Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

2

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

3

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma, 1960 - 2011 1960 33.9 902.0 1,118.9 0.0 NA 17.8 17.8 2,072.6 1961 26.1 976.9 1,119.9 0.0 NA 20.2 20 ...

4

Table PT2. Energy Production Estimates in Trillion Btu, California ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, California, 1960 - 2011 1960 0.0 589.7 1,771.0 (s) NA 270.2 270.2 2,630.9 1961 0.0 633.8 1,737.7 0.1 NA 248.2 ...

5

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

6

Table PT2. Energy Production Estimates in Trillion Btu, Texas ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Texas, 1960 - 2011 1960 26.4 6,610.7 5,379.4 0.0 NA 50.2 50.2 12,066.6 1961 26.5 6,690.2 5,447.3 0.0 NA 52.0 ...

7

Table PT2. Energy Production Estimates in Trillion Btu, Indiana ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Indiana, 1960 - 2011 1960 346.3 0.3 69.9 0.0 NA 24.6 24.6 441.1 1961 336.7 0.4 66.7 0.0 NA 24.2 24.2 428.0

8

Table PT2. Energy Production Estimates in Trillion Btu, Oregon ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oregon, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 190.5 190.5 190.5 1961 0.0 0.0 0.0 0.0 NA 188.9 188.9 188.9

9

Table PT2. Energy Production Estimates in Trillion Btu, Arizona ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Arizona, 1960 - 2011 1960 0.1 0.0 0.4 0.0 NA 36.2 36.2 36.7 1961 0.0 0.0 0.4 0.0 NA 35.1 35.1 35.5

10

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 - 2011 1960 796.6 36.9 31.3 0.0 NA 37.0 37.0 901.9 1961 756.0 37.3 32.7 0.0 NA 36.4 36.4 862.4

11

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

12

Trillion Particles,  

NLE Websites -- All DOE Office Websites (Extended Search)

Trillion Trillion Particles, 120,000 cores, and 350 TBs: Lessons Learned from a Hero I/O Run on Hopper Surendra Byna ∗ , Andrew Uselton ∗ , Prabhat ∗ , David Knaak † , and Yun (Helen) He ∗ ∗ Lawrence Berkeley National Laboratory, USA. Email: {sbyna, acuselton, prabhat, yhe}@lbl.gov † Cray Inc., USA. Email: knaak@cray.com Abstract-Modern petascale applications can present a variety of configuration, runtime, and data management challenges when run at scale. In this paper, we describe our experiences in running VPIC, a large-scale plasma physics simulation, on the NERSC production Cray XE6 system Hopper. The simulation ran on 120,000 cores using ∼80% of computing resources, 90% of the available memory on each node and 50% of the Lustre scratch file system. Over two trillion particles were simulated for 23,000 timesteps, and 10 one-trillion particle dumps, each ranging between

13

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

14

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

15

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

16

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

17

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

c Electricity-only and combined-heat-and-power (CHP) ... and electrical system energy losses. ... Geographic coverage is the 50 states and the Distr ...

18

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

1963 54.3 228.1 837.6 0.0 na 10.6 10.6 1,130.6 ... 1976 562.9 339.4 778.1 0.0 na 12.5 12.5 1,692.9 ... 2010 7,658.3 2,521.3 r 308.8 r 0.0 0.9 43.5 r ...

19

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

20

Table PT2. Energy Production Estimates in Trillion Btu, Minnesota ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 2.3 Commercial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

e Conventional hydroelectric power. f Electricity retail sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service ...

22

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

23

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

24

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

25

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

26

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

27

$1.7 Trillion  

E-Print Network (OSTI)

Beginning in 2007 in California, reduction of vampire or standby losses This will save $10 Billion when finally implemented, nationwide Out of a total $700 Billion, a crude summary is that 1/3 is structural, 1/3 is from transportation, and 1/3 from buildings and industry. 3 Two Energy Agencies in California The California Public Utilities Commission (CPUC) was formed in 1890 to regulate natural monopolies, like railroads, and later electric and gas utilities. The California Energy Commission (CEC) was formed in 1974 to regulate the environmental side of energy production and use. Now the two agencies work very closely, particularly to delay climate change. The Investor-Owned Utilities, under the guidance of the CPUC, spend Public Goods Charge money (rate-payer money) to do everything they can that is cost effective to beat existing standards. The Publicly-Owned utilities (20 % of the power), under loose supervision by the CEC, do the same. Californias Energy Action Plan

U. C. Berkeley; Arthur H. Rosenfeld; Or Just Google art Rosenfeld

2008-01-01T23:59:59.000Z

28

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

29

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

30

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

31

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

32

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

33

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

34

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

35

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

36

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

37

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

38

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

39

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 19492012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 19492012

40

" Level: National Data and Regional Totals...  

U.S. Energy Information Administration (EIA) Indexed Site

(million","Other(e)","Row" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short...

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The Btu tax is dead, long live the Btu tax  

SciTech Connect

The energy industry is powerful. That is the only explanation for its ability to jettison a cornerstone of the Clinton Administration's proposed deficit reduction package, the Btu tax plan, expected to raise about $71.5 billion over a five-year period. Clinton had proposed a broad-based energy tax of 25.7 cents per million Btus, and a surcharge of 34.2 cents on petroleum products, to be phased in over three years starting July 1, 1994. House Democrats went along, agreeing to impose a tax of 26.8 cents per million Btus, along with the 34.2-cent petroleum surcharge, both effective July 1, 1994. But something happened on the way to the Senate. Their version of the deficit reduction package contains no broad-based energy tax. It does, however, include a 4.3 cents/gallon fuel tax. Clinton had backed down, and House Democrats were left feeling abandoned and angry. What happened has as much to do with politics-particularly the fourth branch of government, lobbyists-as with a President who wants to try to please everyone. It turns out that almost every lawmaker or lobbyist who sought an exemption from the Btu tax, in areas as diverse as farming or ship and jet fuel used in international commercial transportation, managed to get it without giving up much in return. In the end, the Btu tax was so riddled with exemptions that its effectiveness as a revenue-raiser was in doubt. Meanwhile, it turns out that the Btu tax is not dead. According to Budget Director Leon Panetta, the Administration has not given up on the Btu tax and will fight for it when the reconciliation bill goes to a joint House-Senate conference.

Burkhart, L.A.

1993-07-15T23:59:59.000Z

42

Powered by 500 Trillion Calculations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations April 15, 2011 - 5:31pm Addthis Blood flow visualization | Photo Courtesy of Argonne National Laboratory Blood flow visualization | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications. With the power of 500 trillion calculations per second, a team of scientists from the Department of Energy's Argonne National Laboratory (ANL) and Brown University are mapping the movement of red blood cells -- hoping this will lead to better diagnoses and treatments for patients with

43

DOE Joint Genome Institute: Trillions Served: Massive, Complex...  

NLE Websites -- All DOE Office Websites (Extended Search)

the number of burgers served has eclipsed the billion mark, while the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) will now serve up trillions of nucleotides of...

44

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

45

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

46

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

47

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

48

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

49

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

50

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

51

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

Breeze)","Other(e)","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short...

52

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

53

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ... 4,404 63,307 14.4 9,168 3,037 890...

54

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings ... 4,617 70,181 15.2 10,746 3,559 1,043...

55

Diagram 5. Electricity Flow, 2007 (Quadrillion Btu)  

E-Print Network (OSTI)

generation. f Transmission and distribution losses (electricity losses that occur between the pointDiagram 5. Electricity Flow, 2007 (Quadrillion Btu) Energy Information Administration / Annual Energy Review 2007 221 Coal 20.99 Nuclear Electric Power 8.41 Energy Consumed To Generate Electricity 42

Bensel, Terrence G.

56

c13.xls  

Gasoline and Diesel Fuel Update (EIA)

Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ... 4,404 63,307 14.4 9,168 3,037 890...

57

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings ... 4,617 70,181 15.2 10,746 3,559...

58

Trillion Cubic Feet Billion Cubic Meters Residential Commercial  

Gasoline and Diesel Fuel Update (EIA)

2 2 4 6 8 10 0 50 100 150 200 250 Trillion Cubic Feet Billion Cubic Meters Residential Commercial Industrial Electric Utilities 1930 1935 1940 1945 1950 1955 1960 1965 1970 1980 1985 1990 1995 1975 2000 Note: In 1996, consumption of natural gas for agricultural use is classified as industrial use. In 1995 and earlier years, agricultural use was classified as commercial use. Sources: 1930-1975: Bureau of Mines, Minerals Yearbook, "Natural Gas" chapter. 1976-1978: Energy Information Administration (EIA), Energy Data Reports, Natural Gas Annual. 1979: EIA, Natural Gas Production and Consumption, 1979. 1980-1996: Form EIA- 176, "Annual Report of Natural and Supplemental Gas Supply and Disposition" and Form EIA-759, "Monthly Power Plant Report." 23. Natural Gas Delivered to Consumers in the United States, 1930-1996 Figure

59

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

60

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

62

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

63

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

64

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

65

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

66

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

67

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

68

Figure 91. Natural gas production by source, 1990-2040 (trillion ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 91. Natural gas production by source, 1990-2040 (trillion cubic feet) Alaska Coalbed Methane Lower 48 Offshore Lower 48 Onshore Conventional

69

Parallel I/O, analysis, and visualization of a trillion particle simulation  

Science Conference Proceedings (OSTI)

Petascale plasma physics simulations have recently entered the regime of simulating trillions of particles. These unprecedented simulations generate massive amounts of data, posing significant challenges in storage, analysis, and visualization. In this ...

Surendra Byna; Jerry Chou; Oliver Rbel; Prabhat; Homa Karimabadi; William S. Daughton; Vadim Roytershteyn; E. Wes Bethel; Mark Howison; Ke-Jou Hsu; Kuan-Wu Lin; Arie Shoshani; Andrew Uselton; Kesheng Wu

2012-11-01T23:59:59.000Z

70

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Census Division Total South...

71

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

72

Table 5a. Total District Heat Consumption per Effective Occupied Square  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total District Heat Consumption per Effective a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 94 429 84 93 Building Floorspace (Square Feet) 1,001 to 5,000 18 Q Q Q 5,001 to 10,000 11 Q Q Q 10,001 to 25,000 28 65 144 155 25,001 to 50,000 16 Q Q Q 50,001 to 100,000 9 50 79 81 100,001 to 200,000 6 59 76 79 200,001 to 500,000 5 109 71 77 Over 500,000 1 65 62 80 Principal Building Activity Education 22 50 71 78 Food Sales and Service Q Q Q Q Health Care 3 57 100 142 Lodging 9 66 112 116 Mercantile and Service 9 Q Q Q Office 24 110 63 70 Public Assembly 10 23 64 66 Public Order and Safety Q Q Q Q Religious Worship Q Q Q Q Warehouse and Storage

73

Table 5b. Relative Standard Errors for Total District Heat Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total District Heat Consumption per b. Relative Standard Errors for Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 11 16 16 16 Building Floorspace (Square Feet) 1,001 to 5,000 27 78 76 76 5,001 to 10,000 38 60 51 51 10,001 to 25,000 18 43 36 35 25,001 to 50,000 24 68 51 51 50,001 to 100,000 18 40 30 30 100,001 to 200,000 27 33 35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging 30 40 30 29 Mercantile and Service 40 74 59 58 Office 23 28 26 27 Public Assembly 25 33 25 26 Public Order and Safety

74

Table 6b. Relative Standard Errors for Total Electricity Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total Electricity Consumption per b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 4 5 4 4 Building Floorspace (Square Feet) 1,001 to 5,000 5 6 6 6 5,001 to 10,000 4 9 9 9 10,001 to 25,000 5 7 5 5 25,001 to 50,000 7 10 10 10 50,001 to 100,000 7 12 8 8 100,001 to 200,000 9 13 10 10 200,001 to 500,000 10 13 11 11 Over 500,000 26 18 18 21 Principal Building Activity Education 8 9 6 6 Food Sales and Service 8 9 8 7 Health Care 14 12 12 9 Lodging 11 22 16 16 Mercantile and Service 5 7 7 7 Office 6 10 7 6 Public Assembly 7 12 28 30 Public Order and Safety 18 29 18 18 Religious Worship 10 10 11 11 Warehouse and Storage

75

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

76

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Division Total West Mountain Pacific Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

77

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

(millions) Census Division Total South Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC13.7...

78

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Midwest Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC12.7...

79

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total Northeast Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC11.7...

80

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Census Division Total South Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

(millions) Census Division Total West Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC14.7...

82

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

83

Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock  

DOE Green Energy (OSTI)

A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

Desrosiers, R. E.

1979-02-01T23:59:59.000Z

84

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

85

Table 3b. Relative Standard Errors for Total Natural Gas Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standards Errors per Sq Ft b. Relative Standards Errors per Sq Ft Table 3b. Relative Standard Errors for Total Natural Gas Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Natural Gas (thousand) Total Natural Gas Consumption (trillion Btu) Natural Gas Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 5 7 6 6 Building Floorspace (Square Feet) 1,001 to 5,000 7 12 11 11 5,001 to 10,000 5 9 8 8 10,001 to 25,000 6 18 18 18 25,001 to 50,000 9 21 18 18 50,001 to 100,000 8 12 9 9 100,001 to 200,000 8 13 13 13 200,001 to 500,000 11 21 16 16 Over 500,000 15 27 22 23 Principal Building Activity Education 12 11 9 8 Food Sales and Service 8 12 10 9 Health Care 15 21 17 13 Lodging 12 22 16 16 Mercantile and Service 6 17 14 14 Office 7 24 24 24 Public Assembly 10 18 14 13 Public Order and Safety

86

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

87

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu. Figures in this table...

88

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

89

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

90

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

91

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

92

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

93

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

94

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

95

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

96

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

97

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

98

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

99

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

100

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

102

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

103

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

104

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

105

BTU convergence spawning gas market opportunities in North America  

Science Conference Proceedings (OSTI)

The so-called BTU convergence of US electric power and natural gas sectors is spawning a boom in market opportunities in the US Northeast that ensures the region will be North America`s fastest growing gas market. That`s the view of Catherine Good Abbott, CEO of Columbia Gas Transmission Corp., who told a Ziff Energy conference in Calgary that US Northeast gas demand is expected to increase to almost 10 bcfd in 2000 and more than 12 bcfd in 2010 from about 8 bcfd in 1995 and only 3 bcfd in 1985. The fastest growth will be in the US Northeast`s electrical sector, where demand for gas is expected to double to 4 bcfd in 2010 from about 2 bcfd in 1995. In other presentations at the Ziff Energy conference, speakers voiced concerns about the complexity and speed of the BTU convergence phenomenon and offered assurances about the adequacy of gas supplies in North American to meet demand growth propelled by the BTU convergence boom. The paper discusses the gas demand being driven by power utilities, the BTU convergence outlook, electric power demand, Canadian production and supply, and the US overview.

NONE

1998-06-29T23:59:59.000Z

106

c33.xls  

Annual Energy Outlook 2012 (EIA)

Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons)...

107

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

(trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

108

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

109

"Table 17. Total Delivered Residential Energy Consumption, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,...

110

Annul Coal Consumption by Country (1980 -2009) Total annual coal  

Open Energy Info (EERE)

Annul Coal Consumption by Country (1980 -2009) Total annual coal consumption by country, 1980 to 2009 (available as Quadrillion Btu). Compiled by Energy Information Administration...

111

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Part 1: Housing Unit Characteristics and Energy Usage Indicators Energy Consumption 2 Energy Expenditures 2 Total U.S. (quadrillion Btu) Per Household (Dollars) Per

112

Annual Energy Outlook with Projections to 2025-Figure 5. Total...  

Gasoline and Diesel Fuel Update (EIA)

5. Total energy production and consumption, 1970-2025 (quadrillion Btu). For more detailed information, contact the National Energy Information Center at (202) 586-8800. Energy...

113

Natural Gas Consumption by Country (1980 - 2009) Total annual...  

Open Energy Info (EERE)

Natural Gas Consumption by Country (1980 - 2009) Total annual dry natural gas consumption by country, 1980 to 2009 (available in Quadrillion Btu). Compiled by Energy Information...

114

U.S. States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Total Energy Consumption: Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP: State: Trillion Btu:

115

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

116

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

117

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

118

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

1 (Estimates in Btu or Physical Units) SIC Code a Industry Groups and Industry Total (trillion Btu) Residual Fuel Oil (1000 bbls) Distillate Fuel Oil b (1000 bbls) Natural Gas c...

119

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

120

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

122

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

123

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

124

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

125

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

126

Table A26. Total Quantity of Purchased Energy Sources by Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)"...

127

Table AP1. Total Households Using Home Appliances and Lighting by ...  

U.S. Energy Information Administration (EIA)

Total Consumption for Home Appliances and Lighting by Fuels Used, 2005 Quadrillion British Thermal Units (Btu) U.S. Households (millions) Electricity

128

Table A12. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical...

129

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Petroleum Refining Industry Petroleum Refining Industry Carbon Emissions in the Petroleum Refining Industry The Industry at a Glance, 1994 (SIC Code: 2911) Total Energy-Related Emissions: 79.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.5% -- Nonfuel Emissions: 16.5 MMTC Total First Use of Energy: 6,263 trillion Btu -- Pct. of All Manufacturers: 28.9% Nonfuel Use of Energy Sources: 3,110 trillion Btu (49.7%) -- Naphthas and Other Oils: 1,328 trillion Btu -- Asphalt and Road Oil: 1,224 trillion Btu -- Lubricants: 416 trillion Btu Carbon Intensity: 12.75 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey", "Monthly Refinery Report" for 1994, and Emissions of Greenhouse Gases in the United States 1998.

130

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

131

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Fossil Fuelsa Nuclear Electric Power Renew-able Energyb Total Imports Exports Net Importsc ... fuel ethanol stock change; and biodiesel stock change and balancing item.

132

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

133

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

134

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

135

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

136

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils, the inability to utilize caking coals, and the inability to accept coal fines. Mansfield Carbon Products, Inc., a subsidiary of A.T. Massey Coal Company, has developed an atmospheric pressure, two-stage process that eliminates these three problems.

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

137

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

138

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

139

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

140

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

Power Sector, Selected Years, 1949-2011 (Trillion Btu) Year Hydroelectric Power 1 Geothermal 2 SolarPV 3 Wind 4 Biomass Total Wood 5 Waste 6 Total 1949 1,349 NA NA NA 6 NA 6...

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Summary of Prinicpal Building Activities in Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

Age (years) Average Hours Open per Week Total Energy Consumption (trillion Btu) Total Energy Expenditures (million dollars) All Commercial Buildings 30.5 62 5,321 69,618 Building...

142

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

143

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

144

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

145

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

146

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

147

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

148

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

149

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

150

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

7: Solar Energy Consumption Estimates, 2011 State Electric Power Residential a Commercial b Industrial b Electric Power Total Million Kilowatthours Trillion Btu Alabama 0 0.2 0.0...

151

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book (EERE)

4 Federal Agency Progress Toward the Renewable Energy Goal (Trillion Btu) (1) Total Renewable Energy Usage DOD EPA (2) DOE GSA NASA DOI Others All Agencies Note(s): Source(s):...

152

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE...

153

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Net Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e...

154

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185...

155

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

156

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

157

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

158

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

159

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

160

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

162

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

163

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

164

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

This paper is intended to give the reader knowledge into utility marketing strategies, rates, and services. Although water is a utility service, this paper will concern itself with the energy utilities, gas and electric. Commonality and diversity exist in the strategies and rates of the gas and electric utilities. Both provide services at no charge which make energy operation for their customers easier, safer and more economical. It is important to become familiar with utility strategies, rates, and services because energy knowledge helps your business operate at the lowest energy cost ($/BTU).

Phillips, J. N.

1993-03-01T23:59:59.000Z

165

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

166

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

167

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

168

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network (OSTI)

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (?) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of ?. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).

Lawrence, Benjamin Daniel

2007-12-01T23:59:59.000Z

169

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

170

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

171

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

172

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

173

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

174

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

175

Analysis of medium-BTU gasification condensates, June 1985-June 1986  

DOE Green Energy (OSTI)

This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers and pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.

Elliott, D.C.

1987-05-01T23:59:59.000Z

176

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

177

Carbon Emissions: Iron and Steel Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Iron and Steel Industry Iron and Steel Industry Carbon Emissions in the Iron and Steel Industry The Industry at a Glance, 1994 (SIC Code: 3312) Total Energy-Related Emissions: 39.9 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 10.7% -- Nonfuel Emissions: 22.2 MMTC Total First Use of Energy: 1,649 trillion Btu -- Pct. of All Manufacturers: 7.6% Nonfuel Use of Energy: 886 trillion Btu (53.7%) -- Coal: 858 trillion Btu (used to make coke) Carbon Intensity: 24.19 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 39.9 Coal 22.7

178

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

179

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2010;" 1 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

180

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006;" 1 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." ,,,,,"Distillate",,,"Coal" ,,,,,"Fuel Oil",,,"(excluding Coal" ,,,"Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)" "NAICS",,"Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu)"

182

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

183

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(c)",,"LPG and",,"Coal","and Breeze" "NAICS",,"Total",,"Fuel Oil","Fuel Oil(b)","(billion",,"NGL(d)",,"(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)",,"short tons)","short tons)","(trillion Btu)"

184

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

185

Table 1.2 Primary Energy Production by Source, 1949-2011 (Billion Btu)  

U.S. Energy Information Administration (EIA)

Natural Gas (Dry) Crude Oil 3: NGPL 4: Total: Hydro-electric Power 6: Geothermal 7: Solar/PV 8: Wind 9: Biomass 10: Total: 1949. ... refuse recovery. See Table 7.1.

186

Table E3. Electricity Consumption (Btu) by End Use for Non ...  

U.S. Energy Information Administration (EIA)

Notes: Due to rounding, data may not sum to totals. HVAC = Heating, Ventilation, and Air Conditioning. Source: Energy Information Administration, ...

187

Natural gas distributed throughout the Marcellus black shale in northern Appalachia could boost proven U.S. gas reserves by trillions of cubic feet (see http://live.psu.edu/story/28116).  

E-Print Network (OSTI)

Natural gas distributed throughout the Marcellus black shale in northern Appalachia could boost proven U.S. gas reserves by trillions of cubic feet (see http://live.psu.edu/story/28116). A recent gas exploration and extraction. In return for lease rights, parties recovering gas customarily pay

Boyer, Elizabeth W.

188

Overview of Commercial Buildings, 2003 - Trends  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings Sector-1979 to 2003 Trends in Commercial Buildings Sector-1979 to 2003 Since the first CBECS in 1979, the commercial buildings sector has increased in size. From 1979 to 2003: The number of commercial buildings increased from 3.8 million to 4.9 million (Figure 3). The amount of commercial floorspace increased from 51 billion to 72 billion square feet (Figure 4). Total energy consumed increased from less than 5,900 trillion to more than 6,500 trillion Btu (Figure 5). Electricity and natural gas consumption, nearly equal in 1979, diverged; electricity increased to more than 3,500 trillion Btu by 2003 while natural gas declined to 2,100 trillion Btu. Figure 3. The number of commercial buildings increased from 1979 to 2003. Figure 3. The number of commercial buildings increased from 1979 to 2003.

189

Sifting Through a Trillion Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

jets. Image by Oliver Rubel The team was able to accelerate FastQuery's indexing and query capabilities by implementing a hierarchical load-balancing strategy that involves a...

190

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

Science Conference Proceedings (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

191

Table E1. Major Fuel Consumption (Btu) by End Use for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other

192

Table E3A. Electricity Consumption (Btu) by End Use for All ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

193

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

F14: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2011 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu...

194

" Level: National Data and Regional Totals;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" 3. Quantity of Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals;" " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Physical Units or Btu." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam"," ",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from Sources"

195

Released: February 2010  

U.S. Energy Information Administration (EIA) Indexed Site

"(billion","NGL(e)","(million","Other(f)" "Code(a)","End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu...

196

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

197

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

198

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

199

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

200

Window-Related Energy Consumption in the US Residential and Commercial Building Stock  

E-Print Network (OSTI)

solar gains with highly insulating windows, which leads to windows with positive heating energy flows offsetting buildingBuilding Heating Loads (Trillion BTU/yr) Year Made Number of Buildings (Thousands, 1993) U Factor SHGC Window Window SolarSolar Window Cond Window Infiltration Non-Window Infiltration Other Loads Total Loads Total Loads Window Properties Total Building Heating

Apte, Joshua; Arasteh, Dariush

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

202

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

203

www.eia.gov  

U.S. Energy Information Administration (EIA)

"MSN","YYYYMM","Value","Column_Order","Description","Unit" "BDFDBUS",200101,0.094,1,"Biodiesel Feedstock","Trillion Btu" ...

204

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

205

national total  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL Brazil BR Cayman Islands CJ ... World Total ww NA--Table Posted: December 8, ...

206

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

207

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

208

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

209

Released: March 2010  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 5.5;" 5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)" "End Use","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","(trillion Btu

210

Released: June 2010  

U.S. Energy Information Administration (EIA) Indexed Site

6 Relative Standard Errors for Table 7.6;" 6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

211

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 4.1, 2006;" 1 Relative Standard Errors for Table 4.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

212

Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Relative Standard Errors for Table 3.1, 2006;" 1 Relative Standard Errors for Table 3.1, 2006;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

213

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

214

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, ...

215

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Units & Calculators ... 2012. Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, ...

216

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

217

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

218

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

219

1994 Washington State directory of Biomass Energy Facilities  

DOE Green Energy (OSTI)

This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

Deshaye, J.A.; Kerstetter, J.D.

1994-03-01T23:59:59.000Z

220

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

222

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

223

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

224

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

225

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

226

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2010;" 3 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

227

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

228

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

229

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

230

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

231

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

232

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010;" 3 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

233

c10a.xls  

Gasoline and Diesel Fuel Update (EIA)

Q 718 6,125 Q 95.1 78.8 96.4 63.5 Q Table C10A. Consumption and Gross Energy Intensity by Climate Zone a for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total...

234

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

3.3 Fuel Consumption, 2006;" 3.3 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

235

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

236

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

237

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

238

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

239

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.1 Offsite-Produced Fuel Consumption, 2006; 4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3 618 1 7 * 45 3112 Grain and Oilseed Milling 316 15,536 * * 115 * 5 0 28 311221 Wet Corn Milling 179 6,801 * * 51 * 4 0 8 31131 Sugar Manufacturing 67 974 1 * 17 * 1 * 4 3114 Fruit and Vegetable Preserving and Specialty Food 168 9,721

240

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

242

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

243

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

244

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

245

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006; 1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107 3112 Grain and Oilseed Milling 317 15,464 * * 115 * 5 0 30 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 3115 Dairy Product

246

2009 -Asia rld Reneuvable ffxx*rgy Smxlgr&$$ XSSS * Asia  

E-Print Network (OSTI)

Production Btu in Fuel Total Btu Spent for One Btu Available at Fuel Pumps "In summary, bioethanol may play

247

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

248

Figure trillion cubic feet - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 4 U.S. Energy Information Administration | Natural Gas Monthly 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

249

New York State annual energy review: energy consumption, supply and price statistics, 1960-1981  

SciTech Connect

Since 1960, annual natural gas consumption in New York State rose from 419 billion CF to 762 billion in 1981, supplying 21% of the state's primary energy. Although total energy consumption peaked in 1973 and 4281.5 trillion Btu, gas usage dropped after 1972 and then rose steadily to a maximum of 782 trillion Btu in 1981. Statistics show that (1) residential gas consumption peaked in 1972 and declined 0.9%/yr thereafter, (2) commercial gas usage was the highest ever in 1981, (3) industrial sales also peaked in 1981, and (4) after a 1978 low of 1.3 trillion Btu of gas usage for power generation, utility consumption rose to 135.2 trillion Btu by 1981, reflecting efforts to cut oil usage. New York consumers spent $734 million on gas in 1970 and $3105 million in 1981. Of the natural gas consumed, only 2.5% was produced in New York; 51% came from fields offshore Louisiana.

1982-01-01T23:59:59.000Z

250

AEO2013 Early Release Base Overnight Project Technological Total Overnight  

U.S. Energy Information Administration (EIA) Indexed Site

AEO2013 Early Release AEO2013 Early Release Base Overnight Project Technological Total Overnight Variable Fixed Heatrate 6 nth-of-a- kind Online Size Lead time Cost in 2012 Contingency Optimism Cost in 2012 4 O&M 5 O&M in 2012 Heatrate Technology Year 1 (MW) (years) (2011 $/kW) Factor 2 Factor 3 (2011 $/kW) (2011 $/MWh) (2011$/kW) (Btu/kWh) (Btu/kWh) Scrubbed Coal New 7 2016 1300 4 2,694 1.07 1.00 2,883 4.39 30.64 8,800 8,740 Integrated Coal-Gasification Comb Cycle (IGCC) 7 2016 1200 4 3,475 1.07 1.00 3,718 7.09 50.49 8,700 7,450 Pulverized Coal with carbon sequestration 2017 650 4 4,662 1.07 1.03 5,138 4.37 65.31 12,000 9,316

251

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

252

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

253

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

254

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

255

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Dec 2006 Next CBECS will be conducted in 2007 Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings .................................... 4,617 70,181 15.2 10,746 3,559 1,043 82,783 Floorspace per Building (thousand square feet) Total (million dollars) Table C13A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Site Number of Buildings (thousand) Floorspace (million square feet) Climate Zone: 30-Year Average Under 2,000 CDD and -- More than 7,000 HDD ..................... 836 11,300 13.5 1,412 468 137 10,479 5,500-7,000 HDD ............................ 1,185 18,549 15.7 2,621 868 254 19,181 4,000-5,499 HDD ............................ 670 12,374 18.5 1,947 645

256

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

257

table2.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu....

258

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 Table 5.14a Heat Content of Petroleum Consumption Estimates: Residential and Commercial Sectors, Selected Years, 1949-2011 (Trillion Btu) Year Residential Sector Commercial...

259

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 Table 3.8a Heat Content of Petroleum Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Distillate Fuel Oil Kerosene Liquefied...

260

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Fossil Fuels: Nuclear

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

of Petroleum Consumption Estimates: Transportation and Electric Power Sectors, Selected Years, 1949-2011 (Trillion Btu) Year Transportation Sector Electric Power Sector 1 Aviation...

262

Table 8.4b Consumption for Electricity Generation by Energy ...  

U.S. Energy Information Administration (EIA)

Table 8.4b Consumption for Electricity Generation by Energy Source: Electric Power Sector, 1949-2011 (Subset of Table 8.4a; Trillion Btu)

263

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

264

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F23: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2011 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu...

265

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Byproduct Energy for Heat, Power, and Electricity Generation by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Trillion Btu) SIC Code a...

266

District of Columbia - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, District of Columbia (Trillion Btu) ... Washington, DC 20585 About EIA Press Room Careers ...

267

Word Pro - S10  

U.S. Energy Information Administration (EIA) Indexed Site

of data from 1949 through 2013, see the "Web Page" cited above. Table 10.2b Renewable Energy Consumption: Industrial and Transportation Sectors (Trillion Btu) Industrial Sector...

268

Table 2.9 Commercial Buildings Consumption by Energy Source ...  

U.S. Energy Information Administration (EIA)

Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year

269

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE"

270

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006;" 2 End Uses of Fuel Consumption, 2006;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

271

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," " " "," " ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1328 "Natural Gas",5725 "Net Electricity",2437 " Purchases",2510 " Transfers In",33 " Onsite Generation from Noncombustible Renewable Energy",7

272

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE",," " "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

273

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010;" 2 End Uses of Fuel Consumption, 2010;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)" ,,"Total United States"

274

Net income: A company's total earnings, or profit  

U.S. Energy Information Administration (EIA)

Acronyms . API American Petroleum Institute . boe barrels of oil equivalent . Btu British thermal unit . DD&A depreciation, depletion, and amortization

275

Table US1. Total Energy Consumption, Expenditures, and Intensities ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

276

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

277

Table 2.1c Commercial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

R=Revised. P=Preliminary. NA=Not available. - =No data reported. (s)=Less than 0.5 trillion Btu. 6 Conventional hydroelectricity net generation (converted to Btu ...

278

U.S. States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

State: Jet Fuel a: Consumption : Prices : Expenditures: Thousand Barrels: Trillion Btu: Dollars per Million Btu: Million Dollars: Alabama: 2,355: 13.4: 22.77: 304.0 ...

279

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Consumption, Projected vs. Actual" "Projected" " (trillion cubic feet)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011...

280

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

282

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010;" 5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black Liquor","Bark","Materials"

283

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

284

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

285

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

286

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Consumption Estimates 1960 Through 2008 2008 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2008 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity/ Losses f Net Electricity Imports Residential Commercial Industrial b Transportation Coal Natural

287

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

4.3 Offsite-Produced Fuel Consumption, 2006;" 4.3 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," " "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)"

288

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," ",," ",," "," "," " " "," " "NAICS"," "," ",,"Residual","Distillate",,,"LPG and",,,"Coke"," " "Code(a)","Subsector and Industry","Total",,"Fuel Oil","Fuel Oil(b)","Natural Gas(c)",,"NGL(d)",,"Coal","and Breeze","Other(e)"

289

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

290

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

291

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

292

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

293

Originally Released: August 2009  

U.S. Energy Information Administration (EIA) Indexed Site

August 2009" August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,,"Furnace/Coke",,,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total",,"Oven Gases","Waste Gas",,"Coke","Black Liquor","Bark","Materials"

294

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

295

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food ................................................................................. 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products ..................................... 20 0 41 1 1 3 30 11 -0 107

296

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

297

Released: November 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

298

Released: March 2013  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)"

299

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

300

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

302

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

303

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

304

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

305

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

306

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

307

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

308

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

309

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

310

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 * 311221 Wet Corn Milling 179 6,746 * * 51 * 4 0 9 0 31131 Sugar Manufacturing 82 968 1 * 17 * 1 * 20 0 3114 Fruit and Vegetable Preserving and Specialty Food 169 9,708 * * 123 * * 0 4 0 3115 Dairy Product 121 10,079 * * 80 * * 0 1 0 3116 Animal Slaughtering and Processing 226 17,545 1 1 141 * 0 0 12 0 312 Beverage and Tobacco Products 107

311

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

312

 

Gasoline and Diesel Fuel Update (EIA)

. Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 . Electricity Consumption (Btu) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................ 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 ....................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ..................... 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ..................... 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ................... 405 16 57 65 7 158 2 29 6 18 45

313

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

314

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

315

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to...

316

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.5c Consumption of Combustible Fuels for Electricity Generation: Electric Power Sector by Plant Type, Selected Years, 1989-2011 (Breakout of Table 8.5b) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu Electricity-Only Plants 11 1989 767,378 25,574 241,960 3 517 270,125 2,790,567 - 59 111 - 1990 774,213 14,956 181,231 17 1,008 201,246 2,794,110 (s) 87 162 - 1995 832,928 16,169 86,584 133 1,082 108,297 3,287,571 (s)

317

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

44 44 U.S. Energy Information Administration / Annual Energy Review 2011 Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Million Cubic Feet Trillion Btu Trillion Btu Trillion Btu 1989 639 120 1,471 1 - 1,591 81,670 3 24 6 1 1990 1,266 173 1,630 2 - 1,805 97,330 5 23 8 (s) 1991 1,221 104 995 1 - 1,101 99,868 5 21 11 1 1992 1,704 154 1,045 10 4 1,229 122,908 6 21 10 2 1993 1,794 290 1,074 27 40 1,591 128,743 4 21 10 2 1994 2,241

318

21 briefing pages total  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

briefing pages total p. 1 briefing pages total p. 1 Reservist Differential Briefing U.S. Office of Personnel Management December 11, 2009 p. 2 Agenda - Introduction of Speakers - Background - References/Tools - Overview of Reservist Differential Authority - Qualifying Active Duty Service and Military Orders - Understanding Military Leave and Earnings Statements p. 3 Background 5 U.S.C. 5538 (Section 751 of the Omnibus Appropriations Act, 2009, March 11, 2009) (Public Law 111-8) Law requires OPM to consult with DOD Law effective first day of first pay period on or after March 11, 2009 (March 15 for most executive branch employees) Number of affected employees unclear p. 4 Next Steps

319

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Quadrillion Btu Percent Million Barrels Quadrillion Btu Percent Trillion Cubic Feet Quadrillion Btu Percent Million Short Tons Quadrillion Btu Percent Quadrillion Btu Percent 2003 R 689 R 4.00 R 33.3 R 94 R 0.35 R 14.9 R 7.08 R 7.81 R 35.5 R 466 R 9.58 R 43.3 R 21.74 R 37.2 2004 R 680 R 3.94 R 33.8 R 105 R .39 R 16.0 R 6.68 R 7.38 R 34.0 R 484 R 9.89 R 43.9 R 21.60 R 37.0

320

Barge Truck Total  

U.S. Energy Information Administration (EIA) Indexed Site

Barge Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over total shipments Year (nominal) (real) (real) (percent) (nominal) (real) (real) (percent) 2008 $6.26 $5.77 $36.50 15.8% 42.3% $6.12 $5.64 $36.36 15.5% 22.2% 2009 $6.23 $5.67 $52.71 10.8% 94.8% $4.90 $4.46 $33.18 13.5% 25.1% 2010 $6.41 $5.77 $50.83 11.4% 96.8% $6.20 $5.59 $36.26 15.4% 38.9% Annual Percent Change First to Last Year 1.2% 0.0% 18.0% - - 0.7% -0.4% -0.1% - - Latest 2 Years 2.9% 1.7% -3.6% - - 26.6% 25.2% 9.3% - - - = No data reported or value not applicable STB Data Source: The Surface Transportation Board's 900-Byte Carload Waybill Sample EIA Data Source: Form EIA-923 Power Plant Operations Report

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

322

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan...

323

" Electricity Sales/Transfers Out",96,4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Selected Energy Sources, 1994" " (Estimates in Trillion Btu)" ,,"RSE" ,,"Row" "Selected Energy Sources","Total","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers In",53,4 " Generation from Noncombustible",," " " Renewable Resources",10,10 " Electricity Sales/Transfers Out",96,4 "Coke and Breeze",449,8 "Residual Fuel Oil",490,3

324

Table US12. Total Consumption by Energy End Uses, 2005 Quadrillion ...  

U.S. Energy Information Administration (EIA)

Quadrillion British Thermal Units (Btu) U.S. Households (millions) Other Appliances and Lighting Space Heating (Major Fuels) 4 Air-Conditioning 5 Water Heating 6 ...

325

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

326

Total Marketed Production ..............  

Gasoline and Diesel Fuel Update (EIA)

billion cubic feet per day) billion cubic feet per day) Total Marketed Production .............. 68.95 69.77 70.45 71.64 71.91 71.70 71.46 71.57 72.61 72.68 72.41 72.62 70.21 71.66 72.58 Alaska ......................................... 1.04 0.91 0.79 0.96 1.00 0.85 0.77 0.93 0.97 0.83 0.75 0.91 0.93 0.88 0.87 Federal GOM (a) ......................... 3.93 3.64 3.44 3.82 3.83 3.77 3.73 3.50 3.71 3.67 3.63 3.46 3.71 3.70 3.62 Lower 48 States (excl GOM) ...... 63.97 65.21 66.21 66.86 67.08 67.08 66.96 67.14 67.92 68.18 68.02 68.24 65.58 67.07 68.09 Total Dry Gas Production .............. 65.46 66.21 66.69 67.79 68.03 67.83 67.61 67.71 68.69 68.76 68.50 68.70 66.55 67.79 68.66 Gross Imports ................................ 8.48 7.60 7.80 7.95 8.27 7.59 7.96 7.91 7.89 7.17 7.61 7.73 7.96 7.93 7.60 Pipeline ........................................

327

Total Biofuels Consumption (2005 - 2009) Total annual biofuels...  

Open Energy Info (EERE)

Total Biofuels Consumption (2005 - 2009) Total annual biofuels consumption (Thousand Barrels Per Day) for 2005 - 2009 for over 230 countries and regions. ...

328

Table 3. Wet natural gas production and resources (trillion cubic ...  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR, including reserve

329

Trillion Particle Simulation on Hopper Honored with Best Paper  

NLE Websites -- All DOE Office Websites (Extended Search)

Reconnection is the mechanism behind the aurora borealis (a.k.a. northern lights) and solar flares, as well as fractures in Earth's protective magnetic field-fractures that...

330

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

331

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Census Region",,,,,,,"Census Division",,,,,"RSE" "SIC"," ",,,,,,,"Middle","East North","West North","South","East South","West South",,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","New England","Atlantic","Central","Central","Atlantic","Central","Central","Mountain","Pacific","Factors"

332

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

333

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

334

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

335

Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis  

SciTech Connect

Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

Ekechukwu, A.A.

2002-05-10T23:59:59.000Z

336

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

337

table5.5_02  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002; 5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.4 1 0 0 TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6 2,105 2 35 -- 5.3 Conventional Boiler Use -- 2,496 12 4 1,271 2 11 -- 5.6

338

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

339

Case history study of total energy system at Western Mall Shopping Center, Sioux Falls, South Dakota  

SciTech Connect

Western Mall Total Energy Plant in Sioux Falls, South Dakota, serves an enclosed mall shopping center of 462,000 ft/sup 2/. The plant provides most of the mall and tenants with electricity, space-heating, and air-conditioning services from a natural gas-fueled engine-generator plant with hot water heat recovery, supplementary gas-fueled boiler, and absorption water chiller. Heating load served by the plant is calculated to be 15,000,000 Btu at -30/sup 0/F winter design condition with 70/sup 0/F space temperature. Maximum observed cooling load at 100/sup 0/F, 75/sup 0/ W.B. outdoor conditions is about 750 tons of refrigeration. Engine heat is recovered in a water system operated at 210 to 240/sup 0/F; an auxiliary scotch marine type, firetype gas-fueled boiler provides up to 14,000,000 Btu/h or supplementary heat. Energy customers have recently begun to exercise considerable control over their uses of electricity with more careful operation of lighting and appliances and with some replacement of illumination devices with more-efficient equipment. It is concluded that central heating and air-conditioning facilities provide the owner with an assured means for serving the shopping center, regardless of which energy source is most economical or least available. The hot and chilled water can be obtained from gas fuel as at present, from fuel oil, propane, all electric, or coal firing. Adapting the conversion equipment is difficult only for coal because of the space requirement for storage and handling that fuel. The power-generating capacity in place is an asset that should be used to serve the tenants because it reduces the public utility company need for expanded capacity. (MCW)

1977-11-01T23:59:59.000Z

340

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

from the Long-Range Energy Alternatives Planning (LEAP) end-using the Long-Range Energy Alternatives Planning (LEAP)Primary Energy Savings by Fuel, Alternative Case, Trillion

Fridley, David G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 8. Total Natural Gas Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Consumption, Projected vs. Actual Total Natural Gas Consumption, Projected vs. Actual Projected (trillion cubic feet) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 19.87 20.21 20.64 20.99 21.20 21.42 21.60 21.99 22.37 22.63 22.95 23.22 23.58 23.82 24.09 24.13 24.02 24.14 AEO 1995 20.82 20.66 20.85 21.21 21.65 21.95 22.12 22.25 22.43 22.62 22.87 23.08 23.36 23.61 24.08 24.23 24.59 AEO 1996 21.32 21.64 22.11 22.21 22.26 22.34 22.46 22.74 23.14 23.63 24.08 24.25 24.63 25.11 25.56 26.00 26.63 AEO 1997 22.15 22.75 23.24 23.64 23.86 24.13 24.65 25.34 25.82 26.22 26.52 27.00 27.35 27.70 28.01 28.47 AEO 1998 21.84 23.03 23.84 24.08 24.44 24.81 25.33 25.72 26.22 26.65 27.22 27.84 28.35 28.84 29.17 AEO 1999 21.35 22.36 22.54 23.18 23.65 24.17 24.57 25.19 25.77 26.41 26.92 27.42 28.02 28.50

342

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

343

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

344

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2010;" 8 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)" ,"Total United States" "TOTAL FUEL CONSUMPTION",2886,79,130,5211,69,868

345

Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1814,3 "Natural Gas",7426,1 "Net Electricity",3035,1 " Purchases",3044,1

346

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

347

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

348

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1959,10 "Natural Gas",6468,1.3 "Net Electricity",2840,1.4 " Purchases",2882,1.4

349

" Generation by Program Sponsorship, Industry Group, Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

A49. Total Inputs of Energy for Heat, Power, and Electricity" A49. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Program Sponsorship, Industry Group, Selected" " Industries, and Type of Energy-Management Program, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,," Type of Sponsorship of Management Programs" ,,,,,"(1992 through 1994)" ,," " ,,,,,,"Federal, State, or" ,,"No Energy",,"Electric Utility",,"Local Government","Third Party","RSE" "SIC",,"Management","Any Type of","Sponsored","Self-Sponsored","Sponsored","Sponsored","Row"

350

Released: October 2009  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." ,"Total" "Energy Source","First Use" ,"Total United States" "Coal ",1433 "Natural Gas",5911 "Net Electricity",2851 " Purchases",2894 " Transfers In",20 " Onsite Generation from Noncombustible Renewable Energy",4 " Sales and Transfers Offsite",67

351

Combinatorial aspects of total positivity  

E-Print Network (OSTI)

In this thesis I study combinatorial aspects of an emerging field known as total positivity. The classical theory of total positivity concerns matrices in which all minors are nonnegative. While this theory was pioneered ...

Williams, Lauren Kiyomi

2005-01-01T23:59:59.000Z

352

Total correlations and mutual information  

E-Print Network (OSTI)

In quantum information theory it is generally accepted that quantum mutual information is an information-theoretic measure of total correlations of a bipartite quantum state. We argue that there exist quantum states for which quantum mutual information cannot be considered as a measure of total correlations. Moreover, for these states we propose a different way of quantifying total correlations.

Zbigniew Walczak

2008-06-30T23:59:59.000Z

353

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

354

table4.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002; 1 Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.8 0.8 1.1 1.6 0.9 1.8 0.7 0.7 1.2 311 Food 1,079 68,230 2 3 560 1 8 * 50 8 311221 Wet Corn Milling 217 7,098 * * 59 * 5 0 11 1.1 31131 Sugar 74 733 * * 22 * 2 * 8 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0

355

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

356

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-12-31T23:59:59.000Z

357

1990 Washington State directory of biomass energy facilities  

SciTech Connect

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

358

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 3.4 2.5 0.9 2 to 15 Hours............................................................. 29.1 7.0 4.8 2.3 16 to 40 Hours........................................................... 13.5 2.8 2.1 0.7 41 to 167 Hours......................................................... 6.3

359

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.2 15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing Unit.............................. 3.3 2.9 Q Q Q N For Two Housing Units............................. 1.4 Q Q 0.5 0.8 N Central Warm-Air Furnace........................... 2.8 2.4 Q Q Q 0.2 Other Equipment......................................... 0.3 0.2 Q N Q N Wood..............................................................

360

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................. Do Not Have Cooling Equipment................. 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment.............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment............................... 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Air-Conditioning Equipment 1, 2 Central System............................................ 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units...................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit....................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units.....................................................

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a Week....................................... 4.1 1.1 0.7 0.4 No Hot Meals Cooked........................................... 0.9 Q Q N Conventional Oven Use an Oven......................................................... 109.6 25.3 17.6 7.7 More Than Once a Day..................................... 8.9 1.3 0.8 0.5 Once a Day.......................................................

362

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2 1.3 1.2 5.0 0.3 1.1 Number of Laptop PCs 1.......................................................... 22.5 2.2 4.6 4.5 2.9 8.3 1.4 4.0 2.......................................................... 4.0 Q 0.4 0.6 0.4 2.4 Q 0.5 3 or More............................................. 0.7 Q Q Q Q 0.4 Q Q Type of Monitor Used on Most-Used PC Desk-top

363

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs 1.......................................................... 22.5 4.7 4.6 7.7 5.4 2.......................................................... 4.0 0.6 0.9 1.5 1.1 3 or More............................................. 0.7 Q Q Q 0.3 Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 7.9 11.4 15.4 10.2 Flat-panel LCD.................................

364

Total................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Do Not Have Space Heating Equipment....... 1.2 0.5 0.3 0.2 Q 0.2 0.3 0.6 Have Main Space Heating Equipment.......... 109.8 26.2 28.5 20.4 13.0 21.8 16.3 37.9 Use Main Space Heating Equipment............ 109.1 25.9 28.1 20.3 12.9 21.8 16.0 37.3 Have Equipment But Do Not Use It.............. 0.8 0.3 0.3 Q Q N 0.4 0.6 Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 12.2 14.4 11.3 7.1 13.2 7.6 18.3 Central Warm-Air Furnace........................ 44.7 7.5 10.8 9.3 5.6 11.4 4.6 12.0 For One Housing Unit........................... 42.9 6.9 10.3 9.1 5.4 11.3 4.1 11.0 For Two Housing Units......................... 1.8 0.6 0.6 Q Q Q 0.4 0.9 Steam or Hot Water System..................... 8.2 2.4 2.5 1.0 1.0 1.3 1.5 3.6 For One Housing Unit...........................

365

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

366

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1 16.2 11.0 11.4 For One Housing Unit................................... 42.9 5.6 15.5 10.7 11.1 For Two Housing Units................................. 1.8 0.5 0.7 Q 0.3 Steam or Hot Water System............................. 8.2 4.9 1.6 1.0 0.6 For One Housing Unit................................... 5.1 3.2 1.1 0.4

367

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.6 0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat Pump........................................... 53.5 5.5 4.8 0.7 With a Heat Pump............................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................. 28.9 10.7 7.6 3.1 1 Unit................................................................... 14.5 4.3 2.9 1.4 2 Units.................................................................

368

Total.......................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs 1.................................................................. 22.5 5.4 1.5 3.9 2.................................................................. 4.0 1.1 0.3 0.8 3 or More..................................................... 0.7 0.3 Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)...........................

369

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.7 1.8 2.9 3.2 2 to 15 Hours............................................................. 29.1 11.9 5.1 6.5 5.7 16 to 40 Hours........................................................... 13.5 5.5 2.5 3.3 2.2 41 to 167 Hours.........................................................

370

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.2 Q Have Main Space Heating Equipment.................. 109.8 46.3 18.9 22.5 22.1 Use Main Space Heating Equipment.................... 109.1 45.6 18.8 22.5 22.1 Have Equipment But Do Not Use It...................... 0.8 0.7 Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 27.0 11.9 14.9 4.3 Central Warm-Air Furnace................................ 44.7 19.8 8.6 12.8 3.6 For One Housing Unit................................... 42.9 18.8 8.3 12.3 3.5 For Two Housing Units................................. 1.8 1.0 0.3 0.4 Q Steam or Hot Water System............................. 8.2 4.4 2.1 1.4 0.3 For One Housing Unit................................... 5.1 2.1 1.6 1.0

371

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

15.1 15.1 5.5 Do Not Have Space Heating Equipment............... 1.2 Q Q Q Have Main Space Heating Equipment.................. 109.8 20.5 15.1 5.4 Use Main Space Heating Equipment.................... 109.1 20.5 15.1 5.4 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 9.1 2.3 Central Warm-Air Furnace................................ 44.7 6.1 5.3 0.8 For One Housing Unit................................... 42.9 5.6 4.9 0.7 For Two Housing Units................................. 1.8 0.5 0.4 Q Steam or Hot Water System............................. 8.2 4.9 3.6 1.3 For One Housing Unit................................... 5.1 3.2 2.2 1.0 For Two Housing Units.................................

372

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

49.2 49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat Pump................................ 53.5 3.5 12.9 12.7 8.6 5.5 4.2 6.2 With a Heat Pump..................................... 12.3 0.4 2.2 2.9 2.5 1.5 1.0 1.8 Window/Wall Units........................................ 28.9 27.5 0.5 Q 0.3 Q Q Q 1 Unit......................................................... 14.5 13.5 0.3 Q Q Q N Q 2 Units.......................................................

373

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0 For One Housing Unit................................... 42.9 1.5 Q 3.1 6.0 For Two Housing Units................................. 1.8 Q N Q Q Steam or Hot Water System............................. 8.2 1.9 Q Q 0.2 For One Housing Unit................................... 5.1 0.8 Q N Q For Two Housing Units.................................

374

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

5.6 5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing Unit................................... 42.9 15.5 11.0 4.5 For Two Housing Units................................. 1.8 0.7 0.6 Q Steam or Hot Water System............................. 8.2 1.6 1.2 0.4 For One Housing Unit................................... 5.1 1.1 0.9 Q For Two Housing Units.................................

375

Total...........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump........................................... 53.5 8.7 3.2 5.5 With a Heat Pump............................................... 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit................................................................... 14.5 2.9 0.5 2.4 2 Units.................................................................

376

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

377

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Personal Computers Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 5.0 2.6 1.0 1.3 2 to 15 Hours............................................................. 29.1 10.3 5.9 1.6 2.9 16 to 40 Hours........................................................... 13.5 4.1 2.3 0.6 1.2 41 to 167 Hours.........................................................

378

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

,171 ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269 999 775 510 West North Central................................. 7.9 2,281 1,930 1,566 940 796 646 South.......................................................... 40.7 2,161 1,551 1,295 856 615 513 South Atlantic......................................... 21.7 2,243 1,607 1,359 896 642 543 East South Central.................................

379

Total.........................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

..... ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less than 2 Hours......................................................... 13.6 0.7 0.9 0.9 1.4 2 to 15 Hours................................................................. 29.1 1.7 2.1 1.9 3.4 16 to 40 Hours............................................................... 13.5 0.9 0.9 0.9 1.8 41 to 167 Hours.............................................................

380

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a Week....................................... 4.1 0.7 0.3 0.4 No Hot Meals Cooked........................................... 0.9 0.2 Q Q Conventional Oven Use an Oven......................................................... 109.6 23.7 7.5 16.2 More Than Once a Day..................................... 8.9 1.7 0.4 1.3 Once a Day.......................................................

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump.............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................... 12.3 9.0 6.7 1.4 0.9 Window/Wall Units..................................................... 28.9 8.0 3.4 1.7 2.9 1 Unit......................................................................

382

Total....................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Household Size 1 Person.......................................................... 30.0 4.6 2.5 3.7 3.2 5.4 5.5 3.7 1.6 2 Persons......................................................... 34.8 4.3 1.9 4.4 4.1 5.9 5.3 5.5 3.4 3 Persons......................................................... 18.4 2.5 1.3 1.7 1.9 2.9 3.5 2.8 1.6 4 Persons......................................................... 15.9 1.9 0.8 1.5 1.6 3.0 2.5 3.1 1.4 5 Persons......................................................... 7.9 0.8 0.4 1.0 1.1 1.2 1.1 1.5 0.9 6 or More Persons........................................... 4.1 0.5 0.3 0.3 0.6 0.5 0.7 0.8 0.4 2005 Annual Household Income Category Less than $9,999............................................. 9.9 1.9 1.1 1.3 0.9 1.7 1.3 1.1 0.5 $10,000 to $14,999..........................................

383

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.4 3.4 5.0 2.9 2 to 15 Hours............................................................. 29.1 5.2 7.0 10.3 6.6 16 to 40 Hours........................................................... 13.5 3.1 2.8 4.1 3.4 41 to 167 Hours.........................................................

384

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2 Hours..................................................... 13.6 2.9 0.9 2.0 2 to 15 Hours............................................................. 29.1 6.6 2.0 4.6 16 to 40 Hours........................................................... 13.5 3.4 0.9 2.5 41 to 167 Hours......................................................... 6.3

385

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

33.0 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Cooling Equipment..................... 17.8 6.5 1.6 0.9 1.3 2.4 0.2 Have Cooling Equipment................................. 93.3 26.5 6.5 2.5 4.6 12.0 1.0 Use Cooling Equipment.................................. 91.4 25.7 6.3 2.5 4.4 11.7 0.8 Have Equipment But Do Not Use it................. 1.9 0.8 Q Q 0.2 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 14.1 3.6 1.5 2.1 6.4 0.6 Without a Heat Pump.................................. 53.5 12.4 3.1 1.3 1.8 5.7 0.6 With a Heat Pump....................................... 12.3 1.7 0.6 Q 0.3 0.6 Q Window/Wall Units....................................... 28.9 12.4 2.9 1.0 2.5 5.6 0.4 1 Unit.......................................................... 14.5 7.3 1.2 0.5 1.4 3.9 0.2 2 Units.........................................................

386

Total....................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week..................................................... 3.9 1.7 0.6 0.9 0.8 Less Than Once a Week.............................................. 4.1 2.2 0.6 0.8 0.5 No Hot Meals Cooked................................................... 0.9 0.4 Q Q Q Conventional Oven Use an Oven................................................................. 109.6 46.2 18.8

387

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

388

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat Pump............................................. 53.5 16.2 10.6 5.6 With a Heat Pump................................................. 12.3 1.1 0.8 0.4 Window/Wall Units.................................................. 28.9 6.6 4.9 1.7 1 Unit..................................................................... 14.5 4.1 2.9 1.2 2 Units...................................................................

389

Total..............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

20.6 20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5 Without a Heat Pump.............................................. 53.5 5.5 16.2 23.2 8.7 With a Heat Pump................................................... 12.3 0.5 1.1 9.0 1.7 Window/Wall Units..................................................... 28.9 10.7 6.6 8.0 3.6 1 Unit......................................................................

390

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

60,000 to 79,999 80,000 or More Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

391

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Usage Indicators by U.S. Census Region, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators U.S. Census Region Northeast Midwest South West Energy Information...

392

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.7...

393

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Homes Million U.S. Housing Units Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC4.7...

394

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Self-Reported) City Town Suburbs Rural Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC8.7...

395

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

East North Central West North Central Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing...

396

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC10.12 Home Electronics Usage Indicators by U.S. Census Region, 2005 Housing Units (millions) Energy Information...

397

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Housing Units Home Electronics Usage Indicators Table HC8.12 Home Electronics Usage Indicators by UrbanRural Location, 2005 Housing Units (millions) Energy Information...

398

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

7.0 7.7 6.6 Have Equipment But Do Not Use it... 1.9 Q N Q 0.6 Air-Conditioning Equipment 1, 2 Central System......

399

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

Air-Conditioning Equipment 1, 2 Central System... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump... 53.5...

400

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System......

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

18.0 Have Equipment But Do Not Use it... 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System......

402

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

m... 3.2 0.2 Q 0.1 Telephone and Office Equipment CellMobile Telephone... 84.8 14.9 11.1 3.9 Cordless...

403

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

m... 3.2 0.9 0.7 Q Telephone and Office Equipment CellMobile Telephone... 84.8 19.3 13.2 6.1 Cordless...

404

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q 0.5 Q Q Monitor is Turned Off... 0.5 N Q Q Q Q N Q Use of Internet Have Access to Internet Yes... 66.9...

405

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Four Most Populated States New York Florida Texas California Million U.S. Housing Units Home Electronics Usage Indicators Table HC15.12 Home Electronics Usage Indicators by Four...

406

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

407

Total  

U.S. Energy Information Administration (EIA) Indexed Site

Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Gasoline Blending...

408

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer ... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer......

409

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 25.8 2.8 5.8 5.5 3.8 7.9 1.4 5.1 Use of Most-Used Ceiling Fan Used All Summer... 18.7 4.2 4.9 4.1 2.1 3.4 2.4 6.3...

410

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Heating Characteristics Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC5.4 Space Heating...

411

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

at All... 2.9 1.1 0.5 Q 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

412

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

3.3 Not Used at All... 2.9 0.7 0.5 Q Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

413

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

3.6 Not Used at All... 2.9 0.8 0.3 0.4 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

414

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

1.1 Not Used at All... 2.9 0.4 Q 0.2 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools... 54.9...

415

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

at All... 2.9 1.4 0.4 0.4 0.7 Battery-Operated AppliancesTools Use Battery-Operated AppliancesTools......

416

Total..........................................................  

Gasoline and Diesel Fuel Update (EIA)

5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business Yes......

417

Total..........................................................  

Annual Energy Outlook 2012 (EIA)

... 34.3 1.2 0.9 2.2 2.9 5.4 7.0 8.2 6.6 Adequacy of Insulation Well Insulated... 29.5 1.5 0.9 2.3 2.7 4.1...

418

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Cooking Appliances Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a Week....................................... 4.1 0.6 0.4 Q No Hot Meals Cooked........................................... 0.9 0.3 Q Q Conventional Oven Use an Oven......................................................... 109.6 20.3 14.9 5.4 More Than Once a Day..................................... 8.9 1.4 1.2 0.3 Once a Day.......................................................

419

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

47.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs 1.......................................................... 22.5 9.1 3.6 6.0 3.8 2.......................................................... 4.0 1.5 0.6 1.3 0.7 3 or More............................................. 0.7 0.3 Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 17.7 7.5 10.2 9.6 Flat-panel LCD.................................

420

Total........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 24.5 1,090 902 341 872 780 441 Census Region and Division Northeast............................................. 20.6 6.7 1,247 1,032 Q 811 788 147 New England.................................... 5.5 1.9 1,365 1,127 Q 814 748 107 Middle Atlantic.................................. 15.1 4.8 1,182 978 Q 810 800 159 Midwest................................................ 25.6 4.6 1,349 1,133 506 895 810 346 East North Central............................ 17.7 3.2 1,483 1,239 560 968 842 351 West North Central........................... 7.9 1.4 913 789 329 751 745 337 South................................................... 40.7 7.8 881 752 572 942 873 797 South Atlantic................................... 21.7 4.9 875 707 522 1,035 934 926 East South Central........................... 6.9 0.7 Q Q Q 852 826 432 West South Central..........................

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Total...............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs 1.......................................................... 22.5 7.7 4.3 1.1 2.4 2.......................................................... 4.0 1.5 0.9 Q 0.4 3 or More............................................. 0.7 Q Q Q Q Type of Monitor Used on Most-Used PC Desk-top CRT (Standard Monitor)................... 45.0 15.4 7.9 2.8 4.8 Flat-panel LCD.................................

422

Total.................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day.............................. 8.2 2.9 2.5 1.3 0.5 1.0 2.4 4.6 2 Times A Day........................................... 24.6 6.5 7.0 4.3 3.2 3.6 4.8 10.3 Once a Day................................................ 42.3 8.8 9.8 8.7 5.1 10.0 5.0 12.9 A Few Times Each Week........................... 27.2 5.6 7.2 4.7 3.3 6.3 3.2 7.5 About Once a Week................................... 3.9 1.1 1.1 0.6 0.5 0.6 0.4 1.4 Less Than Once a Week............................ 4.1 1.3 1.0 0.9 0.5 0.4 0.7 1.4 No Hot Meals Cooked................................ 0.9 0.5 Q Q Q Q 0.2 0.5 Conventional Oven Use an Oven.............................................. 109.6 26.1 28.5 20.2 12.9 21.8 16.3 37.8 More Than Once a Day..........................

423

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 3.7 2.6 6.1 6.8 11.2 13.2 13.9 8.2 Without a Heat Pump.................................. 53.5 3.6 2.3 5.5 5.8 9.5 10.1 10.3 6.4 With a Heat Pump....................................... 12.3 Q 0.3 0.6 1.0 1.7 3.1 3.6 1.7 Window/Wall Units....................................... 28.9 7.3 3.2 4.5 3.7 4.8 3.0 1.9 0.7 1 Unit..........................................................

424

Total..............................................  

U.S. Energy Information Administration (EIA) Indexed Site

111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North Central.................. 17.7 14.5 2,864 2,217 1,490 2,514 1,715 1,408 907 839 553 West North Central................. 7.9 6.4 2,729 2,289 1,924 1,806 1,510 1,085 1,299 1,113 1,059 South.......................................... 40.7 33.0 2,707 1,849 1,563 1,605 1,350 954 1,064 970 685 South Atlantic......................... 21.7 16.8 2,945 1,996 1,695 1,573 1,359 909 1,044 955

425

Total.................................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

... ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment................................. 17.8 4.0 2.4 1.7 Have Cooling Equipment............................................. 93.3 16.5 12.8 3.8 Use Cooling Equipment............................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it............................. 1.9 0.3 Q Q Type of Air-Conditioning Equipment 1, 2 Central System.......................................................... 65.9 6.0 5.2 0.8 Without a Heat Pump.............................................. 53.5 5.5 4.8 0.7 With a Heat Pump................................................... 12.3 0.5 0.4 Q Window/Wall Units.................................................... 28.9 10.7 7.6 3.1 1 Unit.......................................................................

426

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat Pump............................................. 53.5 21.2 9.7 13.7 8.9 With a Heat Pump................................................. 12.3 4.6 1.2 2.8 3.6 Window/Wall Units.................................................. 28.9 13.4 5.6 3.9 6.1 1 Unit.....................................................................

427

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat Pump............................................. 53.5 8.7 3.2 5.5 With a Heat Pump................................................. 12.3 1.7 0.7 1.0 Window/Wall Units.................................................. 28.9 3.6 0.6 3.0 1 Unit..................................................................... 14.5 2.9 0.5 2.4 2 Units...................................................................

428

Total..................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

78.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Cooling Equipment..................... 17.8 11.3 9.3 0.6 Q 0.4 0.9 Have Cooling Equipment................................. 93.3 66.8 54.7 3.6 1.7 1.9 4.8 Use Cooling Equipment.................................. 91.4 65.8 54.0 3.6 1.7 1.9 4.7 Have Equipment But Do Not Use it................. 1.9 1.1 0.8 Q N Q Q Type of Air-Conditioning Equipment 1, 2 Central System.............................................. 65.9 51.7 43.9 2.5 0.7 1.6 3.1 Without a Heat Pump.................................. 53.5 41.1 34.8 2.1 0.5 1.2 2.6 With a Heat Pump....................................... 12.3 10.6 9.1 0.4 Q 0.3 0.6 Window/Wall Units....................................... 28.9 16.5 12.0 1.3 1.0 0.4 1.7 1 Unit.......................................................... 14.5 7.2 5.4 0.5 0.2 Q 0.9 2 Units.........................................................

429

Total.............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment............................... Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat Pump............................................. 53.5 23.2 10.9 3.8 8.4 With a Heat Pump................................................. 12.3 9.0 6.7 1.4 0.9 Window/Wall Units.................................................. 28.9 8.0 3.4 1.7 2.9 1 Unit.....................................................................

430

Total........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Do Not Have Space Heating Equipment............... 1.2 0.7 Q 0.7 Have Main Space Heating Equipment.................. 109.8 23.4 7.5 16.0 Use Main Space Heating Equipment.................... 109.1 22.9 7.4 15.4 Have Equipment But Do Not Use It...................... 0.8 0.6 Q 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 14.7 4.6 10.1 Central Warm-Air Furnace................................ 44.7 11.4 4.0 7.4 For One Housing Unit................................... 42.9 11.1 3.8 7.3 For Two Housing Units................................. 1.8 0.3 Q Q Steam or Hot Water System............................. 8.2 0.6 0.3 0.3 For One Housing Unit................................... 5.1 0.4 0.2 0.1 For Two Housing Units.................................

431

Total..............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Do Not Have Cooling Equipment................ Do Not Have Cooling Equipment................ 17.8 5.3 4.7 2.8 1.9 3.1 3.6 7.5 Have Cooling Equipment............................. 93.3 21.5 24.1 17.8 11.2 18.8 13.0 31.1 Use Cooling Equipment.............................. 91.4 21.0 23.5 17.4 11.0 18.6 12.6 30.3 Have Equipment But Do Not Use it............. 1.9 0.5 0.6 0.4 Q Q 0.5 0.8 Type of Air-Conditioning Equipment 1, 2 Central System.......................................... 65.9 11.0 16.5 13.5 8.7 16.1 6.4 17.2 Without a Heat Pump.............................. 53.5 9.4 13.6 10.7 7.1 12.7 5.4 14.5 With a Heat Pump................................... 12.3 1.7 2.8 2.8 1.6 3.4 1.0 2.7 Window/Wall Units................................... 28.9 10.5 8.1 4.5 2.7 3.1 6.7 14.1 1 Unit...................................................... 14.5 5.8 4.3 2.0 1.1 1.3 3.4 7.4 2 Units....................................................

432

Idle Operating Total Stream Day  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 11 10 1 1,293,200 1,265,200 28,000 1,361,700 1,329,700 32,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0 ................................................................................................................................................................................................................................................................................................ Delaware......................................

433

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

434

China Total Cloud Amount Trends  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends in Total Cloud Amount Over China DOI: 10.3334CDIACcli.008 data Data image Graphics Investigator Dale P. Kaiser Carbon Dioxide Information Analysis Center, Environmental...

435

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

436

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) End-Use Categories Net Demand for Electricity a Residual Fuel Oil Distillate Fuel Oil and Diesel Fuel b Natural Gas c LPG Coal (excluding Coal Coke...

437

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

6 6 State Energy Data 2011: Consumption Table C11. Energy Consumption by Source, Ranked by State, 2011 Rank Coal Natural Gas a Petroleum b Retail Electricity Sales State Trillion Btu State Trillion Btu State Trillion Btu State Trillion Btu 1 Texas 1,695.2 Texas 3,756.9 Texas 5,934.3 Texas 1,283.1 2 Indiana 1,333.4 California 2,196.6 California 3,511.4 California 893.7 3 Ohio 1,222.6 Louisiana 1,502.9 Louisiana 1,925.7 Florida 768.0 4 Pennsylvania 1,213.0 New York 1,246.9 Florida 1,680.3 Ohio 528.0 5 Illinois 1,052.2 Florida 1,236.6 New York 1,304.0 Pennsylvania 507.6 6 Kentucky 1,010.6 Pennsylvania 998.6 Pennsylvania 1,255.6 New York 491.5

438

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

R=Revised. P=Preliminary. =No data reported. (s)=Less than 0.5 trillion Btu. 4 Blast furnace gas, propane gas, and other manufactured and waste gases derived ...

439

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Review 2011 125 2 123 5 9 7 112 Feedstock Losses and Production Imports Exports Stock Consumption 0 25 50 75 100 125 150 Trillion Btu Change Co-Products 2 2001 2002 2003...

440

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu)

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Word Pro - Untitled1  

Gasoline and Diesel Fuel Update (EIA)

(All Sectors), Selected Years, 1949-2011 (Sum of Tables 8.4b and 8.4c; Trillion Btu) Year Fossil Fuels Nuclear Electric Power 5 Renewable Energy Other 9 Electricity Net Imports 10...

442

www.eia.gov  

U.S. Energy Information Administration (EIA)

Transportation Sector Energy Use by Mode and Type TEU000 (trillion Btu) ... TEU000:da_Rail Rail TEU000:da_Freight TEU000:da_Passenger Passenger ...

443

FEMP Year in Review 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

identifying and implementing energy saving projects, the 2003 award winners have created energy cost savings of more than 62 million and 3.4 trillion Btu in one year. Our winners...

444

All Consumption Tables.vp  

Gasoline and Diesel Fuel Update (EIA)

17 17 Table C12. Total Energy Consumption, Gross Domestic Product (GDP), Energy Consumption per Real Dollar of GDP, Ranked by State, 2011 Rank Total Energy Consumption Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP State Trillion Btu State Billion Chained (2005) Dollars State Thousand Btu per Chained (2005) Dollar 1 Texas 12,206.6 California 1,735.4 Louisiana 19.7 2 California 7,858.4 Texas 1,149.9 Wyoming 17.5 3 Florida 4,217.1 New York 1,016.4 North Dakota 15.4 4 Louisiana 4,055.3 Florida 661.1 Alaska 14.3 5 Illinois 3,977.8 Illinois 582.1 Mississippi 13.8 6 Ohio 3,827.6 Pennsylvania 500.4 Kentucky 13.5

445

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

446

Table 2a. Electricity Consumption and Electricity Intensities, per Square  

U.S. Energy Information Administration (EIA) Indexed Site

assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity Intensities, per Square Foot, Specific to Occupied and Vacant Floorspace, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption (trillion Btu) Electricity Intensities (thousand Btu) In Total Floor space In Occupied Floor space In Vacant Floor space Per Square Foot Per Occupied Square Foot Per Vacant Square Foot All Buildings 4,590 2,600 2,563 37 39 42 8 Building Floorspace (Square Feet) 1,001 to 5,000 2,532 334 331 3 48 51 6 5,001 to 10,000 946 250 247 3 36 38 6 10,001 to 25,000

447

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

448

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

449

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

450

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

451

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

452

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

453

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 7.3c Consumption of Selected Combustible Fuels for Electricity Generation: Commercial and Industrial Sectors (Subset of Table 7.3a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 417 953 28 15 10,740 13,103 517 104 335 16 36 1995 Total .................... 569 649 43 21 12,171 12,265 601 114 373 13 40 2000 Total .................... 514 823 37 26 11,706 10,459 640 107 369 10 45 2001 Total .................... 532 1,023 36 15 10,636 10,530 654 88 370 7 44 2002 Total .................... 477 834 33 18 11,855 11,608 685 106 464 15 43 2003 Total

454

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

455

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

456

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

457

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

458

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

459

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 2.11 Commercial Buildings Electricity Consumption by End Use, 2003 (Trillion Btu) End Use Space Heating Cooling Ventilation Water Heating Lighting Cooking Refrigeration Office Equipment Computers Other 1 Total All Buildings .................................... 167 481 436 88 1,340 24 381 69 156 418 3,559 Principal Building Activity Education ...................................... 15 74 83 11 113 2 16 4 32 21 371 Food Sales ................................... 6 12 7 Q 46 2 119 2 2 10 208 Food Service ................................ 10 28 24 10 42 13 70 2 2 15 217

460

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

462

U.S. Total Exports  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

463

 

Gasoline and Diesel Fuel Update (EIA)

. Natural Gas Consumption (Btu) and Energy Intensities by End Use for . Natural Gas Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Natural Gas Consumption (trillion Btu) Natural Gas Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ....................... 1,928 1,316 332 142 137 44.3 30.3 7.6 3.3 3.2 Building Floorspace (Square Feet) 1,001 to 5,000 ........................ 250 155 35 41 18 81.1 50.4 11.5 13.4 5.9 5,001 to 10,000 ...................... 209 143 32 30 Q 56.5 38.8 8.7 8.2 Q 10,001 to 25,000 .................... 309 248 32 22 8 43.9 35.1 4.6 3.1 1.1 25,001 to 50,000 .................... 258 188 41 12 Q 42.7 31.1 6.8 2.0 Q

464

 

Gasoline and Diesel Fuel Update (EIA)

1A. District Heat Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 1A. District Heat Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total District Heat Consumption (trillion Btu) District Heat Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 636 580 46 1 Q 114.0 103.9 8.3 0.2 Q Building Floorspace (Square Feet) 1,001 to 5,000 ......................... Q Q Q Q Q Q Q Q Q Q 5,001 to 10,000 ....................... Q Q Q Q Q Q Q Q Q Q 10,001 to 25,000 ..................... Q Q Q Q Q Q Q Q Q Q 25,001 to 50,000 ..................... Q Q Q Q Q Q Q Q Q Q 50,001 to 100,000 ................... Q Q Q Q Q Q Q Q Q Q

465

 

Gasoline and Diesel Fuel Update (EIA)

A. Natural Gas Consumption (Btu) and Energy Intensities by End Use for A. Natural Gas Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total Natural Gas Consumption (trillion Btu) Natural Gas Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 2,100 1,420 348 164 168 43.3 29.3 7.2 3.4 3.5 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 257 161 36 42 18 81.0 50.6 11.3 13.3 5.8 5,001 to 10,000 ....................... 224 152 33 32 7 56.5 38.3 8.4 8.1 1.7 10,001 to 25,000 ..................... 353 273 35 26 19 45.2 34.9 4.5 3.3 2.4 25,001 to 50,000 ..................... 278 202 43 14 Q 42.2 30.6 6.5 2.1 3.0

466

 

Gasoline and Diesel Fuel Update (EIA)

A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ......................... 228 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 34 32 Q (*) Q 56.9 52.2 Q (*) Q 5,001 to 10,000 ....................... 36 33 Q (*) Q 49.4 44.7 Q 0.1 Q 10,001 to 25,000 ..................... 28 25 1 (*) Q 26.7 23.8 1.4 0.1 Q 25,001 to 50,000 ..................... 17 16 Q (*) 1 19.1 17.8 Q (*) 0.6 50,001 to 100,000 ................... 29 26 1 Q 1 15.6 14.1 0.7 Q 0.5

467

 

Gasoline and Diesel Fuel Update (EIA)

. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for . Fuel Oil Consumption (Btu) and Energy Intensities by End Use for Non-Mall Buildings, 2003 Total Fuel Oil Consumption (trillion Btu) Fuel Oil Energy Intensity (thousand Btu/square foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................ 222 194 17 Q 10 14.7 12.8 1.1 Q 0.6 Building Floorspace (Square Feet) 1,001 to 5,000 ......................... 34 32 Q (*) Q 57.4 52.7 Q (*) Q 5,001 to 10,000 ....................... 36 33 Q (*) Q 50.6 45.8 Q 0.1 Q 10,001 to 25,000 ..................... 27 25 1 (*) Q 28.2 25.4 1.5 0.1 Q 25,001 to 50,000 ..................... 16 15 Q (*) 1 19.7 18.8 Q (*) 0.7 50,001 to 100,000 ................... 26 23 1 Q 1 15.0 13.3 0.8 Q 0.6

468

Word Pro - S10  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 U.S. Energy Information Administration / Monthly Energy Review November 2013 Table 10.2c Renewable Energy Consumption: Electric Power Sector (Trillion Btu) Hydro- electric Power a Geo- thermal b Solar/PV c Wind d Biomass Total Wood e Waste f Total 1950 Total .................... 1,346 NA NA NA 5 NA 5 1,351 1955 Total .................... 1,322 NA NA NA 3 NA 3 1,325 1960 Total .................... 1,569 (s) NA NA 2 NA 2 1,571 1965 Total .................... 2,026 2 NA NA 3 NA 3 2,031 1970 Total .................... 2,600 6 NA NA 1 2 4 2,609 1975 Total .................... 3,122 34 NA NA (s) 2 2 3,158 1980 Total .................... 2,867 53 NA NA 3 2 4 2,925 1985 Total .................... 2,937 97 (s) (s)

469

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Table 7.4c Consumption of Selected Combustible Fuels for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors (Subset of Table 7.4a) Commercial Sector a Industrial Sector b Coal c Petroleum d Natural Gas e Biomass Coal c Petroleum d Natural Gas e Other Gases g Biomass Other i Waste f Wood h Waste f Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1990 Total .................... 1,191 2,056 46 28 27,781 36,159 1,055 275 1,125 41 86 1995 Total .................... 1,419 1,245 78 40 29,363 34,448 1,258 290 1,255 38 95 2000 Total .................... 1,547 1,615 85 47 28,031 30,520 1,386 331 1,244 35 108 2001 Total .................... 1,448 1,832 79 25 25,755 26,817 1,310 248 1,054 27 101 2002 Total ....................

470

Compact Totally Disconnected Moufang Buildings  

E-Print Network (OSTI)

Let $\\Delta$ be a spherical building each of whose irreducible components is infinite, has rank at least 2 and satisfies the Moufang condition. We show that $\\Delta$ can be given the structure of a topological building that is compact and totally disconnected precisely when $\\Delta$ is the building at infinity of a locally finite affine building.

Grundhofer, T; Van Maldeghem, H; Weiss, R M

2010-01-01T23:59:59.000Z

471

Total Imports of Residual Fuel  

Annual Energy Outlook 2012 (EIA)

2007 2008 2009 2010 2011 2012 View History U.S. Total 135,676 127,682 120,936 133,646 119,888 93,672 1936-2012 PAD District 1 78,197 73,348 69,886 88,999 79,188 59,594 1981-2012...

472

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

473

Commercial applications of solar total energy systems. Volume 1. Summary. Final report  

DOE Green Energy (OSTI)

A methodology has been developed by Atomics International under contract to the Department of Energy to define the applicability of solar total energy systems (STES) to the commercial sector (e.g., retail stores, shopping centers, offices, etc.) in the United States. Candidate STES concepts were selected to provide on-site power generation capability, as well as thermal energy for both heating and cooling applications. Each concept was evaluated on the basis of its cost effectiveness (i.e., as compared to other concepts) and its ability to ultimately penetrate and capture a significant segment of this market, thereby resulting in a saving of fossil fuel resources. The photovoltaic STES appears favorable for applications under 800 kWe; whereas the organic Rankine STES would be more cost effective for larger energy demand applications. Initial penetration of these systems are expected to occur in the northeast for large shopping centers in the 1990 to 2000 time period. Such systems could provide about 0.8 to 1.8 quads (8 x 10/sup 14/ to 1.8 x 10/sup 15/ Btu) of energy per year for commercial applictions by the year 2010.

Boobar, M.G.; McFarland, B.L.; Nalbandian, S.J.; Willcox, W.W.; French, E.P.; Smith, K.E.

1978-07-01T23:59:59.000Z

474

Word Pro - S10  

U.S. Energy Information Administration (EIA) Indexed Site

8 8 U.S. Energy Information Administration / Monthly Energy Review November 2013 Table 10.2a Renewable Energy Consumption: Residential and Commercial Sectors (Trillion Btu) Residential Sector Commercial Sector a Geo- thermal b Solar/ PV c Biomass Total Hydro- electric Power e Geo- thermal b Solar/ PV f Wind g Biomass Total Wood d Wood d Waste h Fuel Ethanol i Total 1950 Total .................... NA NA 1,006 1,006 NA NA NA NA 19 NA NA 19 19 1955 Total .................... NA NA 775 775 NA NA NA NA 15 NA NA 15 15 1960 Total .................... NA NA 627 627 NA NA NA NA 12 NA NA 12 12 1965 Total .................... NA NA 468 468 NA NA NA NA 9 NA NA 9 9 1970 Total

475

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" L2. Floorspace Lit by Lighting Types (Non-Mall Buildings), 1999" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",61707,58693,49779,6496,37150,3058,5343,1913 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6750,5836,4878,757,3838,231,109,162 "5,001 to 10,000 ..............",7940,7166,5369,1044,4073,288,160,109 "10,001 to 25,000 .............",10534,9773,7783,1312,5712,358,633,232

476

Performance Period Total Fee Paid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Period Period Total Fee Paid 4/29/2012 - 9/30/2012 $418,348 10/1/2012 - 9/30/2013 $0 10/1/2013 - 9/30/2014 $0 10/1/2014 - 9/30/2015 $0 10/1/2015 - 9/30/2016 $0 Cumulative Fee Paid $418,348 Contract Type: Cost Plus Award Fee Contract Period: $116,769,139 November 2011 - September 2016 $475,395 $0 Fee Information Total Estimated Contract Cost $1,141,623 $1,140,948 $1,140,948 $5,039,862 $1,140,948 Maximum Fee $5,039,862 Minimum Fee Fee Available Portage, Inc. DE-DT0002936 EM Contractor Fee Site: MOAB Uranium Mill Tailings - MOAB, UT Contract Name: MOAB Uranium Mill Tailings Remedial Action Contract September 2013 Contractor: Contract Number:

477

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" L1. Floorspace Lit by Lighting Type for Non-Mall Buildings, 1995" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings*",54068,51570,45773,6746,34910,1161,3725,779 "Building Floorspace" "(Square Feet)" "1,001 to 5,000",6272,5718,4824,986,3767,50,22,54 "5,001 to 10,000",7299,6667,5728,1240,4341,61,169,45 "10,001 to 25,000",10829,10350,8544,1495,6442,154,553,"Q"

478

ARM - Measurement - Total cloud water  

NLE Websites -- All DOE Office Websites (Extended Search)

cloud water cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments NCEPGFS : National Centers for Environment Prediction Global Forecast System Field Campaign Instruments CSI : Cloud Spectrometer and Impactor PDI : Phase Doppler Interferometer

479

Buildings","Total  

U.S. Energy Information Administration (EIA) Indexed Site

L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" L3. Floorspace Lit by Lighting Type (Non-Mall Buildings), 2003" ,"Floorspace (million square feet)" ,"Total (Lit or Unlit) in All Buildings","Total (Lit or Unlit) in Buildings With Any Lighting","Lighted Area Only","Area Lit by Each Type of Light" ,,,,"Incan- descent","Standard Fluor-escent","Compact Fluor- escent","High Intensity Discharge","Halogen" "All Buildings* ...............",64783,62060,51342,5556,37918,4004,4950,2403 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,6038,4826,678,3932,206,76,124 "5,001 to 10,000 ..............",6585,6090,4974,739,3829,192,238,248 "10,001 to 25,000 .............",11535,11229,8618,1197,6525,454,506,289

480

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

Note: This page contains sample records for the topic "btu total trillion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Solar total energy project Shenandoah  

DOE Green Energy (OSTI)

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

482

Grantee Total Number of Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grantee Grantee Total Number of Homes Weatherized through November 2011 [Recovery Act] Total Number of Homes Weatherized through November 2011 (Calendar Year 2009 - November 2011) [Recovery Act + Annual Program Funding] Alabama 6,704 7,867 1 Alaska 443 2,363 American Samoa 304 410 Arizona 6,354 7,518 Arkansas 5,231 6,949 California 41,649 50,002 Colorado 12,782 19,210 Connecticut 8,940 10,009 2 Delaware** 54 54 District of Columbia 962 1,399 Florida 18,953 20,075 Georgia 13,449 14,739 Guam 574 589 Hawaii 604 1,083 Idaho** 4,470 6,614 Illinois 35,530 44,493 Indiana** 18,768 21,689 Iowa 8,794 10,202 Kansas 6,339 7,638 Kentucky 7,639 10,902 Louisiana 4,698 6,946 Maine 5,130 6,664 Maryland 8,108 9,015 Massachusetts 17,687 21,645 Michigan 29,293 37,137 Minnesota 18,224 22,711 Mississippi 5,937 6,888 Missouri 17,334 20,319 Montana 3,310 6,860 Navajo Nation

483

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

484

Total Number of Operable Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

485

Total quality management implementation guidelines  

SciTech Connect

These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

Not Available

1993-12-01T23:59:59.000Z

486

U.S. States - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2

487

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Table 7.4a Consumption of Combustible Fuels for Electricity Generation and Useful Thermal Output: Total (All Sectors) (Sum of Tables 7.4b and 7.4c) Coal a Petroleum Natural Gas f Other Gases g Biomass Other j Distillate Fuel Oil b Residual Fuel Oil c Other Liquids d Petroleum Coke e Total e Wood h Waste i Thousand Short Tons Thousand Barrels Thousand Short Tons Thousand Barrels Billion Cubic Feet Trillion Btu 1950 Total .................... 91,871 5,423 69,998 NA NA 75,421 629 NA 5 NA NA 1955 Total .................... 143,759 5,412 69,862 NA NA 75,274 1,153 NA 3 NA NA 1960 Total .................... 176,685 3,824 84,371 NA NA 88,195 1,725 NA 2 NA NA 1965 Total ....................

488

Word Pro - S3  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 Selected years of data from 1949 through 1972 have been added to this table. For all years of data from 1949 through 2013, see the "Web Page" cited above. Table 3.8b Heat Content of Petroleum Consumption: Industrial Sector (Trillion Btu) Industrial Sector a Asphalt and Road Oil Distillate Fuel Oil Kerosene Liquefied Petroleum Gases Lubricants Motor Gasoline b Petroleum Coke Residual Fuel Oil Other c Total 1950 Total ........................ 435 698 274 156 94 251 90 1,416 546 3,960 1955 Total ........................ 615 991 241 323 103 332 147 1,573 798 5,123 1960 Total ........................ 734 1,016 161 507 107 381 328 1,584 947 5,766 1965 Total ........................ 890 1,150 165 712 137 342 444 1,582 1,390 6,813 1970 Total ........................ 1,082 1,226 185 953 155

489

Map Data: Total Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Production Map Data: Total Production totalprod2009final.csv More Documents & Publications Map Data: Renewable Production Map Data: State Consumption...

490

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 222 194 17...

491

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,100...

492

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,928 1,316...

493

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

494

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

495

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

496

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

497

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

498

U.S. Total Exports  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

499

Natural Gas Total Liquids Extracted  

U.S. Energy Information Administration (EIA) Indexed Site

Thousand Barrels) Thousand Barrels) Data Series: Natural Gas Processed Total Liquids Extracted NGPL Production, Gaseous Equivalent Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History U.S. 658,291 673,677 720,612 749,095 792,481 873,563 1983-2012 Alabama 13,381 11,753 11,667 13,065 1983-2010 Alaska 22,419 20,779 19,542 17,798 18,314 18,339 1983-2012 Arkansas 126 103 125 160 212 336 1983-2012 California 11,388 11,179 11,042 10,400 9,831 9,923 1983-2012 Colorado 27,447 37,804 47,705 57,924 1983-2010 Florida 103 16 1983-2008 Illinois 38 33 24 231 705 0 1983-2012

500

U.S. Total Exports  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual