Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Accurate BTU Measurement  

E-Print Network [OSTI]

1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

Hosseini, S.; Rusnak, J. J.

2

BTU Accounting for Industry  

E-Print Network [OSTI]

, salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

Redd, R. O.

1979-01-01T23:59:59.000Z

3

A Requirement for Significant Reduction in the Maximum BTU Input...  

Energy Savers [EERE]

A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

4

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

5

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network [OSTI]

that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

6

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

7

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMroURL. PagesAnnualGenBtuYr

8

High Btu gas from peat. Existing social and economic conditions  

SciTech Connect (OSTI)

In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

Not Available

1981-08-01T23:59:59.000Z

9

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

10

Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117  

E-Print Network [OSTI]

.1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

Radivojac, Predrag

11

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

12

Sectoral combustor for burning low-BTU fuel gas  

DOE Patents [OSTI]

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

13

Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies  

SciTech Connect (OSTI)

The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

1980-02-01T23:59:59.000Z

14

Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259  

E-Print Network [OSTI]

Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

Moret, Bernard

15

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

Carney, Christopher Mark

1995-01-01T23:59:59.000Z

16

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network [OSTI]

. The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

Phillips, J. N.

17

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect (OSTI)

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

18

Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies  

SciTech Connect (OSTI)

In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

Not Available

1981-09-01T23:59:59.000Z

19

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

DOE Patents [OSTI]

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

20

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

DOE Patents [OSTI]

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project  

SciTech Connect (OSTI)

The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

1995-12-31T23:59:59.000Z

22

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

23

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

SciTech Connect (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

24

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

) . If the L. used are the lower limits of 1 the individual components, then Equation (1) will yield the lower flammability limit of the mixture (Zabetakis, 1965) . If the inert gases nitrogen or carbon dioxide are present, the Equation (1) may still... gas cylinders with the exception of the air which was atmospheric. The carbon dioxide, methane, and nitrogen came from commercial sources in high- pressure cylinders. The low-BTU gas consisting of 20. 89% CO, 2 . 65% CH4, 0 . 2% C2H6, 15 . 37% H2...

Gaines, William Russell

1983-01-01T23:59:59.000Z

25

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect (OSTI)

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

26

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

27

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

28

Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha  

SciTech Connect (OSTI)

In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

none,

1981-11-01T23:59:59.000Z

29

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

Bahrami, Majid

30

First BTU | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to:Siting.pdf JumpFirelands Electric Coop,

31

Quantifying the Effect of the Principal-Agent Problem on US Residential Energy Use  

E-Print Network [OSTI]

energy 9,860 trillion Btu (9,840 PJ) b Residential totalenergy 17, 600 trillion Btu (17,100 PJ) In addition tototaled over 3,400 trillion Btu, equal to 35% of the site

Murtishaw, Scott; Sathaye, Jayant

2006-01-01T23:59:59.000Z

32

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

33

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect (OSTI)

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

34

Production of low BTU gas from biomass  

E-Print Network [OSTI]

J. To utilize this untapped resource, several tech- nologies were proposed. Among them were pyrolysis, gasification and combustion. As the study group ' s objective was focused on actual farm usage, pyrolysis This thesis follows the style and format... for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time...

Lee, Yung N.

1981-01-01T23:59:59.000Z

35

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

36

BTU International Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place:Guidance DocumentsOperationsBSST LLC JumpBTMBTU

37

Federal Energy Management Program FY14 Budget At-a-Glance  

Energy Savers [EERE]

UESCs (utility energy service contracts)from the FY 20112012 baseline. Achieve lifecycle Btu Savings of 57 trillion Btu from FY 2014 program activities. The program's...

38

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

by ERC, is 448.3 trillion Btu (TBtu). The total CaliforniaBecause the cost of an electrical Btu is roughly 4 timesthat of a source fuel Btu, industrial categories that use

Akbari, H.

2008-01-01T23:59:59.000Z

39

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Year 2025 Annual Energy~ 10 Btu Heat Electricity Fuels orBalance Distributed Cases (trillion Btu) A ! -feat >350! lPfor California Industry (10 12 Btu): Scenario B Process Heat

Authors, Various

2010-01-01T23:59:59.000Z

40

POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL  

SciTech Connect (OSTI)

It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

Booz, Allen, and Hamilton, Inc.,

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

42

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F4.34

43

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F4.34Week Of

44

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010 | 2006 | 2002 |J.MonthlyU.S.O F4.34Week

45

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew testloading new

46

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew testloading newYear Jan

47

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew testloading newYear

48

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cellHeat TransferHelping Make TheHenry C.Henry

49

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReservesFoot)ThousandDecade

50

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReservesFoot)ThousandDecadeYear

51

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs

52

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93

53

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93Year Jan

54

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93Year

55

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48(Millionthroughthroughthrough4.93YearDecade

56

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs

57

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date

58

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week 5 End

59

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week 5 EndYear

60

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week 4 Week 5

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6164,778,907throughthroughthroughWeek Of Mon

62

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6164,778,907throughthroughthroughWeek Of

63

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6164,778,907throughthroughthroughWeek OfWeek

64

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves from%Year Jan Feb Mar Apr

65

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NSTCurrent Issues & Trends See

66

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormat JumpNercMroURL.AwardeeCostShare

67

First trillion particle cosmological simulation completed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trillion particle cosmological simulation completed A team of astrophysicists and computer scientists has created high-resolution cyber images of our cosmos. December 3, 2014...

68

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network [OSTI]

2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

69

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

70

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

(trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

71

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

72

Air movement as an energy efficient means toward occupant comfort  

E-Print Network [OSTI]

only by electrical lighting (481 trillion BTU vs. 1340only by electrical lighting (141 billion kWh vs. 393 billion

Arens, Edward; Zhang, Hui; Pasut, Wilmer; Zhai, Yongchao; Hoyt, Tyler; Huang, Li

2013-01-01T23:59:59.000Z

73

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

74

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

75

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

76

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4 Relative2

77

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4 Relative22

78

Small (5 million Btu/h) and large (300 million Btu/h) thermal test rigs for coal and coal slurry burner development  

SciTech Connect (OSTI)

NEI International Combustion Ltd. of Derby, England, now operates two thermal test rigs for the development of burners capable of handling coal-water slurries (CWS). A general description of the large rig and its capacity was given. Also, the necessary conversions of the equipment to handle CWS were described. Information on the properties of the CWS was included. This consisted of chemical analysis of the parent coal and the slurry, sieve analysis of a dry sample, and viscosity versus temperature data of the CWS. The process of design development of the burner was outlined. Ten illustrations were presented, including schematic diagrams of equipment and graphs of data.

Allen, J.W.; Beal, P.R.; Hufton, P.F.

1983-01-01T23:59:59.000Z

79

High-Btu gas from peat. Feasibility study. Volume II. Executive summary  

SciTech Connect (OSTI)

In September 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first is the Executive Summary. This Volume II contains all of the text of the report, and Volume III includes all of the specifications, drawings, and appendices applicable to the project. Contents of Volume II are: introduction; project scope and objectives; commercial plant description; engineering specifications; design and construction schedules; capital cost estimates; operating cost estimates; financial analysis; and future areas for investigation. 15 figures, 17 tables.

Not Available

1984-01-01T23:59:59.000Z

80

High Btu gas from peat. Volume III. Part B. Environmental and socioeconomic feasibility assessment  

SciTech Connect (OSTI)

In September 1980, the US Department of Energy awarded a grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the current commercial viability - technical, economic, environmental, financial, and regulatory - of producing 80 million SCF/day of substitute natural gas (SNG). Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering, and economics of peat harvesting, dewatering, and gasification systems), Ertec, Inc. (for environmental and socio-economic analyses), IGT (for providing gasification process information, and technical and engineering support to Minnegasco), and Deloitte Haskins and Sells (for providing management structural support to Minnegasco). This Final Report presents the work conducted by Ertec, Inc. under tasks 6 and 7. The study objective was to provide an initial environmental and socio-economic evaluation of the proposed facility to assess project feasibility. To accomplish this objective, detailed field studies were conducted in the areas of Hydrology, Air Quality and Socio-Economics. Less extensive surveys were conducted in the areas of Geology, Ecology, Acoustics, Land Use, Archaeology and Resource Assessment. Part B of Volume 3 contains the following contents: (1) project impact assessment which covers geological impacts, hydrology, ecological impacts, air quality and meteorology, land use, archaeology, aesthetics, acoustics, socioeconomic impacts, and peat resources; (2) impact mitigation which covers hydrology, ecology, air quality, archaeology, acoustics, and socioeconomics; (3) conclusions; and (4) appendices. 2 figures, 18 tables.

Not Available

1982-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High Btu gas from peat. A feasibility study. Part 3. Market analysis. Task 8. Final report  

SciTech Connect (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to identify and characterize the market potential for the plant by-products - BTX (mixture of benzene, toluene and xylene), phenol, ammonia, sulfur, and sodium sulfate - and to assign value to them. Although traditionally a growth industry, the chemicals market has been generally weakened by the recession, and is experiencing back to back years of declining production. This is due to bad health of specific end uses, such as fertilizer from ammonia. In the long run, this trend is expected to moderate. It is felt that the proposed peat plant has a favorable position in the markets of each of its by-products. This is due to the synergism with nearby industries which are major consumers of these by-products. In the case of sulfur and ammonia, the Red River agricultural area is a large potential market. For sodium sulfate, phenols and perhaps BTX, the nearby paper and timber products industries are large potential markets. The values for these by-products used in the financial analysis were intentionally conservative. This is because of the uncertainty in the quantity and quality. More tests are needed in an integrated facility in order to determine these factors and the variability of each. This is particularly true of the by-product oils which could vary significantly with operating conditions and may even require alternate processing schemes. 18 references, 9 figures, 14 tables.

Not Available

1982-01-01T23:59:59.000Z

82

High-Btu gas from peat. A feasibility study. Task 11. Technical support. Final report  

SciTech Connect (OSTI)

In September 1980, the US Department of Energy awarded grant No. DE-FG01-80RA50348 to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million SCF/day of substitute natural gas (SNG) from peat. Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering and economics of peat harvesting, dewatering and gasification systems); Ertec, Inc. (for environmental and socioeconomic analyses); Institute of Gas Technology (for gasification process information, and technical and engineering support). This report presents the work conducted under Task II (Technical Support) by the Institute of Gas Technology (IGT), the developer of the PEATGAS process, which was selected for the study. Task achievements are presented for: gasifier design and performance; technical support; and task management. 12 figures, 22 tables.

Not Available

1982-05-01T23:59:59.000Z

83

High Btu gas from peat. Volume III. Part A. Environmental and socioeconomic feasibility assessment  

SciTech Connect (OSTI)

In September 1980, the US Department of Energy awarded a grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the current commercial viability - technical, economic, environmental, financial, and regulatory - of producing 80 million SCF/day of substitute natural gas (SNG). Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering, and economics of peat harvesting, dewatering, and gasification systems), Ertec, Inc. (for environmental and socio-economic analyses), IGT (for providing gasification process information, and technical and engineering support to Minnegasco) and Deloitte Haskins and Sells (for providing management structural support to Minnegasco). This Final Report presents the work conducted by Ertec, Inc. under tasks 6 and 7. The study objective was to provide an initial environmental and socio-economic evaluation of the proposed facility to assess project feasbility. To accomplish this objective, detailed field studies were conducted in the areas of Hydrology, Air Quality and Socio-Economics. Less extensive surveys were conducted in the areas of Geology, Ecology, Acoustics, Land Use, Archaeology and Resource Assessment. Part A of Volume 3 contains the introduction and plant area conditions which include the following: (1) description of existing conditions-geology; (2) hydrology; (3) terrestrial and aquatic ecology; (4) meteorology; (5) land use existing conditions; (6) archaeology; (7) aesthetics-existing conditions; (8) acoustics; (9) existing socioeconomic conditions; and (10) resource assessment. 25 figures, 55 tables.

Not Available

1982-06-01T23:59:59.000Z

84

High-Btu gas from peat. Feasibility study. Volume I. Executive summary  

SciTech Connect (OSTI)

In September, 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first of which is this Executive Summary. Subsequent volumes include Volume II which contains all of the text of the report, and Volume III which includes all of the specifications, drawings, and appendices applicable to the project. As part of this study, a scale model of the proposed gasification facility was constructed. This model was sent to Minnegasco, and photographs of the model are included at the end of this summary.

Not Available

1984-01-01T23:59:59.000Z

85

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network [OSTI]

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators...

Lawrence, Benjamin Daniel

2009-05-15T23:59:59.000Z

86

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network [OSTI]

of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis....

Nebeker, C. J.

1982-01-01T23:59:59.000Z

87

Performance of an industrial type combustor burning simulated fuels of medium BTU content  

E-Print Network [OSTI]

studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

Goehring, Howard Lee

1983-01-01T23:59:59.000Z

88

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect (OSTI)

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

89

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved Natural Gas,

90

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming"CoalbedOhio"Associated-Dissolved Natural

91

New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYear Jan Feb Mar Apr May27

92

New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecade Year-0(Dollars39

93

New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecadeExtensions41 1,039 1,037

94

New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear JanDecreases

95

North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.415 - - -Cubic8 200922

96

North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18Feet) New123 1,100

97

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSales (Billion Cubic

98

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44 1,043

99

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade Year-0313,210Year

100

Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (Billion Cubic Feet)

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan MonthlyProduction (BillionDecade

102

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan MonthlyProduction

103

Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead PriceDay) Process:

104

Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellhead PriceDay) Process:Foot) Year

105

Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellheadProved ReservesFoot) Decade

106

Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear JanWellheadProved ReservesFoot)

107

Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb MarSeptembertoCubic

108

Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year Jan Feb

109

West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year JanProvedDecade Year-0

110

West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet) Year JanProvedDecade Year-0Cubic

111

Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWestern StatesCubic Foot)

112

Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYearFeet)perWestern StatesCubic

113

Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas,Foot) Decade

114

Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas,Foot)

115

U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10OriginSep-14 Oct-14 Nov-14 Dec-14per

116

U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 QInternationalYear Jan FebNoyes,

117

Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet) CokersJanuary403,972Cubic

118

South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, September 11,Cubic Foot)

119

South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7, September 11,Cubic

120

South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7,Cubic Foot) Decade Year-0

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand Cubic Feet)Year7,Cubic Foot) Decade

122

Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand CubicinResidualU.S.contains contentDecade

123

Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear Jan FebThousand CubicinResidualU.S.contains contentDecadeCubic

124

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReserves (BillionFoot) Decade

125

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYear JanSeparation, Proved ReservesReserves (BillionFoot)

126

U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 Wells (Thousand Feet) U.S.2009 2010

127

U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 Wells (Thousand Feet) U.S.2009

128

U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14Deliveries (Million Cubic Feet)DecadeYear

129

Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYear Jan Feb Mar

130

Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquids Reserve3.Revenue3ProvedYear Jan Feb

131

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProved ReservesYear Jan Feb

132

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear Jan FebProved ReservesYear Jan

133

Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan FebNaturalWorkingYear Jan

134

Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan FebNaturalWorkingYear

135

Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented andDecade Year-0

136

Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVented andDecade Year-0Foot)

137

California Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesmDecade Year-0Separation,

138

California Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReservesmDecade Year-0Separation,Cubic

139

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Weekly 4-WeekErin

140

Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5 FigureReserves inFoot) Year

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead99.6 92.993.5

142

Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansionReservesFoot) Year Jan Feb Mar

143

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ith pricesBureau of EconomicFoot)

144

Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ith pricesBureau

145

Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellhead PriceFoot) Year Jan

146

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review W ithWellheadFeet)Foot) Year Jan

147

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear Jan Feb Mar AprFoot) Year Jan

148

Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review WYear Jan

149

Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213Separation, Proved

150

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial Working GroupFoot) Year Jan

151

Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear

152

Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-IndustrialFeet) Year Jan

153

Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-IndustrialFeet)+ LeaseExpected

154

Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand Cubic Feet)December300200Cubic

155

Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per Thousand CubicYearFutureCubic Foot) Year

156

Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per ThousandWellhead Price (DollarsThousand

157

Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per ThousandWellhead+ Lease

158

Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 WeekCrude Oil Reserves

159

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302 5,797 -4,282 6,424

160

New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302 5,797Thousand

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2-302Year Jan Feb Mar AprperCubic

162

New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 WeekExpected Future ProductionCubic

163

New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1Wellhead(MillionCrude Oil

164

North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReserves (Billion Cubic1.878 2.358NA

165

North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReserves (BillionYear JanFeet)Cubic

166

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0 ' u o !

167

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan

168

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYearYear Jan FebperShale

169

Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-MonthCoalbed Methane Proved ReservesFeet)Cubic

170

Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary403,972 415,107Cubic

171

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network [OSTI]

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather...

Edgar, T. F.

1979-01-01T23:59:59.000Z

172

Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia" "Emission Type",.7 1,030

173

South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand Cubic Feet) DecadeYear Jan Feb Mar8 1,027Cubic

174

South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand Cubic Feet)6.18 5.69 5.07Feet)perYearCubic

175

Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector", 2012,Washington" "Sector",Year Jan Feb

176

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector", 2012,Washington"YearFoot) Decade Year-0 Year-1

177

Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA,0, 2010

178

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NA NA,0,DecadeYearDry Natural

179

New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinois NAElements)

180

New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinoisper Thousand Cubic Feet) Year

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015 Illinoisper(Billion Cubic+Cubic Foot)

182

New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015(MillionProduction (Billion CubicDecade

183

North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team:6-2015(MillionProductionYearGas Markets:14NA NACubic

184

North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand Cubic Feet) Year Jan FebCubic Foot)

185

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand Cubic Feet)3.74Decade Year-00Foot)

186

Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper Thousand CubicProcessedProved

187

Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper ThousandResidential ConsumersYearDecade Year-0

188

Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170 8,310 8,304 8,368 8,307Decade Year-0 Year-1Cubic

189

A Requirement for Significant Reduction in the Maximum BTU Input Rate of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief FreedomServices » ProgramDecorative Vented Gas

190

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars perReservesAnnual",2013

191

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars

192

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in NonproducingU.S.Summary"LNGShaleNetHenry Hub

193

Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J 9 U B u o f l dIncreases

194

Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J 9 U B u3,566Sales (Billion

195

Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J 9 U

196

Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J 9DecadeDecade Year-031Sales

197

California Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;5,,"I",86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0000,7,00000,"WAT","HY"5YearIncreases (Billion3Cubic

198

U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass GasPropane, No.1SalesConsumption of

199

Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky - Natural Gas 2013

200

Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 Kentucky -Provedoff) ShaleExpectedCubic

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYear Jan Feb Mar

202

Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay6 KentuckyYearDecade Year-0 Year-1 Year-2

203

Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522.Feet) NewSales

204

Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,6439723 42 180 208ByDecade Year-0EIA21

205

Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,6439723 42Feet)CubicDecade

206

Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998Information03 304 2523 PC'sDecade4 1,023 1,024

207

Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (Million Cubic Feet) Freeport,viewing this page,7

208

Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (Million CubicYear Jan Feb MarGulfHOW TOYearFoot)

209

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (Million CubicYear JanHealthThousand Cubic05

210

Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (Million CubicYearWithdrawalsDecade66 64 54 511

211

Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (MillionWithdrawalsVented and4 15 0 0 0. 61,7078

212

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643Norway (MillionWithdrawalsVentedYear Jan FebOilper0 044

213

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas) (Million CubicFoot) Decade Year-0 Year-1

214

Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase Gas)Cubic Feet) Kenai,Sales (Billion

215

Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplicationsEmployees

216

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, Russ Tarver, Elizabeth Sendich and

217

Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, RussFoot) Decade Year-0 Year-1

218

Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith, RussFoot)per ThousandFeet)Cubic

219

Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomic team: Kay Smith,Foot) Decade Year-0 Year-1 Year-2

220

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shownshortHouseholdsValues No.

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet)+Foot) Decade

222

Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet)+Foot)

223

Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYear Jan Feb Mar

224

Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYear Jan Feb MarCubic

225

Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03) ElectricFoot)

226

Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)

227

Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWells

228

Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96NebraskaWellsFoot) Year Jan12,608SamplingSee See

229

Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves from GreaterDecadeFoot)

230

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves from%Year1.A2.Foot)

231

Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (Million Barrels)Reserves%

232

Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan Feb Mar Apr May JunApril

233

Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan Feb Mar

234

Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear Jan FebFoot) Decade Year-0 Year-1 Year-2

235

Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear JanDecade Year-0ProvedDecade Year-0

236

Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam CoalReserves (MillionYear(Billion Cubic Feet)ProvedDecade

237

U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual DownloadReserves20,798 18,578

238

Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683 2,539 1,736 1,810Foot) Decade Year-0 Year-1

239

U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector", (Million CubicAdjustments (MillionIncreases (Billion33

240

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot) Decade Year-0 Year-1DecadeThousandDay)15

242

Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot) DecadeAcquisitions (Billion38 1,046 1,055

243

Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot)Vented and FlaredYear Jan Feb Mar Apr May Jun

244

West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot)Vented and

245

Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007York"Hawaii" "Sector",Foot)VentedDecade Year-0 Year-1 Year-2 Year-3Cubic

246

Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530 525 584 622Sales (Billion Cubic Feet)1

247

Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530 525: Percentage of Total Purchased

248

Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530 525:Detailed Tables 28

249

Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530Decade Year-0 Year-1DecadeFeet) YearCubic

250

Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase480 530DecadeThousandYear JanSales (Billion

251

Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase4802009 2010 2011 20121905-0194 ExpirationCubic

252

Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase4802009 2010Year Jan Feb Mar Apr22Sales

253

Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase4802009 2010YearSame Month126 117 94 90 82Foot)

254

Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643NorwayBase4802009Year Jan Feb Mar Apr May75

255

Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in Kansas (Million15,134,6442,869,9608 2009Foot)

256

Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan Feb MarYear Janfrom YemenDry3

257

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative2. Occupancy ofAviation Gasoline Sales to14

258

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185 175...

259

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

260

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

262

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

263

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

264

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

265

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

266

DOE Issues ESPC IDIQ Solicitation: Deadline for Response April...  

Broader source: Energy.gov (indexed) [DOE]

measures at federal sites, reducing federal energy consumption by 22.5 trillion Btu per year and thereby avoiding 2.4 million tons in greenhouse gas emissions per year....

267

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

~Mwe: conversion factor from Btu to MWe-y ( 3.345 x 10- MWe-insulation R-values [fe-hr OF I Btu] for electricity heatedspecific fuel, expressed as Btu/lb coal, Btu/ gal oil, Btu/

McKone, Thomas E.

2011-01-01T23:59:59.000Z

268

Trillion-atom molecular dynamics becomes a reality  

SciTech Connect (OSTI)

By utilizing the molecular dynamics code SPaSM on Livermore's BlueGene/L architecture, consisting of 212 992 IBM PowerPC440 700 MHz processors, a molecular dynamics simulation was run with one trillion atoms. To demonstrate the practicality and future potential of such ultra large-scale simulations, the onset of the mechanical shear instability occurring in a system of Lennard-Jones particles arranged in a simple cubic lattice was simulated. The evolution of the instability was analyzed on-the-fly using the in-house developed massively parallel graphical object-rendering code MD{_}render.

Kadau, Kai [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

269

High Power Hg Target Conceptual Design Review  

E-Print Network [OSTI]

to Hg Hg Temp Rise Input Energy (hp) Losses Lost Energy (hp) Output Energy (hp) BTU/min BTU/min BTU/min BTU/ min KW HP BTU/min F/sec Elect Motor 60 60 hp * 5% inefficiency 3 57 127 127 2 3 Mag Coupling 5 Energy (hp) BTU/min BTU/min BTU/min BTU/ min KW HP BTU/min F/sec Elect Motor 60 60 hp * 5% inef

McDonald, Kirk

270

High-Btu gas from peat. A feasibility study. Task 9. 2. Financial risk analysis. Final report  

SciTech Connect (OSTI)

In September 1980, the US Department of Energy awarded grant No. DE-FG01-80RA50348 to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic, and environmental - of producing 80 million SCF/day of substitute natural gas (SNG) from peat. Minnegasco's project team for this study consisted of Dravo Engineers and Constructors (for design, engineering and economics of peat harvesting, dewatering and gasification systems); Ertec, Inc. (for environmental and socioeconomic analyses); Institute of Gas Technology (for gasification process information, and technical and engineering support) and Deloitte Haskins and Sells (for management structural support.) This final report presents the work conducted under Task 9.2 (Risk Assessment) by the Institute of Gas Technology (IGT), the developer of the PEATGAS process selected for the study. At this time, there is little technical doubt that the PEATGAS gasifier can indeed operate. In order to assess the risks associated with the peat gasification facility, it was subdivided according to the following risk areas; (1) peat harvesting; (2) peat dewatering; (3) peat gasification; and (4) environmental. In summary, the risks associated with the peat gasification facility are manageable. Even under the extreme risk of no peat availability, the gasification facility can be operated with lignite at a slightly higher SNG price. 1 figure, 5 tables.

Not Available

1982-05-01T23:59:59.000Z

271

Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants  

SciTech Connect (OSTI)

Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

Stamoudis, V C; Luthy, R G

1980-02-01T23:59:59.000Z

272

Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas  

E-Print Network [OSTI]

to 70' of maximum power; how- ever, dual-fuel operation at high speed with advanced tim- ing resulted in full-power operation with a 65(0 reduction in diesel fuel consumption as compared to conventional die- sel operation. Engine knock was evident... of gas-air ratio, the gaseous charge is ignited by its compression, prior to diesel fuel injec- tion. This preignition results in an uncontrolled pressure rise, the "knocking" noise, and eventual engine wear. The knock-limited gas-air ratio has been...

Blacksmith, James Richard

1979-01-01T23:59:59.000Z

273

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

274

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B1 Relative3

275

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B1 Relative34

276

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B1

277

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B14 Relative

278

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network [OSTI]

97 BTUs of refinery energy per BTU of dieseland hydrogen) per BTU of diesel produced, depending onof refinery energy per BTU of diesel fuel In the real world

Delucchi, Mark

2003-01-01T23:59:59.000Z

279

STATE OF CALIFORNIA SPACE CONDITIONING SYSTEMS, DUCTS AND FANS  

E-Print Network [OSTI]

, crawl- space, etc.) Duct R-value Heating Load (Btu/hr) Heating Capacity (Btu/hr) Equip Type (package Load (Btu/hr) Cooling Capacity (Btu/hr) 1. If project is new construction, see Footnotes to Standards

280

Healthcare Energy Efficiency Research and Development  

E-Print Network [OSTI]

c. Hourly kBtu vs. outdoor temp. BTU meter, chiller, coolingpumps electrical power One BTU meter, each chiller input viavia VFD's Chiller Plant BTU Meter $ 4000, Chillers, Towers

Lanzisera,, Judy Lai, Steven M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Uninterruptible Power Supplies Designed to meet or exceed the safety standards established by UL, CSA, CE and VDE. The Alpha CFR UPS is one of the safest, most reliable and versatile Uninterruptible Power Systems  

E-Print Network [OSTI]

% Load 88% 90% 90% 90% 90% 90% Typical Heat Output - Line Mode 209 BTU/h 284 BTU/h 427 BTU/h 427 BTU/h 398 BTU/h 636 BTU/h Mechanical Width (in \\ mm) 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8.5 \\ 216 8

Berns, Hans-Gerd

282

Trillion Particles,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2TopoPortal HydrogenOpportunities | FYoxygenation

283

851 S.W. Sixth Avenue, Suite 1100 Steve Crow 503-222-5161 Portland, Oregon 97204-1348 Executive Director 800-452-5161  

E-Print Network [OSTI]

and furnaces or to generate electricity for electrical space and water heating systems that provide served those electric space and water heating systems. After netting out the 21 trillion BTU decrease away from electric resistance where natural gas is already in the home for space heating. However

284

Development of Highly Selective Oxidation Catalysts by Atomic Layer Deposition  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to use Atomic Layer Deposition to construct nanostructured catalysts to improve the effectiveness of oxidative dehydrogenation of alkanes. More effective catalysts could enable higher specific conversion rates and result in drastic energy savings - up to 25 trillion Btu per year by 2020.

285

Cool energy savings opportunities in commercial refrigeration  

SciTech Connect (OSTI)

The commercial sector consumes over 13 quads of primary energy annually. Most of this consumption (two-thirds) meets the energy needs of lighting and heating, ventilation, and air-conditioning. The largest consuming group of the remaining one-third is commercial refrigeration at about one quad annually (990 trillion Btu), valued at over $7 billion per year to the commercial sector consumer. Potential energy savings are estimated to be about 266 trillion Btu, with consumer savings valued at about $2 billion. This study provides the first known estimates of these values using a bottom-up approach. The authors evaluated numerous self-contained and engineered commercial refrigeration systems in this study, such as: supermarket central systems, beverage merchandisers, ice machines, and vending machines. Typical physical characteristics of each equipment type were identified at the component level for energy consumption. This information was used to form a detailed database from which they arrived at the estimate of 990 trillion Btu energy consumption for the major equipment types used in commercial refrigeration. Based on the implementation of the most cost-effective technology improvements for the seven major equipment types, they estimated an annual potential energy savings of 266 trillion Btu. Much of the savings can be realized with the implementation of high-efficiency fan motors and compressors. In many cases, payback can be realized within three years.

Westphalen, D.; Brodrick, J.; Zogg, R.

1998-07-01T23:59:59.000Z

286

Development of combustion data to utilize low-Btu gases as industrial process fuels: modification of flame characteristics. Project 61041 quarterly report, 1 January-31 March 1980  

SciTech Connect (OSTI)

This program consists of an experimental program to determine the burner modifications that will yield suitable flame characteristics and shapes with oxygen-blown gases manufactured from coal. Experiments will also be conducted to evaluate methods of enchancing the flame characteristics of manufactured gases from air-blown gasifiers. Progress to date includes a partial completion of the oxygen-enrichment system, preparation of the furnace for the trials, and discussions of the burner modifications needed for combustion trials with the burner manufacturer.

Waibel, R.T.

1980-04-01T23:59:59.000Z

287

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network [OSTI]

.0 psi. ~Butanol is an alcohol that can be but does not have to be blended with fossil fuels. ~Butanol existing pipelines and filling stations. ~Hydrogen generated during the butanol fermentation process is expected to increase dramatically if green butanol can be produced economically from low cost biomass

Toohey, Darin W.

288

EVA PLANNING ASSUMPTIONS LRV TRAVERSE ASSESSMENT  

E-Print Network [OSTI]

VALUE. #12;ASSUMPTIONS {CONT) e METABOLIC RATES LM OVERHEAD 1050 BTU/HR ALSEP 1050 BTU/HR STATION 950 BTU/HR RIDING 550 BTU/HR #12;ACTIVITY 'METABOLIC .COMPARISON 15 ACTUAL VERSUS 16 PLANNING AVERAGE METABOLIC RATE (BTU I HR) ACTIVITY 15 ACTUAL 16 PLANNING CDR LMP LM OVERHEAD 1246 1060 '1050

Rathbun, Julie A.

289

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network [OSTI]

v i i where, h = molar enthalpy, Btu/mol (J/mol), M = molarEnergy Used at Shower Water Heater average 5169 BTU ( 5.454MJ ) 4335 BTU ( 4.573 MJ ) 4151 BTU ( 4.379 MJ ) 4192 BTU (

Lutz, Jim

2012-01-01T23:59:59.000Z

290

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network [OSTI]

conversion: 1 kwh = 10,500 Btu for power production Averageelectricity and at 10,500 Btu/kwh or 2,646 kcal/kHz energyHCs Unit Nm3/hr Nm3/hr cfh Btu/scf MM Btu/hr GJ/hr Btu/scf

Price, Lynn

2013-01-01T23:59:59.000Z

291

PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE  

E-Print Network [OSTI]

KWH X 10 3 Occup, Unaee. BTU x10 6 Qceup. Unoec. Oecuj2.H20 gal H 0 occ. -yr. x (155-60) OF x x + 40,000 BTU/occ. /yr. BTU 493,000 BTU/occ. /yr. 8,000,000 BTU/yr. 100

Authors, Various

2010-01-01T23:59:59.000Z

292

Healthcare Energy Efficiency Research and Development  

E-Print Network [OSTI]

outdoor temp. BTU meter, boiler & Pumps electrical power OneBTU meter, one electrical meter per boiler (e.g. 4), pumpsPlant BTU Meter $ 4000, boiler electrical meter $ 500 each,

Lanzisera,, Judy Lai, Steven M.

2012-01-01T23:59:59.000Z

293

Introduction to Benchmarking: Starting a Benchmarking Plan  

Broader source: Energy.gov (indexed) [DOE]

plant Btu per pound of product Manufacturer Btu per pound of product processed Refinery Btu per number of beds occupied Hotel or hospital Kilowatt-hours per square foot...

294

The Allocation of the Social Costs of Motor-Vehicle Use to Six Classes of Motor Vehicles  

E-Print Network [OSTI]

gasoline; 137,800 BTU/gallon for diesel fuel) 3412 = BTU/kWhcontent of diesel fuel per gallon (137,800 BTU/gallon HHVBTU/gallon HHV), and 15% due to the higher compression ratio of diesel

Delucchi, Mark A.

1996-01-01T23:59:59.000Z

295

2.1E Supplement  

E-Print Network [OSTI]

ELECFD Efficiency of diesel engine (Btu/Btu) THLOF Ratio ofDIESEL-OIL COAL METHANOL OTHER-FUEL ELEC-NET-SALE ELEC-BUY/SELL calculated calculated English ENERGY/UNIT Btu

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

296

Healthcare Energy Efficiency Research and Development  

E-Print Network [OSTI]

of panels. Steam boiler efficiency Electrical includedto BTU equivalents. Boiler efficiency can be monitored as aGenerators Heating water boiler efficiency kBtu out/ kBtu in

Lanzisera,, Judy Lai, Steven M.

2012-01-01T23:59:59.000Z

297

Conversion Factor Table http://vertex42.com/edu/kinematics.html Copyright 2005 Jon Wittwer Multiply by To Get  

E-Print Network [OSTI]

.696 psia bar 0.9869 atm, std bar 1x105 Pa Btu 778.169 ft·lbf Btu 1055.056 J Btu 5.40395 psia·ft3 Btu 2.928x10-4 kWh Btu 1x10-5 therm Btu / hr 1.055056 kJ / hr Btu / hr 0.216 ft·lbf / sec Btu / hr 3.929x10-4 hp Btu / hr 0.2931 W Btu / lbm 2.326* kJ / kg Btu / lbm 25,037 ft2 / s2 Btu / lbm·R 4.1868 kJ / kg

Kostic, Milivoje M.

298

TWOZONE USERS MANUAL. 2d ed  

E-Print Network [OSTI]

Op) effective lumped heat capacity of house, (Btu/Op). Wein the neighborhood of 3000 Btu/Op for a typical house ofeconomic parameters (such as: Btu's saved per discounted

Gadgil, A.J.

2008-01-01T23:59:59.000Z

299

Energy Management A Program of Energy Conservation for the Community College Facility  

E-Print Network [OSTI]

General Glossary I II Btu (British thermal unit). The amountabove a fixed data point (in Btu/lb), including sensible andsquare centimeter, or 3.69 Btu/per square foot. LA TENT HEA

Authors, Various

2011-01-01T23:59:59.000Z

300

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

coefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?F]) downwardcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ? F]) forcedcoefficient, W/(m 2 ?K) (Btu/[h?ft 2 ?F]) slab thermal

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

Efficiency** Process Process BTU/Ton of MSW Input* RDSF1 - Col. 2; Col. 4 = Col. 3/11.4 Million BTU/per ton of MSWfor RDSF and 9.1 Million BTU/ton for direct combustion and

Authors, Various

2011-01-01T23:59:59.000Z

302

ANNUAL HEATING AND COOLING REQUIREMENTS AND DESIGN DAY PERFORMANCE FOR A RESIDENTIAL MODEL IN SIX CLIMATES: A COMPARISON OF NBSLD, BLAST 2, AND DOE-2.1  

E-Print Network [OSTI]

BLAST DOE-2 (SWF) Annual Cooling Requirements (10 6 Btu)Btu) I'" I NBSLD III DOE-2 (SW'F) DOE-2 (CW'F) DOE-2 (CWF)Heating (1 Annual Total Btu) City Jan HINNEAPOLIS NBSLD

Carroll, William L.

2011-01-01T23:59:59.000Z

303

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

2011-01-01T23:59:59.000Z

304

TWOZONE USERS MANUAL  

E-Print Network [OSTI]

OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

305

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

$/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

Sanchez, Marla

2010-01-01T23:59:59.000Z

306

TWOZONE USERS MANUAL  

E-Print Network [OSTI]

OF) effective lumped heat capacity of house, (Btu/OF). Wein the neighborhood of 3000 Btu/OF for a typical house ofC (effective) is 3200 BTU/o F. (Typically A moderately

Gadgil, Ashok J.

2010-01-01T23:59:59.000Z

307

Californias Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

Yang, Christopher

2011-01-01T23:59:59.000Z

308

Automated Continuous Commissioning of Commercial Buildings  

E-Print Network [OSTI]

69 Figure 30 Locations for chilled water BTU meter for69 Figure 31 Locations for hot water BTU meter forgood enough. Cooling energy X BTU meter should also output

Bailey, Trevor

2013-01-01T23:59:59.000Z

309

MEASURING ENERGY CONSERVATION WITH UTILITY BILLS  

E-Print Network [OSTI]

in British Thermal Units, BTU, for these comparisons. Themade by noting that there are 100,000 BTU's in one therm andthat there are 3413 BTU's in one kilowatt hour. It should be

Deckel, Walter

2013-01-01T23:59:59.000Z

310

Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions  

E-Print Network [OSTI]

Site Energy Intensity (BTU/sf-yr). A Performance BenchmarkAnnual natural gas energy use (Million BTU) dE3: Annual fueloil energy use (Million BTU) dE4: Annual other fuel energy

Mathew, Paul

2010-01-01T23:59:59.000Z

311

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

producing 258 million Btu annually. Over a lifetimewill produce about 2.58 billion Btu. REFERENCES Case, C.W. ,will provide 8.9 million Btu of energy :::nnual or about of

Case, C.W.

2012-01-01T23:59:59.000Z

312

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

Input fuel quantities (in BTU) which account for thermalOutput energy (in BTU). Includes biomass, accounted asMWE) COIL FIRED peWER PLINT-lew BTU 1800 MWEI ~UlFUA O~IOE

Authors, Various

2010-01-01T23:59:59.000Z

313

2013 BUILDING ENERGY EFFICIENCY STANDARDS CALIFORNIA CODE OF REGULATIONS  

E-Print Network [OSTI]

of the product in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation. b Replacement units and with mechanical cooling capacity at AHRI conditions of greater than or equal to 54,000 Btu/hr, shall include

314

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

315

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

energy use comparison EUI, kBtu/Gsf Lighting Heating Coolinguse comparison Annual EUI, kBtu/sf-yr Lighting Heating

2013-01-01T23:59:59.000Z

316

"DOE IDIQ ESPC Awarded Projects Summary  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

,"(btu x 106)" ,"Period of Performance (Years)","Years of ECM performance in Task Order" ,"Cumulative Energy Savings (btu x 106)","The total project lifecycle energy...

317

c37a.xls  

Gasoline and Diesel Fuel Update (EIA)

2 per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

318

Annual Running Cost  

E-Print Network [OSTI]

Energyh Inut: 4,500,000 tons of coal 19 tons enriche'd Uranium tewn _____________ _ 350,000 barrels of oil 250,000 ltons of coal Pollution: ( 9,400,000 tons of carbon * 6 tons of spent fuel none operation)I eraion) dioxide e Emissions of highly radioactive * 270,000 tons of scrubber gases (400,000 Curies of Kr-85, sludge and ash for disposal 18,000 Curies of tritium) * 800,000 tons of Uranium ore 12,000 tons of sulfur tailings dioxide, nitrous oxides and * 37 tons of depleted Uranium mercury * 500,000 tons of greenhouse gas * 100 trillion BTU's of heat 0 100 trillion BTU's of heat Water required: 10 billion galons 13 billion jgalions none 0.5%).

unknown authors

319

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network [OSTI]

fuel, or about 46,200 BTUs of diesel fuel per mile. 4.1.8BTU/bbl 3575 g/gal Diesel fuel 106 BTU/gal 106 BTU/bbl 3192gasoline or diesel vehicles (g/106-BTU) E NMOG = emissions

Delucchi, Mark

1996-01-01T23:59:59.000Z

320

Life-cycle cost and payback period analysis for commercial unitary air conditioners  

E-Print Network [OSTI]

Baseline Efficient Air Conditioners . . . . . . 28 AverageEfficient Air Conditioners . . . . . . . . . . . . . . . . .Btu/h Commercial Air Conditioners . . . . . . . . . . . . .

Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SOME ANALYTIC MODELS OF PASSIVE SOLAR BUILDING PERFORMANCE: A THEORETICAL APPROACH TO THE DESIGN OF ENERGY-CONSERVING BUILDINGS  

E-Print Network [OSTI]

X) * Assumes ASHRAE materials properties K = .54 Btu h Btu p1bs Btu 144 -3)C = .156 of-lb. ft P F- ft-hr F-ft -hr Fig.Insulation is R - 8: ft 2 -hr-oF Btu Dr tAssumes p = 144 Ib/

Goldstein, David Baird

2011-01-01T23:59:59.000Z

322

FEMP Designated Product Assessment for Commercial Gas Water Heaters  

E-Print Network [OSTI]

rating of at least 4000 Btu per hour per gallon of storedpackaged boiler that has an input rating from 300,000 Btu/hrto 12,500,000 Btu/hr (and at least 4,000 Btu/hr per gallon

Lutz, Jim

2012-01-01T23:59:59.000Z

323

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

E-Print Network [OSTI]

2102 K 2.727e-02 KJ/s 9.298e+01 Heat release Btu/hour 1.500e+04 Btu/hour/in 2 V=0.75m/s =2 Peak TKJ/s 6.630e+01 Heat release Btu/hour 1.069e+04 Btu/hour/in 2

Tonse, S. R.

2012-01-01T23:59:59.000Z

324

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

6/yr Operating Cost $/ton /10 6 Btu Selling Price 12% DCF$/ton /10 6 Btu Production (Million Tons Per Year)ash, 3.38% sulfur, 12,821 Btu/lb **15,900 Btu/lb, 1% sulfur.

Ferrell, G.C.

2010-01-01T23:59:59.000Z

325

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

kWh/m 2 , corresponds to a heat loss about 12 Btu/hr-sq.ft.cooling demand is about 18 Btu/hr-sq. ft. Similarly, TheseTOTALS Notes: 2 mUlinn BTU (')W'Jr,) of 8 r:J Ilion BTU (U"

Balderston, F.

2010-01-01T23:59:59.000Z

326

Performance Criteria for Residential Zero Energy Windows  

E-Print Network [OSTI]

CA) MEC Zone MEC Pkg # Glz % Btu/h-ft2-F Fenestration U-factor W/m2-K (h-ft2-F)/Btu Ceiling R-value (m2-K)/W (h-ft2-F)/Btu Wall R-value (m2-K)/W (h-ft2-F)/Btu Floor

Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

2006-01-01T23:59:59.000Z

327

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

constant: TBM 6.8 min 279. Btu/hr-F) Switch Differential:0.44 C (0.79 F) 504, Btu/hr-F) Coefficient c(: FurnaceR l/R 1/R 128 WJC ( 243. Btu/hr-F) 1640 WJC (3111. Btu/

Vilmer, Christian

2013-01-01T23:59:59.000Z

328

DESIGN, DEVELOPMENT, AND DEMONSTRATION OF A PROMISING  

E-Print Network [OSTI]

Refrigerant Tube Page 124, line 7: otr 70% (31,500 Btu) Lead 70% efficiency (31,500 Btu) line 10: 60o U = 500 Btu/hr F ft2 tead U = 500 Btu/hr F Page 125, line 12: dot 7 gallons tead Minimum (5 gallons) Page

Oak Ridge National Laboratory

329

Awarded ESPC Projects  

Broader source: Energy.gov [DOE]

Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 325 DOE ESPC projects have been awarded. More than $3.41 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 398 trillion Btu life cycle energy savings and more than $8.53 billion of cumulative energy cost savings for the Federal Government.

330

Terry Sharp, P.E. Building Performance Benchmarking  

E-Print Network [OSTI]

source energy use in trillion Btu) R2 = 0.7816 0 1 2 3 4 5 6 0 5 10 15 20 25 Gross Square Feet (millionsTerry Sharp, P.E. Building Performance Benchmarking 3rd U.S. Army Energy Workshop January 25-26, 2007 EPA Energy Star Program and Energy Data Normalization Oak Ridge National Laboratory #12;Why You

Oak Ridge National Laboratory

331

Millisecond Oxidation of Alkanes  

Broader source: Energy.gov [DOE]

This factsheet describes a project whose goal is to commercialize a production process for propylene and acrylic acid from propane using a catalytic auto-thermal oxydehydrogenation process operating at short contact times. Auto-thermal oxidation for conversion of propane to propylene and acrylic acid promises energy savings of 20 trillion Btu per year by 2020. In addition to reducing energy consumption, this technology can reduce manufacturing costs by up to 25 percent, and reduce a variety of greenhouse gas emissions.

332

Qh Qwh Qrh+:= Qwh 2.07 10  

E-Print Network [OSTI]

Qh Qwh Qrh+:= Qwh 2.07 10 8 ? BTU= Qrh 1.314 10 8 ? BTU= Qh 3.384 10 8 ? BTU= Qh 3.384 10 3 ? Therm Qrc+:= Qwc 2.228 10 7 ? BTU= Qrc 1.414 10 7 ? BTU= Qc 3.641 10 7 ? BTU= Qc 364.123 Therm= Qc 1.067 10 and Cooling Degree-Days for Rockford Area: HDD 6970 R day:= CDD 750 R day:= Therm 10 5 BTU:= a 270 ft:= b 150

Kostic, Milivoje M.

333

Title Goes Here In This PositionMillersville University  

E-Print Network [OSTI]

Electricity consumption is responsible for 66% of emissions 0 5,000 10,000 15,000 20,000 25,000 Scope 1 Consumption: 61,734 BTU/GSF UD's Electric Consumption: 59,396 BTU/GSF 0 50,000 100,000 150,000 200,000 250 Consumption & Tech. Rating Total BTU/GSF Fossil Consumption: 29,362 BTU/GSF Electric Consumption: 77,495 BTU

Hardy, Christopher R.

334

Elizabeth City State University Dr. Linda Hayden  

E-Print Network [OSTI]

Cores C) 35KW F) ~37,000 BTU's G) (5) IEC309 (60 amp) H) 208V (3 phase)C) ~35KW E) 180 amps (connector) D) 208V (3 Phase) E) 500lbs H) 208V (3 phase) I) ~3000lbs J) 120,000 BTU's E) ~500lbs #12;A) 320, 000 BTU/HRA) 320, 000 BTU/HR B) 1 Ton = 12,000 BTU/hr C) 26 Ton CRAC requirement (really a 30 ton CRAC

335

Alaska has 4. 0 trillion tons of low-sulfur coal: Is there a future for this resource  

SciTech Connect (OSTI)

The demand for and use of low-sulfur coal may increase because of concern with acid rain. Alaska's low-sulfur coal resources can only be described as enormous: 4.0 trillion tons of hypothetical onshore coal. Mean total sulfur content is 0.34% (range 0.06-6.6%, n = 262) with a mean apparent rank of subbituminous B. There are 50 coal fields in Alaska; the bulk of the resources are in six major fields or regions: Nenana, Cook Inlet, Matanuska, Chignik-Herendeen Bay, North Slope, and Bering River. For comparison, Carboniferous coals in the Appalachian region and Interior Province have a mean total sulfur content of 2.3% (range 0.1-19.0%, n = 5,497) with a mean apparent rank of high-volatile A bituminous coal, and Rocky Mountain and northern Great Plains Cretaceous and Tertiary coals have a mean total sulfur content of 0.86% (range 0.02-19.0%, n = 2,754) with a mean apparent rank of subbituminous B. Alaskan coal has two-fifths the total sulfur of western US coals and one-sixth that of Carboniferous US coals. Even though Alaska has large resources of low-sulfur coal, these resources have not been developed because of (1) remote locations and little infrastructure, (2) inhospitable climate, and (3) long distances to potential markets. These resources will not be used in the near future unless there are some major, and probably violent, changes in the world energy picture.

Stricker, G.D. (Geological Survey, Denver, CO (USA))

1990-05-01T23:59:59.000Z

336

Development of Next Generation Heating System for Scale Free Steel Reheating  

SciTech Connect (OSTI)

The work carried out under this project includes development and design of components, controls, and economic modeling tools that would enable the steel industry to reduce energy intensity through reduction of scale formation during the steel reheating process. Application of scale free reheating offers savings in energy used for production of steel that is lost as scale, and increase in product yield for the global steel industry. The technology can be applied to a new furnace application as well as retrofit design for conversion of existing steel reheating furnaces. The development work has resulted in the knowledge base that will enable the steel industry and steel forging industry us to reheat steel with 75% to 95% reduction in scale formation and associated energy savings during the reheating process. Scale reduction also results in additional energy savings associated with higher yield from reheat furnaces. Energy used for steel production ranges from 9 MM Btu/ton to 16.6 MM Btu/ton or the industry average of approximately 13 MM Btu/ton. Hence, reduction in scale at reheating stage would represent a substantial energy reduction for the steel industry. Potential energy savings for the US steel industry could be in excess of 25 Trillion Btu/year when the technology is applied to all reheating processes. The development work has resulted in new design of reheating process and the required burners and control systems that would allow use of this technology for steel reheating in steel as well as steel forging industries.

Dr. Arvind C. Thekdi

2011-01-27T23:59:59.000Z

337

Cornell's (LSC) project began providing 16,000 tons of cooling (1 ton of cooling = 12,000 Btu/hr, or approximately one large residential window air conditioner) to Cornell University's Ithaca  

E-Print Network [OSTI]

window air conditioner) to Cornell University's Ithaca campus in July of 2000. This project has almost completely replaced mechanical refrigeration for the Cornell district cooling system with the following benefits: · Greater LSC has replaced

Keinan, Alon

338

Special Problem for Chapter 4: Compare the Lower Heating Values of different fuel gases per Standard Cubic Foot, recalling that  

E-Print Network [OSTI]

2 + 3.76N2) - 1H2Ovapor + 1.88N2 0 = 1 lbmolH2 O lbmolfuel ? 18.016 lbmH2 O lbmolH2 O µ -5774.6 BTU lbmH2 0 ¶ + Qout 0 = -104040 BTU/lbmolfuel + Qout Qout = 104040 BTU/lbmolfuel = 51607 BTU/lbmfuel = 266 BTU/ft3 fuel [274 BTU/SCF] For 16.043 lbm of Methane CH4 + 2 (O2 + 3.76N2) - 2H2O + CO2 + 7.52N2

339

Control of Stochastic Processes 048913 Winter 2006 Supplement: DP for the LQ problem  

E-Print Network [OSTI]

T Qtx + uT Rtu + Eu x Vt+1(x1) (0.2) = min u xT Qtx + uT Rtu + Eu x Vt+1(Atx + Btu + Ctwt) (0.3) Theorem(x) equals = min u xT Qtx + uT Rtu + Eu x [Vt+1(Atx + Btu + Ctwt)] = min u xT Qtx + uT Rtu + Eu x (Atx + Btu + Ctwt)T Kt+1(Atx + Btu + Ctwt) + + t + 1 = min u xT Qtx + uT Rtu + Eu x (Atx + Btu)T Kt+1(Atx + Btu) +2

Shwartz, Adam

340

7-84E The claim of an inventor about the operation of a heat engine is to be evaluated. Assumptions The heat engine operates steadily.  

E-Print Network [OSTI]

efficiency would be 0.45 R1000 R550 11maxth, H L T T K 550 R 1000 R HE HQ 15,000 Btu/h 5 hp When the first law is applied to the engine above, Btu/h720,27Btu/h000,15 hp1 Btu/h2544.5 )hp5(net ¸¸ ¹ · ¨¨ © § LH QWQ The actual thermal efficiency of the proposed heat engine is then 459.0 hp1 Btu/h2544.5 Btu/h27

Bahrami, Majid

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Windows technology assessment  

SciTech Connect (OSTI)

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

342

U.S. Energy Information Administration (EIA) - Topics  

Gasoline and Diesel Fuel Update (EIA)

changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009,...

343

2.1E Supplement  

E-Print Network [OSTI]

125 (HPDefE) is the heat pump defrost energy. SYSTEMS A i runit (Btu/hr) HPDefE heat pump defrost energy (Btu) A.32HEAT PUMP ENHANCEMENTS Expanded Supplemental-heat-source and Defrost

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

344

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network [OSTI]

4 Figure 1-3 World energy consumption (in British Thermal5 Figure 1-4 World energy consumption (in Btu) according toforms and (b) world energy consumption (in Btu) according to

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

345

Efficiency of appliance models on the market before and after DOE standards  

E-Print Network [OSTI]

Refrigerators Models in AHAM Directory Compared to DOE8-14 kBtu/hour Models in AHAM Directory Compared to1990 DOE8-14 kBtu/hour Models in AHAM Directory Compared to 2000 DOE

Meyers, Stephen

2004-01-01T23:59:59.000Z

346

AEO2010 Early Release Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reference case than in the updated AEO2009 reference case. Delivered commercial energy consumption grows from 8.6 quadrillion Btu in 2008 to 10.5 quadrillion Btu in 2030, about...

347

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

147 Lifecycle cost (break-even gasoline price): base-casegrease. 37B part: Fuel Gasoline, for the conventional ICEVs.BTU-from-battery to mi/BTU-gasoline. C OST SUMMARY (F ORD T

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

348

Hospital Energy Benchmarking Guidance - Version 1.0  

E-Print Network [OSTI]

with filter loading. Boiler efficiencies: - kBtu out / kBtuhospital Heating water boiler efficiency: Base on availableout / kBtu in Steam boiler efficiency: Base on available

Singer, Brett C.

2010-01-01T23:59:59.000Z

349

EIA - Annual Energy Outlook 2012 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to...

350

EIA - Annual Energy Outlook 2013 Early Release  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in...

351

Air Emission Regulations for the Prevention, Abatement, and Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of ash andor particulate matter shall be limited to less than .6 pounds per million BTU for installations less than 10 million BTU per hour heat. For installations equal or...

352

MASS AND DENSITY 1 kg = 2.2046 lb 1 lb = 0.4536 kg  

E-Print Network [OSTI]

.m = 0.73756 ft.lbf 1 ft.lbf = 1.35582 J 1 kJ = 737.56 ft.lbf 1 Btu = 778.17 ft.lbf 1 kJ = 0.9478 Btu 1 Btu = 1.0551 kJ 1 kJ/kg = 0.42992 Btu/lb 1 Btu/lb = 2.326 kJ/kg 1 kcal = 4.1868 kJ ENERGY TRANSFER RATE 1 W = 1 J/s = 3.413 Btu/h 1 Btu/h = 0.293 W 1kW = 1.341 hp 1 hp =2545 Btu/h 1 hp = 550 ft.lbf/s 1

Kostic, Milivoje M.

353

Moran & Shapiro, 5th Edition Oct. 27 to Nov. 3, 2004  

E-Print Network [OSTI]

and adiabatic calculation s1 = 1.9263 BTU/lbm-o R from Table A-4E s2s = s1 = 1.9263 BTU/lbm-o R Interpolating

354

Life-Cycle Evaluation of Concrete Building Construction as a Strategy for Sustainable Cities  

E-Print Network [OSTI]

BTu/tonne cement) Baseline Portland Cement produced at wet kiln long dry kiln Coal Electricity Distillate (diesel)

Stadel, Alexander

2013-01-01T23:59:59.000Z

355

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

Diesel fuel Steel Aluminum Plastics Concrete Generic chemicals Fertilizer Corn Soybeans Grass Trees Land g/BTU

Delucchi, Mark

2005-01-01T23:59:59.000Z

356

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

Diesel fuel Steel Aluminum Plastics Concrete Generic chemicals Fertilizer Corn Soybeans Grass Trees Land g/BTU

Delucchi, Mark

2005-01-01T23:59:59.000Z

357

One-pass tillage equipment outstrips conventional tillage method  

E-Print Network [OSTI]

Btu) of energy is expended in tillage opera- tions in California; almost all of this energy is derived from diesel

Upadhyaya, Shrinivasa K.; Lancas, Kleber P.; Santos-Filho, Abilio G.; Raghuwanshi, Narendra S.

2001-01-01T23:59:59.000Z

358

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

359

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type  

E-Print Network [OSTI]

EECBG Direct Equipment Purchase Air Conditioner Guide Equipment Type Size Category (Btu/h) Size.ahridirectory.org/ceedirectory/pages/ac/cee/defaultSearch.aspx 12,000 Btu/h = 1 ton Less than 65,000 Btu/h Air Conditioners, Air Cooled Air Conditioners, Water completed by the California Energy Commission at a rate of 12,000 Btu/h per ton of air conditioning Source

360

Extra Problems Moran & Shapiro, 5th Edition  

E-Print Network [OSTI]

BTU (OK) jQLoj = QHi Wnet = 800 480 = 320 BTU 2nd Law 480 800 = 0:60 = real R = 0:75(irreversible) (b) 1st Law Wnet = Qnet = QHi jQLoj = 800 200 = 600 BTU 600 = Wnet BTU (OK) 2nd Law 600 800 = 0:75 = real = rev = 1 500o R 2000oR = 0:75(reversible) (c) 1st Law QHi

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Practice Problems Moran & Shapiro, 5th Edition  

E-Print Network [OSTI]

F 1.6766 1.6576 to obtain h1 = 1433.2 BTU/lbm s1 = 1.6458 BTU/lbm-o R We always start by calculating the adiabatic and reversible (=isentropic) 1 #12;reference case (turb = 100%) first s2s = s1 = 1.6458 BTU/lbm-o R p2 = 3 psia = sg = 1.8861 BTU/lbm-o R s2s

362

M. Bahrami ENSC388 Tutorial #1 1 ENSC 388 Week #2, Tutorial #1 Dimensions and Units  

E-Print Network [OSTI]

.0140 . Problem 2: A car goes with average velocity of 100 km/h. Find kinetic energy of the car in [Btu] and [J everything the question is asking for) Find: KE: kinetic energy of the car in [Btu] and [J] Step 2: Prepare (Eq2) Note: 2 1][1][1 s ft sluglbf Btu ftlbf Btu ftlbfKE 465 .778 1 ].[361400 (Eq3) Part

Bahrami, Majid

363

Vapor Power Systems MAE 4263 Final Exam  

E-Print Network [OSTI]

of formation on pages 162 and 163 114:23 ( 941:4) BTU/lbmolfuel = 9 18:016 ( 5774:6) + 8 44:011 ( 3846:7) + Qout = 114:23 ( 785:1) (9 18:016 ( 5774:6) + 8 44:011 ( 3846:7)) 114:23 Qout = 2:183 106 BTU/lbmolfuel = 19112 BTU/lbmfuel Answer (40 points): LHV= 19100 BTU/lbmfuel [19268 for gasi...ed fuel] 3. Atomic

364

Heat Transfer Derivation of differential equations for heat transfer conduction  

E-Print Network [OSTI]

) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

Veress, Alexander

365

Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050  

E-Print Network [OSTI]

H2FC Electric Light Rail Diesel Hybrid Btu/pass. -mile FleetH2FC Electric Light Rail Diesel Hybrid Btu/pass. -mile FleetH2FC Electric Light Rail Diesel Hybrid Btu/pass. -mile 2050

Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

2008-01-01T23:59:59.000Z

366

11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,  

E-Print Network [OSTI]

for this air conditioner are to be sketched. The heat absorbed by the refrigerant, the work input of the air conditioner is 689.4 Btu/h3.412 W1 W Btu/h 16 Btu/h3.412 W1 SEERCOPR

Kostic, Milivoje M.

367

Energy performance of underfloor air distribution systems part IV: underfloor plenum testing and modeling  

E-Print Network [OSTI]

of a bare panel is 1.359 Btu-in/hr-ft 2 -F (0.196 W/m-K)with carpet tiles is 1.002 Btu-in/hr-ft 2 -F (0.144 W/m-K).with thermal conductivity of 0.54 Btu/hr-ft-F (0.93 W/m-K).

Bauman, Fred; Jin, Hui

2007-01-01T23:59:59.000Z

368

Highly Insulating Glazing Systems using Non-Structural Center Glazing Layers  

E-Print Network [OSTI]

low as 0.57 W/m 2 -K (0.10 Btu/h-ft 2 -F). Such units havevalues Btu/h-ft 2 -F), windows relatedA 0.57 W/m 2 -K (0.10 Btu/h-ft 2 -F) window is targeted as

Arasteh, Dariush

2008-01-01T23:59:59.000Z

369

COMPARISON OF PROPORTIONAL AND ON/OFF SOLAR COLLECTOR LOOP CONTROL STRATEGIES USING A DYNAMIC COLLECTOR MODEL  

E-Print Network [OSTI]

high gain: insolation = 2292 BTU/ft 2 -da~ 7224 watt-hrs/m -low gain: insolation= 1146 BTU/ft 2-dat 3612 watt-hrs/m -dayF (46.1C) capacitance= 0.7 BTU/ft 2-F {14.3 kJ;m 2- 0 c)

Schiller, Steven R.

2013-01-01T23:59:59.000Z

370

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

10 with: area in ft uvalue in Btu/hr-F-ft slope in F-day/yrperimeter in ft, uvalue in Btu/hr-F-ft slope in F-day/yrheater w/fan RM AFUE Btu/hr Gas RM 74 AFUE >42000

Wenzel, T.P.

2010-01-01T23:59:59.000Z

371

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

lb process heat: 1. 23 X 10 4 BTU electricity 5500 BTUe CaC1scf sludge 18.61b water 161b Btu/scf WASTE PROCESSING sewer~l9ZZ X 10 DEELAIQB BTU/yr) I MATERIALS TRANSPORTATION 3.

Haven, Kendall F.

2011-01-01T23:59:59.000Z

372

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

E-Print Network [OSTI]

High High Fan (cfm) Burner Fire Btu/hr A- 50 Fan/Plume EffLow Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure 3. Med Fan (cfm) Burner Fire Btu/hr Fan/Plume Eff Figure 7.

Singer, Brett C.

2011-01-01T23:59:59.000Z

373

Zero Energy Windows  

E-Print Network [OSTI]

impact of 4.1 quadrillion BTU (quads) of primary energy 1 .systems with U-factors of 0.1 Btu/hr-ft-F Dynamic windows:for 1 quadrillion (10 15 ) Btu = 1.056 EJ. percent (Apte,

Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

2006-01-01T23:59:59.000Z

374

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

usable energy of 14.2 million Btu per year, giving an annualMWh/year or 83.6 million Btu/year. Because the evaporativeper unit of 5.02 million Btu or natural gas of 1.5 MWh of

Case, C.W.

2011-01-01T23:59:59.000Z

375

Energy performance of air distribution systems part II: room air stratification full scale testing  

E-Print Network [OSTI]

wall: Door @ South wall: [Btu*h -1 *ft -2 *F -1 ] [W(mK)]plenum top: SA plenum bottom: [Btu*h -1 *F -1 ] [W K -1 ]and U-value of 2.8 W/(mK) (0.5 Btu/(hftF)). However, this

Webster, Tom; Lukaschek, Wolfgang; Dickeroff, Darryl; Bauman, Fred

2007-01-01T23:59:59.000Z

376

THERMAL PERFORMANCE OF MANAGED WINDOW SYSTEMS  

E-Print Network [OSTI]

plus .35 m2 K/W (2 hr ft 2 F/Btu) for single-glazing, and52 m2 -K/W (2 hr-ft 2 - F/Btu) for double-glazing, assumingthan .85 m -K/W (5 hr-ftL-F/Btu) diminish rapidly and would

Selkowitz, S. E.

2011-01-01T23:59:59.000Z

377

2.1E Sample Run Book  

E-Print Network [OSTI]

O. HOUSE- 1 CO_'VEC EXT RACTN BTU/HR O. O. O. O. O. O. O. O.TEMP P SUNSP- 1 EXTRACTN RATE BTU/HR O. O. O. O. O. O. O. O.O. gYS-1 TOT C1,O COIL I_IR BTU/HR O. O. O. O. O. O. O. O.

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

378

SYNTHESIS GAS UTILIZATION AND PRODUCTION IN A BIOMASS LIQUEFACTION FACILITY  

E-Print Network [OSTI]

Cost Estimates for a Medium BTU Gasification Plant Using A4.6 D /Dt / D Sus 0.7 (=) Btu/H 2 hr F h ~ _3_,.5. ,..-thennal conductivity (=) Btu-ft/ ft2 hroF l)_ "' p particle

Figueroa, C.

2012-01-01T23:59:59.000Z

379

2.1E BDL Summary  

E-Print Network [OSTI]

COND)(;0.0 to 30.0 Btu-ft/hr-ft -F) and DENSITY(DENS)(;HEAT(S-H)(;0.0 to 5.0 Btu/lb-F) or just RESISTANCE insteadRES)(;0.0 to 40.0 hr-ft -F/Btu) Note: for materials data

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

380

Review Problem 1-6: Find the speci...c volume v of steam at p = 5000 psia and T = 1000 o  

E-Print Network [OSTI]

the enthalpies and speci...c volumes from Table C-1 (pages 792­793) h1 = hf (T1) + (p1 ps) vf hf (T1) = 140:1 BTU/lbm T2;3 = Tsat (p2;3) = 56:05o F BTU/lbm h3 = hf (p2;3) = 104:7 BTU

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE-1 BDL SUMMARY. DOE-1 GROUP.  

E-Print Network [OSTI]

CON)(-;0.0 to 30.0 Btu-ft/hr-ft 2-F) I DENSITY(DE)(-;0.0 toHEAT(SPH)(-;0.0 to 5.0 Btu/lb-F) or Ill{ RESISTANCE (O. 0 to 40.0 hr-ft 2-F /Btu) T 206 of 210 are used by the

Authors, Various

2011-01-01T23:59:59.000Z

382

THERMAL PERFORMANCE OF INSULATING WINDOW SYSTEMS  

E-Print Network [OSTI]

of .16 m2K/W (.91 hrft2.oF/Btu) for the combined thermalvalue of 6.25 ~;m2.K (1 .1 Btu/hrft F) might be reduced3.4- 4.5 w;m2K (.6- .8 Btu/hr'ft F). Some techniques for

Selkowitz, Stephen E.

2011-01-01T23:59:59.000Z

383

Gas Water Heater Energy Losses  

E-Print Network [OSTI]

hr) 2. Pilot Input Rate (Btu/hr) 3. Excess Air (%) 4. Off-atm) 14. Higher Heating Value (Btu/SCF) 1028.0 15. SpecificProtection Tubes R (hr*ft2*F/Btu)? Fitting Emissivity SCREEN

Biermayer, Peter

2012-01-01T23:59:59.000Z

384

Room air stratification in combined chilled ceiling and displacement ventilation systems.  

E-Print Network [OSTI]

0 and 73 W/m 2 [0-23.1 Btu/(h ft 2 )](based on radiant panelbetween 0 and 28 W/m 2 [0-8.9 Btu/(h ft 2 )] (based on roomand 76 W/m 2 (97.8 and 239.7 Btu/(h ft 2 )), DV airflow rate

Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

2012-01-01T23:59:59.000Z

385

Dampers for Natural Draft Heaters: Technical Report  

E-Print Network [OSTI]

No.11: 4474?4497. 7.0 Glossary BTU DOE EF GAMA GPM PRTD REloss coefficient was 10.619 (BTU/hr-F). After the dampercoefficient was 9.135 (BTU/hr-F). The recovery efficiency

Lutz, James D.

2009-01-01T23:59:59.000Z

386

TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS  

E-Print Network [OSTI]

AND OPTICAL PERFORMANCE [Btu/ft -hr- OF] XBL 785-8986A isbalance thermal losses is .9 Btu/ft 2 -hr- o F on a clearto an equivalent U-value of 1.9 Btu/ft 2-hr- o F due to

Selkowitz, S.

2011-01-01T23:59:59.000Z

387

THE MOBILE WINDOW THERMAL TEST FACILITY (MoWiTT)  

E-Print Network [OSTI]

facilitieso For a 2 K/W (10 BTU- 1 ft 2 hr F) is reasonable;or 0005 W m- 2 K- l (0.01 BTU hr- 1 ft- 2 ). For a commonthis becomes 0.05 W/K (0.1 BTU hr- 1 F- 1 ). (approximately

Klems, J. H.

2011-01-01T23:59:59.000Z

388

Cooling load calculations for radiant systems: are they the same traditional methods?  

E-Print Network [OSTI]

FEATURE A Radiant Air Radiant Air COOLING RATE (BTU/H FT2 ) COOLING RATE (BTU/H FT 2 ) B HOUR HOUR FIGURE 2total internal heat gain (4.8 Btu/hft 2 [15 W/m 2 ]) during

Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

2013-01-01T23:59:59.000Z

389

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

of 0.62 W/(m 2 K) (0.11 Btu/hft 2 o F). The windows areof 1.67 W/(m 2 K) (0.29 Btu/hft 2 o F) and a SHGC ofof 0.57 W/(m 2 K) (0.10 Btu/hft 2 o F ). The cooling

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

390

2.1E Supplement  

E-Print Network [OSTI]

F 1 2 .1E- 8 1 / 3 EXT-FUEL-BTU/HR s - PLANT-ASSIGNMENT . 28 1 / 3 ZIE- 8 1 / 3 PROCESS-CHW-BTU/HR PROCESS-CHW-POWERPROCESS-CHW-SCH PROCESS-HW-BTU/HR s - PLANT-ASSIGNMENT s -

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

391

REDUCTION OF PHASE RESIDUALS TO TIME UNITS Larry R. D'Addario  

E-Print Network [OSTI]

, the predicted uplink delay was * *bTu, and at the time of downlink reception the predicted downlink delay transmission, and downlink rece* *ption, respectively, as: ug(t)= sin[!u(t + bTu)] (1) us(t)= sin[!u(t + bTu- Tu)] (2

Groppi, Christopher

392

INDUST: An Industrial Data Base  

E-Print Network [OSTI]

.5% of the natural gas consump tion, 98.1% of the fuel oil consumption, 99.2% of the coal/coke consumption, and 99.7% of a class of fuels called "other" fuels. Within these 13 indus try groups, INDUST addresses a wide variety of energy-intense industries... the manufac turing sector, Table 1 shows the latest EIA pro visional estimate of energy consumption (in trillion Btu) for 1985. The EIA reports fuel consumption according to five categories: electricity, fuel oil, natural gas, coal and coke, and other...

Wilfert, G. L.; Moore, N. L.

393

Scaleable production and separation of fermentation-derived acetic acid. Final CRADA report.  

SciTech Connect (OSTI)

Half of U.S. acetic acid production is used in manufacturing vinyl acetate monomer (VAM) and is economical only in very large production plants. Nearly 80% of the VAM is produced by methanol carbonylation, which requires high temperatures and exotic construction materials and is energy intensive. Fermentation-derived acetic acid production allows for small-scale production at low temperatures, significantly reducing the energy requirement of the process. The goal of the project is to develop a scaleable production and separation process for fermentation-derived acetic acid. Synthesis gas (syngas) will be fermented to acetic acid, and the fermentation broth will be continuously neutralized with ammonia. The acetic acid product will be recovered from the ammonium acid broth using vapor-based membrane separation technology. The process is summarized in Figure 1. The two technical challenges to success are selecting and developing (1) microbial strains that efficiently ferment syngas to acetic acid in high salt environments and (2) membranes that efficiently separate ammonia from the acetic acid/water mixture and are stable at high enough temperature to facilitate high thermal cracking of the ammonium acetate salt. Fermentation - Microbial strains were procured from a variety of public culture collections (Table 1). Strains were incubated and grown in the presence of the ammonium acetate product and the fastest growing cultures were selected and incubated at higher product concentrations. An example of the performance of a selected culture is shown in Figure 2. Separations - Several membranes were considered. Testing was performed on a new product line produced by Sulzer Chemtech (Germany). These are tubular ceramic membranes with weak acid functionality (see Figure 3). The following results were observed: (1) The membranes were relatively fragile in a laboratory setting; (2) Thermally stable {at} 130 C in hot organic acids; (3) Acetic acid rejection > 99%; and (4) Moderate ammonia flux. The advantages of producing acetic acid by fermentation include its appropriateness for small-scale production, lower cost feedstocks, low energy membrane-based purification, and lower temperature and pressure requirements. Potential energy savings of using fermentation are estimated to be approximately 14 trillion Btu by 2020 from a reduction in natural gas use. Decreased transportation needs with regional plants will eliminate approximately 200 million gallons of diesel consumption, for combined savings of 45 trillion Btu. If the fermentation process captures new acetic acid production, savings could include an additional 5 trillion Btu from production and 7 trillion Btu from transportation energy.

Snyder, S. W.; Energy Systems

2010-02-08T23:59:59.000Z

394

c3a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu) per Building

395

c4.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu) per

396

c4a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu) perBuildings

397

c5.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)

398

c5a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799 2,265

399

c6.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799 2,265

400

c6a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799 2,265

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

c7.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799

402

c7a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799345

403

c8.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96 1,799345436

404

c8a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96

405

c9.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575 381 530

406

c9a.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575 381

407

chapter 5. Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575 3815.

408

d_al_05.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575

409

diesel.vp  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion Btu)96575Diesel

410

NICE3: Industrial Refrigeration System  

SciTech Connect (OSTI)

Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

411

Thermally Enhanced Pipe for Geothermal Applications Stphane Gonthier  

E-Print Network [OSTI]

Geothermal Pipe · It's a thermally enhanced pipe · The pipe has a thermal conductivity of 0,40 BTU/hr ft °F Geoexchange Coalition 0,4 to 2,2 Btu hr-1 ft-1°F-1 (soil) 0,43 to 1,15 Btu hr-1 ft-1°F-1 (backfilling) 0,58 to 2,6 Btu hr-1 ft-1°F-1 (bedrock) 0,22 to 0,24 Btu hr-1 ft-1°F-1 (HDPE 3608) RESULT An insulator

412

Energy, Appliances and Utilities Energy&Environment * EnergySTAR * Toyota PRIUS Myths, Facts, and Hype ...  

E-Print Network [OSTI]

below) Typical furnace: 1 therm/hr = 100000 BTU/hr = 29.3 kW(h) heating power Typical A/C unit: 3.5 ton therm = 100000 BTU = 29.307 kWhr 1 tonR = 12000 BTU/hr = 3.516 kW(c) cooling rate 1 SEER = (1 BTU)/Whr(e) = 1000 BTU/kWhr = 0.293 kWhr(c)/kWhr(e), i.e., (cooling)/(electrical) ratio What is SEER? How does

Kostic, Milivoje M.

413

Vapor Power Systems Third MAE 4263 Test  

E-Print Network [OSTI]

.27 BTU/lbm at compressor inlet h2 = 252.84 BTU/lbm at compressor outlet h3 = 732.33 BTU/lbm at turbine inlet h4 = 373.95 BTU/lbm at turbine outlet What is the efficiency of the gas turbine? SOLUTION: th and h200 = h4 T400 = T2 and h400 = h2 |qHX | = (h200 - h2) = |h400 - h4| = 121.11 BTU/lbm th $ wnet q

414

MAE 3223 Thermodynamics II. Solutions for Special Problems on Exergy, the Availability of work, Chapter 7  

E-Print Network [OSTI]

) - To (s1 - so)] + Vel2 1 2gc + g gc (z1 - zo) ¸ = ( [(168.07 - 48.09) - 539.67 (0.2940 - 0.09332)] BTU lbm + h 32.17 ft sec2 ¯ ¯ ¯ lbf-sec2 32.174 lbm-ft ¯ ¯ ¯ 5000 ft i BTU 778.17 lbf-ft ) = {[119.98 - 108.30] - [6.45]} BTU lbm = {[11.68] + [6.42]} BTU lbm = 18.10 BTU lbm = 14090 lbf-ft lbm Therefore 65

415

Sifting Through a Trillion Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science, Hopper Linda Vu, lvu@lbl.gov, +1 510 495 2402 VPIC1.jpg After querying a dataset of approximately 114,875,956,837 particles for those with Energy values less than...

416

Sifting Through a Trillion Electrons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars SeminarsO'LearyGlobalMarketSi WuSifting Through

417

Simulations of Design Modifications in Military Health Facilities  

E-Print Network [OSTI]

the military population. Civilian medical 0 1 2 3 4 5 6 7 8 9 10 50+ 40-49 30-39 20-29 1-19 N u m b e r o f Faci litie s Age (years) 6 leadership, such as former Assistant Secretaries of Defense for Health Affairs, Dr. W... --------------------------------------------------------------------------------------------------------------------------------- ENGLISH MULTIPLIED BY GIVES METRIC MULTIPLIED BY GIVES ENGLISH 1 1.000000 1.000000 2 1.000000 1.000000 3 BTU 0.293000 WH 3.412969 BTU 4 BTU/HR 0.293000 WATT 3.412969 BTU/HR 5 BTU/LB-F 4183.830078 J/KG-K 0.000239 BTU/LB-F 6 BTU/HR-SQFT-F 5.678260 W/M2-K 0...

Kiss, Christopher William

2012-07-16T23:59:59.000Z

418

PERFORMANCE OF AN EXPERIMENTAL SOLAR-DRIVEN ABSORPTION AIR CONDITIONER--ANNUAL REPORT JULY 1975-SEPT. 1976  

E-Print Network [OSTI]

U. THW . In T HW out TSS Q UW (Btu/hr) LiT m U IllWS (Ibs/OF) (OF) (OF) (OF) (OF) (Btu/hr ft2.F 20A 20C 19A lIS 17BU Run number m HW (1bs/hr) (Btu/hr- ft2_F) mS == ! z(nlWS+

Dao, K.

2010-01-01T23:59:59.000Z

419

AN ANALYSIS OF ENERGY USE ON COMMUNITY COLLEGE CAMPUSES  

E-Print Network [OSTI]

of Base Load,A A= 1.98 xl0 Ul Q) BTU/sq. ft. month bO Q) r-r-l u 4-l $-I Q) il ;:l z o Base Load,A BTU/sq.ft. month) b.Performance,B B Ul Q) 14.0 BTU/sq. ft. HDD bO Q) r-l r-l U

York, C.M.

2010-01-01T23:59:59.000Z

420

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

1 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless...

422

How to Put the Dollar Value on Waste Heat Recovery in the Process Industry  

E-Print Network [OSTI]

. Steam savings or steam generation 2. Fuel savings (in case of combustion air preheat or fuel preheat) 3. Power generation (Rankine cycle) Traditionally waste heat recovery was judged on its Btu recovery. If from a 100 MM Btu/hr fue 1 fired heater... 8 MM Btu/hr were stack losses and 2 MM Btu/hr were lost to the atmosphere via exposed areas, then the t~OfF-fl!.2efficiency of the heater was claimed to be 100 or 90%. By this way of reasoning, a further improvement in heat recovery from...

Campagne, W. V. L.

1982-01-01T23:59:59.000Z

423

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

= the efficiency of the propane space heater (BTU-delivered/the efficiency of the heater, and the cost of propane. The

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

424

A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building  

E-Print Network [OSTI]

15 4.1. LightingEvaluation of the Dimmable Lighting, Automated Shading, andcomparison EUI, kBtu/Gsf Lighting Heating Cooling Pumps/C

2013-01-01T23:59:59.000Z

425

Microsoft Word - 48CNotice8-13-09_DOEchecked_.doc  

Broader source: Energy.gov (indexed) [DOE]

H when calculating these values. For other fuel efficiency technologies, such as a CHP application, the incremental LCOE (GGE) may be calculated as: In this case, the BTU...

426

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

427

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

428

Chinese Rural Vehicles: An Explanatory Analysis of Technology, Economics, Industrial Organization, Energy Use, Emissions, and Policy  

E-Print Network [OSTI]

diesel fuel consumption in 2000 was 69.5 million metric tons (MMT) 79 (see Table 9-1) or 2.96 quadrillion BTU.

Sperling, Dan; Lin, Zhenhong; Hamilton, Peter

2004-01-01T23:59:59.000Z

429

ENERGY ANALYSIS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

diesel is combined with a topping cycle waste heat boiler which generates 12.6 Mw of steam at 27.4 x 10 6 Btu/

Various, Various,

2011-01-01T23:59:59.000Z

430

Federal Energy and Water Management Awards 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Btu annually. Main Photo: The building renovation incorporated window films to reduce solar heat gains on building glazing systems. Inset Photos: Interior lighting is...

431

Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431  

E-Print Network [OSTI]

absorption chiller. High-temperature hot water near or above17,000 Btu of high-temperature hot water or low-pressure

Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

2008-01-01T23:59:59.000Z

432

Federal Energy and Water Management Awards 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Djibouti In FY 2013, the energy team at Camp Lemonnier, Djibouti implemented an air conditioning improvement project that saves 61 billion Btu and 2 million annually....

433

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

application (coal gasification, coal combustion followed byversions of advanced gasification processes show promise ofFixed-Bed Low-Btu Coal Gasification Systems for Retrofitting

Ferrell, G.C.

2010-01-01T23:59:59.000Z

434

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

") 179 MW lifecycle Site heat rate (Btu/kwh): 9,350 ("new and clean") 9,430 lifecycle (36% efficiency

435

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

666,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737358...

436

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

086,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737365...

437

L:\\main\\pkc\\aeotabs\\aeo2009\\stim_all.wpd  

U.S. Energy Information Administration (EIA) Indexed Site

An Updated Annual Energy Outlook 2009 Reference Case 16 Table A1. Total Energy Supply and Disposition Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply,...

438

DOE/EA-0845 Environmental Assessment Expansion  

Broader source: Energy.gov (indexed) [DOE]

30 vii ACRONYMS AND ABBREVIATIONS AIHA American Industrial Hygiene Association ALARA as low as reasonable achievable Btu British thermalunits CEDE committed effective dose...

439

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings...

440

Annual Energy Outlook 2011: With Projections to 2035  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . ....

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Word Pro - S2  

Gasoline and Diesel Fuel Update (EIA)

3 (Quadrillion Btu) 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes...

442

Document (19k)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

information, see http:www.eia.govfuelrenewable.html. 7 Solar thermal and photovoltaic (PV) electricity net generation (converted to Btu using the fossil-fueled plants heat...

443

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

Case, C.W.

2011-01-01T23:59:59.000Z

444

E-Print Network 3.0 - anaerobic solid-liquid system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of British Columbia Collection: Engineering 3 www.manuremanagement.cornell.edu Biogas Casebook Summary: Transfer Institutions Btu British thermal unit SLS Solid-liquid...

445

Jan 26, 2005 MAE 4263 Vapor Power Systems  

E-Print Network [OSTI]

= 2460o R and T2 = 1460o R, leading to Wout = 1000 lbm hr (627:54 353:02) BTU lbm = 274520 BTU hr KW-hr 3412:141BTU = 80:434 KW Since h for a dilute gas can be tabulated as a function of temperature, we 10 5 T2 2:93 3 10 9 T3 = 0:219 1460 + 3:42 2 10 5 14602 2:93 3 10 9 14603 BTU lbm resulting

446

Problem 6-6: The ideal Rankine cycle uses saturated steam, so it can't be at 1000 o F, since the critical  

E-Print Network [OSTI]

, and the thermodynamic cycle calculation for the steam is p1 = 1000 psia T1 = Tsat = 544:75 o F h1 = hg = 1192:4 BTU/lbm s1 = sg = 1:3903 BTU/lbm- o R s2 = s1 = 1:3903 BTU/lbm- o R p2 = 1 psia T2 = Tsat = 101:70 o F 2 = 1:3903 0:1327 1:8453 = 0:6815 = 68% h2 = 69:74 + 0:6815 1036:0 = 775:8 BTU/lbm w1!2 = 1192:4 775:8 = 416

447

Update of Horizontal Borehole Study  

E-Print Network [OSTI]

.2 0.3 0.4 1 2 3 4 No Grout Rb(hr·ft·°F)/Btu Rb(hr·ft·°F)/Btu #12;Borehole #1 ­ Average Depth 11 Dimensionless Temperature Time (hr) Summer 2010 Fall 2012 #12;0 0.5 1 1.5 2 6 8 10 12 k (Btu/hr-ft-F) Average Depth (ft) Summer 2010 Fall 2012 Ground Thermal Conductivity With Depth #12;Rb(hr·ft·°F)/Btu

448

Problem 8-3: Brayton Cycle in Figure 8-13 (page 324) operating at p1,4 = 14.696 psia  

E-Print Network [OSTI]

(no regenerator) using Standard Air Table I-1 (pages 809f) h1 = h(T1) = 124.27 BTU/lbm; pr1 = 1.2187 pr2 = 8 ? 1.2187 = 9.7496 ; T2s = 928 o R; h2s = 223.08 BTU/lbm h3 = h(T3) = 571.19 BTU/lbm; pr3 258 by extreme extrapolation pr4 = 258 ÷ 8 = 32.25 ; T4s = 1298 o R; h4s = 316.55 BTU/lbm w12s = h1 - h2s = -98

449

In-Situ, Real-Time Measurement of Melt Constituents in the Aluminum, Glass, and Steel Industries  

SciTech Connect (OSTI)

Energy Research Company (ERCo), with support from DOEs Industrial Technologies Program, Sensors and Automation has developed a Laser Induced Breakdown Spectroscopy (LIBS) probe to measure, in real time and in-situ, the composition of an aluminum melt in a furnace at an industrial plant. The compositional data is provided to the operator continuously allowing the operator to adjust the melt composition, saving energy, increasing production, and maintaining tighter compositional tolerances than has been previously possible. The overall objectives of this project were to: -- design, develop, fabricate, test and project future costs of the LIBS probe on bench-size experiments; - test the unit in a pilot-scaled aluminum furnace under varying operating conditions of temperature and melt constituents; -- determine the instruments needed for use in industrial environment; -- compare LIBS Probe data to readings traditionally taken on the furnace; -- get full-scale data to resolve if, and how, the LIBS Probe design should be modified for operator acceptance. Extensive laboratory tests have proven the concept feasibility. Elemental concentrations below 0.1% wt. have been accurately measured. Further, the LIBS system has now been installed and is operating at a Commonwealth Aluminum plant in Ohio. The technology is crosscutting as it can be used in a wide variety of applications. In the Sensors and Automation Program the application was for the secondary aluminum industry. However, this project spawned a number of other applications, which are also reported here for completeness. The project was effective in that two commercial systems are now operating; one at Commonwealth Aluminum and another at a PPG fiberglass plant. Other commercial installations are being negotiated as of this writing. This project led to the following conclusions: 1. The LIBS System has been developed for industrial applications. This is the first time this has been accomplished. In addition, two commercial installations have been completed; one at Commonwealth and another at PPG. 2. The system is easy to operate and requires no operator training. Calibration is not required. It is certified as eye safe. 3. The system is crosscutting and ERCo is evaluating seven applications, as reported in this report, and other applications to be reported later. 4. A business plan is being completed for each of the near term markets. ERCo is committed to achieving continued commercial success with the LIBS System. 5. A world wide patent has been issued. 6. The energy savings is substantial. The annual energy savings, by 2010, for each industry is estimated as follows: o Secondary Aluminum 1.44 trillion Btus o Glass 17 to 45 trillion Btus o Steel Up to 26 trillion Btus

Robert De Saro

2006-05-18T23:59:59.000Z

450

Energy measurement utilizing on-line chromatograph  

SciTech Connect (OSTI)

Most gas contracts today have at least a BTU specification and many use MMBTU (million BTU) rather than gas volume for custody transfer measurement. Gas chromatography is today being chosen more and more because the calculations of the gas volumes in modem electronic flow meters requires not only BTU{sub 5} information, but specific gravity, Mol % CO{sub 2} and Mol % N{sub 2}. The new AGA-8 supercompressibility equations also require a complete hydrocarbon analysis. What then, is a BTU? BTU is the acronym for British Thermal Unit. One BTU is the quantity of heat required to raise the temperature of one pound of water from 58.5{degrees}F to 59.5{degrees}F (about 1055.056 joules (SI))3. The higher the BTU content, the more energy can be obtained from burning the gas. It just doesn`t take as many cubic feet of gas to heat the home hot water tank if the gas is 1090 BTU instead of 940 BTU per SCF. The BTU, then, is a prime indicator of natural gas quality. An MMBTU{sup 2} is calculated by: BTU/CF * MMCF = MMBTU What is it worth to keep track of the natural gas BTU? If we postulate 1000 BTU/CF as fairly average for natural gas, and {+-} 5% error between doing a lab determination of the heating value on a spot sample of the gas and an on- line (nearly continuous) monitor of the heating value, this results in a {+-} 50 BTU difference. On a station that has 50 MMCF per day at $2.50 per MCF or MMBTU, this is $125,000.00 worth of gas per day. Five percent of this is $6,250.00 per day. If a process chromatograph, $50,000 installed cost, is used to determine the energy content a pay out of less than 10 days is obtained on a 50 MMCF/day station. Most major interconnects have on- line BTU measurement of some sort today.

Kizer, P.E. [Applied Automation, Inc./Hartmann and Braun, Houston, TX (United States)

1995-12-01T23:59:59.000Z

451

Estimation of Optimal Brachytherapy Utilization Rate in the Treatment of Malignancies of the Uterine Corpus by a Review of Clinical Practice Guidelines and the Primary Evidence  

SciTech Connect (OSTI)

Purpose: Brachytherapy (BT) is an important treatment technique for uterine corpus malignancies. We modeled the optimal proportion of these cases that should be treated with BT-the optimal rate of brachytherapy utilization (BTU). We compared this optimal BTU rate with the actual BTU rate. Methods and Materials: Evidence-based guidelines and the primary evidence were used to construct a decision tree for BTU for malignancies of the uterine corpus. Searches of the literature to ascertain the proportion of patients who fulfilled the criteria for BT were conducted. The robustness of the model was tested by sensitivity analyses and peer review. A retrospective Patterns of Care Study of BT in New South Wales for 2003 was conducted, and the actual BTU for uterine corpus malignancies was determined. The actual BTU in other geographic areas was calculated from published reports. The differences between the optimal and actual rates of BTU were assessed. Results: The optimal uterine corpus BTU rate was estimated to be 40% (range, 36-49%). In New South Wales in 2003, the actual BTU rate was only 14% of the 545 patients with uterine corpus cancer. The actual BTU rate in 2001 was 11% in the Surveillance, Epidemiology, and End Results areas and 30% in Sweden. Conclusion: The results of this study have shown that BT for uterine corpus malignancies is underused in New South Wales and in the Surveillance, Epidemiology, and End Results areas. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which can be measured actual patterns of practice. It can also be used to assist in determining the adequacy of BT resource allocation.

Thompson, Stephen R. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)], E-mail: stephen.thompson@sesiahs.health.nsw.gov.au; Delaney, Geoff [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Gabriel, Gabriel S.; Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Barton, Michael [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)

2008-11-01T23:59:59.000Z

452

Team B: The trillion dollar experiment  

SciTech Connect (OSTI)

Team B was an experiment in competetive threat assessments approved by the director of the CIA at that time, George Bush. Teams of experts were to make independent assessments of highly classified data used by the intelligence community to assess Soviet strategic forces in the yearly National Intelligence Estimates. In this article, two experts report on how a group of Cold War outside experts were invited to second-guess the policies of the CIA. The question explored here is whether or not these outside experts of the 1970s contributed to the military buildup of the 1980s.

Cahn, A.H.; Prados, J.

1993-04-01T23:59:59.000Z

453

First trillion particle cosmological simulation completed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified|North America |ProofneutronFirst

454

Contemplating 10 Trillion Digits of π  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O"

455

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network [OSTI]

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

456

Geopressured energy availability. Final report  

SciTech Connect (OSTI)

Near- and long-term prospects that geopressured/geothermal energy sources could become a viable alternative fuel for electric power generation were investigated. Technical questions of producibility and power generation were included, as well as economic and environmental considerations. The investigators relied heavily on the existing body of information, particularly in geotechnical areas. Statistical methods were used where possible to establish probable production values. Potentially productive geopressured sediments have been identified in twenty specific on-shore fairways in Louisiana and Texas. A total of 232 trillion cubic feet (TCF) of dissolved methane and 367 x 10/sup 15/ Btu (367 quads) of thermal energy may be contained in the water within the sandstone in these formations. Reasonable predictions of the significant reservoir parameters indicate that a maximum of 7.6 TCF methane and 12.6 quads of thermal energy may be producible from these potential reservoirs.

Not Available

1980-07-01T23:59:59.000Z

457

Aerogel-Based Insulation for Industrial Steam Distribution Systems  

SciTech Connect (OSTI)

Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energys Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspens best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XTs commercial success has been driven by its 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

John Williams

2011-03-30T23:59:59.000Z

458

Energy conservation in distillation: a technology applications manual  

SciTech Connect (OSTI)

Distillation is the most widely practiced technique for separating mixtures of chemical species, but it is an energy intensive process. A 10% reduction in distillation energy consumption would effect a significant savings. On a national basis this would be an annual savings of 200 trillion Btu, or the equivalent of 36.5 million barrels of oil per year. Technology to achieve these savings in distillation energy is available and measures are presented to assist process engineers in technical and economic analysis of the energy conservation measures most suitable for particular distillation applications. The manual catalogs all of the energy conservation options applicable to distillation and the options by the investment required; describes in detail the options having a significant potential to reduce distillation energy requirements economically; provides guidelines that will allow the plant engineer to quickly screen each option for his application; and provides short-cut calculation procedures for use in a preliminary economic analysis of promising options.

Not Available

1980-05-01T23:59:59.000Z

459

Advances in process intensification through multifunctional reactor engineering  

SciTech Connect (OSTI)

This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

O'Hern, T. J.

2012-03-01T23:59:59.000Z

460

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

Water Heaters With Input Ratings Above 75,000 Btu per Hour, Circulating and Instantaneous [ANSI Z21.10.3a] American National StandardsWater Heaters With Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous [ANSI Z21.10.3a] American National Standards

Lutz, Jim

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

1ol4 Btu; gasoline (total), 2.1 x 109 gallons; diesel fuel,Diesel Jet fuel Heavy oil Use Commercial Domestic Highway City Lead Carbon Unit 106 Btudiesel is combined with a topping cycle waste heat boiler which generates 12.6 Mw of steam at 27.4 x 106 Btu/

Cairns, E.L.

2011-01-01T23:59:59.000Z

462

A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES  

E-Print Network [OSTI]

gasoline LDVs or diesel HDVs. BTUs of process and end-useBTU) with theirs for oil-to- gasoline, oil-to-diesel, coal-BTU energy-conversion efficiency of the AFV engine or powertrain relative to that of the baseline gasoline or diesel

Delucchi, Mark

2005-01-01T23:59:59.000Z

463

A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles  

E-Print Network [OSTI]

gasoline LDVs or diesel HDVs. BTUs of process and end-useBTU) with theirs for oil-to- gasoline, oil-to-diesel, coal-BTU energy-conversion efficiency of the AFV engine or powertrain relative to that of the baseline gasoline or diesel

Delucchi, Mark

2005-01-01T23:59:59.000Z

464

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network [OSTI]

construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442....

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

465

Coke Gasification - A Solution to Excess Coke Capacity and High Energy Costs  

E-Print Network [OSTI]

effectively to produce medium-Btu (300 Btu/scf) gas which, in turn, can fuel the refinery furnaces to replace natural gas. Coke gasification should prove economical with natural gas price decontrol and the average price projected to rise to over $14.0 per...

1982-01-01T23:59:59.000Z

466

INSTALLATION CERTIFICATE CF-6R-MECH-01 Domestic Hot Water (DHW) (Page 1 of 2)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

467

STATE OF CALIFORNIA DOMESTIC HOT WATER (DHW)  

E-Print Network [OSTI]

,000 Btu/hr), electric resistance and heat pump water heaters, list Energy Factor (EF). For large gas storage water heaters (rated input of greater than 75,000 Btu/hr), list Recovery Efficiency (RE), Thermal Efficiency, Standby Loss and Rated Input. For instantaneous gas water heaters, list the Thermal Efficiency

468

INSTALLATION CERTIFICATE CF-6R-MECH-27-HERS Maximum Rated Total Cooling Capacity (Page 1 of 2)  

E-Print Network [OSTI]

Conditioner is listed in the ARI database with a specified furnace or air handler and that furnace or air handler is to be installed. Otherwise, if the proposed Air Conditioner is listed in the ARI database (Watt) = ARI Rated Total Cooling Capacity (Btu/hr) / ARI Rated EER (Btu/Watt-hr) if the proposed Air

469

Future market for ceramics in vehicle engines and their impacts  

SciTech Connect (OSTI)

Ceramic engine components have potential to improve vehicle fuel economy. Some recent tests have also shown their environmental benefits, particularly in reducing particulate emissions in heavy-duty diesel engines. The authors used the data from a survey of the US vehicle engine and component manufacturers relating to ceramic engine components to develop a set of market penetration models. The survey identified promising ceramic components and provided data on the timing of achieving introductory shares in light and heavy-duty markets. Some ceramic components will penetrate the market when the pilot-scale costs are reduced to one-fifth of their current values, and many more will enter the market when the costs are reduced to one-tenth of the current values. An ongoing ceramics research program sponsored by the US Department of Energy has the goal of achieving such price reductions. The size and value of the future ceramic components market and the impacts of this market in terms of fuel savings, reduction in carbon dioxide emissions, and potential reduction in other criteria pollutants are presented. The future ceramic components market will be 9 million components worth $29 million within 5 years of introduction and will expand to 692 million components worth $3,484 million within 20 years. The projected annual energy savings are 3.8 trillion Btu by 5 years, increasing to 526 trillion Btu during the twentieth year. These energy savings will reduce carbon dioxide emissions by 41 million tons during the twentieth year. Ceramic components will help reduce particulate emissions by 100 million tons in 2030 and save the nation`s urban areas $152 million. The paper presents the analytical approach and discusses other economic impacts.

Vyas, A.; Hanson, D. [Argonne National Lab., IL (United States). Center for Transportation Research; Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States)

1995-02-01T23:59:59.000Z

470

Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability  

SciTech Connect (OSTI)

The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: ???¢???????¢ Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. ???¢???????¢ Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. ???¢???????¢ Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. ???¢???????¢ Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

Von L. Richards

2012-09-19T23:59:59.000Z

471

Performance summary of the Balcomb solar home  

SciTech Connect (OSTI)

The heating performance of the Balcomb passive solar home is re-evaluated based on detailed review of 85 channels of data taken during six weeks of 1980. This led to a re-analysis of 176 days of data taken over the winter of 1978-79. Auxiliary heat during this winter was 7.4 million Btu which compares with 66.0 million Btu total heat losses from the house plus 46.4 million Btu losses from the greenhouse. Auxiliary heat predicted using the solar load ratio method is 8.1 million Btu. Solar savings are estimated as 57 million Btu. Good thermal comfort conditions are documented. Energy flows are tabulated for each month. Energy flows are tabulated for each month. Conclusions regarding detailed heat flow and storage in the house are presented.

Balcomb, J.D.; Hedstrom, J.C.; Perry, J.E. Jr.

1981-01-01T23:59:59.000Z

472

Discontinuous Modelling of Crack Propagation in a Gradient-Enhanced Continuum  

E-Print Network [OSTI]

of freedom and with the symmetries Kba #3; Kab, Kbp #3; Kbq #3; Kaq, Kqa #3; Kqb #3; Kpb, Kqp #3; Kqq #3; Kpq and Kaa #3; ? BTu #6; 1 #24; ? #8; DBu d? (27a) Kab #3; ?! BTu #6; 1 #24; ? #8; DBu d? (27b) Kap #3;#23;#24; ? BTu ?? ?? ?? ?e D?Ne d? (27c) Kaq #3... ;#23;#24; ? ! BTu ?? ?? ?? ?e D?Ne d? (27d) Kbb #3; ?! BTu #6; 1 #24; ? #8; DBu d? (27e) Kpa #3;#23;#24; ? NTe ??eq ?? T Bu d? (27f) Kpb #3;#23;#24; ? ! NTe ??eq ?? T Bu d? (27g) Kpp #3; ? NTe Ne BTe cBe d? (27h) Kpq #3; ?! NTe Ne BTe cBe d? ffi (27i...

Simone, A; Wells, G N; Sluys, L J

473

Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey  

SciTech Connect (OSTI)

The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

Davis, J.; Swenson, A.

1998-07-01T23:59:59.000Z

474

ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT  

SciTech Connect (OSTI)

The potential to save trillions of BTUs in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/?, which has additional implications. . For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

2008-06-30T23:59:59.000Z

475

Supply Fan Control for Constant Air Volume Air Handling Units  

E-Print Network [OSTI]

there is fixed VFD speed, as shown in Table 1 and Figure 11. On the other hand, the energy consumption is 3,896,493 Btu/hr when there is dynamic VFD speed. The thermal energy consumption of dynamic VFD speed is less than that of the fixed VFD speed by 44... %. Therefore, when the supply fan speed control is optimized, thermal energy can be reduced. Table 1. Comparison data of thermal energy consumption Floor Fixed VFD speed (Btu/hr) Dynamic VFD speed (Btu/hr) Energy saving (%) PLF 784,891 502,611 36...

Cho, Y.; Wang, G.; Liu, M.

2007-01-01T23:59:59.000Z

476

Maintaining Space Temperature and Humidity in the Digital Switch Environment  

E-Print Network [OSTI]

the humidifier if Case A-l is used, Btu/lb Dhjj = enthalpy difference across the humidifier if Case A-2 is used, Btu/lb Dhcnjner = enthalpy difference across the sensible cooling process, case A-2, Btu/lb Case B: The outside air dry bulb temperature is higher.... Isothermal humidification (steam generator or infrared heater). b. Adiabatic humidification (evaporative cooler or ultrasonic humidification). METHODOLOGY 1. Obtain the bin data for the location (see Table 1 below for sample bin data). Table 1. Temperature...

Saman, N. F.; Johnson, H.

477

Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.  

SciTech Connect (OSTI)

Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump-to-wheel (PTW), and WTW energy, fossil fuel, and GHG emissions for each LFG-based pathway are then summarized and compared with similar estimates for fossil natural gas and petroleum pathways.

Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

2010-06-30T23:59:59.000Z

478

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

479

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

480

Monthly energy review: September 1996  

SciTech Connect (OSTI)

Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu trillion btu" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Problem 2.67: A gas undergoes a process from State 1, where p1 = 60 lbf/in2 & v1 = 6:0 ft3  

E-Print Network [OSTI]

Problem 2.67: A gas undergoes a process from State 1, where p1 = 60 lbf/in2 & v1 = 6:0 ft3 /lbm...c volume, & internal energy is u = 0:2651 BTU-in2 lbf-ft3 pv 95:436 BTU lbm where p is in lbf/in2 , v is in ft3 /lbm, & u is in BTU/lbm. The mass of gas is 10 lbm. Neglecting kinetic- and potential-energy e

482

Leadership in Low NOx/ Lochinvar Corporation  

E-Print Network [OSTI]

, Texas Nashville, Tennessee On April 19, 2000, the Texas Natural Resource Conservation Commission adopted statewide NOx emission limits for all natural gas-fired water heaters, boilers and process heaters with input rates of 2 million Btu/hr or less... for the purposes of generating efficient boilers, and process heaters having a BTU rating of up and environmentally friendly hot water production. to 2,000,000 BTU/hour within the state of Texas. Some readers of this paper may already be aware It's not everyday...

Sheko, D.; Boston, S.; Moore, J.

483

New Manufacturing Method for Paper Filler and Fiber Material  

SciTech Connect (OSTI)

The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts? or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually. If the new technology could be implemented for bleaching process a total annual estimated energy savings potential of 64 trillion buts? or 11 million barrel of oil equivalent (BOE) equal to 3% of the paper industries energy demand could be realized. This could lead to a increase of renewable energy usage from 56% to close to 60% for the industry. CO{sub 2} emissions could be lowered by over 7.4 million tons annually. It is estimated that an installed system could also yield a 75 to 100% return of investment (ROI) rate for the capital equipment that need to be installed for the fiber filler composite manufacturing process.

Doelle, Klaus [SUNY College of Environmental Science and Forestry

2013-08-25T23:59:59.000Z

484

Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling Systems  

SciTech Connect (OSTI)

Industrial manufacturing in the U.S. accounts for roughly one third of the 98 quadrillion Btu total energy consumption. Motor system losses amount to 1.3 quadrillion Btu, which represents the largest proportional loss of any end-use category, while pumps alone represent over 574 trillion BTU (TBTU) of energy loss each year. The efficiency of machines with moving components is a function of the amount of energy lost to heat because of friction between contacting surfaces. The friction between these interfaces also contributes to downtime and the loss of productivity through component wear and subsequent repair. The production of new replacement parts requires additional energy. Among efforts to reduce energy losses, wear-resistant, low-friction coatings on rotating and sliding components offer a promising approach that is fully compatible with existing equipment and processes. In addition to lubrication, one of the most desirable solutions is to apply a protective coating or surface treatment to rotating or sliding components to reduce their friction coefficients, thereby leading to reduced wear. Historically, a number of materials such as diamond-like carbon (DLC), titanium nitride (TiN), titanium aluminum nitride (TiAlN), and tungsten carbide (WC) have been examined as tribological coatings. The primary objective of this project was the development of a variety of thin film nanocoatings, derived from the AlMgB14 system, with a focus on reducing wear and friction in both industrial hydraulics and cutting tool applications. Proof-of-concept studies leading up to this project had shown that the constituent phases, AlMgB14 and TiB2, were capable of producing low-friction coatings by pulsed laser deposition. These coatings combine high hardness with a low friction coefficient, and were shown to substantially reduce wear in laboratory tribology tests. Selection of the two applications was based largely on the concept of improved mechanical interface efficiencies for energy conservation. In mobile hydraulic systems, efficiency gains through low friction would translate into improved fuel economy and fewer greenhouse gas emissions. Stationary hydraulic systems, accordingly, would consume less electrical power. Reduced tooling wear in machining operations would translate to greater operating yields, while lowering the energy consumed during processing. The AlMgB14 nanocoatings technology progressed beyond baseline laboratory tests into measurable energy savings and enhancements to product durability. Three key hydraulic markets were identified over the course of the project that will benefit from implementation: industrial vane pumps, orbiting valve-in-star hydraulic motors, and variable displacement piston pumps. In the vane pump application, the overall product efficiency was improved by as much as 11%. Similar results were observed with the hydraulic motors tested, where efficiency gains of over 10% were noted. For variable displacement piston pumps, overall efficiency was improved by 5%. For cutting tools, the most significant gains in productivity (and, accordingly, the efficiency of the machining process as a whole) were associated with the roughing and finishing of titanium components for aerospace systems. Use of the AlMgB14 nanocoating in customer field tests has shown that the coated tools were able to withstand machining rates as high as 500sfm (limited only by the substrate material), with relatively low flank wear when compared to other industrial offerings. AlMgB14 coated tools exhibited a 60% improvement over similarly applied TiAlN thin films. Furthermore, AlMgB14-based coatings in these particular tests lasted twice as long than their TiAlN counterparts at the 500sfm feed rates. Full implementation of the technology into the industrial hydraulic and cutting tool markets equates to a worldwide energy savings of 46 trillion BTU/year by 2030. U.S.-based GHG emissions associated with the markets identified would fall accordingly, dropping by as much as 50,000 tonnes annually.

Clifton B. Higdon III

2011-01-07T23:59:59.000Z

485

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network [OSTI]

75% coal 60% coal 50% coal Energy consumption in each step75% coal 60% coal 50% coal Energy input in feedstock andTotal energy Fossil energy Coal Natural gas Petroleum (Btu/

Hu, Sangran

2012-01-01T23:59:59.000Z

486

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

487

Energy Analysis and Diagnostics: A Computer Based Tool for Industrial Self Assessment  

E-Print Network [OSTI]

each BTU of energy produced. This paper describes the design and development of a computer based tool (ENERGEX) which aids the industrial user in developing energy conservation opportunities (ECOs) in plants. The software system is capable...

Gopalakrishnan, B.; Plummer, R. W.; Nagarajan, S.; Kolluri, R.

488

Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes  

E-Print Network [OSTI]

9000BTUDaikingMicro?SplitHeatpumpsystemwithtwoSizingStorageandHeatPump (withTank)WaterHeaters." the useofageothermalheatpump,aretheonlymeasures

Al-Beaini, S.

2010-01-01T23:59:59.000Z

489

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

like sewer pipe. Biogas production from the digester will behomestead digester will produce 7.6 million Btu of biogasbiogas into electricity. The waste heat from the electric generator will be used to maintain the digester

Case, C.W.

2011-01-01T23:59:59.000Z

490

Microsoft PowerPoint - HTGR Potential Market and Preliminary...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project 250 GW th HTGR application NH3 production) Oil SandsShale (43 - 600 MWt HTGR Hydrogen Production (60 - 600 MWt HTGR Modules) 4 Modules) * Quad 1x10 15 Btu (293 MM MW th...

491

Transportation Energy Futures  

E-Print Network [OSTI]

diesel-powered trucks consumeonly about 2 of the 15 quadril- lion BtusDiesel Methanol/ethanol Ethanol Ethanol Hydrogen $ per physical gallon 0.80-I.10 $ per million Btu

Sperling, Daniel

1989-01-01T23:59:59.000Z

492

Reduction of Water Consumption  

E-Print Network [OSTI]

Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

Adler, J.

493

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.  

E-Print Network [OSTI]

WATER EFFICIENCY AND MANAGEMENT .......................................................26 POLLUTION Agent BBTU ­ Billion British Thermal Units BTU ­ British Thermal Units CD ­ Construction Document CEDR ­ Industrial, Landscaping, and Agricultural IPCC ­ Intergovernmental Panel on Climate Change ISMS ­ Integrated

494

Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431  

E-Print Network [OSTI]

absorption chiller. High-temperature hot water near or above17,000 Btu of high-temperature hot water or low-pressurehigh-temperature heat recovery option that can produce 250 F hot water

Brown, Richard; Alliance to Save Energy; ICF Incorporated; ERG Incorporated; U.S. Environmental Protection Agency

2008-01-01T23:59:59.000Z

495

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

for U.S. EPA Energy Star. AHAM. 2003. Energy ConsumptionScottsdale, Arizona: In-Stat. AHAM (Association of HomeAcronyms and Abbreviations AFUE AHAM ASHP ASHRAE REF UEC Btu

Sanchez, Marla

2010-01-01T23:59:59.000Z

496

US SoAtl VA Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national...

497

US MidAtl NY Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because...

498

US WSC TX Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

499

US ESC TN Site Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

500

Addressing the problem with natural ventilation : producing a guide for designers to integrate natural ventilation into the early stages of building design  

E-Print Network [OSTI]

Currently, the United States alone is responsible for approximately twenty percent of the world's total energy consumption. This consumption is equivalent to roughly 100 quadrillion Btu of energy, or in plainer terms, over ...

Fennessy, Kristian (Kristian M.)

2014-01-01T23:59:59.000Z