect (OSTI)

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

388

High-Sulfur Coal for Generating Electricity  

Science Journals Connector (OSTI)

...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...15.7 Nuclear 3.1 Geothermal Negligible 1973, use...home and commercial heating, transporta-tion...

James T. Dunham; Carl Rampacek; T. A. Henrie

1974-04-19T23:59:59.000Z

389

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

390

Structure and thermoplasticity of coal  

SciTech Connect (OSTI)

Chapters cover: molecular structure and thermoplastic properties of coal; {sup 1}H-nmr study of relaxation mechanisms of coal aggregate; structural changes of coal macromolecules during softening; quantitative estimation of metaplsat in heat-treated coal by solvent extraction; effects of surface oxidation on thermoplastic properties of coal; analysis of dilatation and contraction of coal during carbonization; formation mechanisms of coke texture during resolidification; modified CPD model for coal devolatilization; mathematical modelling of coke mechanical structure; and simulating particulate dynamics in the carbonization process based on discrete element treatment.

Komaki, I.; Itagaki, S.; Miura, T. (eds.)

2004-07-01T23:59:59.000Z

391

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

392

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Colorado Railroad 575 - - - 575 Illinois River 99 - - - 99 Indiana River 241 - - - 241 Kentucky Railroad 827 - 12 - 839 Kentucky (East) Railroad 76 - - - 76 Kentucky (West) Railroad

393

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 839 11 83 - 933 Alabama River 1,347 - - - 1,347 Alabama Truck 118 216 236 - 571 Alabama Total 2,304 227 320 - 2,850 Colorado Railroad 514 - - - 514 Illinois River 99 - - - 99 Indiana River 172 - - - 172 Kentucky Railroad 635 - 11 - 647 Kentucky (East) Railroad 45 - - - 45 Kentucky (West)

394

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 944 16 77 - 1,037 Alabama River 781 - - - 781 Alabama Truck 77 224 220 - 521 Alabama Total 1,802 240 298 - 2,340 Colorado Railroad 385 - - - 385 Illinois River 15 - - - 15 Indiana Railroad 1 - - - 1 Indiana River 350 - - - 350 Indiana Total 351 - - - 351 Kentucky Railroad 682 - 2 - 685 Kentucky (East)

395

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

June 2010 DOE/EIA-0121 (2010/01Q) June 2010 DOE/EIA-0121 (2010/01Q) Revised: July 2012 Quarterly Coal Report January - March 2010 June 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply Statistics U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.gov/coal/production/quarterly/ _____________________________________________ This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

396

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2010 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 907 10 59 - 975 Alabama River 903 - - - 903 Alabama Truck 150 144 253 - 546 Alabama Total 1,960 153 311 - 2,424 Colorado Railroad 640 - - - 640 Illinois River 123 - - - 123 Indiana River 312 - - - 312 Kentucky Railroad 622 - 36 - 658 Kentucky (East) Railroad 96 - 36 - 132 Kentucky (West)

397

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Colorado Total 468 - - - 468 Colorado Railroad 468 - - - 468 Illinois Total 90 - 26 - 116 Illinois River 90 - 26 - 116 Indiana Total 181 - - - 181 Indiana River 181 -

398

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2012 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Colorado Total 82 - - - 82 Colorado Railroad 82 - - - 82 Illinois Total 149 - 14 - 163 Illinois Railroad 44 - - - 44 Illinois River 105 - 14 - 119 Indiana Total 99 - - - 99

399

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Quarterly Coal Report January - March 2008 July 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

400

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2009 September 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

7/01Q) 7/01Q) Quarterly Coal Report January - March 2007 June 2007 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

402

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2010 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 914 12 66 - 992 Alabama River 949 - - - 949 Alabama Truck 78 189 237 - 504 Alabama Total 1,941 201 303 - 2,445 Georgia Railroad 23 - - - 23 Georgia Truck s - - - s Georgia Total 23 - - - 23 Indiana Railroad - 115 - - 115 Indiana Truck - 71 - - 71 Indiana Total - 186 - - 186 Tennessee Railroad - - 1 - 1 Tennessee Truck

403

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

3Q) 3Q) Quarterly Coal Report July - September 2008 December 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

404

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Quarterly Coal Report April - June 2008 September 2008 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

405

Quarterly Coal Report  

Gasoline and Diesel Fuel Update (EIA)

8/04Q) 8/04Q) Quarterly Coal Report October - December 2008 March 2009 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy Washington, DC 20585 _____________________________________________________________________________ This report is available on the Web at: http://www.eia.doe.gov/cneaf/coal/quarterly/qcr.pdf _____________________________________________ This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization.

406

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Railroad 1,040 18 80 - 1,138 Alabama River 668 - - - 668 Alabama Truck 52 164 223 - 438 Alabama Total 1,760 181 303 - 2,244 Colorado Railroad 600 - - - 600 Illinois River 203 - 13 - 217 Indiana River 180 - - - 180 Kentucky Railroad 465 - 10 - 475 Kentucky (West) Railroad 465 - 10 - 475 Utah Railroad 18 - - -

407

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

408

Modelling coal gasification  

Science Journals Connector (OSTI)

Coal gasification processes in a slurry-feed-type entrained-flow gasifier are studied. Novel simulation methods as well as numerical results are presented. We use the vorticity-stream function method to study the characteristics of gas flow and a scalar potential function is introduced to model the mass source terms. The random trajectory model is employed to describe the behaviour of slurry-coal droplets. Very detailed results regarding the impact of the O2/coal ratio on the distribution of velocity, temperature and concentration are obtained. Simulation results show that the methods are feasible and can be used to study a two-phase reacting flow efficiently.

Xiang Jun Liu; Wu Rong Zhang; Tae Jun Park

2001-01-01T23:59:59.000Z

409

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

410

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

411

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 4th Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,486 155 328 - 1,970 Alabama Railroad 1,020 - 75 - 1,095 Alabama River 417 - - - 417 Alabama Truck 49 155 253 - 458 Colorado Total 195 - - - 195 Colorado Railroad 195 - - - 195 Illinois Total 127 - 18 - 145 Illinois Railroad 20 - - - 20 Illinois River 107 - 18 - 125 Indiana Total

412

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2012 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,407 184 231 - 1,822 Alabama Railroad 801 9 49 - 859 Alabama River 519 - - - 519 Alabama Truck 87 175 182 - 444 Georgia Total s - s - s Georgia Truck s - s - s Indiana Total - 98 - - 98 Indiana Railroad - 98 - - 98 Kentucky Total - - 12 - 12 Kentucky Truck - - 12 - 12 Ohio Total - 30 - - 30 Ohio

413

By Coal Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 3rd Quarter 2011 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,942 160 335 - 2,437 Alabama Railroad 1,149 - 57 - 1,206 Alabama River 741 - - - 741 Alabama Truck 52 160 278 - 490 Colorado Total 621 2 - - 623 Colorado Railroad 621 2 - - 623 Illinois Total 113 - 11 - 123 Illinois River 113 - 11 - 123 Indiana Total 265 - - - 265 Indiana Railroad

414

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

415

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Summary Summary The U.S. coal industry rebounded in 2010, with coal exports showing impressive gains and domestic production up over the previous year. Metallurgical coal export prices hit record levels as weather problems continued to plague Australian producers, and steel-hungry China and India continued to import relatively large amounts of metallurgical coal. U.S. domestic coal price increases moderated for the electric power sector and declined for industrial plants and for commercial and institutional users. Positive trends established in 2010 are expected to carry over to 2011. Domestic coal consumption as well as metallurgical coal exports are expected to increase as U.S. and most other industrial economies continue to grow. Coal prices should continue to increase at a moderate pace. As

416

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Analysis & Projections Analysis & Projections ‹ See all Coal Reports U.S. Coal Supply and Demand: 2010 Year in Review Release Date: June 1, 2011 | Next Release Date: Periodically | full report Exports and Imports Exports Total U.S. coal exports for 2010 increased by 38.3 percent to 81.7 million short tons (Figure 8). Figure Data This increase was largely due to two factors. First, heavy rains and flooding in Australia, Indonesia, and Colombia reduced world coal supply and forced many coal importing nations to look elsewhere, primarily to the United States, to fulfill their coal needs. In addition, the shortage of their own domestic coal in relation to growing needs, namely for China and India, provided ample opportunities for U.S. coal producers to export to these markets.

417

Discharge produces hydrocarbons from coal  

Science Journals Connector (OSTI)

Discharge produces hydrocarbons from coal ... Studies of the reactions of coal in electric discharges by two chemists at the U.S. Bureau of Mines' Pittsburgh Coal Research Center may lead to improved ways of producing acetylene and other useful chemicals from coal. ... Other workers have produced high yields of acetylene from coal by extremely rapid pyrolysis using energy sources such as plasma jets, laser beams, arc-image reactors, and flash heaters. ...

1968-01-22T23:59:59.000Z

418

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

419

A Stoichiometric Analysis of Coal Gasification  

Science Journals Connector (OSTI)

A Stoichiometric Analysis of Coal Gasification ... Gasification of New Zealand Coals: A Comparative Simulation Study ... Gasification of New Zealand Coals: A Comparative Simulation Study ...

James Wei

1979-07-01T23:59:59.000Z

420

Pore Structure of the Argonne Premium Coals  

Science Journals Connector (OSTI)

Pore Structure of the Argonne Premium Coals ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

John W. Larsen; Peter Hall; Patrick C. Wernett

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Density Measurements of Argonne Premium Coal Samples  

Science Journals Connector (OSTI)

Density Measurements of Argonne Premium Coal Samples ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ... Constitution of Illinois No. 6 Argonne Premium Coal: A Review ...

He Huang; Keyu Wang; David M. Bodily; V. J. Hucka

1995-01-01T23:59:59.000Z

422

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

423

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

424

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

425

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

426

WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT  

E-Print Network [OSTI]

Proceedings of the Conference on Coal Feeding Systems, HeldWear Resistant Alloys for Coal Handling Equipment", proposalWear Resistant Alloys for Coal Handling Equi pment". The

Bhat, M.S.

2011-01-01T23:59:59.000Z

427

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

428

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

to have indicated economic coal reserves of at least 15tonnes of indicated economic coal reserves. Map 1: Chinaand economic assessment of deploying advanced coal power in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

429

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

430

Coal Utilization Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Crosscutting Research » Coal Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration. The process can take over 20 years or more and cost billions of dollars. Because of the significant efforts by DOE in the design and construction of advanced energy systems, traditions have changed. Engineers using sophisticated computer modeling and simulation are capable of "engineering"

431

Coal Distribution Database, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 December 2008 2007 Changes in Coal Distribution Table Format and Data Sources The changes in the coal distribution data sources made in 2006 are carried over to the 2007 tables. As in 2006, EIA used data from the EIA-3 survey to distribute synfuel to the electric generation sector on a state level, aggregated with all of the other coal (such as bituminous, subbituminous, and lignite coal) sent to electric generating plants. EIA supplemented the EIA-3 data with previously collected information to determine the mode of transportation from the synfuel plant to the electric generating consumer, which was not reported on the EIA-3A survey form. Although not contained in the EIA-6A master file, this information has been documented in an ancillary spreadsheet in the EIA

432

Coal Utilization Science Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal Utilization SCienCe Program Coal Utilization SCienCe Program Description The Coal Utilization Science (CUS) Program sponsors research and development (R&D) in fundamental science and technology areas that have the potential to result in major improvements in the efficiency, reliability, and environmental performance of advanced power generation systems using coal, the Nation's most abundant fossil fuel resource. The challenge for these systems is to produce power in an efficient and environmentally benign manner while remaining cost effective for power providers as well as consumers. The CUS Program is carried out by the National Energy Technology Laboratory (NETL) under the Office of Fossil Energy (FE) of the U.S. Department of Energy (DOE). The program supports DOE's Strategic Plan to:

433

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill data are a sample of all rail shipments. EIA's 2011 report describes the sampling procedure. EIA aggregates the confidential STB data to three different levels: national, coal-producing basin to state, and state to state. EIA applies STB withholding rules to the aggregated data to identify records that must be suppressed to protect business-sensitive data. Also, EIA adds additional location fields to the STB data, identifying the mine from which the coal originates, the power plant that receives the coal, and, in some cases, an intermediate delivery location where coal is terminated by the initial carrier but then

434

Entrainment Coal Gasification Modeling  

Science Journals Connector (OSTI)

Entrainment Coal Gasification Modeling ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ... Equivalent Reactor Network Model for Simulating the Air Gasification of Polyethylene in a Conical Spouted Bed Gasifier ...

C. Y. Wen; T. Z. Chaung

1979-10-01T23:59:59.000Z

435

On Coal-Gas  

Science Journals Connector (OSTI)

1860-1862 research-article On Coal-Gas W. R. Bowditch The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1860-01-01T23:59:59.000Z

436

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

437

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

438

Quarterly coal report  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

439

Rail Coal Transportation Rates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Survey data. Each plant receiving CAPP or PRB coal in 2007 and 2010 were mapped and their data used to estimate costs for other cells by interpolating values based on inverse...

440

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proximate analysis of coal  

SciTech Connect (OSTI)

This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

2009-02-15T23:59:59.000Z

442

WCI Case for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the steam cycle of coal-fired power plants offers the potential to convert 40% of solar energy into electricity. This compares to 13% for large-scale photovoltaic systems,...

443

Coal Supply Region  

Gasoline and Diesel Fuel Update (EIA)

Implicit Price Deflators for Gross Domestic Product, as published by the U.S. Bureau of Economic Analysis. For the composition of coal basins, refer to the definition of...

444

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

445

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2012-01-01T23:59:59.000Z

446

Table 7. U.S. Coal Exports  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Exports U.S. Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 7. U.S. Coal Exports (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Continent and Country of Destination April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change North America Total 3,122,664 2,010,882 3,565,711 5,133,546 5,327,583 -3.6 Canada* 1,773,644 943,061 2,101,534 2,716,705 3,176,066 -14.5 Dominican Republic 51,792 211,736 124,720 263,528 312,741 -15.7 Honduras - 41,664 34,161 41,664 68,124 -38.8 Jamaica 25 36,311 - 36,336 33,585 8.2 Mexico 1,244,972 777,750 1,268,077 2,022,722 1,698,391 19.1 Other** 52,231 360 37,219 52,591 38,676 36.0 South America Total 2,945,181 3,368,119

447

Table 20. Coal Imports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 20. Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 469,878 331,008 156,004 800,886 350,124 128.7 Baltimore, MD - - 106,118 - 154,318 - Boston, MA 373,985 154,438 - 528,423 51,185 NM Buffalo, NY 44 - - 44 - - New York City, NY 1,373 1,402 487 2,775 507 447.3 Norfolk, VA - 68,891 - 68,891 35,856 92.1 Ogdensburg, NY - 1 12 1 12 -91.7 Portland, ME 42,428 44,547 - 86,975 - - Providence, RI 52,028 61,729 49,387 113,757 108,226 5.1 St. Albans, VT 20

448

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Coal Prices Coal Prices Figure DataIn 2010, most domestic coal prices continued to increase, rising for the seventh consecutive year. Spot coal prices declined sharply at the end of 2008 and early 2009. While there has been a steady increase in North and Central Appalachian coal spot prices ever since, these prices have recovered about half their drops from peak 2008 levels, and other coal spot prices have increased only slightly from recent bottoms. As contracts expire and are renegotiated, the prevailing spot price influences the price on new and renegotiated contracts. Recent rising spot prices have maintained upward pressure on contract prices. According to preliminary data for 2010, coal prices at electric utilities (a subset of the electric power sector) increased for a tenth consecutive year, to $45.09 per short

449

Fluidized bed combustion of low-rank coals: (Task 4. 1)  

SciTech Connect (OSTI)

Results obtained in the second year of a second three-year program are described. Two 1000-hour tests were completed to evaluate corrosion/erosion effects on boiler materials. The coals tested were Kentucky {number sign}9 from the Pyro mine and Gibbons Creek, Texas, lignite. Of the variety of stainless and carbon steels tested, several meet commercial requirements despite a wide range in ash compositions of the test coals. In Fluidized Bed Combustion characterization, the River King Illinois {number sign}6 and Jacobs Ranch, Wyoming, subbituminous coals were extensively tested under a wide range of operating conditions and with and without limestone addition. The Jacobs Ranch coal was also successfully and satisfactorily fired as a coal/water fuel slurry. The low-rank coal slurry provided excellent ignition and combustion efficiency, and without ash agglomeration or accumulation. Continued progress was made in expanding the data base on FBC of low- rank coals. 11 refs., 59 figs., 22 tabs.

Mann, M.D.; Hajicek, D.R.; Zobeck, B.J.; Kalmanovitch, D.P.; Potas, T.A.

1988-04-01T23:59:59.000Z

450

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

451

Section 5 - Coal  

Science Journals Connector (OSTI)

Coal has the longest history of use among the fossil fuels, with use as a fuel dating to 3000 BC in China and Wales. Marco Polo’s “Description of the World” (1298) comments on many novel customs and practices of China, including the use of “stones that burn like logs” (coal). By the thirteenth century the mining of coal was widespread in England in regions such as Durham, Nottinghamshire, Derbyshire, Staffordshire, and North and South Wales. By the early seventeenth century nearly half of England’s maritime trade consisted of coal exports. Coal was the fuel that launched the Industrial Revolution in Europe and then the United States. By the late 1890s, the U.S. assumed the lead in world coal production. Britain now ranked second, after having been the world leader since the beginnings of the formal industry in the 1500s. Germany was third, an indication of its growing industrial power relative to continental rival France. Coal’s leading role in energy use peaked in the early twentieth century, after which it was supplanted by oil and natural gas. By the late twentieth century China’s rapid economic expansion, surging demand for electricity, and prodigious coal resources combined to propel it to become the world leader in production. Continuous improvements in coal mining technology have produced lower costs, improved safety, and greater labor productivity. John Buddle introduced the first air pump to ventilate coal mines (1803), followed shortly by the miner’s safety lamps that were developed independently by Sir Humphry Davy, William Clanny, and George Stephenson (1813-1816). Coal mining underwent a rapid transition in the 1880s to mechanical coal cutting in mines in the United Kingdom, the United States, and Russia. The St. Joseph Lead Company of Missouri (1900) invented the first underground mine roof bolts that became a key safety feature in underground coal mines. The first commercially successful bucket wheel excavator was used at the Luise Mine in Braunkohlemwerke, Germany (1925), followed by the first successful continuous miners in U.S. underground coal mining (1948). The first mechanized U.S. longwall mining system appeared in 1951, and was followed by the self-advancing hydraulic longwall support system that provided greater support for the roof of the mine. LeTourneau Technologies, Inc. of Texas manufactured the largest rubber tired front-end wheel loader in the world, the L-2350, which would play an important role in loading coal in Wyoming’s large surface mines (2005). Coal mining has always been a very hazardous occupation, and has produced some of history’s worst industrial disasters. The Courrières mine disaster, Europe's worst mining accident, caused the death of 1,099 miners in Northern France (1906). An explosion in a coal mine in Liaoning province in northeastern China killed more than 1,500 Chinese miners (1942), as did other major accidents in Ky?sh?, Japan (1914), Wankie, Rhodesia (1972), Wales (1913), Bihar, India (1965), and West Virginia, U.S. (1907), to name just a few. Legislation such as the Federal Coal Mine Health and Safety Act in the U.S. (1969) improved working conditions in many nations. The Great Smog of London (1952) occurred after an exceptionally cold winter forced homes and factories to burn large quantities of coal. A temperature inversion formed, trapping pollutants above the ground. More than 4,000 people died from respiratory ailments within the following week. The use of coal has been impacted by legislation to control the environmental impacts associated with its mining and combustion. The first known environmental regulation of coal dates to 1306 when King Edward II of England prohibited burning sea coal while Parliament was in session because of its offensive smoke. Sulfur dioxide from coal combustion was tied to acid rain in the 1960s, and carbon dioxide emissions became a concern beginning in the 1980s when climate change emerged as a critical environmental issue.

Cutler J. Cleveland; Christopher Morris

2014-01-01T23:59:59.000Z

452

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

453

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Broader source: Energy.gov (indexed) [DOE]

Award Results in Several Patents, Potential Increased Coal Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

454

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

Coal reports Coal reports Coal Transportation Rates to the Electric Power Sector With Data through 2010 | Release Date: November 16, 2012 | Next Release Date: December 2013 | Correction Previous editions Year: 2011 2004 Go Figure 1. Deliveries from major coal basins to electric power plants by rail, 2010 Background In this latest release of Coal Transportation Rates to the Electric Power Sector, the U.S. Energy Information Administration (EIA) significantly expands upon prior versions of this report with the incorporation of new EIA survey data. Figure 1. Percent of total U.S. rail shipments represented in data figure data Previously, EIA relied solely on data from the U.S. Surface Transportation Board (STB), specifically their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data,

455

DOE Award Results in Several Patents, Potential Increased Coal Recovery |  

Broader source: Energy.gov (indexed) [DOE]

DOE Award Results in Several Patents, Potential Increased Coal DOE Award Results in Several Patents, Potential Increased Coal Recovery DOE Award Results in Several Patents, Potential Increased Coal Recovery February 9, 2009 - 12:00pm Addthis Washington, D.C. -- A $13 million cooperative effort with the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past seven years has resulted in the successful demonstration of a novel technology that addresses a problem plaguing coal operators and environmentalists alike: separating fine coal particles from water and their ultimate use as a significant energy resource. Researchers at the Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Va., have developed and patented an advanced technology called a hyperbaric centrifuge that can successfully remove

456

The development of Clean Coal Technology in China  

SciTech Connect (OSTI)

The resource conditions and energy structures of China determine that coal will continue to play a key role in the development of the electrical power industry in the coming years, thus it is necessary to develop clean coal technology in order to control the high consumption rate of energy and to control serious pollution. Clean coal technology focuses on improving the utilization rate of energy and on the control and reduction of emissions. Considering the condition of China, PC-FGD, supercritical units, CFBC, IGCC and PFBC-CC can be applied and developed under different conditions and in different periods with these technologies developing simultaneously and helping each other forward to improve clean coal technologies. China has broad development prospects and a large market for clean coal technologies. The authors hope to strengthen international exchange and cooperation in this field for the development of CCTs markets in China.

Jie, Z.; Chu, Z.X. [North China Electrical Power Design Inst., Beijing (China)

1996-10-01T23:59:59.000Z

457

AVESTAR® - Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator Oxy-Coal Carbon Capture (OCCC) Dynamic Simulator FutureGen 2.0 is a first-of-its-kind, near-zero emissions coal-fueled power plant using oxy-combustion technology to capture the plant's carbon emissions. To help meet the Nation's ever growing demand for clean energy, the FutureGen Industrial Alliance (Alliance) was formed to test and commercialize advanced coal-based systems fully integrated with carbon capture and geologic storage technologies. In cooperation with the U.S. Department of Energy (DOE), the Alliance and its project partners AirLiquide and Babcock & Wilcox, will upgrade an existing power plant in Meredosia, Illinois with oxy-coal carbon capture (OCCC) technology to capture and permanantly store approximately 1.0 million tonnes of CO2 each year.

458

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

459

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect (OSTI)

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

460

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu year coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Definition: Anthracite coal | Open Energy Information  

Open Energy Info (EERE)

coal Jump to: navigation, search Dictionary.png Anthracite coal A hard, brittle, and black lustrous coal, often referred to as hard coal; contains 86-97% carbon, and generally has...

462

Potential benefits from and barriers against coal remining  

SciTech Connect (OSTI)

Coal has been mined commercially in the United States since the mid 1700s and strip mining of coal began in the in the late 1800S. However, until the past 15--20 years, the environmental effects of coal mining caused little concern. In the past, coal mining sites were abandoned for economic reasons or because the equipment in use at the time could not recover any additional coal. Many of these sites were left in an unsafe and unsightly condition, resulting in severe water quality problems and threats to public health and safety. In more recent times, the advent of more sophisticated equipment allowed operators to return to previously mined sites and recover additional coal. This practice, known as remining, is the subject of this paper. In the most general sense, remining is simply mining again at a site that had formerly been mined. Many of today`s coal mining activities take place entirely or partially at sites that were formerly mined and left unreclaimed, primarily because no laws existed requiring reclamation. This paper focuses on the subset of remining projects, which not only recover additional coal, but also reclaim or improve the condition of abandoned mine lands (AMLs), particularly improvements to water quality.

Veil, J.A.

1993-06-01T23:59:59.000Z

463

Effect of petroleum coke addition on coal gasification  

Science Journals Connector (OSTI)

The main fuel for power generation is combustion of coal and/or natural gas. Natural gas is expensive but clean and less problematic whereas coal is the reverse of natural gas. Natural gas resources are expected to last until 2020 where else coal has another 200 years expectancy. To replace the natural gas synthetic gas (syngas) can be used as a substitute fuel. Syngas can be produced using coal as fuel. In this study we blend petcoke a cheap solid carboneous fuel as an alternative to coal for the production of syngas using a 30 Kwattheat bubbling fluidized bed gasifier. The equivalent ratio (ER) was set at 2.8 and a gasification temperature was maintained between 680 to 710°C by manipulating between the feed flow rates and fluidizing medium. This condition was chosen as it proved to be the optimum based on the work by the same group. Various blend of coal:petcoke between 0 to 100% was analyzed. It was found that a 20:80 petcoke to coal gives a good correlation with 100% coal gasification.

2014-01-01T23:59:59.000Z

464

Blackout: coal, climate and the last energy crisis  

SciTech Connect (OSTI)

Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

Heinberg, R. [Post Carbon Institute in California, CA (United States)

2009-07-15T23:59:59.000Z

465

U.S. Department of Energy U.S. Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

report year's response, explain the change in short tons Part 6 What is the average heat (Btu) content for all coal mined at this mine during the reporting year? Btulb....

466

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10 Total Coal 1...

467

Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 4, October--December 1992  

SciTech Connect (OSTI)

A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluating the economic and technical feasibility of the concept, and preparing an R&D plan to develop the concept further. The power generating system being developed in this project will be an improvement over current coal-fired systems. Goals have been specified that relate to the efficiency, emissions, costs, and general operation of the system. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with coal-derived fuels and then directly heated in a natural-gas-fired combustor to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuel gas is relatively clean, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need to be a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only.

Not Available

1993-02-01T23:59:59.000Z

468

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

469

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

470

Natural radioactivity of Zambian coal and coal ash  

Science Journals Connector (OSTI)

226Ra and232Th specific activities in coal from Maamba Collieries in Zambia have been...?1..., respectively. These values are nearly two and a half times larger than the world average for coal an...

P. Hayumbu; M. B. Zaman; S. S. Munsanje

1995-11-01T23:59:59.000Z

471

Coking properties of coal pitch in coal batch  

Science Journals Connector (OSTI)

The coking properties of coal pitch depend significantly on its fractional composition, ... : 2: 2. This is typical of coal pitch with a softening temperature of 75– ... Such pitch is the best clinkering additive...

S. G. Gagarin; Yu. I. Neshin

2011-09-01T23:59:59.000Z

472

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

473

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect (OSTI)

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

474

Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants  

SciTech Connect (OSTI)

The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The extruder is special because all of its auger surface and the internal barrier surface are covered with the membranes allowing water to drain and solid particles retained. It is believed that there are four mechanisms working together in the dewatering process. They are hydrophilic diffusion flow, pressure flow, agitation and air purging. Hydrophilic diffusion flow is effective with hydrophilic membrane. Pressure flow is due to the difference of hydraulic pressure between the two sides of the membrane. Agitation is provided by the rotation of the auger. Purging is achieved with the air blow from the near bottom of the extruder, which is in vertical direction.

Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

2006-12-22T23:59:59.000Z

475

Annual Coal Distribution Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Foreign Distribution of U.S. Coal by Major Coal-Exporting States and Destination, 2001 Coal-Exporting State and Destination Metallurgical Steam Total Alaska - 761 761 South Korea - 761 761 Alabama 4,667 167 4,834 Argentina 155 - 155 Belgium 989 - 989 Brazil 1,104 - 1,104 Bulgaria 82 - 82 Egypt 518 - 518 Italy 115 - 115 Netherlands 56 83 139 Spain 412 84 496 Turkey 581 - 581 United Kingdom 654 - 654 Kentucky 2,130 - 2,130 Canada 920 - 920 France 22 - 22 Iceland 9 - 9 Italy 430 - 430 Netherlands 417 - 417 Spain 9 - 9 United Kingdom 323 - 323 Pennsylvania 1,086 14,326 15,722 Belgium - 203 203 Brazil 372 - 373 Canada - 12,141 12,418 France - 84 84 Germany 495 165 661 Ireland - 136 136 Netherlands 219 879 1,097 Norway - - 7 Peru - - 21 Portugal - 634 634 United Kingdom - 85 85 Venezuela - - 3 Utah - 1,420 1,420 Japan - 1,334 1,334 Taiwan - 86 86 Virginia 4,531

476

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

477

Status of Coal Gasification: 1977  

Science Journals Connector (OSTI)

High-pressure technology is important to coal gasification for several reasons. When the end pr