National Library of Energy BETA

Sample records for btu year agriculture

  1. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  2. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  3. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  4. First BTU | Open Energy Information

    Open Energy Info (EERE)

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  5. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  6. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  7. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  8. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  10. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages:

  11. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand...

  12. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:06 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  13. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:08 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  14. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:23:12 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  15. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  16. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  17. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  18. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  19. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  20. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  1. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  2. Commercial low-Btu coal-gasification plant

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The feasibility study consisted of the following tasks: perform preliminary engineering of a gasification facility; provide a definitive full gas cost estimate based upon the preliminary engineering fuel design; determine the preferred source of coal; determine the potential for the disposition of, and income from, by-products; develop a health and safety program; perform an analysis of the risks involved in constructing and operating such a facility; and prepare a Financial Analysis of General Refractories selected Dravo Engineers and Constructors based upon the qualifications of Dravo in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts and, if the present natural gas decontrol plan is not fully implemented, some budgetary risks would occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  3. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  4. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  5. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  6. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,023 1,022 2010's 1,021 1,017 1,015 1,015 1,025 1,029

  7. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,010 1,010 1,007 2010's 1,006 1,009 1,014 1,016 1,038

  8. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021

  9. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002

  10. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,028 1,026

  11. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  12. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,043 1,040 2010's 1,040 1,048 1,046 983 958 981

  13. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  14. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,064 1,062 1,046 2010's 1,044 1,047 1,032 1,030 1,029...

  15. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021 1,037

  16. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,006 1,006 1,005 2010's 1,005 1,013 1,012 1,002 1,002 1,001

  17. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  18. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    U.S. Energy Information Administration (EIA) Indexed Site

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  19. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  20. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  2. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  3. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  4. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  5. Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972 .45 .68 1.22

  6. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 ...

  7. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 ...

  8. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 ...

  9. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,024 1,024 1,025 1,027 1,026 1,024 1,025 1,024 1,025 1,024 1,025 2014 1,027 1,022 1,028 1,026 1,029 1,032 1,033 ...

  10. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 ...

  11. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,050 1,049 1,047 1,048 1,048 1,046 1,041 1,044 1,043 1,045 1,044 2014 1,044 1,044 1,045 1,044 1,038 1,036 1,038 ...

  12. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 ...

  13. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  14. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  15. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636

  16. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  17. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  18. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  19. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  20. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  1. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  2. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  3. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  4. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  5. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  6. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  7. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  8. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  9. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  10. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  11. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  15. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  16. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 245 2010's 225 501 314 1,046 1,426 933 Foot)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,026 1,027 2010's 1,022 1,018 1,015 1,016 1,022 1,028

  17. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American ...

  7. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  8. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030

  9. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  10. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  11. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,044 1,040 1,035 2010's 1,037 1,040 1,032 1,030 1,032 1,031

  12. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  13. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,024 1,025 1,028 2010's 1,021 1,022 1,024 1,030 1,035 1,041

  14. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,023 1,021 1,021 2010's 1,022 1,025 1,031 1,033 1,031 1,033

  15. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,027 1,023 2010's 1,015 1,011 1,011 1,013 1,01

  16. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  17. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  18. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,034 1,033 2010's 1,032 1,032 1,030 1,036 1,040 1,047

  19. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  20. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  1. U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12.91 15.20 8.99 2010's 11.83 15.12 10.98 9.94 9.56 4.97

  2. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,020 1,019 2010's 1,019 1,032 1,039 1,042 1,043 1,058

  3. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,015 1,014 1,013 2010's 1,008 1,011 1,011 1,016 1,021 1,029

  4. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,022 1,013 1,015 2010's 1,012 1,012 1,012 1,015 1,021 1,036

  5. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,021 1,023 1,021 2010's 1,016 1,014 1,017 1,017 1,021 1,03

  6. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,026 1,019 2010's 1,014 1,010 1,012 1,016 1,029 1,031

  7. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,017 1,016 1,011 2010's 1,012 1,016 1,025 1,028 1,026

  8. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,011 1,012 2010's 1,004 1,011 1,019 1,031 1,039 1,055

  9. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,032 1,039 1,031 2010's 1,033 1,024 1,029 1,033 1,034 1,043

  10. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,033 1,029 2010's 1,026 1,026 1,029 1,045 1,042 1,046

  11. North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,046 1,042 1,055 2010's 1,055 1,073 1,065 1,082 1,064 1,054

  12. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,040 1,041 2010's 1,034 1,031 1,032 1,046 1,045 1,067

  13. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,033 1,023 1,024 2010's 1,015 1,021 1,022 1,015 1,025 1,037

  14. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,037 1,038 1,037 2010's 1,034 1,036 1,040 1,049 1,047 1,047

  15. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,003 1,003 1,002 2010's 1,005 1,005 1,018 1,023 1,035 1,051

  16. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,038 1,037 1,028 2010's 1,023 1,014 1,014 1,021 1,026 1,027

  17. Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,025 1,025 1,023 2010's 1,028 1,025 1,026 1,027 1,030 1,033

  18. Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,052 1,059 1,044 2010's 1,045 1,038 1,043 1,047 1,041 1,044

  19. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,035 1,038 1,036 2010's 1,028 1,027 1,034 1,040 1,041 1,053

  20. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,074 1,073 1,082 2010's 1,076 1,083 1,080 1,083 1,073 1,086

  1. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,036 1,031 1,031 2010's 1,031 1,034 1,034 1,041 1,042 1,056

  2. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,030 1,028 1,027 2010's 1,023 1,020 1,022 1,028 1,028 1,035

  3. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  5. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  6. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  7. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  8. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  9. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  10. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  11. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  12. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  13. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  14. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  15. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  16. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  17. YEAR

    National Nuclear Security Administration (NNSA)

    446 YEAR 2014 Males 1626 Females 820 YEAR 2014 SES 97 EX 2 ED 1 SL 1 EJ/EK 84 EN 05 38 EN 04 162 EN 03 18 NN (Engineering) 427 NQ (Prof/Tech/Admin) 1216 NU (Tech/Admin Support) 66 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 27 American Indian Alaskan Native Female (AIAN F) 24 African American Male (AA M) 90 African American Female (AA F) 141 Asian American Pacific Islander Male (AAPI M) 63 Asian American Pacific Islander Female

  18. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  19. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  20. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  1. YEAR

    National Nuclear Security Administration (NNSA)

    White Male (W M) 26 White Female (W F) 16 DIVERSITY TOTAL WORKFORCE GENDER Livermore Field ... YEARS OF FEDERAL SERVICE SUPERVISOR RATIO AGE Livermore Field Office As of March 22, 2014 ...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  3. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  4. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  5. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  6. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  10. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31 22 2010's 28 21 10 13 15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Arkansas Coalbed Methane Proved

  11. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Virginia Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 135 126 84 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Virginia Shale Gas Proved Reserves, Reserves Changes, and

    DRAFT Last

  12. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  13. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  14. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  15. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  16. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 652 264 243 - = No Data Reported; -- = Not

  17. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,022 1,024 1,027 1,030 1,037 2003-2015 Total Consumption 1,023 1,022 1,024 1,027 1,032 2003-2014 Electric Power 1,022 1,021 1,022 1,025 1,029 2003-2014 Other Sectors 1,023 1,022 1,025 1,028 1,032 2003-2014 Foot)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,030 1,037

  18. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  19. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  20. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  1. Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 12,768 8,013 66,801 2,243 89,825 19,346 4,550 23,896 679 114,400 1990 20,793 9,029 79,905 3,822 113,549 18,091 6,418 24,509 28 138,086 1991 21,239 5,502 82,279 3,940 112,960 17,166 9,127 26,293 590 139,843 1992 27,545 6,123 101,923

  2. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  3. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2012 NA NA NA NA NA NA NA NA NA NA NA NA 2013 1,026 1,026 1,026 1,026 1,027 1,027 1,027 1,027 1,027 1,027 1,028 1,028 2014 ...

  4. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,016 1,016 1,016 1,016 1,017 1,016 1,016 1,017 1,018 1,018 2014 1,018 1,017 1,019 1,021 1,024 1,025 1,026 1,027 1,029 1,027 1,029 1,028 2015 1,028 1,026 1,029 1,032 1,031 1,032 1,032 1,030 1,030 1,030 1,029 1,029 2016 1,029 1,025 1,030 1,028 1,028 1,026

  5. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,002 1,001 1,001 1,001 1,002 1,003 1,003 1,002 1,002 1,001 1,001 1,000 2014 1,002 1,004 1,001 1,002 1,001 1,001 1,001 1,001 1,001 1,001 1,001 1,001 2015 1,000 1,000 1,001 1,002 1,001 1,002 1,002 1,002 1,001 1,001 1,001 1,000 2016 1,000 1,000 1,001 1,001 1,002 1,003

  6. California Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,025 1,027 1,027 1,027 1,031 1,028 1,026 1,026 1,025 1,024 1,025 2014 1,025 1,023 1,024 1,028 1,029 1,028 1,028 1,031 1,033 1,034 1,035 1,034 2015 1,034 1,035 1,033 1,034 1,033 1,037 1,037 1,037 1,037 1,035 1,037 1,037 2016 1,038 1,036 1,034 1,035 1,021 1,042

  7. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Underground Storage Volume (Million Cubic Feet) Midwest Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2014 1,955,319 1,742,978 1,640,311 1,681,894 1,816,029 1,970,375 2,124,374 2,287,540 2,434,709 2,544,399 2,469,652 2,351,566 2015 2,115,639 1,842,618 1,748,917 1,805,578 1,934,606 2,062,641 2,181,461 2,321,316 2,463,235 2,583,800 2,580,265 2,477,168 2016 2,253,236 2,096,691 2,031,331 2,053,911 2,159,317 2,252,218 - = No

  8. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,039 1,037 1,034 1,031 1,032 1,031 1,033 1,039 1,032 1,029 1,034 2014 1,033 1,033 1,032 1,034 1,032 1,033 1,033 1,035 1,033 1,036 1,036 1,037 2015 1,040 1,040 1,041 1,043 1,043 1,045 1,044 1,043 1,044 1,043 1,043 1,042 2016 1,043 1,042 1,037 1,042 1,039 1,038

  9. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,032 1,031 1,031 1,031 1,034 1,035 1,034 1,033 1,034 1,034 1,033 1,032 2014 1,032 1,031 1,032 1,031 1,031 1,031 1,031 1,031 1,031 1,032 1,032 1,033 2015 1,034 1,035 1,034 1,034 1,032 1,032 1,031 1,031 1,032 1,032 1,032 1,033 2016 1,033 1,034 1,033 1,033 1,029 1,030

  10. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,034 1,033 1,033 1,035 1,035 1,038 1,037 1,044 1,045 1,044 1,043 1,044 2014 1,044 1,042 1,041 1,050 1,047 1,048 1,053 1,052 1,052 1,054 1,057 1,060 2015 1,065 1,062 1,062 1,073 1,072 1,068 1,069 1,068 1,071 1,071 1,077 1,077 2016 1,073 1,072 1,070 1,068 1,070 1,069

  11. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049 1,047 1,048 1,044 1,047 1,046

  12. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,010 1,012 1,011 1,017 1,020 1,020 1,023 1,021 1,014 1,013 1,013 2014 1,013 1,012 1,010 1,034 1,041 1,044 1,029 1,035 1,033 1,029 1,028 1,028 2015 1,031 1,031 1,032 1,035 1,039 1,042 1,039 1,039 1,038 1,036 1,035 1,036 2016 1,033 1,034 1,036 1,038 1,043 1,044

  13. Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,047 1,046 1,047 1,047 1,047 1,048 1,051 1,048 1,049 1,049 1,054 1,053 2014 1,052 1,050 1,048 1,046 1,044 1,044 1,046 1,046 1,045 1,044 1,049 1,052 2015 1,053 1,054 1,049 1,049 1,050 1,046 1,044 1,044 1,044 1,045 1,046 1,046 2016 1,048 1,045 1,042 1,042 1,042 1,041

  14. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,030 1,030 1,030 1,032 1,034 1,031 1,032 1,032 1,033 1,034 1,031 1,031 2014 1,031 1,032 1,031 1,030 1,028 1,023 1,029 1,029 1,027 1,030 1,029 1,029 2015 1,029 1,029 1,029 1,029 1,028 1,028 1,028 1,028 1,028 1,028 1,028 1,028 2016 1,032 1,027 1,025 1,034

  15. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,020 1,021 1,019 1,019 1,017 1,019 1,020 1,020 1,020 1,020 1,020 2014 1,022 1,021 1,022 1,022 1,022 1,023 1,022 1,024 1,028 1,027 1,028 1,029 2015 1,030 1,028 1,028 1,029 1,030 1,030 1,031 1,029 1,031 1,031 1,030 1,030 2016 1,031 1,031 1,029 1,031 1,030 1,029

  16. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,028 1,030 1,029 1,028 1,028 1,029 1,031 1,030 1,029 1,031 1,030 1,034 2014 1,034 1,034 1,035 1,036 1,039 1,041 1,039 1,045 1,045 1,049 1,048 1,048 2015 1,048 1,048 1,047 1,051 1,054 1,059 1,062 1,060 1,056 1,053 1,053 1,058 2016 1,060 1,058 1,053 1,052 1,054 1,058

  17. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  18. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  19. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  20. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  1. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  2. The Future of Biofuels an Agricultural Perspective

    U.S. Energy Information Administration (EIA) Indexed Site

    Biofuels An Agricultural Perspective Beth J. Calabotta Monsanto Company POPULATION GROWING AT 1.1% EACH YEAR Source: UN Population Division, Monsanto analysis INCOMES GROWING AT 3.5% PER YEAR... $5 BILLION PER DAY Source: IHS Global Insight, Agriculture Division, Monsanto analysis FOOD DEMAND GROWING AT ~1.75% EACH YEAR Source: IHS Global Insights, Agriculture Division, Monsanto analysis WATER DEMAND IS GROWING AT ~2% PER YEAR Source: McKinsey Resource Revolution 2011, Monsanto Analysis ENERGY

  3. Effect of simulated medium-Btu coal gasifier atmospheres on the biaxial stress rupture behavior of four candidate coal gasifier alloys

    SciTech Connect (OSTI)

    Horton, R.M.; Smolik, G.R.

    1982-01-01

    Tests were conducted to determine whether the biaxial stress rupture behavior of four alloys was adversely affected by exposure to four simulated medium-Btu coal gasifier atmospheres. The results of exposures up to approximately 500 h at temperatures between 649 and 982/sup 0/C are presented. Exposure to these atmospheres at temperatures below 900/sup 0/C did not significantly reduce the rupture properties from those measured in air. Only at 982/sup 0/C were the rupture strength and life in the simulated coal gasifier atmospheres lower than those measured in air at atmospheric pressure. Possible reasons for this reduction in strength/life are discussed. The results of detailed examination of specimen ruptures are also presented.

  4. ORISE: Multiple research appointments available through Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Service Postdoctoral Research Program Multiple research appointments available through Agricultural Research Service Postdoctoral Research Program Selected candidates participate in USDA research for one to four years FOR IMMEDIATE RELEASE March 26, 2014 FY14-23 OAK RIDGE, Tenn.-ORAU and the U.S. Department of Agriculture are currently seeking recent doctoral degree recipients for various appointments in the Agricultural Research Service Postdoctoral Research Program. The ARS is the

  5. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  6. USDA Agricultural Conservation Easement Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA's) Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

  7. Agricultural Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  8. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  9. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  10. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  11. Department of Energy fiscal year 1984 budget on environment programs. Hearing before the Subcommittee on Natural Resources, Agriculture Research and Environment, U. S. House of Representatives, Ninety-Eighth Congress, first session, 19 Apr 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    DOE Director Alvin W. Trivelpiece and Deputy Assistant Secretary for Environment, Safety and Health Robert W. Davies testified on why the administration made major budget cuts in nonnuclear health and environment programs when a 50% increase above the current $300 million budget is needed just to maintain the current reduced staff. Research on the health and environment effects and risk analyses associated with energy technologies were either scaled down or eliminated in the 1984 budget. Trivelpiece argued that programs were consolidated to eliminate duplication, and that the $210 million request will be adequate for data compilation and analysis. Davies reviewed DOE health and safety goals for the year, which will focus on personnel at DOE facilities. Both defended the administration's approach to such issues as acid rain, toxic wastes, and cancer research. An appendix with questions and answers for the record follows the testimony.

  12. Sustainable Agriculture Network | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Network Jump to: navigation, search Logo: Sustainable Agriculture Network Name: Sustainable Agriculture Network Website: clima.sanstandards.org References: Sustainable...

  13. Multiplex detection of agricultural pathogens

    SciTech Connect (OSTI)

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  14. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  15. Oregon Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Oregon Department of Agriculture Address: 635 Capitol St NE Place: Salem, Oregon Zip: 97301 Phone Number: 503-986-4550 Website:...

  16. Wyoming Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Name: Wyoming Department of Agriculture Address: 2219 Carey Avenue Place: Cheyenne, Wyoming Zip: 82002 Phone Number: 307-777-7321 Website:...

  17. Energy Secretary Chu, Agriculture Secretary Vilsack Announce...

    Energy Savers [EERE]

    Chu, Agriculture Secretary Vilsack Announce 6.3 million for Biofuels Research Energy Secretary Chu, Agriculture Secretary Vilsack Announce 6.3 million for Biofuels Research July ...

  18. LEDSGP/sector/Agriculture | Open Energy Information

    Open Energy Info (EERE)

    LEDSGPsectorAgriculture < LEDSGP(Redirected from Agriculture Work Space) Redirect page Jump to: navigation, search REDIRECT LEDSGPsectorAFOLU Retrieved from "http:...

  19. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  20. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  1. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appendix E.) J. Jennings. ERC Environmental and Energy Services, Co. ERCEPO-49. (190) Empirical Impact Evaluation of the Energy Savings Resulting From BPA's Stage II Irrigation...

  2. Mathias Agricultural Energy Efficiency Grant program

    Broader source: Energy.gov [DOE]

    Mathias Agriculture Energy Efficiency program offered by the Maryland Energy Administration (MEA) provides grants to farms and businesses in agricultural sector to offset 50% of the cost of energ...

  3. Randolph EMC- Agricultural Efficient Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Agricultural members of Randolph EMC (REMC) who upgrade to energy-efficientCFL bulbs in agricultural facilities are eligible for an incentive to help cover the initial cost of installation. The...

  4. Industrial and Agricultural Production Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    food processing, cold storage, agricultural, greenhouses, irrigation districts, and waterwastewater treatment. Standard prescriptive incentives include lighting, green motor...

  5. Agricultural Research Service (ARS) Research Participation Program -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Managed by ORAU Agricultural Research Service (ARS) Research Participation Program Home About USDA ARS About ORISE Current Research Opportunities Site Map Contact ORISE Facebook Twitter Applicants Welcome to the Agricultural Research Service (ARS) Research Participation Program The Agricultural Research Service (ARS) Research Participation Program will serve as the next step in the educational and professional development of scientists and engineers interested in agricultural related

  6. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  7. California Department of Food and Agriculture | Open Energy Informatio...

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Logo: California Department of Food and Agriculture Name: California Department of Food and Agriculture Abbreviation: CDFA Address: 1220 N...

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  10. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  11. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 35 -5.41% ↓ YEAR 2013 2014 Males 27 25 -7.41% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 11 10 -9.09% ↓ NN (Engineering) 8 8 0% / NQ (Prof/Tech/Admin) 14 15 7.14% ↑ NU (Tech/Admin Support) 2 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 3 3 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  12. Y YEAR

    National Nuclear Security Administration (NNSA)

    5 79 -7.06% ↓ YEAR 2013 2014 Males 59 57 -3.39% ↓ Females 26 22 -15.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 3 -25.00% ↓ EN 05 3 2 -33.33% ↓ EN 04 22 22 0% / EN 03 8 8 0% / NN (Engineering) 16 15 -6.25% ↓ NQ (Prof/Tech/Admin) 28 26 -7.14% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 5 4 -20.00% ↓ African American Female (AA,F) 3 2

  13. Y YEAR

    National Nuclear Security Administration (NNSA)

    91 81 -10.99% ↓ YEAR 2013 2014 Males 67 56 -16.42% ↓ Females 24 25 4.17% ↑ YEAR 2013 2014 SES 1 2 100% ↑ EJ/EK 9 8 -11.11% ↓ EN 04 25 22 -12.00% ↓ NN (Engineering) 24 20 -16.67% ↓ NQ (Prof/Tech/Admin) 29 26 -10.34% ↓ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander

  14. Y YEAR

    National Nuclear Security Administration (NNSA)

    21 -4.55% ↓ YEAR 2013 2014 Males 10 8 -20.00% ↓ Females 12 13 8.33% ↑ YEAR 2013 2014 SES 10 7 -30.00% ↓ EX 0 2 100% ↑ EJ/EK 1 1 0% / EN 05 0 1 100% ↑ EN 04 0 1 100% ↑ NQ (Prof/Tech/Admin) 9 8 -11.11% ↓ NU (Tech/Admin Support) 1 1 0% / ED 00 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 1 1 0% / African American Female (AA,F) 5 4 -20.00% ↓ Asian

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    41 155 9.93% ↑ YEAR 2013 2014 Males 92 106 15.22% ↑ Females 49 49 0% / YEAR 2013 2014 SES 8 8 0% / EX 1 1 0% / EJ/EK 4 4 0% / EN 05 11 10 -9.09% ↓ EN 04 11 14 27.27% ↑ EN 03 2 5 150% ↑ NN (Engineering) 60 63 5.00% ↑ NQ (Prof/Tech/Admin) 44 50 13.64% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 7 10 42.86% ↑ African American Female (AA,F) 13 11 -15.38% ↓ Asian American

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    563 560 -0.53% ↓ YEAR 2013 2014 Males 518 514 -0.77% ↓ Females 45 46 2.22% ↑ YEAR 2013 2014 SES 2 2 0% / EJ/EK 2 2 0% / EN 04 1 1 0% / NN (Engineering) 11 11 0% / NQ (Prof/Tech/Admin) 218 221 1.38% ↑ NU (Tech/Admin Support) 1 2 100% ↑ NV (Nuc Mat Courier) 328 321 -2.13% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 15 15 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 19 18 -5.26% ↓ African American Female (AA,F) 1 1 0% /

  17. Y YEAR

    National Nuclear Security Administration (NNSA)

    97 180 -8.63% ↓ YEAR 2013 2014 Males 105 89 -15.24% ↓ Females 92 91 -1.09% ↓ YEAR 2013 2014 SES 14 13 -7.14% ↓ EX 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 4 2 -50.00% ↓ EN 03 1 1 0% / EN 00 0 3 100% ↑ NN (Engineering) 35 27 -22.86% ↓ NQ (Prof/Tech/Admin) 135 126 -6.67% ↓ NU (Tech/Admin Support) 2 2 0% / GS 15 0 1 100% ↑ GS 13 1 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 1 -50.00% ↓ American Indian Alaskan Native Female (AIAN,F) 0 0 0% /

  18. Y YEAR

    National Nuclear Security Administration (NNSA)

    *Total number of Employees 122 112 -8.20% ↓ YEAR 2013 2014 Males 90 84 -6.67% ↓ Females 32 28 -12.50% ↓ YEAR 2013 2014 SES 26 24 -7.69% ↓ EJ/EK 3 3 0% / EN 05 8 9 12.50% ↑ NN (Engineering) 48 47 -2.08% ↓ NQ (Prof/Tech/Admin) 30 26 -13.33% ↓ NU (Tech/Admin Support) 7 3 -57.14% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29%

  19. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 79 -5.95% ↓ YEAR 2013 2014 Males 59 55 -6.78% ↓ Females 25 24 -4.00% ↓ YEAR 2013 2014 SES 3 3 0% / EJ/EK 4 4 0% / EN 04 2 1 -50.00% ↓ NN (Engineering) 20 20 0% / NQ (Prof/Tech/Admin) 55 51 -7.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 10 10 0% / African American Female (AA,F) 9 8 -11.11% ↓ Asian American Pacific Islander Male (AAPI,M) 2 2 0% / Asian American Pacific

  20. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 87 -1.14% ↓ YEAR 2013 2014 Males 46 46 0% / Females 42 41 -2.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 2 -50.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 68 70 2.94% ↑ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 5 5 0% / African American Female (AA,F) 5 6 20.00% ↑ Asian American Pacific Islander Male (AAPI,M) 0 0 0% / Asian

  1. Y YEAR

    National Nuclear Security Administration (NNSA)

    1 14 27.27% ↑ YEAR 2013 2014 Males 9 12 33.33% ↑ Females 2 2 0% / YEAR 2013 2014 SES 2 2 0% / EJ/EK 1 1 0% / EN 04 0 1 100% ↑ EN 00 0 1 100% ↑ NN (Engineering) 5 5 0% / NQ (Prof/Tech/Admin) 3 4 33.33% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific

  2. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 164 -8.38% ↓ YEAR 2013 2014 Males 100 92 -8.00% ↓ Females 79 72 -8.86% ↓ YEAR 2013 2014 SES 8 8 0% / EJ/EK 4 3 -25.00% ↓ EN 04 11 11 0% / EN 03 1 1 0% / EN 00 0 2 100% ↑ NN (Engineering) 39 32 -17.95% ↓ NQ (Prof/Tech/Admin) 111 104 -6.31% ↓ NU (Tech/Admin Support) 5 3 -40.00% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 2 100% ↑ American Indian Alaskan Native Female (AIAN,F) 2 1 -50.00% ↓ African American Male (AA,M) 4 3 -25.00% ↓ African American

  3. Y YEAR

    National Nuclear Security Administration (NNSA)

    40 36 -10.00% ↓ YEAR 2013 2014 Males 18 18 0% / Females 22 18 -18.18% ↓ YEAR 2013 2014 SES 3 2 -33.33% ↓ EJ/EK 1 1 0% / EN 03 1 1 0% / NN (Engineering) 3 3 0% / NQ (Prof/Tech/Admin) 30 27 -10.00% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 1 1 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 30 -11.76% ↓ YEAR 2013 2014 Males 16 14 -12.50% ↓ Females 18 16 -11.11% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 1 -66.67% ↓ NQ (Prof/Tech/Admin) 29 27 -6.90% ↓ NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific Islander

  5. Y YEAR

    National Nuclear Security Administration (NNSA)

    9 209 -8.73% ↓ YEAR 2013 2014 Males 76 76 0% / Females 153 133 -13.07% ↓ YEAR 2013 2014 SES 9 6 -33.33% ↓ EJ/EK 1 1 0% / NQ (Prof/Tech/Admin) 208 194 -6.73% ↓ NU (Tech/Admin Support) 11 8 -27.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 2 -33.33% ↓ African American Male (AA,M) 10 10 0% / African American Female (AA,F) 39 36 -7.69% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American

  6. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 80 -8.05% ↓ YEAR 2013 2014 Males 62 57 -8.06% ↓ Females 25 23 -8.00% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 3 0% / EN 05 1 1 0% / EN 04 27 24 -11.11% ↓ EN 03 1 0 -100% ↓ NN (Engineering) 26 25 -3.85% ↓ NQ (Prof/Tech/Admin) 26 24 -7.69% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 3 2 -33.33% ↓ African American Female (AA,F) 3 3 0% / Asian

  7. Y YEAR

    National Nuclear Security Administration (NNSA)

    502 2381 -4.84% ↓ YEAR 2013 2014 Males 1663 1593 -4.21% ↓ Females 839 788 -6.08% ↓ YEAR 2013 2014 SES 104 90 -13.46% ↓ EX 2 4 100% ↑ SL 1 0 -100% ↓ EJ/EK 88 73 -17.05% ↓ EN 05 40 41 2.50% ↑ EN 04 169 157 -7.10% ↓ EN 03 18 21 100% ↑ EN 00 0 6 100% ↑ NN (Engineering) 441 416 -5.67% ↓ NQ (Prof/Tech/Admin) 1239 1190 -3.95% ↓ NU (Tech/Admin Support) 66 57 -13.64% ↓ NV (Nuc Mat Courier) 328 321 -2.13% ↓ GS 15 1 2 100% ↑ GS 13 2 2 0% / GS 10 3 1 -66.67% ↓ YEAR 2013

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    80 83 3.75% ↑ YEAR 2013 2014 Males 48 50 4.17% ↑ Females 32 33 3.13% ↑ YEAR 2013 2014 SES 2 1 -50.00% ↓ EJ/EK 8 7 -12.50% ↓ EN 04 11 9 -18.18% ↓ EN 03 1 1 0% / NN (Engineering) 24 27 12.50% ↑ NQ (Prof/Tech/Admin) 32 33 3.13% ↑ NU (Tech/Admin Support) 2 5 150% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 3 3 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 2 2 0% / Asian American

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 27 -3.57% ↓ YEAR 2013 2014 Males 18 17 -5.56% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 4 3 -25.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 9 9 0% / NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 4 4 0% / African American Female (AA,F) 3 4 33.33% ↑ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian

  10. Consultative Group on International Agricultural Research | Open...

    Open Energy Info (EERE)

    reduce poverty and hunger, improve human health and nutrition, and enhance ecosystem resilience through high-quality international agricultural research, partnershp and...

  11. OTEC- Agricultural Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oregon Trail Electric Consumers Cooperative (OTEC) offers programs to agricultural customers.  Interested customers should contact a local OTEC office.

  12. Agricultural Lighting and Equipment Rebate Program

    Broader source: Energy.gov [DOE]

    In Vermont, agricultural operations are eligible for prescriptive and customized incentives for equipment proven to help make farms more efficient. Prescriptive rebates are available for lighting...

  13. WINDExchange: Agricultural and Rural Resources and Tools

    Wind Powering America (EERE)

    Rural Communities Printable Version Bookmark and Share Wind for Homeowners, Farmers, & Businesses Resources & Tools Agricultural and Rural Resources and Tools This page lists...

  14. Farmers Electric Cooperative - Residential/Agricultural Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Residential Agricultural Savings Category Solar Photovoltaics Wind (All) Geothermal Heat Pumps Water Heaters Lighting Heat Pumps CaulkingWeather-stripping Building Insulation...

  15. Consultative Group on International Agricultural Research (CGIAR...

    Open Energy Info (EERE)

    academia, and the private sector. The 15 Research Centers generate and disseminate knowledge, technologies, and policies for agricultural development through the CGIAR...

  16. Climate change and agriculture: Current methodologies and future directions

    SciTech Connect (OSTI)

    Rosenzweig, C.; Hillel, D.

    1996-12-31

    In the last fifteen years a major methodology has been developed for the assessment of the potential impacts of climate change on agricultural production around the world. This methodology consists of coupling dynamic crop growth models, designed to predict plant development and yield as a function of weather, soil, and management input variables, to predictors of climate change for sites within a given region. Such impact studies consist of (1) Definition of area of study and analysis of current climate and agricultural practices; (2) Crop model calibration and evaluation; (3) Development of climate change scenarios from GCMs or historical weather data; (4) Analyses of yield changes under changed climatic conditions; and (5) Development and analysis of adaptation strategies. Crop productivity results of such studies are often used in economic analyses. The Intergovernmental Panel on Climate Change and the US Country Studies Program endorse this modeling approach for the assessment of climate change effects on agriculture. It is useful for assessment studies to continue in the framework of the approved guidelines, in order to build a more complete understanding of likely effects on agricultural production throughout the world, and for more comprehensive results to be available for integrated assessment studies.

  17. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  18. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

  19. Year Modules

    U.S. Energy Information Administration (EIA) Indexed Site

    dollars per peak watt) Year Modules 2004 $2.99 2005 $3.19 2006 $3.50 2007 $3.37 2008 $3.49 2009 $2.79 2010 $1.96 2011 $1.59 2012 $1.15 2013 $0.75 2014 $0.87 Table 4. Average value of photovoltaic modules, 2004-2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Dollars are not adjusted for inflation.

  20. Wastes and by-products - alternatives for agricultural use

    SciTech Connect (OSTI)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  1. --No Title--

    Buildings Energy Data Book [EERE]

    2 2005 Residential Delivered Energy Consumption Intensities, by Vintage Per Square Per Household Per Household Percent of Year Built Foot (thousand Btu) (1) (million Btu) Member ...

  2. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Processors is an Agricultural Drying low temperature direct use geothermal facility in Brady Hot Springs E of Fernley, Nevada. This article is a stub. You can help OpenEI by...

  3. Renewable Agricultural Energy | Open Energy Information

    Open Energy Info (EERE)

    Sector: Renewable Energy Product: Renewable Agricultural Energy plans to bring five ethanol plants on line by the end of 2009 with a combined annual capacity of at least 1.89bn...

  4. ORISE: Multiple research appointments available through Agricultural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RELEASE March 26, 2014 FY14-23 OAK RIDGE, Tenn.-ORAU and the U.S. Department of Agriculture are currently seeking recent doctoral degree recipients for various appointments in...

  5. Sustainable Energy Utility (SEU)- Agricultural Loan Program

    Broader source: Energy.gov [DOE]

    Delaware Sustainable Energy Utility (DESEU) offers customized loans for agricultural customer as a part of DESEU’s revolving loan program. Program applications are accepted on a rolling basis, and...

  6. Press Conference Call Tomorrow: Agriculture Secretary Vilsack...

    Office of Environmental Management (EM)

    to Reduce U.S. Oil Dependence Press Conference Call Tomorrow: Agriculture Secretary Vilsack and Energy Secretary Chu to Discuss Efforts to Reduce U.S. Oil Dependence May 4, ...

  7. Rural Cooperative Geothermal Development Electric & Agriculture |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects low_silveria_rural_electric_coop.pdf (557.69 KB) More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy Conversion Equipment for Low

  8. FGD gypsum's place in American agriculture

    SciTech Connect (OSTI)

    Haynes, C.

    2007-07-01

    Surface cracks and soil clumps form when saline-sodic, high-clay soil dries out. Treatment with FGD gypsum and irrigation water flowing into these cracks leaches salts until the aggregates swell and the cracks close up. The article describes research projects to develop agricultural uses of FGD gypsum from coal-fired power plants that have been conducted by university researchers and USDA-Agricultural Research Service scientists.

  9. Ohio Agricultural Research and Development Center | Open Energy...

    Open Energy Info (EERE)

    Agricultural Research and Development Center Jump to: navigation, search Name: Ohio Agricultural Research and Development Center Place: Wooster, Ohio Zip: OH 44691-4096 Product:...

  10. Applying Innovation System Concept in Agricultural Research for...

    Open Energy Info (EERE)

    in Agricultural Research for Development: A learning module AgencyCompany Organization: International Livestock Research Institute Sector: Land Focus Area: Agriculture Topics:...

  11. Creating an Evergreen Agriculture in Africa: for Food Security...

    Open Energy Info (EERE)

    Creating an Evergreen Agriculture in Africa: for Food Security and Environmental Resilience Jump to: navigation, search Name Creating an Evergreen Agriculture in Africa: for Food...

  12. USDA Global Agricultural Information Network (GAIN) | Open Energy...

    Open Energy Info (EERE)

    Agriculture Information Network (GAIN) provides timely information on the agricultural economy, products and issues in foreign countries since 1995 that are likely to have an...

  13. Colombia-The Development of a Climate Compatible Agriculture...

    Open Energy Info (EERE)

    Colombia-The Development of a Climate Compatible Agriculture Plan Jump to: navigation, search Name Colombia-CDKN-The Development of a Climate Compatible Agriculture Plan Agency...

  14. Colombia-The Development of a Climate Compatible Agriculture...

    Open Energy Info (EERE)

    Colombia-The Development of a Climate Compatible Agriculture Plan (Redirected from CDKN-Colombia-The Development of a Climate Compatible Agriculture Plan) Jump to: navigation,...

  15. A Synthesis of Agricultural Policies in Bangladesh | Open Energy...

    Open Energy Info (EERE)

    of Agricultural Policies in Bangladesh1 Overview "There is a plethora of policy strategy documents relevant to broad agriculture and rural development in Bangladesh. These...

  16. Agricultural Waste Solutions Inc AWS | Open Energy Information

    Open Energy Info (EERE)

    Waste Solutions Inc AWS Jump to: navigation, search Name: Agricultural Waste Solutions Inc (AWS) Place: Westlake Village, California Zip: CA 91361 Product: Agricultural Waste...

  17. USDA Agricultural Conservation Easement Program Webinar for Tribes

    Broader source: Energy.gov [DOE]

    Hosted by the American Indian Higher Education Consortium, this webinar will cover details on the U.S. Department of Agriculture's (USDA's) new Agricultural Conservation Easement Program (ACEP)...

  18. Analysis of Impacts on Prime or Unique Agricultural Lands in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing the National Environmental Policy Act was developed in cooperation with the Department of Agriculture. ...

  19. Abstract: Design and Demonstration of an Advanced Agricultural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production Abstract: Design and Demonstration of an Advanced Agricultural ...

  20. Agriculture and Land Use National Greenhouse Gas Inventory Software...

    Open Energy Info (EERE)

    Agriculture and Land Use National Greenhouse Gas Inventory Software Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Agriculture and Land Use National Greenhouse Gas...

  1. National integrated mitigation planning in agriculture: A review...

    Open Energy Info (EERE)

    National integrated mitigation planning in agriculture: A review paper This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector has two...

  2. Aq Dryers Agricultural Drying Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Facility Aq...

  3. Royal Agricultural and Horticultural Society of South Australia...

    Open Energy Info (EERE)

    Agricultural and Horticultural Society of South Australia Jump to: navigation, search Name: Royal Agricultural and Horticultural Society of South Australia Place: South Australia,...

  4. Farming First-Agriculture and the Green Economy | Open Energy...

    Open Energy Info (EERE)

    Farming First-Agriculture and the Green Economy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Farming First-Agriculture and the Green Economy AgencyCompany...

  5. IISD Climate Change and Agriculture Research | Open Energy Information

    Open Energy Info (EERE)

    Climate Change and Agriculture Research Jump to: navigation, search Tool Summary Name: IISD Climate Change and Agriculture Research AgencyCompany Organization: International...

  6. Chile-Climate Change Mitigation and Agriculture in Latin America...

    Open Energy Info (EERE)

    Agriculture in Latin America and the Caribbean Jump to: navigation, search Logo: Chile-Climate Change Mitigation and Agriculture in Latin America and the Caribbean Name...

  7. Impacts of Climate Change on Agriculture and Adaptation in Vietnam...

    Open Energy Info (EERE)

    Climate Change on Agriculture and Adaptation in Vietnam Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Impacts of Climate Change on Agriculture and Adaptation in...

  8. FAO-Modelling System for Agricultural Impacts of Climate Change...

    Open Energy Info (EERE)

    Modelling System for Agricultural Impacts of Climate Change (MOSAICC) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Modelling System for Agricultural Impacts of...

  9. FAO Climate-Smart Agriculture | Open Energy Information

    Open Energy Info (EERE)

    Company Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture Topics: Policiesdeployment programs Website: www.fao.org...

  10. Hazmat work opens up career options for Adam Sayre, agricultural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural economics undergraduate works behind the scenes to ensure quality work on ... Adam will be a freshman at New Mexico State University, studying agricultural economics. ...

  11. Before the Committee on Agriculture Subcommittee on General Farm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commodities and Risk Management | Department of Energy Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management By: Howard Gruenspecht, Acting Administrator, Energy Information Administration Subject: Energy Markets and their Implications on Agriculture

  12. Measures of the Effects of Agricultural Practices on Ecosystem Services

    SciTech Connect (OSTI)

    Dale, Virginia H; Polasky, Stephen

    2007-01-01

    Agriculture produces more than just crops. Agricultural practices have environmental impacts that affect a wide range of ecosystem services, including water quality, pollination, nutrient cycling, soil retention, carbon sequestration, and biodiversity conservation. In turn, ecosystem services affect agricultural productivity. Understanding the contribution of various agricultural practices to the range of ecosystem services would help inform choices about the most beneficial agricultural practices. To accomplish this, however, we must overcome a big challenge in measuring the impact of alternative agricultural practices on ecosystem services and of ecosystem services on agricultural production.

  13. Fiscal year 1986 DOE budget authorization: environmental research and development. Hearings before the Subcommittee on Natural Resources, Agriculture Research and Environment of the Committee on Science and Technology, US House of Representatives, Ninety-Ninth Congress, First Session, March 20, 26, 1985, No. 38

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Three medical doctors involved in nuclear medicine and Alvin W. Trivelpiece and William A. Vaughan of DOE testified on DOE's research role in environmental health and safety. This role includes responsibility for nuclear medicine procedures, which total 120 million a year. Advances in nuclear medicine technology and the testimony of patients whose treatment has been successful raises questions about the administration's intent to cut the budget one per cent in this area. Among the concerns were the need to upgrade DOE laboratories and to pursue promising research avenues in such applications as the use of nuclear medicine in mental disorders. DOE witnesses also commented on the good safety record in producing and transporting energy safely because of the level of safety engineering and standards. An appendix with material submitted for the record follows the testimony of the five witnesses.

  14. U.S. Department of Agriculture | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agriculture U.S. Department of Agriculture U.S. Department of Agriculture The U.S. Department of Agriculture (USDA) works to support the American agricultural economy to strengthen rural communities; to protect and conserve our natural resources; and to provide a safe, sufficient, and nutritious food supply for the American people. The Department's wide range of programs and responsibilities touch the lives of every American every day. Solar resources are available from three offices within

  15. Before the Senate Agriculture, Nutrition, and Forestry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Agriculture, Nutrition, and Forestry Before the Senate Agriculture, Nutrition, and Forestry Before the Senate Agriculture, Nutrition, and Forestry By: Richard Newell, Administrator Energy Information Administration Subject: Development in Energy Markets and their possible implications on Agriculture Final_Testimony(22).pdf (32.7 KB) More Documents & Publications Before the Committee on Agriculture Subcommittee on General Farm Commodities and Risk Management Hearing Before the

  16. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods

    SciTech Connect (OSTI)

    Kyle, G. Page; Luckow, Patrick; Calvin, Katherine V.; Emanuel, William R.; Nathan, Mayda; Zhou, Yuyu

    2011-12-12

    This report presents the data processing methods used in the GCAM 3.0 agriculture and land use component, starting from all source data used, and detailing all calculations and assumptions made in generating the model inputs. The report starts with a brief introduction to modeling of agriculture and land use in GCAM 3.0, and then provides documentation of the data and methods used for generating the base-year dataset and future scenario parameters assumed in the model input files. Specifically, the report addresses primary commodity production, secondary (animal) commodity production, disposition of commodities, land allocation, land carbon contents, and land values.

  17. United States Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    1 Mission Statement 2 Vision 3 Strategic Plan Framework 4 Agencies 4.1 Agricultural Marketing Service (AMS) 4.2 Agricultural Research Service (ARS) 4.3 Animal and Plant Health...

  18. U.S. Department of Agriculture | Open Energy Information

    Open Energy Info (EERE)

    1 Mission Statement 2 Vision 3 Strategic Plan Framework 4 Agencies 4.1 Agricultural Marketing Service (AMS) 4.2 Agricultural Research Service (ARS) 4.3 Animal and Plant Health...

  19. Agricultural Monitoring and Evaluation Systems: What can we learn...

    Open Energy Info (EERE)

    Sector: Land, Climate Focus Area: Agriculture, Land Use Topics: Implementation, GHG inventory Resource Type: Publications, Lessons learnedbest practices, Case studies...

  20. U.S. Heat Content of Natural Gas Deliveries to Other Sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. U.S. Heat Content of Natural Gas Deliveries to Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Electric Power Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  2. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  3. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  4. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  5. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major

  6. Natural succession impeded by smooth brome (Bromus inermis) and intermediate wheatgrass (Agropyron intermedium) in an abandoned agricultural field

    SciTech Connect (OSTI)

    Nelson, J.K.

    1997-11-01

    In 1975, an abandoned agricultural field at Rocky Flats Environmental Technology Site (Site) that had been cultivated for more than 38 years, was seeded with smooth brome (Bromus inermis) and intermediate wheatgrass (Agropyron intermedium). Although these species are commonly planted in reclamation and roadside seed mixtures, few studies have documented their impact on the re-establishment of native plant communities. In 1994, species richness, cover, and biomass were sampled in the agricultural field and compared to the surrounding mixed-grass prairie at the Site. The agricultural field contained only 61 plant species (62% native), compared to 143 species (81% native) in the surrounding mixed-grass prairie. Community similarity based on species presence/absence was 0.47 (Sorensen coefficient of similarity). Basal vegetative cover was 11.2% in the agricultural field and 29.1% in the mixed-grass prairie. Smooth brome and intermediate wheatgrass accounted for 93% of the relative foliar cover and 96% of the biomass in the agricultural field. The aggressive nature of these two planted species has impeded the natural succession of the agricultural field to a more native prairie community. Studies of natural succession on abandoned fields and roads in northeastern Colorado have indicated that if left alone, fields would return to their native climax state in approximately 50 years and would be approaching their native state after 20--25 years. Based on the results of this study, this agricultural field may take more than 100 years to return to a native mixed-grass prairie state and it may never achieve a native state without human intervention.

  7. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect (OSTI)

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  8. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  9. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  10. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  12. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  13. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor ...

  14. U. S. Btu tax plan revised; industry wary of results

    SciTech Connect (OSTI)

    Crow, P.

    1993-04-12

    The Clinton administration has changed its U.S. energy tax proposal to remove some objection voiced by industry and consumers. The Treasury Department's revised plan will still tax oil products at double the rate of other types of energy except for home heating oil, which now is to be taxed at the lower rate for natural gas. Of major importance to California producers, the revision will not tax natural gas used in enhanced recovery for heavy oil. This paper describes exemptions; effects on natural gas; the credibility gap; inhibition of gas market recovery; tax on NGL; and forecasting the future.

  15. British Thermal Units (Btu) - Energy Explained, Your Guide To...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wood and Wood Waste Waste-to-Energy (MSW) Landfill Gas and Biogas Biomass & the Environment See also: Biofuels Biofuels: Ethanol & Biodiesel Ethanol Use of Ethanol Ethanol & the ...

  16. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17

  17. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  18. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  19. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  20. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    2.29 0516 2.22 0523 2.22 0530 2.28 1997-Jun 0606 2.17 0613 2.16 0620 2.22 0627 2.27 1997-Jul 0704 2.15 0711 2.15 0718 2.24 0725 2.20 1997-Aug 0801 2.22 0808 2.37 ...

  1. A Requirement for Significant Reduction in the Maximum BTU Input...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Barbecue Association's Comments on DOE's Regulatory Burden RFI Department of Energy Request for Information: Reducing Regulatory Burden (Reply Comments) Re: Regulatory Burden RFI

  2. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  3. 50 Years of Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 Years of Space science-innovationassetsimagesicon-science.jpg 50 Years of Space Since 1943, some of the world's smartest and most dedicated technical people have ...

  4. Press Conference Call Tomorrow: Agriculture Secretary Vilsack and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Chu to Discuss Efforts to Reduce U.S. Oil Dependence | Department of Energy Conference Call Tomorrow: Agriculture Secretary Vilsack and Energy Secretary Chu to Discuss Efforts to Reduce U.S. Oil Dependence Press Conference Call Tomorrow: Agriculture Secretary Vilsack and Energy Secretary Chu to Discuss Efforts to Reduce U.S. Oil Dependence May 4, 2011 - 12:00am Addthis WASHINGTON - TOMORROW, May 5, 2011, Agriculture Secretary Tom Vilsack and Energy Secretary Steven Chu will host a

  5. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  6. Climate-Smart Agriculture: Policies, Practices and Financing...

    Open Energy Info (EERE)

    paper outlines a range of practices, approaches and tools aimed at increasing the resilience and productivity of agricultural production systems, while also reducing and...

  7. Identification of Low Emissions Agricultural Pathways and Priorities...

    Open Energy Info (EERE)

    Pathways and Priorities for Mitigation in Agricultural Landscapes using Integrated Assessment Modeling and Scenarios Jump to: navigation, search Name Identification of Low...

  8. Agriculture and Energy Departments Announce New Investments to...

    Office of Environmental Management (EM)

    to Drive Innovations in Biofuels and Biobased Products Agriculture and Energy Departments Announce New Investments to Drive Innovations in Biofuels and Biobased Products July ...

  9. BT16 Agricultural Residues and Biomass Energy Crops Factsheet

    Broader source: Energy.gov (indexed) [DOE]

    ... forests, municipal solid wastes, urban wood waste, and algae, the report includes an evaluation of biomass supply potentially available through production on agricultural land. ...

  10. Farmers Electric Cooperative- Residential/Agricultural Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers incentives for its residential and agricultural members to increase the energy efficiency of eligible homes and facilities. In order to receive rebates,...

  11. EERE Success Story-Departments of Energy, Navy, and Agriculture...

    Energy Savers [EERE]

    In 2014, the U.S. Departments of Energy, Navy, and Agriculture announced that Emerald Biofuels, Fulcrum Energy, and Red Rock Biofuels have been awarded contracts to construct ...

  12. Low Temperature Direct Use Agricultural Drying Geothermal Facilities...

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"","text":"AgriculturalDryingLowTemperatureGeothermalFacility" title"Geothermal...

  13. Agricultural Progress in Cameroon, Mali and Ghana: Why it Happened...

    Open Energy Info (EERE)

    Development (IFAD). The purpose was to identify constraints to agricultural growth and poverty reduction that might be eased through better policy, both domestically and...

  14. Abstract: Design and Demonstration of an Advanced Agricultural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    President Project Title: Design and Demonstration of an Advanced Agricultural Feedstock ... Design, fabrication, and demonstration of three types of innovative new harvest and ...

  15. Food and Agriculture Organization of the United Nations | Open...

    Open Energy Info (EERE)

    and Health Atlas (GLiPHA) Impact of the Global Forest Industry on Atmospheric Greenhouse Gas National Mitigation Planning in Agriculture: Review and Guidelines National Planning...

  16. Analysis of Impacts on Prime or Unique Agricultural Lands in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    previous memorandum on this subject of August 1976. PDF icon AnalysisAgriculturalLands.pdf More Documents & Publications Mini-Guidance Articles from Lessons Learned Quarterly...

  17. Before the Committee on Agriculture Subcommittee on General Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (69.78 KB) More Documents & Publications Before the Senate Agriculture, Nutrition, and Forestry Hearing Before the Senate Environment and Public Works Committee Before ...

  18. LEDSGP/Agriculture Work Space/Tools | Open Energy Information

    Open Energy Info (EERE)

    LEDSGPAgriculture Work SpaceTools < LEDSGP(Redirected from Agriculture Work SpaceTools) Jump to: navigation, search Low Emission Development Strategies Global Partnership...

  19. Climate Change and China's Agricultural Sector: An Overview of...

    Open Energy Info (EERE)

    An Overview of Impacts, Adaptation and Mitigation Jump to: navigation, search Name Climate Change and China's Agricultural Sector: An Overview of Impacts, Adaptation and...

  20. Climate, Agriculture and Food Scarcity: A Strategy for Change...

    Open Energy Info (EERE)

    A Strategy for Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate, Agriculture and Food Scarcity: A Strategy for Change AgencyCompany...

  1. Climate-Smart Agriculture Country Profiles | Open Energy Information

    Open Energy Info (EERE)

    featuredproductscsa-country-profiles Country: Argentina, Colombia, Costa Rica, El Salvador, Grenada, Mexico, Peru Cost: Free OpenEI Keyword(s): Agriculture, country profiles,...

  2. On-site energy production from agricultural residues

    SciTech Connect (OSTI)

    Hiler, E.A.

    1980-03-01

    Tests with a 61 cm diameter fluidized-bed combustor revealed that raw cotton gin trash could be efficiently burned while satisfying Federal standards for particulate emissions. Certain chemicals within cotton gin trash zone can cause slagging or caking of ash and bed particles in the combustion zone. They can also corrode and accumulate on the heat recovery equipment. These problems are not considered insurmountable and methods of control are being studied. Raw cotton gin trash was also converted into a low Btu gas using fluidized-bed technology. Tests with a 30 cm diameter gasifier revealed that raw gin trash could be converted to a combustible gas, containing carbon monoxide and hydrogen. The heating value of the gas ranged from 3.65 to 5.29 MJ/m3 and about 50 percent of the heat value of the raw trash was converted to combustible gases. Economic analyses have shown that these techniques can be economically competitive with present fuels in specific situations.

  3. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  4. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  5. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  6. Groundwater and Wastewater Remediation Using Agricultural Oils - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Groundwater and Wastewater Remediation Using Agricultural Oils Savannah River National Laboratory Contact SRNL About This Technology Soybean oil used for groundwater and wastewater remediation Soybean oil used for groundwater and wastewater remediation Technology Marketing Summary Scientists have developed a groundwater treatment technique that employs agricultural oils to stimulate endogenous microbes which accelerates the cleanup. The oils tested include canola oil,

  7. Abstract: Design and Demonstration of an Advanced Agricultural Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply System for Lignocellulosic Bioenergy Production | Department of Energy Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production This abstract from FDC Enterprises discusses the impact and objectives for project that designs equipment improvements to streamline the harvest, staging, and hauling costs

  8. Abstract: Design and Demonstration of an Advanced Agricultural Feedstock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply System for Lignocellulosic Bioenergy Production | Department of Energy Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production Abstract: Design and Demonstration of an Advanced Agricultural Feedstock Supply System for Lignocellulosic Bioenergy Production This abstract from FDC Enterprises discusses the impact and objectives for project that designs equipment improvements to streamline the harvest, staging, and

  9. USDA Agricultural Conservation Easement Program Webinar for Tribes

    Broader source: Energy.gov [DOE]

    Hosted by the American Indian Higher Education Consortium, this webinar will cover details on the U.S. Department of Agriculture's (USDA's) new Agricultural Conservation Easement Program (ACEP) established in the 2014 Farm Bill. It will specifically discuss the implications of ACEP for Tribes and tribal owners.

  10. 70 years after Trinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 years after Trinity 70 years after Trinity Though the world has seen many changes since Trinity, one thing has remained constant: Los Alamos remains essential to our nation's ...

  11. A Landscape Perspective on Sustainability of Agricultural Systems

    SciTech Connect (OSTI)

    Dale, Virginia H; Kline, Keith L; Kaffka, Stephen R; Langeveld, J.W.A.

    2013-01-01

    Landscape sustainability of agricultural systems considers effects of farm activities on social, economic, and ecosystem services at local and regional scales. Sustainable agriculture entails: defining sustainability, developing easily measured indicators of sustainability, moving toward integrated agricultural systems, and offering incentives or imposing regulations to affect farmer behavior. A landscape perspective is useful because landscape ecology provides theory and methods for dealing with spatial heterogeneity, scaling, integration, and complexity. To implement agricultural sustainability, we propose adopting a systems perspective, recognizing spatial heterogeneity, addressing the influences of context, and integrating landscape-design principles. Topics that need further attention at local and regional scales include (1) protocols for quantifying material and energy flows; (2) effects of management practices; (3) incentives for enhancing social, economic, and ecosystem services; (4) integrated landscape planning and management; (5) monitoring and assessment; (6) effects of societal demand; and (7) consistent and holistic policies for promoting agricultural sustainability.

  12. Secretary Moniz's First Year

    Broader source: Energy.gov [DOE]

    We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

  13. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect (OSTI)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ags ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  14. National Agricultural-Based Lubricants (NABL) Center

    SciTech Connect (OSTI)

    Honary, Lou

    2013-09-30

    This project, while defined as a one year project from September 30, 2012 – September 30, 2013, was a continuation of a number of tasks that were defined in previous years. Those tasks were performed and were finalized in this period. The UNI-NABL Center, which has been in operation in various forms since 1991, has closed its facilities since September 2013 and will be phasing out in June 2014. This report covers the individual tasks that were identified in the previous reports and provides closure to each task in its final stage.

  15. Industrial and agricultural process heat information user study

    SciTech Connect (OSTI)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  16. Fiscal Year Ended

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year Ended September 30, 2014 Report to Congress July 2016 United States Department of Energy Washington, DC 20585 Department of Energy | July 2016 Report on Uncosted Balances for Fiscal Year Ended 2014| Page iii Executive Summary As required by the Energy Policy Act of 1992 (Public Law 102-486), the Department of Energy is submitting a Report on Uncosted Balances for Fiscal Year Ended 2014. This report presents the results of the Department's annual analysis of uncosted obligation

  17. 2013 Year in Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Year in Review i 2013 YIR May 2014 Year-in-Review: 2013 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2013 Year in Review ii 2013 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific

  18. Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Agency Improvement Plan For Fiscal Year 2006 and Fiscal Year 2007 Department of Energy Report and Agency ...

  19. ORISE: Multiple research appointments available through Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Service Postdoctoral Research Program Nearly two-thirds of all foreign doctorates are staying in the U.S. 10 years after graduation ORISE report suggests foreign doctorate recipients routinely take regular employment in the U.S. after completing postdoctoral appointments FOR IMMEDIATE RELEASE May 5, 2014 FY14-09 OAK RIDGE, Tenn.-The number of foreign, science and engineering doctorate students who remain in the United States after graduation has declined slightly over the past five

  20. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  1. Missouri Agricultural and Energy Saving Team- A Revolutionary Opportunity (MAESTRO)

    Broader source: Energy.gov [DOE]

    Note: Rates listed below are for farmers who signed up for the program by January 1, 2011; however, the Missouri Agricultural and Small Business Development Authority still has some funding...

  2. EERE Success Story-California: Agricultural Residues Produce...

    Broader source: Energy.gov (indexed) [DOE]

    California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-source...

  3. Departments of Energy, Navy, and Agriculture Invest $210 million...

    Broader source: Energy.gov (indexed) [DOE]

    Departments to Invest in Drop-In Biofuel for Military Departments of the Navy, Energy and Agriculture Invest in Construction of Three Biorefineries to Produce Drop-In Biofuel for ...

  4. Agriculture and Food Processes Branch program summary document

    SciTech Connect (OSTI)

    1980-06-01

    The work of the Agriculture and Food Processes Branch within the US DOE's Office of Industrial Programs is discussed and reviewed. The Branch is responsible for assisting the food and agricultural sectors of the economy in increasing their energy efficiency by cost sharing with industry the development and demonstration of technologies industry by itself would not develop because of a greater than normal risk factor, but have significant energy conservation benefits. This task is made more difficult by the diversity of agriculture and the food industry. The focus of the program is now on the development and demonstration of energy conservation technology in high energy use industry sectors and agricultural functions (e.g., sugar processing, meat processing, irrigation, and crop drying, high energy use functions common to many sectors of the food industry (e.g., refrigeration, drying, and evaporation), and innovative concepts (e.g., energy integrated farm systems. Specific projects within the program are summarized. (LCL)

  5. National Mitigation Planning in Agriculture: Review and Guidelines...

    Open Energy Info (EERE)

    Simple Website: www.fao.orgdocrep017i3237ei3237e.pdf Language: English This review of national greenhouse gas (GHG) mitigation planning in the agriculture sector provides...

  6. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect (OSTI)

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  7. Energy Department Joins Navy and Agriculture Departments to Invest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Invest in Drop-In Biofuel for Military Energy Department Joins Navy and Agriculture Departments to Invest in Drop-In Biofuel for Military September 25, 2014 - 12:35pm ...

  8. Mexico-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    EC-LEDS in the Agriculture Sector Jump to: navigation, search Name Mexico-EC-LEDS in the Agriculture Sector AgencyCompany Organization United States Department of Agriculture,...

  9. Value-added agriculture offers small agribusinesses additional income

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential Value-added agriculture Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Value-added agriculture offers small agribusinesses additional income potential Closing the gap between raw product and end user September 1, 2015 Las Nueve Niñas Winery wine label. Las Nueve Niñas Winery wine label. Contact Community Programs Director Kathy Keith Email Editor Ute Haker Email Instead

  10. ARM - Possible Benefits of Global Warming on Agriculture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListPossible Benefits of Global Warming on Agriculture Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Possible Benefits of Global Warming on Agriculture Pros and Cons Given the need for caution, it may still be possible to make a few general comments. With more carbon dioxide in the

  11. Memorandum of Understanding Between the Department of Agriculture and the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and the National Development and Reform Commission of the People's Republic of China on Cooperation in the Development of Biofuels | Department of Energy Between the Department of Agriculture and the Department of Energy and the National Development and Reform Commission of the People's Republic of China on Cooperation in the Development of Biofuels Memorandum of Understanding Between the Department of Agriculture and the Department of Energy and the National Development

  12. Klamath and Lake Counties Agricultural Industrial Park | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Park Klamath and Lake Counties Agricultural Industrial Park Engineered Geothermal Systems, Low Temp, Exploration Demonstration Projects. Project goal: to attract new businesses to Klamath and Lake counties for the purpose of capitalizing on our abundant geothermal resources. egs_riley_klamath_lake.pdf (257.14 KB) More Documents & Publications Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal Technology Program Peer Review Report Purchase and Installation of a

  13. Allocation Year Rollover process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allocatio Year Rollover process Allocation Year Rollover process December 23, 2013 by Francesca Verdier Allocation Year 2013 (AY13) ends at 23:59:59 on Monday, January 13, 2014. AY14 runs from Tuesday, January 14, 2014 through Monday, January 12, 2015. The major features of the rollover are: charging acroess the AY boundary: All batch jobs will continue running during the rollover. Time accrued before midnight will be charged to AY13 repos; time accrued after midnight will be charged to AY14

  14. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    SciTech Connect (OSTI)

    Longyear, A.B.

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  15. Welcome Year in Review

    National Nuclear Security Administration (NNSA)

    Training Meeting Orlando, Florida-May 23-25, 2006 Sponsored by the U.S. Department of Energy & the U.S. Nuclear Regulatory Commission Welcome & Year In Review Peter Dessaules...

  16. Year 2000 awareness

    SciTech Connect (OSTI)

    Holmes, C.

    1997-11-01

    This report contains viewgraphs on the challenges business face with the year 2000 software problem. Estimates, roadmaps, virtual factory software, current awareness, and world wide web references are given.

  17. Potential GHG mitigation options for agriculture in China

    SciTech Connect (OSTI)

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  18. YEAR IN REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amped Up Newsletter Volume 1, No. 1 | February 2015 2014 ANNUAL REPORT 2014 YEAR IN REVIEW Volume 1, No. 1, January/February 2015 What's Happening @ EERE IN THIS ISSUE A Message from Dave.......................................... 2 EERE All Hands Meeting ..................................... 3 Staffing Update ..................................................... 4 2014 Success Stories .......................................... 6 Sustainable Transportation ............................ 6 Renewable

  19. Global analysis of energy prices and agriculture. Staff report

    SciTech Connect (OSTI)

    McDonald, B.J.; Martinez, S.W.; Otradovsky, M.; Stout, J.V.

    1991-09-01

    A multiregion computable general equilibrium (CGE) model was used to assess the longrun effects of higher energy prices on agricultural production, prices, and trade. An increase in the price of energy enters farmers' cost functions through direct energy use and through the indirect influence of energy prices on intermediate inputs, especially fertilizers. The multiregion feature of the model allows us to include the effects of energy price shocks on economies of other regions and to assess price changes in a global context. Because farming is highly energy-intensive, agricultural output falls more than output in the manufacturing and services sectors of each region of the model. Real returns to farmland, a good indicator of farm welfare, falls in each of the four regions. The U.S. land price declines by 3.5 percent, a drop comparable to that resulting from a 20-percent multilateral agricultural policy liberalization in a similar model.

  20. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F; Webb, Erin; Sokhansanj, Shahabaddine

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  1. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect (OSTI)

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  2. CRC handbook of agricultural energy potential of developing countries

    SciTech Connect (OSTI)

    Duke, J.A.

    1986-01-01

    This book provides background information on the agroenergetic potential of 65 countries and offers summaries of major crops planted, total area planted, yield per hectare, and total production. Total land area is categorized as to agriculture, forest, and woodland, and is discussed with demographic statistics for each country. The potential for agricultural by-products and biomass to contribute to energy availability is explored, with reference to each major crop. Vegetation and/or economic activity, or soil maps are presented for most countries, as are climatic data, with crop yields and residues which are compared with production elsewhere.

  3. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    David Muth, Jr.; Jared Abodeely; Richard Nelson; Douglas McCorkle; Joshua Koch; Kenneth Bryden

    2011-08-01

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice data required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.

  4. Agriculture intensifies soil moisture decline in Northern China

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; et al

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  5. Agricultural Mixed Waster Biorefinery Using Thermal Conversion Process

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project is supporting efforts to develop a demonstration facility that will use the patented Thermal Conversion Process (TCP) to produce fuel, power and chemicals from poultry waste and agricultural wastes such as animal and vegetable grease and wastewater sludge.

  6. Agriculture intensifies soil moisture decline in Northern China

    SciTech Connect (OSTI)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego; Teuling, Adriann; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.

  7. Biogas from agricultural and other wastes: a subject bibliography

    SciTech Connect (OSTI)

    Shadduck, G.

    1981-01-01

    This bibliography covers the following areas: application of anaerobic digestion to agricultural wastes, biochemistry and microbiology, factors in digester design and performance, digester design and types, digestion of individual materials, biogas use, use of digester effluent, integrated recycling systems, and economics and policy. (MHR)

  8. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect (OSTI)

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  9. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  10. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous...

  11. Argonne Terrestrial Carbon Cycle Data from Batavia Prairie and Agricultural Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Matamala, Roser [ANL; Jastrow, Julie D.; Lesht, Barry [ANL; Cook, David [ANL; Pekour, Mikhail [ANL; Gonzalez-Meler, Miquel A. [University of Illinois at Chicago

    Carbon dioxide fluxes and stocks in terrestrial ecosystems are key measurements needed to constrain quantification of regional carbon sinks and sources and the mechanisms controlling them. This information is required to produce a sound carbon budget for North America. This project examines CO2 and energy fluxes from agricultural land and from restored tallgrass prairie to compare their carbon sequestration potentials. The study integrates eddy covariance measurements with biometric measurements of plant and soil carbon stocks for two systems in northeastern Illinois: 1) long-term cultivated land in corn-soybean rotation with conventional tillage, and 2) a 15 year-old restored prairie that represents a long-term application of CRP conversion of cultivated land to native vegetation. The study contributes to the North American Carbon Program (NACP) by providing information on the magnitude and distribution of carbon stocks and the processes that control carbon dynamics in cultivated and CRP-restored land in the Midwest. The prairie site has been functioning since October 2004 and the agricultural site since July 2005. (From http://www.atmos.anl.gov/ FERMI/index.html)

  12. Programs and measures to reduce GHG emissions in agriculture and waste treatment in Slovakia

    SciTech Connect (OSTI)

    Mareckova, K.; Bratislava, S.; Kucirek, S.

    1996-12-31

    Slovakia is a UN FCCC Annex I country and is obliged to limit its anthropogenic GHG emissions in the year 2000 to 1990 level. The key greenhouse gas in Slovakia is CO{sub 2} resulting mainly from fuel combustion processes. However the share of CH{sub 4} and N{sub 2}O is approximately 20% of the total emissions on GWP basis. These gases are occurring mainly in non-energy sectors. The construction of the non-CO{sub 2} emission scenarios to reduce GHG and the uncertainty in N{sub 2}O and CH{sub 4} emission estimation are discussed focusing on agriculture and waste treatment. The presentation will also include information on emission trends of CH{sub 4} and N{sub 2}O since 1988. There are already implemented measures reducing GHG emissions in Slovakia, however, not motivated by global warming. A short view of implemented measures with an assessment of their benefit concerning non-CO{sub 2} GHG emissions reduction and some proposed mitigation options for agriculture and waste treatment are shown. Expected difficulties connected with preparing scenarios and with implementation of reducing measures are discussed.

  13. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily...

  14. Planning for Years to Come

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning for Years to Come Planning for Years to Come LANL's Governing Policy on the Environment August 1, 2013 Water sampling tour for the Association of Experiential Education ...

  15. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  16. Incorporating Bioenergy in Sustainable Landscape Designs Workshop Two: Agricultural Landscapes

    SciTech Connect (OSTI)

    Negri, M. Cristina; Ssegane, H.

    2015-08-01

    The Bioenergy Technologies Office hosted two workshops on Incorporating Bioenergy in Sustainable Landscape Designs with Oak Ridge and Argonne National Laboratories in 2014. The second workshop focused on agricultural landscapes and took place in Argonne, IL from June 24—26, 2014. The workshop brought together experts to discuss how landscape design can contribute to the deployment and assessment of sustainable bioenergy. This report summarizes the discussions that occurred at this particular workshop.

  17. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D. Hiskakis, M.; Babou, E.

    2013-06-15

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  18. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect (OSTI)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  19. American Society of Agricultural and Biological Engineers Annual International Meeting

    Broader source: Energy.gov [DOE]

    The 2015 American Society of Agricultural and Biological Engineers Annual International Meeting will be held in New Orleans, Louisiana on July 26–29, 2015, and will examine industry trends and innovations, with a focus on the focus on the economic, political and social factors influencing the industry. Bioenergy Technologies Office Director Jonathan Male, Program Manager Alison Goss Eng, and Technology Managers Sam Tagore, Mark Elless, and Steve Thomas will be in attendance.

  20. To the Biorefinery: Delievered Forestland and Agricultural Resources Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Biorefinery: Delivered Forestland and Agricultural Resources It can be challenging and costly to trans- port biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and low- bulk density of cellulosic feedstocks, cost- effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board's Feedstock Logistics Interagency Working Group identified four primary barriers related

  1. Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Program Peer Review Report | Department of Energy Park; 2010 Geothermal Technology Program Peer Review Report Klamath and Lake Counties Agricultural Industrial Park; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_013_riley.pdf (222.49 KB) More Documents & Publications Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on Seismicity at The Geysers,

  2. World agriculture and climate change: Current modeling issues

    SciTech Connect (OSTI)

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  3. Property:StartYear | Open Energy Information

    Open Energy Info (EERE)

    2012 + Antigua and Barbuda-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework + 2009 + Argentina-Climate Change Mitigation and Agriculture in Latin...

  4. OECD-A Green Growth Strategy for Food and Agriculture | Open...

    Open Energy Info (EERE)

    OECD-A Green Growth Strategy for Food and Agriculture Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-A Green Growth Strategy for Food and Agriculture Agency...

  5. Vietnam-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  6. Costa Rica-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  7. Kenya-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  8. Aggregate Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Aggregate Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate Bandwidth Daily Aggregate

  9. Concurrent Transfers Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transfers Historical Yearly Peak Concurrent Transfers Historical Yearly Peak These plots show the yearly peak days from 2000 to present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for current year shows the data for the year-to-date peak. Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage Concurrency Daily Storage

  10. 60 Years of Computing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60 Years of Computing 60 Years of Computing

  11. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect (OSTI)

    McIntosh, Jane; Schumacher, Leon

    2014-10-23

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings

  12. Naturally occurring radionuclides in agricultural products: An overview

    SciTech Connect (OSTI)

    Hanlon, E.A.

    1994-07-01

    Low levels of naturally occurring radionuclides exist in phosphatic clays, a by-product of phosphatic mining and beneficiation processes. Concerns about these radionuclides entering the human food chain were an immediate research priority before the phosphate clays could be reclaimed for intensive agricultural purposes. Efforts included the assembly of a large body of data from both sons and plants, part of which were produced by the Polk County (Florida) Mined Lands Agricultural Research/Demonstration Project MLAR/DP. Additional detailed studies involving dairy and beef cattle (Bos taurus) were conducted by researchers working with the MLAR/DP. A national symposium was conducted in which data concerning the MLAR/DP work and other research projects also dealing with naturally occurring radionuclides in agriculture could be discussed. The symposium included invited review papers dealing with the identification of radionuclide geological origins, the geochemistry and movement of radionuclides within the environment, mechanisms of plant uptake, entry points into the food chain, and evaluation of dose and risk assessment to the consumer of low levels of radionuclides. The risk to human health of an individual obtaining 0.1 of his or her dietary intake from crops produced on phosphatic clays increased by 1 in 5 x 10{sup 6}/yr above a control individual consuming no food grown on phosphatic clays. Leaf tissues were found to be generally higher than fruit, grain, or root tissues. The natural range in radionuclide content among various food types was greater than the difference in radionuclides content between the same food produced on phosphatic clays vs. natural soils. 19 refs.

  13. Third world applications of pyrolysis of agricultural and forestry wastes

    SciTech Connect (OSTI)

    Tatom, J.W.; Wellborn, H.W.; Harahap, F.; Sasmojo, S.

    1980-01-01

    The development of an appropriate technology for the conversion of agricultural and wood wastes into fuels in underdeveloped nations is discussed. Low temperature pyrolysis offers a promising means of conversion since the char and oil products are storable and easily transportable. The steady-flow, vertical packed bed, partial oxidation pyrolysis process is described and the appropriate technology pyrolytic converter basic design concept is presented. The current status of program in the US and in Papua New Guinea is described. The operation, test results, and economics of the converter are discussed.

  14. Rodigo 1, northern Italy: A geothermal complex for agriculture

    SciTech Connect (OSTI)

    Faccini, U.; Magnoni, S.; Sordelli, C. )

    1993-04-01

    The Padana Valley is an area rich in warm waters. At Rodigo, near Mantua, a well drilled by Agip supplied 80 m[sup 3]/h of water at 59[degree]C. A cooperative of farmers, with the aid of the Institute of Applied Physics of the University of Milan, has developed a complex for agricultural uses of these warm waters: greenhouses, plants for cereal and forage drying and tanks for aquaculture, all utilizing geothermal energy. The Institute of Applied Physics has also installed a continuous radon monitoring station which measures the radon level in the geothermal well.

  15. 2013 Director's New Year Address

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has in store for the ALS. An immediate answer is - a celebration - as the ALS marks its 20th year of operation. We'll spend some time this year looking back at what we've...

  16. WIPP_Marks_12_Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marks 12 Years of Operations CARLSBAD, N.M., March 28, 2011 - On Saturday, March 26, 2011, ... It has now been 12 years since WIPP received its first shipment of transuranic (TRU) ...

  17. Systems and methods for autonomously controlling agricultural machinery

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  18. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  19. Transfer Activity Historical Yearly Peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Historical Yearly Peak Transfer Activity Historical Yearly Peak The plots below show the yearly peak days from 2000 to the present. BE CAREFUL because the graphs are autoscaling - check the scales on each axis before you compare graphs. Note that the graph for the current year shows the data for the year-to-date peak. Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In Progress Transfers Started/In

  20. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER Savannah ...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City Field ...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13 DIVERSITY TOTAL WORKFORCE GENDER Nevada ...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11 DIVERSITY TOTAL WORKFORCE GENDER Los ...

  4. Year

    U.S. Energy Information Administration (EIA) Indexed Site

    Note: Total may not equal sum of components because of independent rounding. Source: U.S. Department of Labor, Mine Safety and Health Administration, Form 7000-2, 'Quarterly Mine ...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    2012 2013 SES 2 1 -50.00% EJEK 10 9 -10.00% EN 04 27 24 -11.11% NN (Engineering) 28 24 -14.29% NQ (ProfTechAdmin) 31 29 -6.45% NU (TechAdmin Support) 4...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    SES 1 2 100.00% EJEK 2 2 0.00% EN 04 1 1 0.00% EN 03 1 0 -100.00% NN (Engineering) 12 11 -8.33% NQ (ProfTechAdmin) 216 218 0.93% NU (TechAdmin Support) 2...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    2013 SES 2 2 0.00% EJEK 7 8 14.29% EN 04 11 11 0.00% EN 03 1 1 0.00% NN (Engineering) 23 24 4.35% NQ (ProfTechAdmin) 35 32 -8.57% NU (TechAdmin Support) 3 2...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female ...

  9. DOE Issues ESPC IDIQ Solicitation: Deadline for Response Extended...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emissions reduction goals by streamlining contract funding for energy management projects. ... Btu per year and thereby avoiding 2.4 million tons in greenhouse gas emissions per year. ...

  10. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year Fossil Fuels Renewable Energy Electricity Net Imports Total Coal Natural Gas Petroleum Total...

  11. Annual Energy Outlook 2015 - Appendix G

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Units Approximate heat content Coal 1 Production ......Btu per kilowatthour 3,412 1 Conversion factor varies from year to year. ...

  12. 2015 Year-in-Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Year-in-Review i 2015 YIR May 2016 Year-in-Review: 2015 Energy Infrastructure Events and Expansions Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2015 Year-in-Review ii 2015 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and Devon Streit, Deputy Assistant Secretary. Specific questions about this report may be directed to John

  13. Agricultural and Environmental Input Parameters for the Biosphere Model

    SciTech Connect (OSTI)

    K. Rasmuson; K. Rautenstrauch

    2004-09-14

    This analysis is one of 10 technical reports that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN) (i.e., the biosphere model). It documents development of agricultural and environmental input parameters for the biosphere model, and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for the repository at Yucca Mountain. The ERMYN provides the TSPA with the capability to perform dose assessments. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships between the major activities and their products (the analysis and model reports) that were planned in ''Technical Work Plan for Biosphere Modeling and Expert Support'' (BSC 2004 [DIRS 169573]). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the ERMYN and its input parameters.

  14. Biogenic carbon fluxes from global agricultural production and consumption

    SciTech Connect (OSTI)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  15. Biomass Support for the China Renewable Energy Law: Feasibility Report -- Agricultural and Forestry Solid Wastes Power Generation Demonstration, December 2005

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report on feasibility of using agricultural and forestry wastes for power generation in China

  16. OSTIblog Articles in the National Agriculture Library Topic ...

    Office of Scientific and Technical Information (OSTI)

    Eleanor Frierson, who passed away in April 2013, was the grande dame of partnerships to improve public access to federal and international science information. For 10 years, she ...

  17. NETL: The First 100 Years

    SciTech Connect (OSTI)

    2015-07-21

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  18. U.S. Departments of Agriculture and Energy Announce Funding for Biomass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Initiative | Department of Energy Agriculture and Energy Announce Funding for Biomass Research and Development Initiative U.S. Departments of Agriculture and Energy Announce Funding for Biomass Research and Development Initiative April 15, 2011 - 12:00am Addthis WASHINGTON, April 15, 2011- To support President Obama's goal of reducing America's oil imports by one-third by 2025, the U.S. Departments of Agriculture (USDA) and Energy (DOE) today jointly announced up to

  19. Agriculture and Energy Departments Announce New Investments to Drive Innovations in Biofuels and Biobased Products

    Broader source: Energy.gov [DOE]

    U.S. Departments of Agriculture and Energy announced a $41 million investment that will drive more efficient biofuels production and feedstock improvements.

  20. Energy and Agriculture Depts. Provide $8.3 Million in Funding for Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research | Department of Energy Agriculture Depts. Provide $8.3 Million in Funding for Biofuels Research Energy and Agriculture Depts. Provide $8.3 Million in Funding for Biofuels Research June 7, 2007 - 1:25pm Addthis WASHINGTON, DC - U.S. Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Energy and the Department of Agriculture have jointly selected 11 projects for awards totaling $8.3 million for biobased fuels research that will

  1. Climate Change Mitigation Through Land-Use Measures in the Agriculture...

    Open Energy Info (EERE)

    and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry...

  2. Good Year - Bad Year Financial Planning Workshop handout - April...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit's financial reserve balance at the end of a year or be used as an input for a TPP assessment. This metric is the most direct measure of BPA's ability to pay Treasury....

  3. Year's End 2012 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual photovoltaic module shipments, 2004-2014 (peak kilowatts) Year Modules 2004 143,274 2005 204,996 2006 320,208 2007 494,148 2008 920,693 2009 1,188,879 2010 2,644,498 2011 3,772,075 2012 4,655,005 2013 4,984,881 2014 6,237,524 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.' Note: Includes both U.S. Shipments and Exports.

    Year's End 2012 Year's End 2012 September 27, 2012 Throughout history, civilizations have developed

  4. Visualizing Twenty Years of Applications

    SciTech Connect (OSTI)

    Potel, Mike; Wong, Pak C.

    2014-11-01

    This issue of IEEE Computer Graphics and Applications marks the 20th anniversary of the Applications department as a regular feature of the magazine. We thought it might be interesting to look back at the 20 years of Applications department articles to assess its evolution over that time. By aggregating all twenty years of articles and applying a little statistical and visual analytics, we’ve uncovered some interesting characteristics and trends we thought we’d share to mark this 20 year milestone.

  5. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  6. Richland Operations Office's Fiscal Year...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (fiscal year 2015) Basis of Evaluation: Performance Evaluation and Measurement Plan (PEMP) Award Fee Available: 10,899,475 Award Fee Earned: 10,591,975 Award Fee Area ...

  7. Microsoft Word - The Oppenheimer Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oppenheimer Years 1943-1945 At 5:29:45 am MWT on July 16, 1945, the world's first atomic ... Oppenheimer wanted to attend graduate school in Great Britain, where he hoped to study ...

  8. Twenty Years of Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  9. PORTSMOUTH 2015 YEAR IN REVIEW

    Office of Environmental Management (EM)

    PORTSMOUTH 2015 YEAR IN REVIEW At the Portsmouth site this year, it was critical to have alignment among regulatory decisions and agreements, deactivation, shipping, and preliminary work on the on-site waste disposal facility. In 2015, we made significant progress in all of those areas. Our workforce performed admirably in 2015 and we look forward to continuing our momentum in 2016." - Dr. Vincent Adams, Portsmouth Site Director, DOE Portsmouth/Paducah Project Office KEY ACCOMPLISHMENTS 

  10. Multi-Year Program Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s Building Technologies Office’s (BTO’s) Multi-Year Program Plan (MYPP) for Fiscal Years 2016-2020 provides a broad overview of the energy use in the buildings sector, the opportunities for cost-effective energy savings, the barriers to their achievement, and BTO’s strategies and goals for achieving significant reductions in building energy use intensity.

  11. Departments of the Navy, Energy and Agriculture Invest in Construction...

    Office of Environmental Management (EM)

    capable of producing "drop-in" biofuels to meet the transportation needs of the ... Emerald Biofuels: To build an 82 million gallon per year refinery on the Gulf Coast using ...

  12. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    SciTech Connect (OSTI)

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; Klepzig, Kier D.; Currie, Cameron R.

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.

  13. Convergent bacterial microbiotas in the fungal agricultural systems of insects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aylward, Frank O.; Suen, Garret; Biedermann, Peter H. W.; Adams, Aaron S.; Scott, Jarrod J.; Malfatti, Stephanie A.; Glavina del Rio, Tijana; Tringe, Susannah G.; Poulsen, Michael; Raffa, Kenneth F.; et al

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associatedmore » with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes.« less

  14. Draft dry year tools (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA White Book Dry Year Tools Firstgov Dry Year Tools November 9, 2006 - Final Dry Year Guide: The Final Dry Year Guide (PDF, 5 pages, 44 kb) and Figure 1 - Dry Year Strategy (PDF,...

  15. Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing NEPA (CEQ, 1980)

    Broader source: Energy.gov [DOE]

    This Council on Environmental Quality (CEQ) memorandum on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing the National Environmental Policy Act was developed in cooperation with the Department of Agriculture. It updates and supersedes CEQ's previous memorandum on this subject of August 1976.

  16. Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing NEPA

    Broader source: Energy.gov [DOE]

    This Council on Environmental Quality (CEQ) memorandum on Analysis of Impacts on Prime or Unique Agricultural Lands in Implementing the National Environmental Policy Act was developed in cooperation with the Department of Agriculture. It updates and supersedes CEQ's previous memorandum on this subject of August 1976.

  17. LNG to the year 2000

    SciTech Connect (OSTI)

    Davenport, S.T.

    1984-04-01

    By 2000, about 190 MM metric-tpy of LNG will be moving in world trade, with Asia-Pacific as the dominant producer By the year 2000, approximately 190 million metric tons per year of LNG will be moving in worldwide trade. Production of LNG will be spread throughout most of the world, with Asia-Pacific as the dominant producer. LNG will be delivered only to the heavily industrialized areas of North America, Europe and Asia-Pacific. The success of any LNG project will be dependent on its individual economics, market needs, financial planning, and governmental permit processes. We hope industry will be able to put together the LNG projects required to meet the quanitities of production forecast here for the year 2000.

  18. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report, Volume II

    SciTech Connect (OSTI)

    Jewell, W. J.; Dell'orto, S.; Fanfoni, K. J.; Hayes, T. D.; Leuschner, A. P.; Sherman, D. F.

    1980-04-01

    Earlier studies have shown that although large quantities of agricultural residues are generated on small farms, it was difficult to economically justify use of conventional anaerobic digestion technology, such as used for sewage sludge digestion. A simple, unmixed, earthen-supported structure appeared to be capable of producing significant quantities of biogas at a cost that would make it competitive with many existing fuels. The goal of this study was to define and demonstrate a methane fermentation technology that could be practical and economically feasible on small farms. This study provides the first long term, large scale (reactor volumes of 34 m/sup 3/) parallel testing of the major theory, design, construction, and operation of a low cost approach to animal manure fermentation as compared to the more costly and complex designs. The main objectives were to define the lower limits for successful fermentor operation in terms of mixing, insulation, temperature, feed rate, and management requirements in a cold climate with both pilot scale and full scale fermentors. Over a period of four years, innovative fermentation processes for animal manures were developed from theoretical concept to successful full scale demonstration. Reactors were sized for 50 to 65 dairy animals, or for the one-family dairy size. The results show that a small farm biogas generation system that should be widely applicable and economically feasible was operated successfully for nearly two years. Although this low cost system out-performed the completely mixed unit throughout the study, perhaps the greatest advantage of this approach is its ease of modification, operation, and maintenance.

  19. Two Year Difference | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Year Difference Two Year Difference May 19, 2014 On May 19, 2012, we held an Open House; on Saturday, May 17, 2014, we held an Open House; it's a habit. And what a day we had on Saturday! The weather was perfect. The extent to which we are able to open the lab is a major surprise for many visitors. They arrive with the expectation that maybe we open one building with displays. Instead, they find themselves getting into the accelerator, the Central Helium Liquefier, and ALL the experimental

  20. Calendar Year Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calendar Year Reports Calendar Year Reports Audit, Inspection and Other Reports The majority of Office of Inspector General reports are public. Certain reports, however, are not public as they contain information that is protected by the Freedom of Information Act (FOIA) and Privacy Act. The provisions of these acts determine the availability of these reports. Calendar Year 2016 Calendar Year 2015 Calendar Year 2014 Calendar Year 2013 Calendar Year 2012 Calendar Year 2011 Calendar Year 2010

  1. FEMP Year in Review 2009

    SciTech Connect (OSTI)

    2009-12-01

    In 2009, the Federal Energy Management Program (FEMP)undertook an ambitious reorganization of its program structure to be more responsive to the needs of its Federal agency customers. In this Year in Review 2009, you will learn more about FEMP achievements under its new program areas.

  2. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  3. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  4. Word Pro - A

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Fossil Fuels Renewable Energy Electricity ... Coverage of Statistics for 1635-1945," at end of section. ...

  5. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  6. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    C-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table C1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  7. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    B-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table B1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  8. Annual Energy Outlook 2015 - Appendix D

    Gasoline and Diesel Fuel Update (EIA)

    D-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table D1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  9. EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and...

  10. Tips: Heating and Cooling | Department of Energy

    Energy Savers [EERE]

    Year and Fuel Type (Quadrillion Btu and Percent of Total). ... and cooling Natural gas and oil heating Programmable ... Rebates & Tax Credits Federal tax credits are available for ...

  11. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless ...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  13. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2014...

  14. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  15. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment

    SciTech Connect (OSTI)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    2012-10-06

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.

  16. The potential of wetlands for mitigating adverse effects of agricultural drainage

    SciTech Connect (OSTI)

    Silverman, G.S.

    1995-12-01

    Agricultural runoff has been clearly identified as a major contributor to the failure of much of the surface water in the United States to meet designated use objectives. Control of agricultural drainage is very problematic. The agriculture industry strongly resists mandated controls, and warns of potential catastrophic consequences in food shortages should production methods be altered. Yet concern grows over the long and short term impact of a variety of contaminants - particularly sediments, nutrients, and pesticides - released to our waters as part of normal agricultural practices. For quite some time, wetlands have been explored for their potential in treating sewage (from both municipal and private systems) and acid mine drainage. Much less work has been done looking at the potential for wetlands to treat agricultural drainage. yet, wetlands may offer tremendous potential for mitigating problems of agricultural runoff while offering farmers desirable (or at least acceptable) uses of marginal land. This paper has two objectives. First, the opportunities for wetlands to be used as agricultural drainage treatment facilities are described. Processes are identified which trap or degrade pollutants, with particular attention given to long-term environmental fate. Second, an experimental wetlands system recently developed in Northwest Ohio is used as an example of system implementation. Emphasis will be given to how the system was developed to optimize pollutant removal within the physical constraints of the site. Preliminary performance data with respect to water quality changes will also be presented.

  17. Fiscal Year 2012 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2012-11-01

    This report summarizes the Fiscal Year 2012 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Ten disturbed sites were evaluated for this assessment. Six have achieved final stabilization. The remaining four sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

  18. Fiscal Year 2013 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom

    2013-11-01

    This report summarizes the Fiscal Year 2013 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: Summary of each site Assessment of vegetation status and site stabilization at each location Actions and Resolutions for each site. Six disturbed sites were evaluated for this assessment. One has achieved final stabilization. The remaining five sites not meeting the criteria for final stabilization will be evaluated again in the next fiscal year.

  19. Energy Secretary Chu, Agriculture Secretary Vilsack Announce $6.3 million

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Biofuels Research | Department of Energy Chu, Agriculture Secretary Vilsack Announce $6.3 million for Biofuels Research Energy Secretary Chu, Agriculture Secretary Vilsack Announce $6.3 million for Biofuels Research July 22, 2009 - 12:00am Addthis Washington, DC - U.S. Department of Energy Secretary Steven Chu and U.S. Department of Agriculture Secretary Tom Vilsack announced today the joint selection of awards of up to $6.3 million towards fundamental genomics-enabled research leading

  20. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    However, a gas turbine operating as a combined heat and power system or in a combined cycle with a steam turbine displays high effciency and produces electricity, which can provide ...

  1. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Has Driving Come to a Halt? Don Pickrell, Volpe Center Energy Information Administration 2014 Energy Conference July 15, 2014 The National Transportation Systems Center Advancing transportation innovation for the public good U.S. Department of Transportation Office of the Secretary of Transportation John A. Volpe National Transportation Systems Center 2 Here's What's New... 90% 100% 110% 120% 0 12 24 36 48 60 VMT as a % of Pre-Recession Level Nov 1973 - Mar 1975 Jan-July 1980 July 1981 - Nov

  2. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Hydrocarbon Gas Liquids (HGL): Recent Market Trends and Issues i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  3. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    722,847 664,554 667,341 621,099 617,626 592,975 2001-2016 Alabama 18,803 16,519 16,683 15,853 16,730 15,245 2001-2016 Alaska 479 243 237 183 261 363 2001-2016 Arizona 2,020 1,785 1,701 1,570 1,584 1,537 2001-2016 Arkansas 7,825 7,184 6,885 6,457 6,363 5,975 2001-2016 California 64,347 58,941 62,711 61,587 63,299 62,742 2001-2016 Colorado 9,107 7,704 7,546 6,629 6,148 4,995 2001-2016 Connecticut 2,817 2,565 2,082 1,958 1,746 1,632 2001-2016 Delaware 2,821 2,517 2,666 2,464 2,643 2,335 2001-2016

  4. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Review of EIA oil production outlooks For 2014 EIA Energy Conference July 15, 2014 | Washington, DC By Samuel Gorgen, Upstream Analyst Overview Gorgen, Tight Oil Production Trends EIA Conference, July 15, 2014 2 * Drilling Productivity Report performance review - Permian - Eagle Ford - Bakken * Crude oil production projections - Short-Term Energy Outlook - Annual Energy Outlook - International tight oil outlook * New DPR region highlights: Utica Drilling Productivity Report review - major tight

  5. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    This presentation was prepared by Navigant Consulting, Inc. exclusively for the benefit of the Energy Information Administration, Department of Energy. This presentation is incomplete without reference to, and should be viewed solely in conjunction with the oral briefing provided by Navigant Consulting. April 2008. 2 Table of Contents Energy Efficiency Challenges and Solutions New and Emerging Energy Efficient Technologies » Overview » Examples Market Acceptance of Technologies 3 Energy

  6. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    3,329 3,007 3,329 3,222 3,329 3,222 1997-2016 Alabama 21 19 21 20 36 34 2010-2016 Alaska 1 1 1 1 1 1 2010-2016 Arizona 192 173 192 186 206 199 2010-2016 Arkansas 3 3 3 3 3 3 2010-2016 California 1,565 1,413 1,565 1,514 1,447 1,400 2010-2016 Colorado 30 27 30 29 31 30 2010-2016 Connecticut 5 5 5 5 2 2 2010-2016 Delaware 0 0 0 0 0 0 2010-2016 District of Columbia 95 86 95 92 76 73 2010-2016 Florida 19 18 19 19 27 26 2010-2016 Georgia 111 100 111 107 102 99 2010-2016 Hawaii 1 1 1 1 0 0 2010-2016

  7. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    Conference John R. Auers, P.E. Executive Vice President July 14, 2014 Washington, D. C. When is the "Day of Reckoning" and how will the industry respond? 0 10 20 30 40 50 60 70 80 90 Refinery Utilization U.S. Production Canadian Imports Saudi Imports Other Light & Medium WB Imports Heavy Waterborne Imports Pre U.S. Crude Boom (~2007/2008) 2 Export regulations irrelevant. Declining U.S. crude production replaced by increasing imports - exceed 10 MM BPD Light & Medium waterborne

  8. Fiscal Year 2009 Revegetation Assessment

    SciTech Connect (OSTI)

    Michael Lewis

    2009-10-01

    This report summarizes the Fiscal Year 2009 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

  9. Fiscal Year 2010 Revegetation Assessment

    SciTech Connect (OSTI)

    Jenifer Nordstrom; Mike Lewis

    2010-11-01

    This report summarizes the Fiscal Year 2010 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to supplement documentation related to the Storm Water Pollution Prevention Plan for Construction Activities and to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Recommendation(s) for each site.

  10. Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002

    SciTech Connect (OSTI)

    Truett, LF

    2003-09-24

    81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

  11. 2016 American Society of Agricultural and Biological Engineers Annual International Meeting

    Broader source: Energy.gov [DOE]

    The American Society of Agricultural and Biological Engineers Annual International Meeting will be held in Orlando, Florida, from July 17–20, 2016. The meeting is a forum to expand awareness of current agricultural and biological engineering advances and innovations. Bioenergy Technologies Office Program Manager Alison Goss Eng will be presenting at the meeting, and Director Jonathan Male and Technology Managers Sam Tagore and Mark Elless will be in attendance.

  12. Roadmap for Agriculture Biomass Feedstock Supply in the United States

    SciTech Connect (OSTI)

    J. Richard Hess; Thomas D. Foust; Reed Hoskinson; David Thompson

    2003-11-01

    The Biomass Research and Development Technical Advisory Committee established a goal that biomass will supply 5% of the nation’s power, 20% of its transportation fuels, and 25% of its chemicals by 2030. These combined goals are approximately equivalent to 30% of the country’s current petroleum consumption. The benefits of a robust biorefinery industry supplying this amount of domestically produced power, fuels, and products are considerable, including decreased demand for imported oil, revenue to the depressed agricultural industry, and revitalized rural economies. A consistent supply of highquality, low-cost feedstock is vital to achieving this goal. This biomass roadmap defines the research and development (R&D) path to supplying the feedstock needs of the biorefinery and to achieving the important national goals set for biomass. To meet these goals, the biorefinery industry must be more sustainable than the systems it will replace. Sustainability hinges on the economic profitability of all participants, on environmental impact of every step in the process, and on social impact of the product and its production. In early 2003, a series of colloquies were held to define and prioritize the R&D needs for supplying feedstock to the biorefinery in a sustainable manner. These colloquies involved participants and stakeholders in the feedstock supply chain, including growers, transporters, equipment manufacturers, and processors as well as environmental groups and others with a vested interest in ensuring the sustainability of the biorefinery. From this series of colloquies, four high-level strategic goals were set for the feedstock area: • Biomass Availability – By 2030, 1 billion dry tons of lignocellulosic feedstock is needed annually to achieve the power, fuel, and chemical production goals set by the Biomass Research and Development Technology Advisory Production Committee • Sustainability – Production and use of the 1 billion dry tons annually must be

  13. Use of clean coal technology by-products as agricultural liming techniques

    SciTech Connect (OSTI)

    Stehouwer, R.C.; Sutton, P.; Dick, W.A.

    1995-03-01

    Dry flue gas desulfurization (FGD) by-products are mixtures of coal fly-ash, anhydrite (CaCO{sub 4}), and unspent lime- or limestone-based sorbent. Dry FGD by-products frequently have neutralizing values greater than 50% CaCO{sub 3} equivalency and thus have potential for neutralizing acidic soils. Owing to the presence of soluble salts and various trace elements, however, soil application of dry FGD by-products may have adverse effects on plant growth and soil quality. The use of a dry FGD by-product as a limestone substitute was investigated in a field study on three acidic agricultural soils (pH 4.6, 4.8, and 5.8) in eastern Ohio. The by-product (60% CaCO{sub 3} equivalency) was applied in September, 1992, at rates of 0, 0.5, 1.0, and 2.0 times the lime requirement of the soils, and alfalfa (Medicago sativa L.) and corn (Zea mays L.) were planted. Soils were sampled immediately after FGD application and three more times every six months thereafter. Samples were analyzed for pH and water soluble concentrations of 28 elements. Soil pH was increased by all FGD rates in the zone of incorporation (0--10 cm), with the highest rates giving a pH slightly above 7. Within one year pH increases could be detected at depths up to 30 cm. Calcium, Mg, and S increased, and Al, Mn, and Fe decreased with increasing dry FGD application rates. No trace element concentrations were changed by dry FGD application except B which was increased in the zone of incorporation. Dry FGD increased alfalfa yield on all three soils, and had no effect on corn yield. No detrimental effects on soil quality were observed.

  14. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  15. Fiscal Year 2014 Revegetation Assessment

    SciTech Connect (OSTI)

    Nordstrom, Jenifer

    2015-03-01

    This report summarizes the Fiscal Year 2014 Revegetation Assessment by Battelle Energy Alliance, LLC. This assessment was conducted to document revegetation efforts at Idaho National Laboratory to ensure that disturbed vegetation and soil at various locations are being restored. This report provides the following information for each site being monitored by the Idaho National Laboratory Environmental Support and Services: • Summary of each site • Assessment of vegetation status and site stabilization at each location • Actions and Resolutions for each site. Five disturbed sites were evaluated for this assessment. Four sites are recommended to be removed from the annual assessment, and one is recommended for continued evaluation. New sites are also identified for future monitoring as part of the annual assessment.

  16. Computerized simulation of fuel consumption in the agriculture industry

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/yr greater than that of ethanol and diesel must inflate at least 23 percent/yr more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years.

  17. Cray and NERSC Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cray and NERSC Through the Years February 5, 2014 Jeff Brooks, Cray Downloads NERSCandCray40YearBrooks.pdf | Adobe Acrobat PDF file Cray and NERSC Through the Years Last edited: ...

  18. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect (OSTI)

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as

  19. EM Issues 2015 Year-in Review

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Today EM released its 2015 Year-in-Review highlighting the wide array of work performed in the cleanup program this year.

  20. Fiscal Year 2015 Annual Environmental Justice Implementation...

    Energy Savers [EERE]

    Fiscal Year 2015 Annual Environmental Justice Implementation Progress Report Fiscal Year 2015 Annual Environmental ... More Documents & Publications Draft FY 2016-2018 Action Agenda ...