Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

2

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

3

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

4

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

5

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

6

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

7

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

8

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

9

How much of the world's energy does the United States use? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much of the world's energy does the United States use? In 2010, world total primary energy consumption was 511 quadrillion Btu. The United States' primary energy ...

10

Table E1. Estimated Primary Energy Consumption in the United ...  

U.S. Energy Information Administration (EIA)

Table E1. Estimated Primary Energy Consumption in the United States, Selected Years, 1635-1945 (Quadrillion Btu) Year: Fossil Fuels

11

The Btu tax is dead, long live the Btu tax  

SciTech Connect

The energy industry is powerful. That is the only explanation for its ability to jettison a cornerstone of the Clinton Administration's proposed deficit reduction package, the Btu tax plan, expected to raise about $71.5 billion over a five-year period. Clinton had proposed a broad-based energy tax of 25.7 cents per million Btus, and a surcharge of 34.2 cents on petroleum products, to be phased in over three years starting July 1, 1994. House Democrats went along, agreeing to impose a tax of 26.8 cents per million Btus, along with the 34.2-cent petroleum surcharge, both effective July 1, 1994. But something happened on the way to the Senate. Their version of the deficit reduction package contains no broad-based energy tax. It does, however, include a 4.3 cents/gallon fuel tax. Clinton had backed down, and House Democrats were left feeling abandoned and angry. What happened has as much to do with politics-particularly the fourth branch of government, lobbyists-as with a President who wants to try to please everyone. It turns out that almost every lawmaker or lobbyist who sought an exemption from the Btu tax, in areas as diverse as farming or ship and jet fuel used in international commercial transportation, managed to get it without giving up much in return. In the end, the Btu tax was so riddled with exemptions that its effectiveness as a revenue-raiser was in doubt. Meanwhile, it turns out that the Btu tax is not dead. According to Budget Director Leon Panetta, the Administration has not given up on the Btu tax and will fight for it when the reconciliation bill goes to a joint House-Senate conference.

Burkhart, L.A.

1993-07-15T23:59:59.000Z

12

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

13

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

14

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

15

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

16

Diagram 5. Electricity Flow, 2007 (Quadrillion Btu)  

E-Print Network (OSTI)

generation. f Transmission and distribution losses (electricity losses that occur between the pointDiagram 5. Electricity Flow, 2007 (Quadrillion Btu) Energy Information Administration / Annual Energy Review 2007 221 Coal 20.99 Nuclear Electric Power 8.41 Energy Consumed To Generate Electricity 42

Bensel, Terrence G.

17

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

18

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

19

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

20

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

22

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

23

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

24

Figure 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review October 2013

25

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Fossil Fuelsa Nuclear Electric Power Renew-able Energyb Total Imports Exports Net Importsc ... fuel ethanol stock change; and biodiesel stock change and balancing item.

26

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

27

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

28

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 1949–2012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 1949–2012

29

EIA Data: Total International Primary Energy Consumption

This...  

Open Energy Info (EERE)

EIA Data: Total International Primary Energy Consumption

This table lists total primary energy consumption by country and region in Quadrillion Btu.  Figures in this table...

30

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

31

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

32

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

33

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

34

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

35

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma, 1960 - 2011 1960 33.9 902.0 1,118.9 0.0 NA 17.8 17.8 2,072.6 1961 26.1 976.9 1,119.9 0.0 NA 20.2 20 ...

36

Table PT2. Energy Production Estimates in Trillion Btu, California ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, California, 1960 - 2011 1960 0.0 589.7 1,771.0 (s) NA 270.2 270.2 2,630.9 1961 0.0 633.8 1,737.7 0.1 NA 248.2 ...

37

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

38

Table PT2. Energy Production Estimates in Trillion Btu, Texas ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Texas, 1960 - 2011 1960 26.4 6,610.7 5,379.4 0.0 NA 50.2 50.2 12,066.6 1961 26.5 6,690.2 5,447.3 0.0 NA 52.0 ...

39

Table PT2. Energy Production Estimates in Trillion Btu, Indiana ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Indiana, 1960 - 2011 1960 346.3 0.3 69.9 0.0 NA 24.6 24.6 441.1 1961 336.7 0.4 66.7 0.0 NA 24.2 24.2 428.0

40

Table PT2. Energy Production Estimates in Trillion Btu, Oregon ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oregon, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 190.5 190.5 190.5 1961 0.0 0.0 0.0 0.0 NA 188.9 188.9 188.9

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table PT2. Energy Production Estimates in Trillion Btu, Arizona ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Arizona, 1960 - 2011 1960 0.1 0.0 0.4 0.0 NA 36.2 36.2 36.7 1961 0.0 0.0 0.4 0.0 NA 35.1 35.1 35.5

42

BTU convergence spawning gas market opportunities in North America  

Science Conference Proceedings (OSTI)

The so-called BTU convergence of US electric power and natural gas sectors is spawning a boom in market opportunities in the US Northeast that ensures the region will be North America`s fastest growing gas market. That`s the view of Catherine Good Abbott, CEO of Columbia Gas Transmission Corp., who told a Ziff Energy conference in Calgary that US Northeast gas demand is expected to increase to almost 10 bcfd in 2000 and more than 12 bcfd in 2010 from about 8 bcfd in 1995 and only 3 bcfd in 1985. The fastest growth will be in the US Northeast`s electrical sector, where demand for gas is expected to double to 4 bcfd in 2010 from about 2 bcfd in 1995. In other presentations at the Ziff Energy conference, speakers voiced concerns about the complexity and speed of the BTU convergence phenomenon and offered assurances about the adequacy of gas supplies in North American to meet demand growth propelled by the BTU convergence boom. The paper discusses the gas demand being driven by power utilities, the BTU convergence outlook, electric power demand, Canadian production and supply, and the US overview.

NONE

1998-06-29T23:59:59.000Z

43

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

44

U.S. Commercial Buildings Weather Adjusted Primary Energy ...  

U.S. Energy Information Administration (EIA)

Weather-Adjusted Primary Energy. 1. by Census Region and Principal. Building Activity, 1992, 1995, and 2003 (Million Btu per Building) Principal ...

45

U.S. Commercial Buildings Weather Adjusted Primary Energy ...  

U.S. Energy Information Administration (EIA)

Using . Weather-Adjusted. Primary Energy. 1. by Census Region and Principal Building Activity, 1992, 1995, and 2003 (Thousand Btu per Square Foot) ...

46

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

47

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

Science Conference Proceedings (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

48

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

49

Table 1.3 Primary Energy Consumption Estimates by Source, 1949 ...  

U.S. Energy Information Administration (EIA)

Table 1.3 Primary Energy Consumption Estimates by Source, 1949-2011 (Quadrillion Btu) Year: Fossil Fuels: Nuclear Electric Power

50

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA...

51

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

52

Table 1.1 Primary Energy Overview, 1949-2011 (Billion Btu)  

U.S. Energy Information Administration (EIA)

1954. 33,764,330 : 0 : 2,754,099 : 36,518,430 : 2,323,614 : 2,347,876 : 910,509: 1,696,301 : 651,575 -530,622 : 33,877,300 : 0 : 2,754,099 : ...

53

Table 1.2 Primary Energy Production by Source, 1949-2011 (Billion Btu)  

U.S. Energy Information Administration (EIA)

Natural Gas (Dry) Crude Oil 3: NGPL 4: Total: Hydro-electric Power 6: Geothermal 7: Solar/PV 8: Wind 9: Biomass 10: Total: 1949. ... refuse recovery. See Table 7.1.

54

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

c Electricity-only and combined-heat-and-power (CHP) ... and electrical system energy losses. ... • Geographic coverage is the 50 states and the Distr ...

55

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

56

U.S. States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

State: Jet Fuel a: Consumption : Prices : Expenditures: Thousand Barrels: Trillion Btu: Dollars per Million Btu: Million Dollars: Alabama: 2,355: 13.4: 22.77: 304.0 ...

57

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

58

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils, the inability to utilize caking coals, and the inability to accept coal fines. Mansfield Carbon Products, Inc., a subsidiary of A.T. Massey Coal Company, has developed an atmospheric pressure, two-stage process that eliminates these three problems.

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

59

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

60

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 - 2011 1960 796.6 36.9 31.3 0.0 NA 37.0 37.0 901.9 1961 756.0 37.3 32.7 0.0 NA 36.4 36.4 862.4

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

62

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

63

New York State annual energy review: energy consumption, supply and price statistics, 1960-1981  

SciTech Connect

Since 1960, annual natural gas consumption in New York State rose from 419 billion CF to 762 billion in 1981, supplying 21% of the state's primary energy. Although total energy consumption peaked in 1973 and 4281.5 trillion Btu, gas usage dropped after 1972 and then rose steadily to a maximum of 782 trillion Btu in 1981. Statistics show that (1) residential gas consumption peaked in 1972 and declined 0.9%/yr thereafter, (2) commercial gas usage was the highest ever in 1981, (3) industrial sales also peaked in 1981, and (4) after a 1978 low of 1.3 trillion Btu of gas usage for power generation, utility consumption rose to 135.2 trillion Btu by 1981, reflecting efforts to cut oil usage. New York consumers spent $734 million on gas in 1970 and $3105 million in 1981. Of the natural gas consumed, only 2.5% was produced in New York; 51% came from fields offshore Louisiana.

1982-01-01T23:59:59.000Z

64

Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock  

DOE Green Energy (OSTI)

A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

Desrosiers, R. E.

1979-02-01T23:59:59.000Z

65

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

66

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

67

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

68

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

69

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

70

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

71

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

72

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

73

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

This paper is intended to give the reader knowledge into utility marketing strategies, rates, and services. Although water is a utility service, this paper will concern itself with the energy utilities, gas and electric. Commonality and diversity exist in the strategies and rates of the gas and electric utilities. Both provide services at no charge which make energy operation for their customers easier, safer and more economical. It is important to become familiar with utility strategies, rates, and services because energy knowledge helps your business operate at the lowest energy cost ($/BTU).

Phillips, J. N.

1993-03-01T23:59:59.000Z

74

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

75

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

76

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

77

Table 7. Carbon intensity of the energy supply by state (2000...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 7. Carbon intensity of the energy supply by state (2000 - 2010)" "kilograms of energy-related carbon dioxide per million Btu" ,,,"Change" ,,,"2000 to 2010"...

78

U.S. States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Total Energy Consumption: Gross Domestic Product (GDP) Energy Consumption per Real Dollar of GDP: State: Trillion Btu:

79

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network (OSTI)

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (?) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of ?. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).

Lawrence, Benjamin Daniel

2007-12-01T23:59:59.000Z

80

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

82

HQ State HQ City Primary Awardee Brief Project Description Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Primary Awardee Primary Awardee Brief Project Description Project Locations Recovery Act Funding* Participant Share Total Project Value Including Cost Share Los Angeles Los Angeles Department of Water and Power Implement a smart grid demonstration at university campus properties and technology transfer laboratories to establish a fully-integrated Smart Grid system and suite of technologies as applied to demand response, conduct a comprehensive portfolio of behavioral studies, demonstrate next- generation cyber security technologies, and demonstrate the integration of substantial number of PHEVs into Smart Grid. Los Angeles, CA $60,280,000 $60,280,000 $120,560,000 Rosemead Southern California Edison Company Demonstrate an integrated, scalable model of a Smart Grid System from transmission through

83

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

84

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

85

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

86

Analysis of medium-BTU gasification condensates, June 1985-June 1986  

DOE Green Energy (OSTI)

This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers and pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.

Elliott, D.C.

1987-05-01T23:59:59.000Z

87

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

88

What are Ccf, Mcf, Btu, and therms? How do I convert ...  

U.S. Energy Information Administration (EIA)

Why am I being charged more for propane than the price on EIA's website? ... How much shale gas is produced in the United States? What are Ccf, Mcf, ...

89

Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations  

SciTech Connect

This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

Wright, A.L. [Oak Ridge National Lab., TN (United States)

1994-06-01T23:59:59.000Z

90

Primary Modes and Predictability of Year-to-Year Snowpack Variations in the Western United States from Teleconnections with Pacific Ocean Climate  

Science Conference Proceedings (OSTI)

Snowpack, as measured on 1 April, is the primary source of warm-season streamflow for most of the western United States and thus represents an important source of water supply. An understanding of climate factors that influence the variability of ...

Gregory J. McCabe; Michael D. Dettinger

2002-02-01T23:59:59.000Z

91

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

92

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

93

Correlation of paramagnetic states and molecular structure in bacterial photosynthetic reaction centers: The symmetry of the primary electron donor in Rhodopseudomonas viridis and Rhodobacter sphaeroides R-26  

SciTech Connect

The orientation of the principal axes of the primary electron donor triplet state measured in single crystals of photosynthetic reaction centers is compared to the x-ray structures of the bacteria Rhodobacter (Rb.) sphaeroides R-26 and Rhodopseudomonas (Rps.) viridis. The primary donor of Rps. viridis is significantly different from that of Rb. sphaeroides. The measured directions of the axes indicate that triplet excitation is almost completely localized on the L-subunit half of the dimer in Rps. viridis but is more symmetrically distributed on the dimeric donor in Rb. sphaeroides R-26. The large reduction of the zero field splitting parameters relative to monomeric bacteriochlorophyll triplet in vitro suggests significant participation of asymmetrical charge transfer electronic configurations in the special pair triplet state of both organisms.

Norris, J.R.; Budil, D.E.; Gast, P.; Chang, C.H.; El-Kabbani, O.; Schiffer, M. (Argonne National Laboratory, IL (USA))

1989-06-01T23:59:59.000Z

94

primary frequency standards  

Science Conference Proceedings (OSTI)

NIST-F1 Cesium Fountain Atomic Clock The Primary Time and Frequency Standard for the United States. NIST-F1, the nation's ...

2013-02-04T23:59:59.000Z

95

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

96

Photochemical hole burning and strong electron-phonon coupling: primary donor states of reaction centers of photosynthetic bacteria  

SciTech Connect

A theory for photochemical hole burning valid for arbitrarily strong linear electron-phonon coupling is developed and applied to the P-870 and P-960 states of Rh. sphaeroides and viridis. The mechanism responsible for the unusually large hole widths of these states is established.

Hayes, J.M.; Small, G.J.

1986-10-09T23:59:59.000Z

97

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

98

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

99

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

100

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

102

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

103

Structure and marker mode of the primary electron donor state absorption of photosynthetic bacteria: Hole-burned spectra  

Science Conference Proceedings (OSTI)

Structured photochemical hole-burned spectra are presented for P870 and P960 of the reaction centers (RC) of Rhodobacter sphaeroides and Rhodopseudomonas viridis. A special pair marker mode Franck-Condon progression is identified. The zero-phonon holes yield P870* and P960* decay times in good agreement with the time domain values. Site excitation energy selection is used to establish correlation between a higher energy RC state of Rps. viridis and P960*.

Johnson, S.G.; Tang, D.; Jankowiak, R.; Hayes, J.M.; Small, G.J. (Iowa State Univ., Ames (USA)); Tiede, D.M. (Argonne National Lab., IL (USA))

1989-08-10T23:59:59.000Z

104

Calculation note: project W-320 primary ventilation air flowrequirements for mitigation of steady state flammable gasconcentrations in the headspaces of tanks 241-C-106 and 241-AY-102  

DOE Green Energy (OSTI)

This calculation note analyzes headspace concentrations of hydrogen dependent upon assumed ventilation flow rates provided for tanks 241-C-106 and 241-AY-102. The analyses are based on measured or estimated steady state hydrogen release rates. Tank 241-C-106 is analyzed prior to sluicing; tank 241-AY-102 is analyzed both prior to and after completion of sluicing. Specific analyses, using both best estimated and bounding hydrogen generation rates, include the minimum primary ventilation flow rates required in the tanks to ensure that the steady state hydrogen concentration in the respective tank headspace does not exceed 25% and 100% of the LFL. The headspace hydrogen concentration as a function of time as well as the time required to reach 25% and 100% of LFL upon complete loss of active ventilation, starting from the steady state hydrogen concentration based on a 200 CFM minimum flow rate in tank 241-C-106 and a 100 CFM minimum flow rate in tank241-AY-102. The headspace hydrogen concentration as a function of thee following partial loss of active ventilation (i.e., step changes to l60, l20, 80, and 40 CFM ventilation flow rates) in tank 241-C-106, staffing from a 200 CFM flow rate and the corresponding steady state hydrogen concentration based on the 200 CFM flow rate. The headspace hydrogen concentration as a function of the following partial loss of active ventilation i.e., step changes to 80, 60, 40, and 20 CFM ventilation flow rates) in tank 241-AY-102, starting from a 100 CFM flow rate and the corresponding steady state hydrogen concentration based on the 100 CFM flow rate.

Estey, S.D.

1997-06-04T23:59:59.000Z

105

Patterns and trends: New York State energy profiles, 1983--1997  

Science Conference Proceedings (OSTI)

Section 1 presents a comparison of energy consumption, selected energy prices, source of petroleum products, and other factors influencing energy demand and expenditures for the US and NYS. Section 2 provides historic data for primary and net energy consumption by fuel type and sector (residential, commercial, industrial, and transportation). Section 3 presents retail level energy price data. Retail energy prices are provided by fuel type for each sector in nominal dollar costs per physical unit and per million Btu. Section 4 presents the estimated expenditure on net energy consumption by sector and fuel type in nominal dollars and in 1997 constant dollars (excluding inflation). Estimated costs were derived by multiplying consumption quantities by their respective prices. Section 5 details sources of selected New York State energy supplies. Section 6 provides several appendices, such as tables on household end-use energy consumption and expenditures, gasoline consumption by country, degree-day, conversion factors and a glossary of energy terms.

NONE

1998-12-01T23:59:59.000Z

106

State  

U.S. Energy Information Administration (EIA) Indexed Site

Biodiesel Producers and Production Capacity by State, September 2013 Biodiesel Producers and Production Capacity by State, September 2013 State Number of Producers Annual Production Capacity (million gallons per year) Alabama 3 47 Alaska - - Arizona 1 2 Arkansas 3 85 California

107

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

108

state  

Science Conference Proceedings (OSTI)

NIST. state. (definition). Definition: The condition of a finite state machine or Turing machine at a certain time. Informally, the content of memory. ...

2013-11-08T23:59:59.000Z

109

State  

Science Conference Proceedings (OSTI)

State NIST. Weights and Measures. Laboratories. Program Handbook. NIST Handbook 143. March 2003. Preface. The National ...

2010-11-30T23:59:59.000Z

110

State energy price and expenditure report, 1986  

SciTech Connect

The average price paid for energy in the United States in 1986 was $7.19 per million Btu, down significantly from the 1985 average of $8.42 per million Btu. While total energy consumption increased slightly to 74.3 quadrillion Btu from 1985 to 1986, expenditures fell from $445 billion to $381 billion. Energy expenditures per capita in 1986 were $1578, down significantly from the 1985 rate. In 1986, consumers used only 94 percent as much energy per person as they had in 1970, but they spent 3.9 times as much money per person on energy as they had in 1970. By state, energy expenditures per capita in 1986 ranged from the lowest rate of $1277 in New York to the highest of $3108 in Alaska. Of the major energy sources, electricity registered the highest price per million Btu ($19.00), followed by petroleum ($5.63), natural gas ($3.97), coal ($1.62), and nuclear fuel ($0.70). The price of electricity is relatively high because of significant costs for converting energy from various forms (e.g., fossil fuels, nuclear fuel, hydroelectric energy, and geothermal energy) into electricity, and additional, somewhat smaller costs for transmitting and distributing electricity to end users. In addition, electricity is a premium form of energy because of its flexibility and clean nature at energy consumers' sites.

Not Available

1988-10-28T23:59:59.000Z

111

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-12-31T23:59:59.000Z

112

1990 Washington State directory of biomass energy facilities  

DOE Green Energy (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

113

1990 Washington State directory of biomass energy facilities  

SciTech Connect

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

114

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

115

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

116

All Price Tables.vp  

Annual Energy Outlook 2012 (EIA)

Sector Energy Price Estimates, 2011 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation Gasoline a Distillate...

117

State Energy Price System: 1982 update  

SciTech Connect

The State Energy Price System (STEPS) contains estimates of energy prices for ten major fuels (electricity, natural gas, metallurgical coal, steam coal, distillate, motor gasoline, diesel, kerosene/jet fuel, residual fuel, and liquefied petroleum gas), by major end-use sectors (residential, commercial, industrial, transportation, and electric utility), and by state through 1982. Both physical unit prices and prices per million Btu are included in STEPS. Major changes in STEPS data base for 1981 and 1982 are described. The most significant changes in procedures for the updates occur in the residential sector distillate series and the residential sector kerosene series. All physical unit and Btu prices are shown with three significant digits instead of with four significant digits as shown in the original documentation. Details of these and other changes are contained in this report, along with the updated data files. 31 references, 65 tables.

Imhoff, K.L.; Fang, J.M.

1984-10-01T23:59:59.000Z

118

1994 Washington State directory of Biomass Energy Facilities  

DOE Green Energy (OSTI)

This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

Deshaye, J.A.; Kerstetter, J.D.

1994-03-01T23:59:59.000Z

119

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

120

Patterns and trends New York State energy profiles: 1980-1994  

SciTech Connect

The New York State Energy Research and Development Authority`s Energy Analysis Program provides public and private sector stakeholders with useful independent and objective energy information. This report provides an overview of one-year and 10-year, energy use trends in New York State. The information presented reflects energy consumption, supply, prices, and expenditures. Section 1 is a 1994 overview of the United States and New York State energy profiles. The national energy consumption data used for comparison are compatible with New York State`s data. Section 2 provides current and historic data for primary and net consumption of energy by fuel type and sector. {open_quotes}Primary{close_quotes} represents total consumption of fuels by the residential, commercial, industrial, and transportation sectors including fuels used for generating electricity. {open_quotes}Net{close_quotes} is the end-use consumption by the residential, commercial, industrial, and transportation sectors, including electricity sales to each of these sectors but excluding energy losses incurred during electricity generation and distribution. Section 3 presents energy price data at the retail level from 1980 to 1994. Retail energy prices are provided by fuel type for the residential, commercial, industrial, and transportation sectors in nominal dollars cost per physical unit and per million Btu. Section 4 presents the estimated cost of net energy consumption by sector and fuel type in nominal dollars and in 1994 constant dollars. Estimated costs were derived by multiplying quantities of consumption by their respective prices. Section 5 details sources of New York State energy supplies.

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

State Volume  

Gasoline and Diesel Fuel Update (EIA)

Volume of Natural Gas Delivered to Processing Plants (million cubic feet) Total Liquids Extracted (thousand barrels) Extraction Loss Located Within the State Located Outside of the State Total Processed Volume (million cubic feet Estimated Heat Content (billion Btu) Alabama...................... 111,656 2,614 114,270 4,476 5,810 18,610 Alaska ......................... 2,987,364 0 2,987,364 33,346 38,453 148,444 Arkansas..................... 214,868 161 215,029 237 474 977 California..................... 240,566 0 240,566 9,798 12,169 41,037 Colorado ..................... 493,748 1,249 494,997 16,891 23,420 63,411 Florida......................... 5,900 0 5,900 1,130 1,143 4,202 Illinois.......................... 578 0 578 63 64 271 Kansas........................ 825,825 2,731 828,556 30,617 41,115 120,221 Kentucky .....................

122

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Annual Energy Outlook 2012 (EIA)

Btu) Note: The Btu conversion factors used for primary electricity are 10,197 BtuKWh, 10,173 BtuKWh, and 9,919 BtuKWh for 1998, 2002, and 2006, respectively. Sources:...

123

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Annual Energy Outlook 2012 (EIA)

Btu) Note: 1. The Btu conversion factors used for primary electricity are 10,197 BtuKWh, 10,173 BtuKWh, and 9,919 BtuKWh for 1998, 2002, and 2006, respectively. Sources:...

124

Energy availabilities for state and local development: 1975 data volume  

DOE Green Energy (OSTI)

The supply, demand, and net imports of seven fuel types of four final consuming sectors for Bureau of Economic Analysis Areas (BEAs), states, census regions, and the nation in 1975 are presented. The data are formatted to present regional energy availability from primary extraction as well as from regional transformation processes. Extensive tables depict energy balances between availability and use for each specific fuel. In keeping with the Metric Conversion Act of 1975, this volume is reported in joules rather than in Btu's. The objective of this series is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional-growth issues that may be influenced by the regional energy system. For analysis of specific regions, however, this basic data should be supplemented by additional information which only the local policy analyst can bring to bear in his assessment of the energy conditions that characterize his region.

Mills, J.B.; Rice, P.L.; Vogt, D.P.

1980-01-01T23:59:59.000Z

125

State energy-price system: 1981 update  

SciTech Connect

This report updates the State Energy Price Data System (STEPS) to include state-level energy prices by fuel and by end-use sectors for 1981. Both physical unit prices and Btu prices are presented. Basic documentation of the data base remains generally the same as in the original report: State Energy Price System; Volume 1: Overview and Technical Documentation (DOE/NBB-0029 Volume 1 of 2, November 1982). The present report documents only the changes in procedures necessitated by the update to 1981 and the corrections to the basic documentation.

Fang, J.M.; Imhoff, K.L.; Hood, L.J.

1983-08-01T23:59:59.000Z

126

U.S.-China EcoPartnership for Environmental Sustainability (USCEES) was established by the U.S. State Department with the primary focus of addressing  

E-Print Network (OSTI)

U.S.-China EcoPartnership for Environmental Sustainability (USCEES) was established by the U the United States and China. The USCEES will bring together leaders from academic, government and business national governments in China that may be interested in tech transfer, research collaborations

Pittendrigh, Barry

127

Energy by State | Open Energy Information  

Open Energy Info (EERE)

Energy by State Energy by State Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy by State Agency/Company /Organization: Google Sector: Energy Focus Area: Economic Development Resource Type: Software/modeling tools User Interface: Website Website: www.google.com/publicdata/explore?ds=djha77o4u941j_ Country: United States Web Application Link: www.google.com/publicdata/explore?ds=djha77o4u941j_ Cost: Free Northern America Energy by State Screenshot References: Public Data Explorer[1] EIA[2] Logo: Energy by State Graph energy data by state using Google's Public Data Explorer. Overview A graphing tool that displays energy data by state, using data from the United States Energy Information Administration. Exploration Categories Energy consumption (Btu) Energy expenditures (current US$)

128

"State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production"  

U.S. Energy Information Administration (EIA) Indexed Site

P2. Energy Production Estimates in Trillion Btu, 2011 " P2. Energy Production Estimates in Trillion Btu, 2011 " "State","Fossil Fuels",,,,,,"Nuclear Electric Power",,"Renewable Energy",,,,,,"Total Energy Production" ,"Coal a",,"Natural Gas b",,"Crude Oil c",,,,"Biofuels d",,"Other e",,"Total" ,"Trillion Btu" "Alabama",468.671,,226.821,,48.569,,411.822,,0,,245.307,,245.307,,1401.191 "Alaska",33.524,,404.72,,1188.008,,0,,0,,15.68,,15.68,,1641.933 "Arizona",174.841,,0.171,,0.215,,327.292,,7.784,,107.433,,115.217,,617.734 "Arkansas",2.985,,1090.87,,34.087,,148.531,,0,,113.532,,113.532,,1390.004 "California",0,,279.71,,1123.408,,383.644,,25.004,,812.786,,837.791,,2624.553

129

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

130

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

131

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

132

Primary enzyme quantitation  

DOE Patents (OSTI)

The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

Saunders, G.C.

1982-03-04T23:59:59.000Z

133

Southern States Energy Board  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants * 350 to 450 Mw e Plant Size * > 90% CO 2 Removal * 80% Capacity Factor * Coal Price 1.2410 6 Btu S. Forbes, SSEB, 11503 Separation and Capture Highlights Many...

134

Vocabulary Development and Instruction: A Handbook for Primary Grade Teachers.  

E-Print Network (OSTI)

??ABSTRACT VOCABULARY DEVELOPMENT AND INSTRUCTION: A HANDBOOK FOR PRIMARY GRADE TEACHERS by Mary B. Alldrin Master of Arts in Education Reading/Language Arts Option California State… (more)

Alldrin, Mary B.

2011-01-01T23:59:59.000Z

135

EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary a  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,579 1,665 312 Beverage and Tobacco Products 156 157 164 313 Textile Mills 459 377 304 314 Textile Product Mills 86 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 652 520 625 322 Paper 3,224 2,805 2,825 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 7,571 7,051 7,125 325 Chemicals 7,211 7,499 6,135 326 Plastics and Rubber Products 692 710 684 327 Nonmetallic Mineral Products 1,245 1,338 1,394

136

Missouri - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Wind › Geothermal › ... Missouri: Share of U.S. Period: Residential : 536,944 billion Btu 2.5% 2011 find more: Commercial : 413,554 billion Btu 2.3% ...

137

Education research Primary Science  

E-Print Network (OSTI)

Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

Rambaut, Andrew

138

Massachusetts - State Energy Profile Data - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... Missouri: Montana Nebraska Nevada New Hampshire ... Residential : 424,427 billion Btu

139

Colorado - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

... wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... Missouri: Montana Nebraska Nevada New Hampshire ... Residential : 353,038 billion Btu

140

State Energy Price and Expenditure Estimates  

U.S. Energy Information Administration (EIA)

2010 Price and Expenditure Summary Tables. Table E1. Primary Energy, Electricity, ... Ranked by State, 2010 Rank Prices Expenditures Expenditures per Person State

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

State energy price and expenditure report 1984  

Science Conference Proceedings (OSTI)

The average price paid by US consumers for energy in 1984 was $8.43 per million Btu, down 0.5% from the 1983 average price of $8.47 per million Btu. While the average price changed very little, total expenditures rose 5% from $418 billion in 1983 to $438 billion in 1984 due to increased energy consumption. By energy source, prices showed the most change in petroleum and electricity: the average price paid for petroleum products fell from $7.79 per million Btu in 1983 to $7.62 per million Btu in 1984, and the average price paid for electricity increased from $18.62 per million Btu in 1983 to $19.29 per million Btu in 1984. Expenditures in 1984 hit record high levels for coal, natural gas, nuclear fuel, and electricity, but were 16% below the 1981 peak for petroleum.

Not Available

1986-12-04T23:59:59.000Z

142

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

143

Net Primary Production  

NLE Websites -- All DOE Office Websites (Extended Search)

8 study sites, plus a worldwide data set, have been added to the global terrestrial Net Primary Production (NPP) reference database. The NPP database has been compiled by Dick...

144

Category:PrimarySchool | Open Energy Information  

Open Energy Info (EERE)

PrimarySchool PrimarySchool Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "PrimarySchool" The following 77 files are in this category, out of 77 total. SVPrimarySchool Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVPrimarySchool Bismar... 70 KB SVPrimarySchool Cedar City UT Moon Lake Electric Assn Inc (Utah).png SVPrimarySchool Cedar ... 60 KB SVPrimarySchool International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVPrimarySchool Intern... 86 KB SVPrimarySchool LA CA City of Los Angeles California (Utility Company).png SVPrimarySchool LA CA ... 86 KB SVPrimarySchool Memphis TN City of Memphis Tennessee (Utility Company).png SVPrimarySchool Memphi... 65 KB SVPrimarySchool Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png

145

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

146

Primary Radiation Damage Formation  

SciTech Connect

The physical processes that give rise to changes in the microstructure, and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.

Stoller, Roger E [ORNL

2012-01-01T23:59:59.000Z

147

Geothermal direct use developments in the United States  

DOE Green Energy (OSTI)

Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

Lienau, P.J.; Culver, G.; Lund, J.W.

1988-08-01T23:59:59.000Z

148

INTEGRATED SYSTEM TO CONTROL PRIMARY PM 2.5 FROM ELECTRIC POWER PLANTS  

SciTech Connect

The performance tests at E.C. Gaston showed how the Advanced ElectroCore field prototype performance changed as a function of the gas flow, inlet loading and the voltage applied to the central electrode in the separator. With the optimum voltage applied to the electrode, the unit achieved a maximum efficiency of 96.38 percent and a minimum outlet loading of 0.0021 grains/dscf while operating with a specific separating area (SSA) of 100 square feet per thousand acfm. The minimum outlet loading translates to about 0.00575 lb{sub m}/million Btu or less than one fifth of the current NSPS standard of 0.03 lb{sub m}/million Btu. The highest efficiency for the upstream ESP was about 99.75 percent. Together these two systems are capable of removing 99.991 percent of the particulate matter coming from the uncontrolled boiler. This efficiency is higher than the target efficiency of 99.99 percent and the outlet loading of 0.00575 lb{sub m}/million Btu is almost half of the target emission rate of 0.01 lb{sub m}/million stated in the program objectives. In terms of efficiency and outlet concentration, the tests showed that the Advanced ElectroCore can meet or exceed the program goals. The mercury capture tests were conducted using the Ontario Hydro method. When injection activated carbon at the rate of 7 pounds per million cubic feet of gas, the measured removal efficiency was about 90 percent. At the time of this writing, LSR was unable to obtain the full report on the mercury testing. If it does become available, it will be included as an appendix to this report. The results show that the ElectroCore has been successfully scaled up by a factor of 12 from the 500 acfm unit tested at Alabama Power Company's Plant Miller in the summer of 1997. The addition of the central electrode has improved the separation efficiency when inlet loadings get very low.

Ralph Altman

2002-06-30T23:59:59.000Z

149

Table 6. Energy intensity by state (2000 - 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Energy intensity by state (2000 - 2010)" Energy intensity by state (2000 - 2010)" "thousand Btu per dollar of GDP" ,,,,,,,,,,,,"Change" ,,,,,,,,,,,,"2000 to 2010" "State",2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,"Percent","Absolute" "Alabama",18.27258197,17.12573602,17.40982338,17.21199023,16.87274619,16.36600572,16.26201029,16.16667416,15.88996309,15.31511861,15.97051076,-0.1259849985,-2.302071213 "Alaska",21.74118991,20.61708506,19.78031734,20.18143227,20.28953911,21.09573287,18.72961653,17.79373817,15.85124571,14.13669694,14.24461661,-0.3448097058,-7.496573297 "Arizona",8.723022426,8.474435286,8.399371812,7.993493579,8.274516227,7.602521438,7.232690272,7.328159916,7.62679414,7.507000095,7.628169778,-0.1255129924,-1.094852647

150

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

151

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

> Countries > International Energy Statistics: International Energy Statistics; Petroleum. ... Total Primary Energy Consumption (Quadrillion Btu) Loading ...

152

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated rail transportation rates for coal, state to state, STB data 6. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

153

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated barge transportation rates for coal, state to state, EIA data 5. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $4.31 $4.36 $5.01 7.9 15.0 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $11.08 $12.65 $13.27 9.4 4.9 Colorado Indiana $6.29 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $13.15 $14.28 W 8.6

154

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated truck transportation rates for coal, state to state, EIA data 8. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $7.51 $4.74 $3.37 -33.0 -28.8 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $21.73 $20.23 $13.30 -21.8 -34.3 Indiana Alabama - W - - -

155

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

5. Estimated rail transportation rates for coal, state to state, STB data 5. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

156

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, state to state, STB data 4. Estimated rail transportation rates for coal, state to state, STB data Origin State Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W W W - W Colorado Alabama - W W W W W W W W - W Colorado Arizona W W W W W W W W W W W Colorado Arkansas - - - - W W W W - - -

157

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

6. Estimated barge transportation rates for coal, state to state, EIA data 6. Estimated barge transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $3.97 $3.97 $4.52 6.7 13.7 Alabama Ohio W - - - - Colorado Alabama W - - - - Colorado Florida $10.21 $11.53 $11.95 8.2 3.7 Colorado Indiana $5.79 W - - - Colorado Iowa W - - - - Colorado Kentucky W - - - - Colorado Mississippi - - W - - Colorado Ohio - W - - - Colorado Tennessee W - - - - Illinois Alabama W $11.99 $12.87 W 7.3

158

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

7. Estimated truck transportation rates for coal, state to state, EIA data 7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama Georgia - - W - - Alabama Indiana W W - - - Colorado Colorado W W W W W Colorado Michigan - - W - - Illinois Florida W - - - - Illinois Illinois $8.16 $5.20 $3.75 -32.2 -27.9 Illinois Indiana W W - - - Illinois Minnesota W W - - - Illinois Missouri $23.60 $22.20 $14.77 -20.9 -33.5 Indiana Alabama - W - - -

159

External (SON) - Primary Standards Laboratory (PSL) Website ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Standards Laboratory Eric Detlefs Manager (505) 845-8961 Primary Physical Standards Dept Roger Burton Manager (505) 284-9901 Primary Electrical Standards Dept Project...

160

Net Primary Production (NPP) Project Page  

NLE Websites -- All DOE Office Websites (Extended Search)

RegionalGlobal > Net Primary Production (NPP) Net Primary Production (NPP) Project Overview The ORNL DAAC Net Primary Production (NPP) data set collection contains field...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Primary Research Coordinator  

E-Print Network (OSTI)

In Wisconsin, we are committed to raising student achievement, closing the achievement gap, and preparing every child in Wisconsin to be successful in our 21 st Century interconnected world. The economic future of our state rests on the opportunity for our children to receive a quality education that prepares them for the workplace, college, and citizenship in our American democracy. And we know that while there are certain things that all children need, understanding needs specific to each gender carries great merit. The information contained within this report represents a solid step in raising awareness as to the status of girls in Wisconsin. Schools, businesses, and community-based organizations have the opportunity to work collaboratively using enhanced understanding of girls as a model for serving all children. The report presents the collaborative efforts of many partners. I appreciate the commitment of Alverno College, the Women’s Fund of Greater Milwaukee, the Girl Scouts of Wisconsin, and the Wisconsin Women's Council in their production of this report to promote the education and awareness of Wisconsin’s girls. I commend you for your leadership in working together for your communities. Elizabeth Burmaster, State Superintendent

Mary Beth Malm; Executive Director; Wisconsin Women' s Council; Megan Kemmet B. A; Russell Brooker Ph. D; Julia Rice J. D; Nicole Bowman Farrell

2007-01-01T23:59:59.000Z

162

Primary Metals - Compressor Motors Failing  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the investigation of four failures of compressor motors for a two stage chiller at a primary metals manufacturing facility.

2003-12-31T23:59:59.000Z

163

AEO2011: Renewable Energy Generation by Fuel - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 120, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation United States Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - United States- Reference Case (xls, 119.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

164

AEO2011: Energy Consumption by Sector and Source - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 10, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption United States Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - United States- Reference Case (xls, 298.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

165

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

8. Estimated rail transportation rates for coal, state to state, EIA data 8. Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $13.29 $12.39 $13.93 2.4 12.5 Alabama Georgia $17.62 $17.84 $20.09 6.8 12.6 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $31.79 $27.66 $24.93 -11.5 -9.9 Colorado Arizona $25.97 W - - - Colorado Arkansas W - - - - Colorado California - $34.20 $46.22 - 35.1 Colorado Colorado $13.04 $7.72 $8.13 -21.1 5.3

166

Origin State Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated rail transportation rates for coal, state to state, EIA data Estimated rail transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama $14.43 $13.59 $15.46 3.5 13.8 Alabama Georgia $19.13 $19.58 $22.30 8.0 13.9 Alabama Kentucky - W - - - Alabama New Jersey W - - - - Alabama Pennsylvania - W - - - Arizona Arizona W W W W W Colorado Alabama $34.52 $30.35 $27.67 -10.5 -8.8 Colorado Arizona $28.20 W - - - Colorado Arkansas W - - - - Colorado California - $37.53 $51.30 - 36.7 Colorado Colorado $14.16 $8.47 $9.02 -20.2 6.6

167

Gene expression analysis of human primary prostate epithelial and  

NLE Websites -- All DOE Office Websites (Extended Search)

expression analysis of human primary prostate epithelial and expression analysis of human primary prostate epithelial and fibroblast cell cultures to an acute dose of 10cGy J. Tyson McDonald Steward St. Elizabeth’s Medical Center Abstract Primary tissue represents a better model for studies than immortalized cell lines that are adapted to culture conditions and may no longer reflect a realistic biological state. In this study, normal tissues from clinically indicated robotic-assisted laparoscopic radical prostatectomy were grossly identified, sectioned into frozen or formalin fixed samples, and processed as primary cultures. Normal epithelial and fibroblast primary cell cultures were derived from regions of normal tissue, as confirmed by analysis on adjacent tissue by hematoxylin and eosin staining, were exposed to acute

168

PWR Primary Water Chemistry Guidelines: Volume 1 Revision 4  

Science Conference Proceedings (OSTI)

State-of-the art water chemistry programs help ensure the continued integrity of reactorcoolant system (RCS) materials of construction and fuel cladding, ensure satisfactorycore performance, and support the industry trend toward reduced radiation fields. These revised PWR Primary Water Chemistry Guidelines, prepared by a committee ofindustry experts, reflect the recent field and laboratory data on primary coolant systemcorrosion and performance issues. PWR operators can use these Guidelines to updatethei...

1999-03-31T23:59:59.000Z

169

XI. Index of Primary Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

XI Index of Primary Contacts XI Index of Primary Contacts A Aaron, Tim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Aceves, Salvador M. . . . . . . . . . . . . . . . . . . . . . .186 Adams, Stephen. . . . . . . . . . . . . . . . . . . . . . . . . .713 Adzic, Radoslav. . . . . . . . . . . . . . . . . . . . . . . . . .384 Ahluwalia, Rajesh K.. . . . . . . . . . . . . . . . . . . . . .511 Ahmed, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451 Ahn, Channing. . . . . . . . . . . . . . . . . . . . . . .262, 267 Alam, Mohammad S.. . . . . . . . . . . . . . . . . . . . . .509 Andersen, Cindi. . . . . . . . . . . . . . . . . . . . . . . . . .811 Anton, Donald L.. . . . . . . . . . . . . . . . . . . . .230, 243 Arduengo III, Anthony J. . . . . . . . . . . . . . . . . . .274

170

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

3 165 3 165 Appendix B Metric and Thermal Conversion Tables Metric Conversions Table B1 presents Summary Statistics for Natural Gas in the United States for 1999 through 2003 in metric units of measure. Volumes are shown in cubic meters instead of cubic feet. Prices are shown in dollars per thousand cubic meters instead of dollars per thousand cubic feet. The data in this table have been converted from the data that appear in Table 1 of this report. Thermal Conversions Table B2 presents the thermal (Btu) conversion factors and the converted data for natural gas supply and disposition from 1999 through 2003. A brief documentation for the thermal conversion factors follows: * Marketed Production. The conversion factor is calculated by adding the total heat content of dry

171

Electricity in the United States - Energy Explained, Your Guide To  

Gasoline and Diesel Fuel Update (EIA)

Secondary Sources > Electricity > Electricity in the U.S. Secondary Sources > Electricity > Electricity in the U.S. Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline

172

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption ; Indicators. CO2 Emissions ; Carbon Intensity ; ... Total Primary Energy Consumption per Capita (Million Btu per Person)

173

Steam Generator Management Program: Assessment of Channel Head Susceptibility to Primary Water Stress Corrosion Cracking  

Science Conference Proceedings (OSTI)

There have been several documented cases of primary water stress corrosion cracking (PWSCC) indications in the divider plate assembly in Westinghouse model steam generators in operation outside the United States. These indications were observed in plants that operated with proper primary water chemistry. The function of the divider plate in most steam generators is to separate the cold and hot legs of the channel head as the primary water enters the steam generator so that the primary coolant flows up in...

2012-06-19T23:59:59.000Z

174

State energy price system. Volume I: overview and technical documentation  

SciTech Connect

This study utilizes existing data sources and previous analyses of state-level energy prices to develop consistent state-level energy prices series by fuel type and by end-use sector. The fuels are electricity, natural gas, coal, distillate fuel oil, motor gasoline, diesel, kerosene, jet fuel, residual fuel, and liquefied petroleum gas. The end-use sectors are residential, commercial, industrial, transportation, and electric utility. Based upon an evaluation of existing data sources, recommendations were formulated on the feasible approaches for developing a consistent state energy price series. The data series were compiled based upon the approaches approved after a formal EIA review. Detailed documentation was provided, including annual updating procedures. Recommendations were formulated for future improvements in the collection of data or in data processing. Generally, the geographical coverage includes the 50 states and the District of Columbia. Information on state-level energy use was generally taken from the State Energy Data System (SEDS). Corresponding average US prices are also developed using volumes reported in SEDS. To the extent possible, the prices developed are quantity weighted average retail prices. Both a Btu price series and a physical unit price series are developed for each fuel. The period covered by the data series is 1970 through 1980 for most fuels, though prices for electricity and natural gas extend back to 1960. (PSB)

Fang, J.M.; Nieves, L.A.; Sherman, K.L.; Hood, L.J.

1982-06-01T23:59:59.000Z

175

EIA - Electricity Data  

U.S. Energy Information Administration (EIA)

Table C.1 Average Heat Content of Fossil-Fuel Receipts, July 2013: Census Division and State Coal (Million Btu per Ton) Petroleum Liquids (Million Btu per Barrel)

176

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

F14: Other Petroleum Products Consumption, Price, and Expenditure Estimates, 2011 State Consumption Prices Expenditures Thousand Barrels Trillion Btu Dollars per Million Btu...

177

State Agencies  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies Beatrice State Developmental Center, Nebraska Black Hills State University, SD, South Dakota Fergus Falls State Hospital, Minnesota Hastings Regional Center, Nebraska...

178

U.S. States - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2

179

New York State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

New York New York State Regulations: New York State of New York The primary responsibility for regulating oil and gas activities within New York resides with the Bureau of Oil and Gas Regulation in the Division of Mineral Resources (Office of Natural Resources) of the New York State Department of Environmental Conservation (NYSDEC). Other offices and divisions within the NYSDEC administer the major environmental protection laws. Contact New York State Department of Environmental Conservation Division of Mineral Resources Bureau of Oil and Gas Regulation 625 Broadway, 3rd Floor Albany, NY 12233-6500 (518) 402-8056 (phone) (518) 402-8060 (fax) Disposal Practices and Applicable Regulations Environmental conservation rules and regulations are contained in Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR). The rules and regulations for oil, gas and solution mining are provided in 6 NYCRR Parts 550-559.

180

Baldrige Impacts, State by State  

Science Conference Proceedings (OSTI)

... Several states are providing coverage for other states without current programs. To learn more about impacts and benefits in each state select a ...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impact of the national energy plan on solar economics. [Economic analysis of solar space heating and solar water heating by state  

SciTech Connect

The National Energy Plan (NEP) sets as a goal the use of solar energy in two and a half million homes in 1985. A key provision of the NEP (as well as congressional alternatives) provides for the subsidization of solar equipment. The extent to which these subsidies (income tax credits) might offset the impact of continued energy price control is examined. Regional prices and availability of conventional energy sources (oil, gas, and electricity) were compiled to obtain a current and consistent set of energy prices by state and energy type. These prices are converted into equivalent terms ($/10/sup 6/ Btu) which account for combustion and heat generation efficiencies. Projections of conventional fuel price increases (or decreases) are made under both the NEP scenario and a projected scenario where all wellhead price controls are removed on natural gas and crude oil production. The economic feasibility (life-cycle cost basis) of solar energy for residential space heating and domestic hot water is examined on a state-by-state basis. Solar system costs are developed for each state by fraction of Btu heating load provided. The total number of homes, projected energy savings, and sensitivity to heating loads, alternative energy costs and prices are included in the analysis.

Ben-David, S.; Noll, S.; Roach, F.; Schulze, W.

1977-01-01T23:59:59.000Z

182

Ion source with improved primary arc collimation  

DOE Patents (OSTI)

An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

Dagenhart, W.K.

1983-12-16T23:59:59.000Z

183

Mississippi - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The state's primary renewable resource is biomass, and the main source of biomass is Mississippi's wood products industry. Wood is used to make paper, ...

184

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

185

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1997-Jan : 01/10 : 3.79 : ...

186

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

187

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

188

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

189

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

190

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

191

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

192

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

193

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

194

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

195

ENERGY STAR Challenge for Industry: BTU QuickConverter | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

196

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

1963 54.3 228.1 837.6 0.0 na 10.6 10.6 1,130.6 ... 1976 562.9 339.4 778.1 0.0 na 12.5 12.5 1,692.9 ... 2010 7,658.3 2,521.3 r 308.8 r 0.0 0.9 43.5 r ...

197

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

198

Table PT2. Energy Production Estimates in Trillion Btu, Minnesota ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

199

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

200

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat requirement of the boiler feed water. Chart III shows potential steam energy savings and will be useful in estimating the steam energy savings of high pressure processes.

Vallery, S. J.

1985-05-01T23:59:59.000Z

202

British Thermal Units (Btu) - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

203

POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL  

Science Conference Proceedings (OSTI)

It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

Booz, Allen, and Hamilton, Inc.,

1980-04-01T23:59:59.000Z

204

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

205

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

206

Table 2.3 Commercial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

e Conventional hydroelectric power. f Electricity retail sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service ...

207

Energetics and Kinetics of Primary Charge Separation in Bacterial Photosynthesis  

E-Print Network (OSTI)

We report the results of Molecular Dynamics (MD) simulations and formal modeling of the free energy surfaces and reaction rates of primary charge separation in the reaction center of \\textit{Rhodobacter sphaeroides}. Two simulation protocols were used to produce MD trajectories. Standard force field potentials were employed in the first protocol. In the second protocol, the special pair was made polarizable to reproduce a high polarizability of its photoexcited state observed by Stark spectroscopy. The charge distribution between covalent and charge-transfer states of the special pair was dynamically adjusted during the simulation run. We found from both protocols that the breadth of electrostatic fluctuations of the protein/water environment far exceeds previous estimates resulting in about 1.6 eV reorganization energy of electron transfer in the first protocol and 2.5 eV in the second protocol. Most of these electrostatic fluctuations become dynamically frozen on the time-scale of primary charge separation ...

LeBard, David N; Matyushov, Dmitry V

2008-01-01T23:59:59.000Z

208

Primary Energy Ventures | Open Energy Information  

Open Energy Info (EERE)

Primary Energy Ventures Primary Energy Ventures Jump to: navigation, search Name Primary Energy Ventures Place Oak Brook, Illinois Zip 60523 Product Primary Energy Ventures is a privately held developer, owner and operator of on-site combined heat and power and recycled energy projects. References Primary Energy Ventures[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Primary Energy Ventures is a company located in Oak Brook, Illinois . References ↑ "Primary Energy Ventures" Retrieved from "http://en.openei.org/w/index.php?title=Primary_Energy_Ventures&oldid=349951" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

209

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

ARTICLES: Selected Readings on Magnesium Production, Recycling and Environment Links to key papers on magnesium primary production, recycling and ...

210

Table 2.1d Industrial Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1d Industrial Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

211

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

212

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption, which was 101.7 quadrillion Btu in 2007, grows by 21 percent in the AEO2011 Reference case, from 94.8 quadrillion Btu in 2009 to 114.3 quadrillion Btu in 2035, to about the same level as in the AEO2010 projection in 2035. The fossil fuel share of energy consumption falls from 84 percent of total U.S. energy demand in 2009 to 78 percent in 2035, reflecting the impacts of CAFE standards and provisions in the American Recovery and Reinvestment Act of 2009 (ARRA), Energy Improvement and Extension Act of 2008 (EIEA2008), Energy Independence and Security Act of 2007 (EISA2007), and State legislation. Although the situation is uncertain, EIA's present view of the projected rates of technology development and market penetration of cellulosic

213

United States  

Office of Legacy Management (LM)

300 300 84-ER-14 Vitreous State Laboratory... . --- 5rooo 84-ER-15 National Center for Chemical -. Research .,.,,,..,.,,,..*..ll...* --- 51000...

214

Microsoft Word - NGAMaster_State_TablesNov12.doc  

Gasoline and Diesel Fuel Update (EIA)

8 1999 2000 2001 2002 2003 Conversion Factor (Btu per cubic foot) Production Marketed... 1,107 1,107 1,105 1,106 1,106 Extraction...

215

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.

Cogan, S.F.; Rauh, R.D.

1990-07-03T23:59:59.000Z

216

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (Sudbury, MA); Rauh, R. David (Newton, MA)

1993-01-01T23:59:59.000Z

217

Solid state electrochromic light modulator  

DOE Patents (OSTI)

An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counterelectrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films.

Cogan, Stuart F. (111 Downey St., Norwood, MA 02062); Rauh, R. David (111 Downey St., Norwood, MA 02062)

1990-01-01T23:59:59.000Z

218

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

219

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

220

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

222

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

223

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

224

Vapor Pressures and Heats of Vaporization of Primary Coal Tars  

Office of Scientific and Technical Information (OSTI)

/ PC92544-18 / PC92544-18 VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS FINAL REPORT Grant Dates: August, 1992 - November, 1996 Principal Authors: Eric M. Suuberg (PI) and Vahur Oja Report Submitted: April, 1997 Revised: July, 1997 Grant Number: DE-FG22-92PC92544 Report Submitted by: ERIC M. SUUBERG DIVISION OF ENGINEERING BROWN UNIVERSITY PROVIDENCE, RI 02912 TEL. (401) 863-1420 Prepared For: U. S. DEPT. OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER P.O. BOX 10940 PITTSBURGH, PA 15236 DR. KAMALENDU DAS, FETC, MORGANTOWN , WV TECHNICAL PROJECT OFFICER "US/DOE Patent Clearance is not required prior to the publication of this document" ii United States Government Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any

225

Alternative Fuels Data Center: State Energy Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Energy Plan to State Energy Plan to someone by E-mail Share Alternative Fuels Data Center: State Energy Plan on Facebook Tweet about Alternative Fuels Data Center: State Energy Plan on Twitter Bookmark Alternative Fuels Data Center: State Energy Plan on Google Bookmark Alternative Fuels Data Center: State Energy Plan on Delicious Rank Alternative Fuels Data Center: State Energy Plan on Digg Find More places to share Alternative Fuels Data Center: State Energy Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Energy Plan The Virginia Energy Plan assesses the commonwealth's primary energy sources and recommends actions to meet the following goals: make Virginia the energy capital of the East Coast by expanding traditional and alternative

226

Property:Primary Organization | Open Energy Information  

Open Energy Info (EERE)

Primary Organization Primary Organization Jump to: navigation, search Property Name Primary Organization Property Type Page Company Pages using the property "Primary Organization" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Aegir Dynamo + Ocean Navitas + MHK Technologies/AirWEC + Resolute Marine Energy Inc + MHK Technologies/Anaconda bulge tube drives turbine + Checkmate SeaEnergy + MHK Technologies/AquaBuoy + Finavera Renewables Ocean Energy Ltd + MHK Technologies/Aquanator + Atlantis Resources Corporation + MHK Technologies/Aquantis + Ecomerit Technologies LLC see Dehlsen Associates LLC + MHK Technologies/Archimedes Wave Swing + AWS Ocean Energy formerly Oceanergia + MHK Technologies/Atlantis AN 150 + Atlantis Resources Corporation +

227

U.S. Residential Housing Primary  

U.S. Energy Information Administration (EIA)

Home > Households, Buildings & Industry > Energy Efficiency Page > Energy Intensities >Table 7c Glossary U.S. Residential Housing Primary Page Last Revised: July 2009

228

Primary Dendrite Array Morphology: Observations from Ground ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Influence of natural convection on primary dendrite array ... Solidification and Microstructure Evaluation of the Ni-Ga and Co-Ni-Ga Alloys.

229

Primary Production, Recycling, and Environment - TMS  

Science Conference Proceedings (OSTI)

Link directory to a variety of general information sources on magnesium production, 0 ... Links to key papers on magnesium primary production, recycling and ...

230

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

231

Volume State  

Gasoline and Diesel Fuel Update (EIA)

22 22 Volume State State or Country From/To Receipts/ Imports From Deliveries/ Exports To Net a Alabama Florida .................................................................. 0 722,558 -722,558 Georgia................................................................. 0 1,352,308 -1,352,308 Gulf of Mexico....................................................... 123,132 0 123,132 Mississippi ............................................................ 2,758,595 0 2,758,595 Tennessee............................................................ 1,744 764,749 -763,005 Total..................................................................... 2,883,471 2,839,615 43,856

232

Abatement of Air Pollution: Connecticut Primary and Secondary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Primary and Secondary Standards (Connecticut) Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) Eligibility Agricultural Commercial...

233

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

234

c13.xls  

Gasoline and Diesel Fuel Update (EIA)

Electricity Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ... 4,404 63,307 14.4 9,168 3,037 890...

235

Table 1. Total Energy Consumption in U.S. Households by Origin ...  

U.S. Energy Information Administration (EIA)

Wood (million cords) ..... 21.4 19.8 0.8 0.6 0.3 19.3 Million Btu per Household3 Total Btu Consumption per Household, Fuels Used: Electricity Primary ...

236

c13a.xls  

Gasoline and Diesel Fuel Update (EIA)

Expenditures Primary Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings ... 4,617 70,181 15.2 10,746 3,559...

237

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

238

External (SON) - Primary Standards Laboratory (PSL) Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Fact Sheets Links Contacts Primary Standards Laboratory Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation

239

State Summaries  

Gasoline and Diesel Fuel Update (EIA)

46. 46. Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

240

Self-potential modeling from primary flows  

DOE Green Energy (OSTI)

A new method for the calculation of self potentials (SP) based on induced current sources is presented. The induced current sources are due to divergences of the convective current which is driven, in turn, by a primary flow, either heat or fluid. Numerical modeling utilizing this method has been implemented using a two-dimensional transmission surface algorithm. When the primary flow is driven by the gradient of a potential, joint modeling of the primary flow and the resultant SP is possible with this algorithm. Examples of simple geometrical models in the presence of point sources for the primary flow are presented and discussed. Lastly, a field example of the joint modeling of temperature and SP data is illustrated with data from Red Hill Hot Spring, Utah.

Sill, W.R.

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Table 7. Carbon intensity of the energy supply by state (2000 - 2010) kilograms of energy-related carbon dioxide per million Btu Change 2000 to 2010 State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Percent Absolute Al a bama 57.9 57.6 57.3 57.0 56.3 57.2 57.5 58.1 55.9 51.3 53.9 -6.9% -4.0 Al a s ka 59.7 59.0 59.4 59.4 60.3 60.2 61.3 60.9 60.6 60.1 60.4 1.1% 0.6 Ari zona 55.0 56.0 54.8 55.8 56.2 57.0 57.9 56.9 56.0 54.6 55.0 0.1% 0.1 Arka nsa s 56.8 56.3 54.4 54.6 55.1 55.4 55.2 54.8 55.6 54.3 55.5 -2.3% -1.3 Ca l i forni a 52.8 54.0 53.9 53.4 53.6 53.0 53.1 54.1 54.2 53.7 52.9 0.2% 0.1 Col ora do 69.1 68.8 69.4 68.4 68.9 68.5 68.6 67.5 66.5 65.8 66.5 -3.7% -2.6 Connecti cut 49.9 51.8 50.9 50.8 50.4 51.4 49.4 49.3 49.6 47.2 47.2 -5.5% -2.8 Del a wa re 69.6 68.3 67.5 69.1 69.4 69.9 69.5 70.0 69.1 65.2 64.0 -8.1% -5.6 Di s tri ct of Col umbi

242

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

243

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

244

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

245

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

246

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

247

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

248

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

249

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

250

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

251

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

252

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

253

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

254

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

255

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

256

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

257

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

258

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

259

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

260

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

262

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

263

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

264

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

265

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

266

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

267

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

268

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

269

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

270

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

271

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

272

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

273

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

274

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

275

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

276

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

277

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

278

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

279

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

280

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

282

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

283

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

284

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

285

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

286

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

287

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

288

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

289

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

290

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

291

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

292

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

293

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

294

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

295

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

296

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

297

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

298

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

299

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

300

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

South Dakota State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Identification Home Federal and State Regulations State Regulations South Dakota State Regulations: South Dakota State of South Dakota The South Dakota...

302

Distillation of GHZ states by selective information manipulation  

E-Print Network (OSTI)

Methods for distilling maximally entangled tripartite (GHZ) states from arbitrary entangled tripartite pure states are described. These techniques work for virtually any input state. Each technique has two stages which we call primary and secondary distillation. Primary distillation produces a GHZ state with some probability, so that when applied to an ensemble of systems, a certain percentage is discarded. Secondary distillation produces further GHZs from the discarded systems. These protocols are developed with the help of an approach to quantum information theory based on absolutely selective information, which has other potential applications.

Oliver Cohen; Todd A. Brun

2000-01-23T23:59:59.000Z

303

External (SON) - Primary Standards Laboratory (PSL) Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Enter keyword below to search the PSL site: Search! The Primary Standards Laboratory (PSL) develops and maintains primary standards traceable to national standards and calibrates and certifies customer reference standards. The PSL provides technical guidance, support, and consultation; develops precision measurement techniques; provides oversight, including technical surveys and measurement audits; and anticipates future measurement needs of the nuclear weapons complex and other Department of Energy programs. The PSL also helps industry, universities, and government agencies establish or verify new capabilities and products and improve measurement technology. NVLAP Accreditation NVLAP Accreditation The Primary Standards Laboratory is accredited over a broad range of parameters by the National Institute of Standards and Technology (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) as a calibration laboratory (Lab Code 105002). This accreditation validates the high level of technical competence achieved by the laboratory and its staff.

304

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

305

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

306

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

307

New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981  

DOE Green Energy (OSTI)

A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

Cunniff, R.A.; Ferguson, E.; Archey, J.

1981-07-01T23:59:59.000Z

308

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary thermometry standards to assure...

309

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary standards to assure accurate...

310

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a wide variety of primary acceleration and shock...

311

,,,,,,,,,,"Lease Equipment Costs for Primary Oil Production in...  

U.S. Energy Information Administration (EIA) Indexed Site

of Lease Equipment Costs for Primary Oil Recovery ",,,"Oil Production--West Texas" ,,"Operations (10 Producing Wells)" ,,,"Lease Equipment Costs for Primary Oil...

312

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

313

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

314

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

315

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

316

Preoperational test report, primary ventilation system  

SciTech Connect

This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

Clifton, F.T.

1997-11-04T23:59:59.000Z

317

Generating Unit Retirements in the United States by State, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

9" 9" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

318

Generating Unit Retirements in the United States by State, 2006  

U.S. Energy Information Administration (EIA) Indexed Site

6" 6" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

319

Generating Unit Retirements in the United States by State, 2007  

U.S. Energy Information Administration (EIA) Indexed Site

7" 7" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

320

Generating Unit Retirements in the United States by State, 2004  

U.S. Energy Information Administration (EIA) Indexed Site

4" 4" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Generating Unit Retirements in the United States by State, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

10" 10" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

322

Generating Unit Retirements in the United States by State, 2008  

U.S. Energy Information Administration (EIA) Indexed Site

8" 8" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

323

Generating Unit Retirements in the United States by State, 2003  

U.S. Energy Information Administration (EIA) Indexed Site

3" 3" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

324

Generating Unit Retirements in the United States by State, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5" 5" "Note: Descriptions of field names and codes can be obtained from the record layout in the Form EIA-860 source data file at www.eia.gov/cneaf/electricity/page/eia860.html." "Source: U.S. Energy Information Administration, Form EIA-860, ""Annual Electric Generator Report.""" "State","County","Utility ID","Company","Plant ID","Plant Name","Primary Purpose Code","Generator ID","Nameplate Capacity (Megawatts) ","Summer Capacity (Megawatts)","Winter Capacity (Megawatts)","Multigenerator Code","Prime Mover","Energy Source 1","Energy Source 2","Month of Retirement","Year of Retirement"

325

States | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

States States Data Apps Challenges Policies States Welcome to States.Data.gov Bridging information from across the United States. Look at the data, use the apps, join the...

326

Innovations in Primary and Secondary Forming - Titanium  

Science Conference Proceedings (OSTI)

February 16, 2010. Room: 306. Location: Washington State Convention Center Session ... An overview of key future requirements in terms of measurement, ...

327

Materials Reliability Program: Review of Stress Corrosion Cracking of Alloys 182 and 82 in PWR Primary Water Service (MRP-220)  

Science Conference Proceedings (OSTI)

Since 1999, there have been several incidences involving primary water stress corrosion cracking (PWSCC) of Alloy 182/82 butt welds in pressurized water reactor (PWR) plants in the United States and abroad. These events resulted in unplanned or extended outages with associated economic costs. This report summarizes the available information on PWSCC of Alloy 182 and 82 weld metals observed in PWR primary circuit components up to the end of 2006. Relevant data from laboratory stress corrosion testing are ...

2007-10-29T23:59:59.000Z

328

Primary coal crushers grow to meet demand  

Science Conference Proceedings (OSTI)

Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.

Fiscor, S.

2009-09-15T23:59:59.000Z

329

 

Gasoline and Diesel Fuel Update (EIA)

8) 8) June 2010 State Energy Price and Expenditure Estimates 1970 Through 2008 2008 Price and Expenditure Summary Tables Table S1a. Energy Price Estimates by Source, 2008 (Dollars per Million Btu) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and

330

Intense steady state electron beam generator  

DOE Patents (OSTI)

An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.

Hershcovitch, A.; Kovarik, V.J.; Prelec, K.

1990-07-17T23:59:59.000Z

331

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

332

state and local government  

Science Conference Proceedings (OSTI)

... State Net - A source of information on bills and state agency regulations in the 50 states, District of Columbia and Congress. ...

2012-12-13T23:59:59.000Z

333

Mississippi State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi State Regulations: Mississippi State of Mississippi The Mississippi State Oil and Gas Board (MSOGB), an independent agency, promulgates and enforces rules to regulate...

334

State of Connecticut Connecticut State Library  

E-Print Network (OSTI)

to all employees of state agencies within the executive department, towns, cities, boroughs, districts, and §7-109 of the General Statutes of Connecticut (CGS). Definitions "Agency" means a state agencyState of Connecticut Connecticut State Library Office of the Public Records Administrator www

Holsinger, Kent

335

Primary charge separation in isolated photosystem II reaction centers  

DOE Green Energy (OSTI)

Primary charge-separation in isolated bacterial reaction center (RC) complex occurs in 2.8 ps at room temperature and 0.7--1.2 ps at 10 K. Because of similarities between the bacterial and photosystem II (PSII) RCs, it has been of considerable interest to obtain analogous charge-separation rates in the higher plant system. Our previous femtosecond transient absorption studies used PSII RC material stabilized with PEG or by exchanging dodecyl maltoside (DM) for Triton in the isolation procedure. These materials gave charge-separation 1/e times of 3.0 {plus_minus} 0.6 ps at 4{degree}C and 1.4{plus_minus} 0.2 ps at 15 K based on the risetime of transient absorption kinetics at 820 nm. These values were thought to represent the time required for formation of the P680{sup +}-Pheo{sup {minus}} state. Recent results of Hastings et al. obtained at high data acquisition rates and low flash intensities, suggest that the Pheo{sup {minus}} state may form more slowly. In light of this work, we have carried out additional time domain studies of both electron transport and energy transfer phenomena in stabilized DM PSII RCs at room temperature. We used a 1-kHz repetition rate femtosecond transient absorption spectrometer with a 200 fs instrumental time resolution and compared the results with those obtained by others using frequency domain hole-burning techniques.

Seibert, M.; Toon, S. [National Renewable Energy Lab., Golden, CO (United States); Govindjee [Illinois Univ., Urbana, IL (United States); O`Neil, M.P.; Wasielewski, M.R. [Argonne National Lab., IL (United States)

1992-08-24T23:59:59.000Z

336

Elevated Temperature Primary Load Design Method Using Pseudo Elastic-Perfectly Plastic Model  

SciTech Connect

A new primary load design method for elevated temperature service has been developed. Codification of the procedure in an ASME Boiler and Pressure Vessel Code, Section III Code Case is being pursued. The proposed primary load design method is intended to provide the same margins on creep rupture, yielding and creep deformation for a component or structure that are implicit in the allowable stress data. It provides a methodology that does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. Use of elastic-perfectly plastic analysis based on allowable stress with corrections for constraint, steady state stress and creep ductility is described. This approach is intended to ensure that traditional primary stresses are the basis for design, taking into account ductility limits to stress re-distribution and multiaxial rupture criteria.

Carter, Peter [Stress Engineering Services Inc.; Sham, Sam [ORNL; Jetter, Robert I [Consultant

2012-01-01T23:59:59.000Z

337

State Laboratory Contacts IL  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information IL. Idaho. ... State of Iowa Metrology Laboratory Ellsworth Community College 1100 College Ave. ...

2013-11-07T23:59:59.000Z

338

State Laboratory Contacts DH  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information DH. District of Columbia. ... Lab Closed See State Director's List. No Certificate. Delaware. ...

2013-10-24T23:59:59.000Z

339

Battery cell for a primary battery  

Science Conference Proceedings (OSTI)

A battery cell for a primary battery, particularly a flat cell battery to be activated on being taken into use, e.g., when submerged into water. The battery cell comprises a positive current collector and a negative electrode. A separator layer which, being in contact with the negative electrode, is disposed between said negative electrode and the positive current collector. A depolarizing layer containing a depolarizing agent is disposed between the positive current collector and the separate layer. An intermediate layer of a porous, electrically insulating, and water-absorbing material is disposed next to the positive current collector and arranged in contact with the depolarizing agent.

Hakkinen, A.

1984-12-11T23:59:59.000Z

340

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Security Administration under contract DE-AC04-94AL85000. The Primary Standards Laboratory (PSL) maintains a variety of primary mass and force standards to assure...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Nuclear Security Administration under contract DE-AC04-94AL85000 The Primary Standards Laboratory (PSL) maintains a variety of primary optical standards to assure accurate...

342

Vehicle Technologies Office: Fact #288: October 6, 2003 Primary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources by Sector, 2002 on AddThis.com... Fact 288: October 6, 2003 Primary Energy Sources by Sector, 2002 Nearly 97% of primary energy used in the transportation sector is...

343

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Total Project Value Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well- built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $1,408,971 $704,486 $1,408,971 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and programs in the Southern California region. The project will raise awareness and

344

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2011 State Primary Destination County  

E-Print Network (OSTI)

Date M&IE Rate VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1 March

345

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2012 State Primary Destination County  

E-Print Network (OSTI)

$ 66 VT Manchester Bennington $ 71 VT Middlebury Addison $ 61 VT Montpelier Washington $ 61 VT Stowe

346

APPENDIX A1 Domestic (CONUS) Per Diem Rates -Effective October 1, 2010 State Primary Destination County  

E-Print Network (OSTI)

Manchester Bennington $71 VT Middlebury Addison $61 VT Montpelier Washington $61 VT Stowe Lamoille October 1

347

HQ State HQ City Name of Primary Selectee Project Type Project Title and Brief Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Participant Participant Share Total Project Value Including Cost Share AZ Fort Defiance Navajo Tribal Utility Authority Company Smart Grid Workforce Training (Topic B) Navajo Tribal Utility Authority Smart Grid Workforce Training Program - Develop a workforce that is well-trained and committed to the mission of modernizing NTUA's distribution services, including an expeditious and well-built smart grid system. The training program is designed to maximize employment opportunities for citizens of the Navajo Nation located on the reservation. Arizona New Mexico $704,486 $704,486 $1,408,972 $704,486 $704,486 $1,408,972 Glendale Glendale Community College Developing and Enhancing Workforce Training Programs (Topic A) Southern California Utility Initiative - Expand training curricula and

348

Future potential net primary production trends of contiguous United States rangelands.  

E-Print Network (OSTI)

??Rangelands are an important ecosystem covering nearly 24% of the earths terrestrial vegetation. Climate change is predicted to affect many of the factors that influence… (more)

Moreno, Adam LaSalle

2012-01-01T23:59:59.000Z

349

Trends, with an Application to Relative Primary Commodity Prices ?  

E-Print Network (OSTI)

Testing for unit roots and the impact of quadratic trends, with an application to relative primary commodity prices by

David I. Harvey; Stephen J. Leybourne; A. M. Robert Taylor; David I. Harvey; Stephen J. Leybourne; A. M. Robert Taylor

2008-01-01T23:59:59.000Z

350

Microsoft Word - state_analysis_2013  

U.S. Energy Information Administration (EIA) Indexed Site

0 0 Table 6. Energy-intensity by state (2000 - 2010) thousand Btu per dollar of GDP Change 2000 to 2010 State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Percent Absolute Al aba ma 18.3 17.1 17.4 17.2 16.9 16.4 16.3 16.2 15.9 15.3 16.0 -12.6% -2.3 Al as ka 21.7 20.6 19.8 20.2 20.3 21.1 18.7 17.8 15.9 14.1 14.2 -34.5% -7.5 Ari zona 8.7 8.5 8.4 8.0 8.3 7.6 7.2 7.3 7.6 7.5 7.6 -12.6% -1.1 Arkans a s 14.4 14.2 14.0 13.6 13.1 12.2 12.3 12.6 12.5 12.4 13.0 -9.9% -1.4 Ca l i forni a 4.9 4.9 4.8 4.7 4.5 4.3 4.3 4.2 4.0 4.0 4.0 -17.8% -0.9 Col orado 6.3 6.7 6.4 6.4 6.5 6.4 6.3 6.4 6.3 6.1 6.2 -1.8% -0.1 Connecti cut 4.6 4.3 4.3 4.5 4.5 4.3 4.1 3.9 3.8 3.9 3.7 -19.9% -0.9 Del a wa re 5.0 4.7 4.8 4.6 4.4 4.4 4.1 4.3 4.3 3.3 3.3 -34.6% -1.7 Di s tri ct of Col umbi a 1.0 0.9 0.9 0.8 0.8 0.8 0.6 0.7 0.6 0.6 0.6 -39.4% -0.4 Fl ori da 6.9 6.6 6.6 6.4 6.3 6.0 5.9 5.8 5.8 5.8 6.1 -11.4% -0.8

351

PVLV: The Primary Value and Learned Value Pavlovian Learning Algorithm  

E-Print Network (OSTI)

University of Colorado at Boulder The authors present their primary value learned value (PVLV) model robust to variability in the environment. The primary value (PV) system controls performance and learning during primary rewards, whereas the learned value (LV) system learns about conditioned stimuli. The PV

O'Reilly, Randall C.

352

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: Funding for state, city, and county...

353

Primary electron transfer in photosynthetic reaction centers  

Science Conference Proceedings (OSTI)

A simple model is presented for the primary step in the photoinduced electron transfer in the photosynthetic reaction centers of Rps. viridis and Rb. sphaeroides. The interaction of the chromophore system (consisting of photoexcited donor P, conduction intermediate B{sub L}, and acceptor H{sub L}) with the environment is assumed to be negligible until vibronic deexcitation takes place resulting in a stochastically perturbed adiabatic electron transfer. This process constitutes a three-level problem. It is shown that this problem, in the present case, can be approximated by a two-level problem which can simple be solved. The unidirectionality of the electron flow is explained by coincidence of energy levels in the L branch due to evolutionary constraint.

Kitzing, E.V.; Kuhn, H. (Max-Planck-Institut fuer Biophysikalische Chemie, Goettingen (Germany, F.R.))

1990-02-22T23:59:59.000Z

354

Scattering States in AdS/CFT  

SciTech Connect

We show that suitably regulated multi-trace primary states in large N CFTs behave like 'in' and 'out' scattering states in the flat-space limit of AdS. Their transition matrix elements approach the exact scattering amplitudes for the bulk theory, providing a natural CFT definition of the flat space S-Matrix. We study corrections resulting from the AdS curvature and particle propagation far from the center of AdS, and show that AdS simply provides an IR regulator that disappears in the flat space limit.

Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared; /SLAC

2012-02-14T23:59:59.000Z

355

Combustor with two stage primary fuel assembly  

DOE Patents (OSTI)

A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

Sharifi, Mehran (Winter Springs, FL); Zolyomi, Wendel (Oviedo, FL); Whidden, Graydon Lane (Orlando, FL)

2000-01-01T23:59:59.000Z

356

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Overview (Quadrillion Btu) Consumption, Production, and Imports, 1973-2012 Consumption, Production, and Imports, Monthly Overview, April 2013 Net Imports,...

357

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Energy Overview Overview, 1949-2011 Production and Consumption, 2011 Overview, 2011 Energy Flow, 2011 (Quadrillion Btu) 4 U.S. Energy Information Administration Annual...

358

U.S. Commercial Buildings Energy Intensity  

U.S. Energy Information Administration (EIA)

Table 7c. U.S. Commercial Buildings Energy Intensity Using Primary Energy 1 by Census Region and Principal Building Activity, 1992-1999 (Million Btu per Worker)

359

Rest of US  

E-Print Network (OSTI)

www.eia.gov Primary energy use by fuel, 1980-2035 …in absolute terms, all fuels grow except petroleum liquids U.S. energy consumption quadrillion Btu

Adam Sieminski Administrator; Adam Sieminski; Eagle Ford (tx

2012-01-01T23:59:59.000Z

360

Table 2.1c Commercial Sector Energy Consumption Estimates, 1949 ...  

U.S. Energy Information Administration (EIA)

1 See "Primary Energy Consumption" in Glossary. 9 Wind electricity net generation (converted to Btu using the fossil-fuels heat rate—see Table A6).

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Fossil Fuels: Nuclear

362

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book (EERE)

0 2003 Commercial Primary Energy Consumption Intensities, by Principal Building Type Consumption Percent of Total | Consumption Percent of Total Building Type (thousand BtuSF)...

363

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

1 See "Primary Energy Consumption" in Glossary. 9 Wind electricity net generation (converted to Btu using the fossil-fuels heat rate—see Table A6).

364

District of Columbia - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, District of Columbia (Trillion Btu) ... Washington, DC 20585 About EIA Press Room Careers ...

365

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Total Primary Energy Consumption per Capita (Million Btu per Person) ... 2009 North America 279.119 275.325 277.356 268.452 253 ...

366

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Intensity - Total Primary Energy Consumption per Dollar of GDP (Btu per Year 2005 U.S. Dollars (Purchasing Power Parities)) Loading...

367

Background - State Data Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

State Data Reporting State-reported motor fuel data is a critical component of the process that distributes HTF monies to the States. Currently, motor-fuel-based apportionment...

368

Agency Bureau Primary Activity Code Secondary Activity Code  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENCLOSURE 1 ENCLOSURE 1 Agency Bureau Primary Activity Code Secondary Activity Code Additional Activity Code Description of Activity Competed Type of Competition Location (State) # of FTE in study # of Bids Received Start Date (Day/Mo/Yr) End Date (Day/Mo/Yr) Expected Phase-In Completion Date (Day/Mo/Yr) Actual Phase- In Completion Date (Day/Mo/Yr) Source Selection Strategy Used Winning Provider FY 2006 Costs Total Cost All Years Estimated Savings Period of Est. Savings (Performance Period--in years) Annualized Savings Actual Savings (if available) Saving Methodology: Calculation / Proxy Quantifiable Description of Improvements in Service or Performance (if appropriate) 0 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.628 FY 2007 FIXED COSTS*

369

Charge state simulation  

Science Conference Proceedings (OSTI)

... The charge state balance (eg, the population of different charge states) inside the EBIT is determined by the balance between the different ...

2010-12-07T23:59:59.000Z

370

finite state machine  

Science Conference Proceedings (OSTI)

... Moore machine), multiple start states, transitions conditioned on no input symbol (a null) or more than one transition for a given symbol and state ( ...

2013-11-08T23:59:59.000Z

371

Virginia State Energy Profile  

U.S. Energy Information Administration (EIA)

The State’s two nuclear power plants provided 38 percent of the net electricity generation ... Storage : 8,111 million cu ft ... energy demand is distributed fairly ...

372

Alaska State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska State Regulations: Alaska State of Alaska The Alaska Oil and Gas Conservation Commission (AOGCC) regulates the drilling for and production of oil and gas resources, the...

373

Arizona State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona State Regulations: Arizona State of Arizona The Arizona Geological Survey (AZGS) Oil and Gas Conservation Commission (OGCC) regulates the drilling for and production of...

374

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to this report. INTRODUCTION AND OBJECTIVE The European Laboratory for Particle Physics, CERN, in collaboration with the United States (U.S.) and other non-member states,...

375

Radioimmunoguided surgery in primary colon cancer  

SciTech Connect

Radioimmunoguided surgery (RIGS), the intraoperative use of a hand-held gamma detecting probe (GDP) to identify tissue containing radiolabeled monoclonal antibody (MAb), was performed upon 30 patients with primary colon carcinoma. Each patient received an intravenous injection of MAb B72.3 (1.0 to 0.25 mg) radiolabeled with {sup 125}I (5.0 to 1.0 mCi) 8 to 34 days before exploration. The GDP was used to measure radioactivity in colon tissue, tumor bed, nodal drainage areas, and areas of suspected metastases. Antibody localized to histologically documented tumor in 23 of 30 patients (77%). Tumor margins were more clearly defined in 20 of 30 patients (67%). GDP counts led to major alterations in surgical resection in five patients (17%) and changes in adjuvant therapy in four (14%). GDP counts identified occult liver metastases in two patients (7%) and correctly indicated the benign nature of liver masses in three (10%). In four patients (13%), occult nodal metastases were identified. RIGS can precisely delineate tumor margins, define the extent of nodal involvement, and localize occult tumor, providing a method of immediate intraoperative staging that may lessen recurrences and produce higher survival rates.

Nieroda, C.A.; Mojzisik, C.; Sardi, A.; Ferrara, P.J.; Hinkle, G.; Thurston, M.O.; Martin, E.W. Jr. (National Institutes of Health, Bethesda, MD (USA))

1990-01-01T23:59:59.000Z

376

Primary Piping Static Test Design Request  

SciTech Connect

It is requested that a design be initiated for the primary piping static test. This test is necessary to provide information as to the reliability of the pipe subjected to reactor operating conditions. The test conditions are as follows: temperature - 2000 F (isothermal), pressure effective - 42 psi, and test time - 10,000 hours. It will be necessary to test two sizes of pipe as shown on the preliminary piping layout (2.250-inch O.D. x .095-inch wall and 3 1/2 SCH. 10 pipe). The test specimens shall be jacketed in an inconel containment vessel. The test rig should be similar to the design of the 4-inch pressure vessels (T-1030244). In addition an outer containment vessel constructed of stainless steel must be provided around the clam shell heaters and the inconel containment vessel. This is to provide an inert atmosphere for the inconel vessel. Provisions should be made in the design for a 1/4-inch clad thermocouple. It is planned to use the pipe test as a vehicle for studying experimental Tc's (Cb-Mo and W-W.26% Re).

O' Brien, R.W.

1961-11-30T23:59:59.000Z

377

State Laboratory Contacts AC  

Science Conference Proceedings (OSTI)

State Laboratory Contact Information AC. Alabama. Mailing Address, ... PDF. Alaska. Mailing Address, Contact Information. Alaska ...

2013-08-01T23:59:59.000Z

378

State and Regional Resources  

Science Conference Proceedings (OSTI)

... Center. -, Economic Developer's Assn. South Dakota, -, Small Business Development Center. -, Dakota State SBIR. Tennessee, ...

2012-11-19T23:59:59.000Z

379

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer...

380

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial Equipment Rebate Program (Pennsylvania) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Program Info Start Date 9/1/2012 Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Boiler Size 300-500 (kBtu/h): $800; $2900 Boiler Size 500-700 (kBtu/h): $1400; $3600 Boiler Size 700-900 (kBtu/h): $2000; $4200 Boiler Size 900-1100 (kBtu/h): $2600; $4800 Boiler Size 1100-1300 (kBtu/h): $3200; $5400 Boiler Size 1300-1500 (kBtu/h): $3800; $6000 Boiler Size 1500-1700 (kBtu/h): $4400; $6600 Boiler Size 1700-2000 (kBtu/h): $5200; $7400

382

State energy flow patterns. [All 50 states  

SciTech Connect

Highly visual and self-explanatory 1975 energy flow diagrams are presented for each of the 50 states and for the entire United States. Each diagram illustrates the energy produced and how it is consumed or lost. The diagrams are meant to serve as a convenient and useful reference (or starting point) for consideration of energy-related problems.

Kidman, R.B.; Barrett, R.J.

1977-01-01T23:59:59.000Z

383

Doorway states and billiards  

SciTech Connect

Whenever a distinct state is immersed in a sea of complicated and dense states, the strength of the distinct state, which we refer to as a doorway, is distributed in their neighboring states. We analyze this mechanism for 2-D billiards with different geometries. One of them is symmetric and integrable, another is symmetric but chaotic, and the third has a capricious form. The fact that the doorway-state mechanism is valid for such highly diverse cases, proves that it is robust.

Franco-Villafane, J. A.; Mendez-Sanchez, R. A. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251 Cuernavaca Mor. (Mexico); Flores, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Centro Internacional de Ciencias, A. C., P.O. Box 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico); Mateos, J. L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Novaro, O. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P.O. Box 20-364, 01000 Mexico, D. F. (Mexico); Seligman, T. H. [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, P.O. Box 48-3, 62251 Cuernavaca Mor. (Mexico); Centro Internacional de Ciencias, A. C., P.O. Box 6-101 C.P. 62131 Cuernavaca, Mor. (Mexico)

2010-12-23T23:59:59.000Z

384

Funding for state, city, and county governments in the state...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding for state, city, and county governments in the state includes: Funding for state, city, and county governments in the state includes: A chart detailling the funding for...

385

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Jersey" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

386

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Illinois" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

387

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

388

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Texas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

389

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Washington" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,...

390

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Montana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,199...

391

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Maine" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,...

392

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "South Dakota" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,199...

393

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Kansas" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999...

394

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "West Virginia" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

395

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Louisiana" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1...

396

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New Hampshire" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,19...

397

UK Availability and Consumption of Primary and Secondary Fuels...  

Open Energy Info (EERE)

Availability and Consumption of Primary and Secondary Fuels (1974) The then UK Department of Energy, in conjunction with the UK Government Statistical Service published statistics...

398

Refining Primary Lead by Granulation–Leaching–Electrowinning  

Science Conference Proceedings (OSTI)

Primary lead production is usually viewed in terms of two distinct operations: ... and local energy costs are certainly factors that would be relevant in a choice ...

399

Primary Lead Reduction—A Survey of Existing Smelters and ...  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... Primary Lead Reduction—A Survey of Existing Smelters and Refineries by A.H. Siegmund. Publisher: TMS. Product Format: PDF. Pages: 55- ...

400

Table A22. Total First Use (formerly Primary Consumption)...  

U.S. Energy Information Administration (EIA) Indexed Site

First Use (formerly Primary Consumption) of Combustible Energy for Nonfuel" " Purposes by Census Region, Census Division, and Economic Characteristics of the Establishment," 1994 "...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Primary causes of wetland loss at Madison Bay, Terrebonne ...  

U.S. Energy Information Administration (EIA)

Get this from a library! Primary causes of wetland loss at Madison Bay, Terrebonne Parish, Louisiana. [Robert A Morton; Ginger Tiling; Nicholas F ...

402

Global Primary Aluminium Industry 2010 Life Cycle Inventory  

Science Conference Proceedings (OSTI)

Within this framework, the Primary Aluminium Industry has established a global Life Cycle Inventory (LCI) data set. Inventory flows include inputs of raw materials  ...

403

A Gas Pressure Scale Based on Primary Standard Piston ...  

Science Conference Proceedings (OSTI)

A Gas Pressure Scale Based on Primary Standard Piston Gauges. Summary: ... Distortion is a major contributor to uncertainty at higher pressures. ...

2013-06-07T23:59:59.000Z

404

Photon Absorbed-Dose-to-Water Primary Standards  

Science Conference Proceedings (OSTI)

Photon Absorbed-Dose-to-Water Primary Standards. ... and scattering/perturbation for the water calorimeter in both Co-60 and high-energy x-ray ...

2013-03-08T23:59:59.000Z

405

Texas Large Construction Site Notice for Primary Operators |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Texas Large Construction Site Notice for Primary Operators edit Details Activities (0)...

406

Life Cycle Analysis and Energy Conservation Standards for State Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Life Cycle Analysis and Energy Conservation Standards for State Life Cycle Analysis and Energy Conservation Standards for State Buildings Life Cycle Analysis and Energy Conservation Standards for State Buildings < Back Eligibility Institutional Schools State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Manufacturing Buying & Making Electricity Program Info State Ohio Program Type Energy Standards for Public Buildings Provider Ohio State Architect's Office In 1995 Ohio passed legislation requiring that all state agencies perform life-cycle cost analyses prior to the construction of new buildings, and energy consumption analyses prior to new leases. Both analyses are to be primary considerations in either building design or leasing decisions. The

407

All Price Tables.vp  

Annual Energy Outlook 2012 (EIA)

8. Coal and Retail Electricity Prices and Expenditures, Ranked by State, 2011 Rank Coal Retail Electricity Prices Expenditures Prices Expenditures State Dollars per Million Btu...

408

Parts of Quantum States  

E-Print Network (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that Real Algebraic Geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Nick S. Jones; Noah Linden

2004-07-15T23:59:59.000Z

409

Parts of quantum states  

Science Conference Proceedings (OSTI)

It is shown that generic N-party pure quantum states (with equidimensional subsystems) are uniquely determined by their reduced states of just over half the parties; in other words, all the information in almost all N-party pure states is in the set of reduced states of just over half the parties. For N even, the reduced states in fewer than N/2 parties are shown to be an insufficient description of almost all states (similar results hold when N is odd). It is noted that real algebraic geometry is a natural framework for any analysis of parts of quantum states: two simple polynomials, a quadratic and a cubic, contain all of their structure. Algorithmic techniques are described which can provide conditions for sets of reduced states to belong to pure or mixed states.

Jones, Nick S.; Linden, Noah [Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW (United Kingdom)

2005-01-01T23:59:59.000Z

410

Windows technology assessment  

SciTech Connect

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

411

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

412

Strategies for mimicking the primary events of bacterial photosynthesis: Structure, function, and mechanism  

DOE Green Energy (OSTI)

Some of the possible implications of the photochemistry of photosynthesis for artificial systems are presented. A major aspect of this paper involves the special conditions required to prevent the undesirable charge recombination via the excited triplet state of the primary donor. If a multi-jump model is operative in the primary events of photosynthesis, then artificial model systems are relatively easy to synthesize. Such systems prevent back reactions via a series of downhill chemical reactions. Each downhill step in energy results in an increase in charge separation distance. The annihilation reactions, even to the less energetic triplet state, involve intermediate states uphill in energy and consequently are greatly diminished. However, if superexchange is a correct explanation of photosynthesis, then model systems have not been developed that properly mimic the natural process. In particular, the triplet back reaction can occur due to the lack of any thermal activation barrier. In nature this downhill back reaction appears to be prevented by carefully balancing the energetics using four molecules in the electron transport system. If this is the case, artificial photosynthesis would also require fine tuning of the coupling and energetics with three or four molecules making duplication more difficult to achieve. 10 refs.

Norris, J.R. (Argonne National Lab., IL (USA) Chicago Univ., IL (USA). Dept. of Chemistry); Raghavan, M. (Chicago Univ., IL (USA). Dept. of Chemistry)

1990-01-01T23:59:59.000Z

413

Performance of Primary Users in Spectrum Sharing Cognitive Radio Environment  

Science Conference Proceedings (OSTI)

This paper investigates the performance of the primary user in a multiuser cognitive radio environment. Using spectrum sharing method, multiple cognitive users compete to share a channel dedicated to the primary user in order to transmit their data to ... Keywords: Bit error rate, Channel capacity, Cognitive communications, Outage probability, Spectrum sharing, User scheduling

Abdallah K. Farraj; Eman M. Hammad

2013-02-01T23:59:59.000Z

414

State Technology Extension Assistance Project for the State of ...  

Science Conference Proceedings (OSTI)

... NIST provides technical assistance to State technology extension programs throughout the United States. The purpose ...

2013-09-05T23:59:59.000Z

415

Montana State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Montana State Regulations: Montana State of Montana The Montana Board of Oil and Gas Conservation (MBOGC) is a quasi-judicial body that is attached to the Department of Natural...

416

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA)

Trade and Reliability; All Reports ‹ See all Electricity Reports State Electricity Profiles. ... Electric Power Industry Emissions Estimates, 1990 Through 2010:

417

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 12% in the AEO2014 Reference case, from 95 quadrillion Btu in 2012 to 106 quadrillion Btu in 2040-1.3 quadrillion Btu less than in AEO2013 (Figure 8). The fossil fuel share of energy consumption falls from 82% in 2012 to 80% in 2040, as consumption of petroleum-based liquid fuels declines, largely as a result of slower growth in VMT and increased vehicle efficiency. figure dataTotal U.S. consumption of petroleum and other liquids, which was 35.9 quadrillion Btu (18.5 MMbbl/d) in 2012, increases to 36.9 quadrillion Btu (19.5 MMbbl/d) in 2018, then declines to 35.4 quadrillion Btu (18.7 MMbbl/d) in 2034 and remains at that level through 2040. Total consumption of domestically produced biofuels increases slightly through 2022 and then

418

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

419

Southern state radiological emergency preparedness and response agencies  

Science Conference Proceedings (OSTI)

This Report provides information on the state agencies assigned to radioactive materials transportation incidents in 16 Southern States Energy Board member states. For each, the report lists the agencies with primary authority for preparedness and response, their responsibilities and personnel within the agencies who can offer additional information on their radioactive materials transportation programs. The report also lists each state`s emergency team members and its laboratory and analytical capabilities. Finally, the governor`s designee for receiving advance notification of high-level radioactive materials and spent fuel shipments under 10 CFR Parts 71 and 73 of the US Nuclear Regulatory Commission`s regulations is listed for each state. Part 71 requires prenotification for large quantity radioactive waste shipments. Part 73 addresses prenotification for spent nuclear reactor fuel shipments.

Not Available

1988-11-01T23:59:59.000Z

420

State Emissions Estimates  

Gasoline and Diesel Fuel Update (EIA)

Estimates of state energy-related carbon dioxide emissions Estimates of state energy-related carbon dioxide emissions Because energy-related carbon dioxide (CO 2 ) constitutes over 80 percent of total emissions, the state energy-related CO 2 emission levels provide a good indicator of the relative contribution of individual states to total greenhouse gas emissions. The U.S. Energy Information Administration (EIA) emissions estimates at the state level for energy-related CO 2 are based on data contained in the State Energy Data System (SEDS). 1 The state-level emissions estimates are based on energy consumption data for the following fuel categories: three categories of coal (residential/commercial, industrial, and electric power sector); natural gas; and ten petroleum products including-- asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, liquefied petroleum gases

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nanoengineering for solid-state lighting.  

SciTech Connect

This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

Schubert, E. Fred (Rensselaer Polytechnic Institute,Troy, NY); Koleske, Daniel David; Wetzel, Christian (Rensselaer Polytechnic Institute,Troy, NY); Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu (Rensselaer Polytechnic Institute,Troy, NY); Crawford, Mary Hagerott; Fischer, Arthur Joseph

2009-09-01T23:59:59.000Z

422

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

423

Excitation trapping and primary charge stabilization in Rhodopseudomonas viridis cells, measured electrically with picosecond resolution  

SciTech Connect

The transmembrane primary charge separation in the photosynthetic bacterium Rhodopseudomonas viridis was monitored by electric measurements of the light-gradient type. Excitation of whole cells with 30-ps laser pulses at either 532 nm or 1064 nm gave rise to a biphasic increase of the photovoltage. The fast phase, contributing about 50% of the total, rose with an exponential time constant less than or equal to 40 ps and was independent of the redox state of the quinone electron acceptor. It is assigned to the migration of the excitation energy in the antenna and its subsequent trapping by the reaction center, monitored by the ultrafast charge separation between the primary electron donor and the bacteriopheophytin intermediary acceptor. The slower phase (125 +/- 50 ps) only occurred when the quinone was oxidized and disappeared when it was reduced (either chemically or photochemically). It is assigned to the forward electron transfer from the bacteriopheophytin to the quinone. The relative amplitudes of these two electrogenic steps demonstrate that the bacteriopheophytin intermediary acceptor is located halfway between the primary donor and the quinone.

Deprez, J.; Trissl, H.W.; Breton, J.

1986-03-01T23:59:59.000Z

424

State Technologies Advancement Collaborative  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

425

State Clean Energy Policies Analysis: State, Utility, and Municipal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Report State Clean Energy Policies NRELTP-6A2-47376 Analysis: State, Utility, and May 2010 Municipal Loan Programs Eric Lantz Technical Report State Clean Energy...

426

Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

No person shall operate a source which has a significant impact on air quality in such a manner as to cause or contribute to a violation of ambient air quality standards. Connecticut primary and...

427

The Primary Standards Laboratory (PSL) maintains a wide variety...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the US Department of Energy under contract DE-ACO4-94AL85000. The Primary Standards Laboratory (PSL) and Sandia's Radiation Protection organization maintain a variety...

428

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Utah" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

429

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Iowa" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

430

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "Ohio" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2...

431

Table 5. Electric Power Industry Generation by Primary Energy...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table 5. Electric Power Industry Generation by Primary Energy Source, 1990 Through 2010 (Megawatthours)" "New York" "Energy Source",1990,1991,1992,1993,1994,1995,1996,1997,1998,19...

432

AEO2011: Primary Natural Gas Flows Entering NGTDM Region from...  

Open Energy Info (EERE)

Primary Natural Gas Flows Entering NGTDM Region from Neighboring Regions

433

Primary aluminum production : climate policy, emissions and costs  

E-Print Network (OSTI)

Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

434

Single Crystal Superalloys: The Transition from Primary to ...  

Science Conference Proceedings (OSTI)

clear to what extent this is due to an intrinsic link between the mechanisms of primary ..... Weak beam micrograph of A deformed to the start of secondary creep at ...

435

States | OpenEI  

Open Energy Info (EERE)

States States Dataset Summary Description The State Energy Data System (SEDS) is compiled by the U.S. Energy Information Administration's (EIA); it is a comprehensive database of energy statistics by state (and includes totals for the entire US). SEDS includes estimates of energy production, consumption, prices, and expenditures broken down by energy source and sector. Annual estimates are available from 1960 - 2009 for production and consumption estimates and from 1970 - 2009 for price and expenditure estimates. Source EIA Date Released June 30th, 2011 (3 years ago) Date Updated Unknown Keywords EIA Energy Consumption Energy Expenditures energy prices energy production SEDS State energy data States US Data text/csv icon Complete SEDS dataset as csv (may be too big for Excel) (csv, 40.6 MiB)

436

Alabama State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

State Regulations » Alabama State Regulations » Alabama State Regulations: Alabama State of Alabama The State Oil and Gas Board of Alabama, under the direction of the State Geologist and Oil and Gas Supervisor, is responsible for the regulation of oil and gas operations. The Board is divided into two administrative regions-north and south. The Board has broad authority in Alabama's oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. A major duty of the Board is to prevent pollution of fresh water supplies by oil, gas, salt water, or other contaminants resulting from oil and gas operations. The Alabama Department of Environmental Management (ADEM) administers the major federal environmental protection laws through regulations governing air pollution, water quality and supply, solid and hazardous waste management.

437

Pennsylvania State University | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

Old Main, Credit: George Chriss Old Main, Credit: George Chriss Research Research at Penn State Capabilities and Projects Institutes of Energy and the Environment Huck Institutes of Life Sciences Materials Research Institute Eberly College of Science Alternative Energy Research Research Publications Faculty Expertise Database Research News DOE Research Results Penn State Commencement 2012 United States Secretary of Energy Dr. Steven Chu was the commencement speaker at Penn State's Eberly College of Science 2012 spring graduation ceremony held May 5 at the Bryce Jordan Center on the University Park campus. Read more. Search this site: Search Over the past ten years, more than 28,000 graduate degrees were conferred by Penn State, including over 6,300 doctoral degrees. Resources About Penn State

438

Twisted vortex state  

E-Print Network (OSTI)

We study a twisted vortex bundle where quantized vortices form helices circling around the axis of the bundle in a "force-free" configuration. Such a state is created by injecting vortices into rotating vortex-free superfluid. Using continuum theory we determine the structure and the relaxation of the twisted state. This is confirmed by numerical calculations. We also present experimental evidence of the twisted vortex state in superfluid 3He-B.

V. B. Eltsov; A. P. Finne; R. Hanninen; J. Kopu; M. Krusius; M. Tsubota; E. V. Thuneberg

2006-02-28T23:59:59.000Z

439

Pressurized Water Reactor Primary Zinc Application Sourcebook, Revision 1  

Science Conference Proceedings (OSTI)

Utilities continually strive to optimize core design, address primary system material issues, and minimize dose impact on plant personnel. To meet these challenges, the Electric Power Research Institute (EPRI), Westinghouse, and Southern Nuclear-Plant Farley began zinc injection in 1994 for mitigation of primary water stress corrosion cracking (PWSCC) and radiation field reductions. Additional information from industry research continues to show the beneficial impact of zinc injection on radiation fields...

2012-07-13T23:59:59.000Z

440

Table E1A. Major Fuel Consumption (Btu) by End Use for All ...  

U.S. Energy Information Administration (EIA)

Warehouse and Storage ..... 456 194 14 20 6 132 Q 36 2 5 48 Other ..... 286 138 18 11 4 59 Q 10 Q 5 33 Vacant ...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

What are Ccf, Mcf, Btu, and therms? How do I convert prices in ...  

U.S. Energy Information Administration (EIA)

Natural Gas Conversion Calculator. Last updated: March 20, 2013. Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons?

442

Table E1. Major Fuel Consumption (Btu) by End Use for Non-Mall ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other

443

Table E1. Major Fuel Consumption (Btu) by End Use for Non-Mall ...  

U.S. Energy Information Administration (EIA)

HVAC Equipment Upgrade..... 1,156 470 73 81 117 206 29 45 11 32 92 Lighting Upgrade ..... 1,085 485 62 75 92 184 24 49 10 28 76 Window ...

444

Table E1. Major Fuel Consumption (Btu) by End Use for Non ...  

U.S. Energy Information Administration (EIA)

HVAC Maintenance ..... 792 29 106 105 13 302 6 83 17 40 91 Energy Management and Control System (EMCS) ..... 280 9 42 47 4 108 1 12 8 18 32 Window and ...

445

Table E3. Electricity Consumption (Btu) by End Use for Non ...  

U.S. Energy Information Administration (EIA)

Notes: Due to rounding, data may not sum to totals. HVAC = Heating, Ventilation, and Air Conditioning. Source: Energy Information Administration, ...

446

Table E11A. District Heat Consumption (Btu) and Energy Intensities ...  

U.S. Energy Information Administration (EIA)

Climate Zone: 30-Year Average Under 2,000 CDD and --- More than 7,000 HDD ..... 88 80 8 Q (*) 106.3 96.7 9.4 Q (*) - 5,500-7,000 HDD ...

447

High-Btu gas from peat. Feasibility study. Volume II. Executive summary  

Science Conference Proceedings (OSTI)

In September 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first is the Executive Summary. This Volume II contains all of the text of the report, and Volume III includes all of the specifications, drawings, and appendices applicable to the project. Contents of Volume II are: introduction; project scope and objectives; commercial plant description; engineering specifications; design and construction schedules; capital cost estimates; operating cost estimates; financial analysis; and future areas for investigation. 15 figures, 17 tables.

Not Available

1984-01-01T23:59:59.000Z

448

High-Btu gas from peat. Feasibility study. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

In September, 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first of which is this Executive Summary. Subsequent volumes include Volume II which contains all of the text of the report, and Volume III which includes all of the specifications, drawings, and appendices applicable to the project. As part of this study, a scale model of the proposed gasification facility was constructed. This model was sent to Minnegasco, and photographs of the model are included at the end of this summary.

Not Available

1984-01-01T23:59:59.000Z

449

Microfabricated BTU monitoring device for system-wide natural gas monitoring.  

SciTech Connect

The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will expedite accurate financial accounting. Industrial endusers will benefit through continuous feedback of physical gas properties to improve combustion efficiency during use. To meet this need, Sandia has developed a natural gas heating value monitoring instrument using existing and modified microfabricated components. The instrument consists of a silicon micro-fabricated gas chromatography column in conjunction with a catalytic micro-calorimeter sensor. A reference thermal conductivity sensor provides diagnostics and surety. This combination allows for continuous calorimetric determination with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This system will find application at remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. Microfabrication techniques will allow the analytical components to be manufactured in production quantities at a low per-unit cost.

Einfeld, Wayne; Manginell, Ronald Paul; Robinson, Alex Lockwood; Moorman, Matthew Wallace

2005-11-01T23:59:59.000Z

450

Table E3A. Electricity Consumption (Btu) by End Use for All ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

451

Table 8. U.S. Renewable Energy Consumption (Quadrillion Btu) U ...  

U.S. Energy Information Administration (EIA)

heating oil. (b) Wood and wood-derived fuels. (c) Municipal solid waste from biogenic sources, landfill gas, sludge waste, agricultural byproducts, ...

452

Table E7. Natural Gas Consumption (Btu) and Energy Intensities by ...  

U.S. Energy Information Administration (EIA)

Window Replacement ..... 242 179 37 10 16 48.5 35.8 7.4 2.0 3.2 Plumbing System Upgrade ..... 287 198 48 17 24 50.2 34.6 8.4 2.9 4.3 ...

453

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

This program has the objectives to: A. Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition. B. Determine emissions characteristics including NO, NO{sub x}, CO, levels etc. associated with each of the diluents, and C. Operate with at least two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions. As a result of this program: 1. GE Engineering is now confident that the syngas fuels produced by all currently--viable coal gasifiers can be accommodated by the GE advanced (``F`` Technology) combustion system, and 2. For proposed syngas fuels with varying amounts of steam, nitrogen or CO{sub 2} diluent, the combustion and emissions characteristics can be reasonably estimated without undertaking expensive new screening tests for each different fuel.

Ekstrom, T.E.; Battista, R.A.; Belisle, F.H.; Maxwell, G.P.

1993-11-01T23:59:59.000Z

454

Table A4. Approximate Heat Content of Natural Gas, 1949-2011 (Btu ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... 1984: 1,109: 1,031: 1,030: 1,035: 1,031: 1,005: 1,010: 1985: 1,112: 1,032: 1,031: 1,038: 1,032: 1,002: 1,011 ...

455

Operational characteristics of anaerobic digesters at selected municipal wastewater treatment facilities in the United States  

DOE Green Energy (OSTI)

Bench-scale and pilot plant studies at PNL have shown that powdered activated carbon is effective in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency. To evaluate the applicability of this technology to digesters in the United States, digester operating characteristics at 60 facilities were surveyed and the number of stressed digesters estimated. The results show that although median values of the operating parameters conformed with those of a well-operated digester, 30% of the digesters surveyed were stressed with regard to at least one important parameter. Of the 30 largest treatment plants in the U.S., 7 fell into this category. Digester gas production and usage were then examined to determine the importance of methane off-gas as an energy source. A conservative estimate is that the gas produced nationally represents a heating value of about 2.36 x 10/sup 13/ Btu/year with a present value of $40 million. Of this amount, an estimated 75% is used either onsite or sold. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity. The other 25% is flared and the energy value lost. The present value of the flared gas is about $10 million/year. Natural gas prices are projected to increase 150% over the next 7 years. If the present utilization ratio continues, the flared gas will be worth approximately $27 million in 1985. Presently, digester gas is mainly used for process heating and operating equipment. The technical and economic feasibility of recovering digester gas for electrical power generation, onsite equipment operation, and sales to other consumers (utilities, private companies) should be thoroughly investigated. If fuel gas recovery and utilization are found to be desirable, consideration should be given to expanding and upgrading anaerobic digester facilities in the U.S.

Spencer, R.R.; Wong, A.L.; Coates, J.A.; Ahlstrom, S.B.

1978-12-01T23:59:59.000Z

456

Florida State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

to conserve the state's oil and gas resources and minimize environmental impacts from exploration and production operations through regulation and inspection activities. The...

457

OpenEI - state  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4330 en Alabama State Oil and Gas Board: Oil Well Records (2911 - 31811) http:en.openei.orgdatasetsnode469

The Alabama...

458

State of Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

fire chiefs association, Idaho society of professional engineers, Idaho state independent living council, southwest Idaho building trades, Idaho building trades, and any other...

459

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'OQOl - United States Government - Department of Energy National Nuclear Security Administration memorandum January 19, 201 1 DATE. REPLY TO ATTN OF: Y12-60:Gorman SUBJECT ANNUAL...

460

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Georgia State Energy Profile  

U.S. Energy Information Administration (EIA)

Georgia has the largest land area of any state east of the Mississippi River, and, sitting at the southern end of the Blue Ridge Mountains, its land ...

462

United States Patent  

NLE Websites -- All DOE Office Websites (Extended Search)

( 1 of 1 ) United States Patent 6,994,831 Gentile , et al. February 7, 2006 Oxidative tritium decontamination system Abstract The Oxidative Tritium Decontamination System, OTDS,...

463

UNITED STATES OF AMERICA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empowering Consumers and the ) Request for Information Smart Grid: Data Access, Third Party ) Use and Privacy ) COMMENTS BY THE NATIONAL ASSOCIATION OF STATE UTILITY CONSUMER...

464

IGBP-DIS Global Primary Production Data Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

IGBP-DIS Global Primary Production Data Initiative IGBP-DIS Global Primary Production Data Initiative The GPPDI Workshop was held in Cincinnati, U.S.A., December 1996 (Olson et al., 1997). Summary (September 1996) by Dick Olson and Steve Prince from Global Change Newsletter No. 27; International Geosphere-Biosphere Programme: A Study of Global Change (IGBP) of the International Council of Scientific Unions Global modelling and monitoring of net primary production (NPP) is being given high priority in IGBP owing to increasing concern over issues such as the consequences of perturbations in the carbon cycle, the impacts of global land-use change, global climate change, and global food security. Significant advances have been made in process modelling and in the use of remote sensing to monitor global vegetation. The advances in modelling and remote sensing of NPP have highlighted the lack of readily available, reliable information from field studies with which to parameterise and validate the models. The Global Primary Production Data Initiative (GPPDI) is intended to remedy this problem by identifying existing field data sets of primary production and associated environmental data. The programme is using data sets for representative sites, and extrapolating or regionalising the better data sets to grid cells sizes of up to 0.5º x 0.5º. Emphasis is on variables needed to parameterise and validate primary production models, including above and below ground NPP, standing crop, LAI, climate data, site data and landscape variability.

465

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

466

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

467

State of Arkansas-State Energy Program Assurances | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State of Arkansas-State Energy Program Assurances State of Arkansas-State Energy Program Assurances A letter describing the intentions of Arkansas's share of the 3.1 billion...

468

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

469

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

470

State Energy Production Data  

Gasoline and Diesel Fuel Update (EIA)

State Energy Data System State Energy Data System Production Estimates Technical Notes For 1960-2011 Estimates Table of Contents Section 1. Introduction ................................................................................................................... 1 Section 2. Coal ............................................................................................................................... 5 Section 3. Crude Oil ....................................................................................................................... 7 Section 4. Natural Gas (Marketed Production) .............................................................................. 9 Section 5. Renewable Energy and Nuclear Energy ..................................................................... 13

471

Vectorized Finite State Automata  

E-Print Network (OSTI)

We present a technique of finite state parsing based on vectorization and describe the application of this technique to a well-known problem of natural language processing, that of extracting relational information from English text. We define Vectorized Finite State Automata, the theoretical model behind the applied system, and discuss their significance.

András Kornai

1996-01-01T23:59:59.000Z

472

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

473

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

474

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

475

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

476

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

477

Ground State Entanglement Energetics  

E-Print Network (OSTI)

We consider the ground state of simple quantum systems coupled to an environment. In general the system is entangled with its environment. As a consequence, even at zero temperature, the energy of the system is not sharp: a projective measurement can find the system in an excited state. We show that energy fluctuation measurements at zero temperature provide entanglement information. For two-state systems which exhibit a persistent current in the ground state, energy fluctuations and persistent current fluctuations are closely related. The harmonic oscillator serves to illustrate energy fluctuations in a system with an infinite number of states. In addition to the energy distribution we discuss the energy-energy time-correlation function in the zero-temperature limit.

M. Buttiker; A. N. Jordan

2005-01-04T23:59:59.000Z

478

state | OpenEI  

Open Energy Info (EERE)

state state Dataset Summary Description The Alabama State Oil and Gas Board publishes well record permits to the public as they are approved. This dataset is comprised of 50 recent well record permits from 2/9/11 - 3/18/11. The dataset lists the well name, county, operator, field, and date approved, among other fields. State's make oil and gas data publicly available for a range of topics. Source Geological Survey of Alabama Date Released February 09th, 2011 (3 years ago) Date Updated March 18th, 2011 (3 years ago) Keywords Alabama board gas oil state well records Data application/vnd.ms-excel icon Well records 2/9/11 - 3/18/11 (xls, 28.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License

479

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

480

Variability of winter storminess in the eastern United States during the 20th century from tide gauges  

Science Conference Proceedings (OSTI)

Interannual to multidecadal variability of winter storminess in the eastern United States was studied using water level measurements from coastal tide gauges. The proximity to the coast of the primary winter storm track in the region allows the ...

Philip R. Thompson; Gary T. Mitchum; Cedric Vonesch; Jianke Li

Note: This page contains sample records for the topic "btu state primary" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Simulations of Present and Future Climates in the Western United States with Four Nested Regional Climate Models  

Science Conference Proceedings (OSTI)

In this paper, the authors analyze simulations of present and future climates in the western United States performed with four regional climate models (RCMs) nested within two global ocean–atmosphere climate models. The primary goal here is to ...

P. B. Duffy; R. W. Arritt; J. Coquard; W. Gutowski; J. Han; J. Iorio; J. Kim; L.-R. Leung; J. Roads; E. Zeledon

2006-03-01T23:59:59.000Z

482

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

483

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

484

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

485

State and Local Baldrige Programs  

Science Conference Proceedings (OSTI)

State, local, and regional Baldrige-based award programs use the ... organizational excellence and competitiveness in their states and regions. ...

2013-05-15T23:59:59.000Z

486

Materials for solid state lighting  

E-Print Network (OSTI)

and Renewable Energy, Office of Building Technology, State andand Renewable Energy, Office of Building Technology, State and

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

487

EIA - State Energy Data System  

U.S. Energy Information Administration (EIA)

State Energy Data System (SEDS) 500 . Unhandled exception thrown from /emeu/states/hf.jsp:90 jrun.jsp.runtime ...

488

XPS Determination of Uranium Oxidations States  

SciTech Connect

This contribution is both a review of different aspects of the XPS spectra that can help one determine U oxidation states and a personal perspective on how to effectively model the XPS of complicated mixed valence U phases. After a discussion of the valence band, the focus lingers on the U4f region, where the use of binding energies, satellite structures, and peak shapes is discussed in some detail. Binding energies were shown to be very dependent on composition/structure and consequently unreliable guides to oxidation state, particularly where assignment of composition is difficult. Likewise, the spin orbit split 4f7/2 and 4f5/2 peak shapes do not carry significant information on oxidation states. In contrast, both satellite-primary peak binding energy separations, as well as intensities too lesser extent, are relatively insensitive to composition/structure within the oxide-hydroxide-hydrate system and can be used to both identify and help quantify U oxidation states in mixed valence phases. An example of the usefulness of the satellite structure in constraining the interpretation of a complex multivalence U compound is given.

Ilton, Eugene S.; Bagus, Paul S.

2011-12-01T23:59:59.000Z

489

By Coal Origin State  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 U.S. Energy Information Administration | Quarterly Coal Distribution Report 2nd Quarter 2011 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total Alabama Total 1,896 182 327 - 2,405 Alabama Railroad 1,192 2 74 - 1,268 Alabama River 655 - - - 655 Alabama Truck 50 180 253 - 482 Georgia Total s - - - s Georgia Truck s - - - s Indiana Total - 72 - - 72 Indiana Railroad - 72 - - 72 Tennessee Total - - 7 - 7 Tennessee Truck - - 7 - 7 Origin State Total 1,896

490

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

491

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

492

All Consumption Tables - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2009 (Trillion Btu) State Total Energy b Sources End-Use Sectors a

493

Bulk chemicals industry uses 5% of U.S. energy - Today in ...  

U.S. Energy Information Administration (EIA)

The industrial sector is responsible for nearly a third of total energy use in the United States, consuming an estimated 31 quadrillion Btu in 2012.

494

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F23: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2011 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu...

495

OpenEI - Industrial  

Open Energy Info (EERE)

renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by...

496

Generation of a Consistent Terrestrial Net Primary Production Data Set  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation of a Consistent Terrestrial Net Generation of a Consistent Terrestrial Net Primary Production Data Set Final Report NASA Reference Number TE/99-0005 May 3, 2001 Richard J. Olson and Jonathan M. O. Scurlock Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6407 This project, "Generation of a Consistent Terrestrial Net Primary Production Data Set", is a coordinated, international effort to compile global estimates of terrestrial net primary productivity (NPP) for parameterization, calibration, and validation of NPP models. The project (NASA Reference Number TE/99-0005) was funded by the National Aeronautics and Space Administration (NASA), Office of Earth Science, Terrestrial Ecology Program under Interagency Agreement number 2013-M164-A1, under

497

Radiation Chemistry of Ionic Liquids: Reactivity of Primary Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids: Reactivity of Primary Species Liquids: Reactivity of Primary Species James F. Wishart In "Ionic Liquids as Green Solvents: Progress and Prospects" Rogers, R. D. and Seddon, K. R. , Eds.; ACS Symp. Ser. 856, Ch. 31, pp. 381-395, American Chemical Society, Washington, DC, 2003. (ISBN 0-84123-856-1) [Information about the book] Abstract: An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. The distribution of primary radiolytic species and their reactivities determine the yields of ultimate products and the radiation stability of a particular ionic liquid. This chapter introduces some principles of radiation chemistry and the

498

California State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

California California State Regulations: California State of California The California Department of Conservation's Division of Oil, Gas, and Geothermal Resources oversees the drilling, operation, maintenance, and plugging and abandonment of oil, natural gas, and geothermal wells. The regulatory program emphasizes the development of oil, natural gas, and geothermal resources in the state through sound engineering practices that protect the environment, prevent pollution, and ensure public safety. Other agencies that may be involved in the regulation of drilling wastes include the State Water Resources Control Board and appropriate Regional Water Quality Control Boards, the California Integrated Waste Management Board, the California Air Resources Board and appropriate Air Quality Management Districts or Air Pollution Control Districts, and the Department of Toxic Substances Control.

499

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

500

Kansas State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Kansas Kansas State Regulations: Kansas State of Kansas The Kansas Corporation Commission (KCC) Conservation Division regulates oil and gas operations and protects correlative rights and environmental resources. Otherwise, the Kansas Department of Health and Environment (KDHE) administers the major environmental protection laws. Contact Kansas Corporation Commission (Main Office) 1500 S.W. Arrowhead Road Topeka, KS 66604-2425 (785) 271-3100 (phone) (785) 271-3354 (fax) Conservation Division Finney State Office Building 130 South Market, Room 2078 Wichita, KS 67202-3802 (316) 337-6200 (phone) (316) 337-6211 (fax) Kansas Department of Health and Environment Charles Curtis State Office Building 1000 S.W. Jackson Topeka, KS 66612 (785) 296-1500 (phone) (785) 368-6368 (fax)