Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

2

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

3

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

4

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

5

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

6

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

7

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2010;" 6 Quantity of Purchased Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)"

8

Energy Policy: Independence by 1985 My Be Unreachable Without Btu Tax  

Science Journals Connector (OSTI)

...domestic oil production and the diffi-culties...Countries (OPEC). The decontrol...the Earth Day move-ment...indeed-high enough per-haps to...about by OPEC in late 1973 and early...of oil a day less than...18 miles per gallon by...of oil a day (mbd...consumption in 1973. The added...domestic production of energy...

LUTHER J. CARTER

1976-02-13T23:59:59.000Z

9

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2006;" 1 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,,,,"Coke" ,,,,"Net",,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze" "NAICS",,"Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)",,"(million kWh)",,"(million bbl)","(million bbl)","cu ft)",,"(million bbl)","short tons)","short tons)","(trillion Btu)"

10

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010;" 1 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." ,,,,,,,,,"Coke" ,,,,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze" "NAICS",,"Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)" "Code(a)","Subsector and Industry","(trillion Btu)","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons)","short tons)","(trillion Btu)"

11

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

12

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

13

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

14

Advanced Design and Commissioning Tools for Energy-Efficient Building Technologies  

E-Print Network [OSTI]

energy utilization intensity (EUI) was 47 kBtu-sf/yr. TaskStar Energy Star Rating NA EUI 47.5 kBtu/sf/yr 71. kBtu/sf/Sensitivity Study Annual HVAC EUI (kBtu/sf/yr - source) Fans

Bauman, Fred; Webster, Tom; Zhang, Hui; Arens, Ed

2012-01-01T23:59:59.000Z

15

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

16

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

17

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

18

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

19

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010;" 2 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," " " "," " "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

20

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

22

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

23

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

24

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2006;" 1 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",,,," "," "," ",," "," "," "," "," " " "," ",,,,,,,,,,,"Coke" " "," "," ",,,,"Residual","Distillate","Natural Gas(d)",,"LPG and","Coal","and Breeze"," " "NAICS"," ","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","(billion",,"NGL(e)","(million","(million","Other(f)"

25

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010;" 1 Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," " "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)"

26

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

27

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

28

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

29

Energy Sources | Department of Energy  

Energy Savers [EERE]

Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we...

30

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

31

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

32

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

33

Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 -  

Open Energy Info (EERE)

by Energy Use Sector and Energy Source, 2004 - by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

34

Annual Energy Review, 1996  

Gasoline and Diesel Fuel Update (EIA)

that was generated from nonrenewable energy sources and -0.03 quadrillion Btu for hydroelectric pumped storage. Notes: Data are preliminary. Totals may not equal sum of...

35

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

36

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

37

Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002;" 5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

38

Table N8.2. Average Prices of Purchased Energy Sources, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Purchased Energy Sources, 1998;" 2. Average Prices of Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected","Wood and Other","Biomass","Components" ,,,,,,,"Coal Components",,,"Coke",,"Electricity","Components",,,,,,,,,,,,,"Natural Gas","Components",,"Steam","Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

39

Table 7.2 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Average Prices of Purchased Energy Sources, 2002;" 2 Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; " " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Million Btu." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

40

"Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Selected Purchased Energy Sources, 1998;" 2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

42

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

43

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Sources Energy Sources Energy Sources December 12, 2013 AEMC Summit Slideshow: Innovation in the Manufacturing Sector Learn how advanced technologies are helping manufacturers reduce waste, increase productivity and become leaders in the clean energy economy. October 16, 2013 West Penn Power SEF Commercial Loan Program The West Penn Power Sustainable Energy Fund (WPPSEF) promotes the use of renewable energy and clean energy among commercial, industrial, institutional and residential customers in the West Penn market region. Eligible technologies include solar, wind, low-impact hydro, and sustainable biomass such as closed-loop biomass and biomass gasification, as well as energy efficiency. October 16, 2013 UES - Renewable Energy Credit Purchase Program '''''Note: The Arizona Corporation Commission (ACC) is in the process of

44

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2006; 1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use -- 12,109 11 3 1,245 2 6 -- CHP and/or Cogeneration Process

45

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

46

16 - Alternative energy sources  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes alternative energy sources. The substantial potential of the world's alternative energy sources are still comparatively little exploited, even in countries with limited conventional energy resources. Although this interest was heightened during the mid-1970s because of the oil price shock, most of the technologies are still at an early stage of development. While much research and development work has been undertaken by governments and industry throughout the world, the technical transfer process is comparatively slow. There are a number of abstracting services available in both the United States and the United Kingdom devoted wholly or in part to alternative energy sources. The most useful of the general abstract journals are the Renewable Energy Bulletin, Energy Review, and Energy Abstracts for Policy Analysis. The principal source of information for all aspects of alternative energy sources is the Energy Data Base, established in 1974 b the U.S. Department of Energy, which is the online version of Energy Research Abstracts. There are very few good comprehensive books covering all the alternative energy sources, perhaps understandably given the scope of the subject.

Alan Heyes

1988-01-01T23:59:59.000Z

47

New Sources of Energy  

Science Journals Connector (OSTI)

... and new ideas on recent progress in the applications of solar energy, wind power and geothermal energy, and held in Rome during August 21-31. The term 'new is ... power resources. These three forms of energy are very different in their characteristics; a geothermal energy source is a gift for any nation fortunate enough to possess such a site ...

H. HEYWOOD

1961-11-04T23:59:59.000Z

48

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

49

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

50

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

51

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 20, 2011 July 20, 2011 Today's Forecast: Improved Wind Predictions Accurate weather forecasts are critical for making energy sources -- including wind and solar -- dependable and predictable. July 8, 2011 Energy Matters Mailbag This edition of the mailbag tackles follow-up questions from our Energy Matters discussion on breaking our reliance on foreign oil. June 30, 2011 Energy Matters: Our Energy Independence June 22, 2011 Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam

52

Chapter 2 - Energy Sources  

Science Journals Connector (OSTI)

Abstract In today’s industrialized world, energy became vital to all human activities including manufacturing, data processing, heating, cooling, lighting, transportation, food processing, etc., yet it is invisible for most of us. Today’s energy generation technologies are undergoing a paradigm shift; the solution to our current dilemma requires more renewable contribution as well as the more efficient utilization of conventional energy sources. Recognizing this importance, this chapter focuses on energy sources and energy generation technologies including, coal, hydroelectric, nuclear, solar, wind, ocean, and several others. Alternative energy technologies received great interest in recent years due to environmental impact, greenhouse gas emissions, national energy security, and increasing cost of fossil fuel-based sources. With particular emphasis on renewable and alternative energy systems, characteristic features of the renewable energy sources have been reviewed. Since power electronics is a key enabling technology for renewable energy utilization, power electronic converters and interfaces that are used for grid interconnection and stand-alone operation have been presented.

Omer C. Onar; Alireza Khaligh

2015-01-01T23:59:59.000Z

53

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2006;" 2 Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Net",,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1186,,251,,26,16,635,,3,,147,1,107 3112," Grain and Oilseed Milling",317,,53,,2,1,118,,"*",,114,0,30

54

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2010;" 2 Offsite-Produced Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,"Residual","Distillate",,"LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1113,258,12,22,579,5,182,2,54 3112," Grain and Oilseed Milling",346,57,"*",1,121,"*",126,0,41

55

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2006;" 2 Offsite-Produced Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." "NAICS",,,,,,"Residual","Distillate",,,"LPG and",,,"Coke" "Code(a)","Subsector and Industry","Total",,"Electricity(b)",,"Fuel Oil","Fuel Oil(c)","Natural Gas(d)",,"NGL(e)",,"Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",1124,,251,,26,16,635,,3,,147,1,45 3112," Grain and Oilseed Milling",316,,53,,2,1,118,,"*",,114,0,28

56

Table 7.2 Average Prices of Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and NAICS Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Coke Oven (excluding or LPG and Natural Gas from Local

57

Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam from Sources Waste Gases Waste Oils Industrial Wood Byproducts and Coal Subbituminous Coal Petroleum Electricity from Local Other than Distillate Diesel Distillate Residual Blast Furnace

58

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Pilot Program Renewable Energy Pilot Program In June 2010, the Louisiana Public Service Commission (LPSC) unanimously approved a Renewable Energy Pilot Program for the state. The final implementation plan was adopted in November 2010. The goal of the pilot program is to determine whether a renewable portfolio standard is suitable for Louisiana. The pilot program has two major components: the Research Component and the Request for Proposal (RFP) Component. October 16, 2013 Renewable Energy Goal In May 2010, Oklahoma established a renewable energy goal for electric utilities operating in the state. The goal calls for 15% of the total installed generation capacity in Oklahoma to be derived from renewable sources by 2015. There are no interim targets, and the goal does not extend

59

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

60

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

62

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

63

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

64

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

65

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

66

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

67

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

68

Buildings Energy Data Book: 4.1 Federal Buildings Energy Consumption  

Buildings Energy Data Book [EERE]

4 Federal Agency Progress Toward the Renewable Energy Goal (Trillion Btu) (1) Total Renewable Energy Usage DOD EPA (2) DOE GSA NASA DOI Others All Agencies Note(s): Source(s):...

69

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

70

Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012  

Broader source: Energy.gov [DOE]

In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

71

"Table A25 Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Selected Purchased Energy Sources by Census" Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors" ,,"Total United States" ,"RSE Column Factors:",0.7,0.8,1,2.8,1,0.7 20,"Food and Kindred Products",15.789,2.854,6.064,2.697,7.596,1.433,4.5

72

AEO2011: Renewable Energy Consumption by Sector and Source | OpenEI  

Open Energy Info (EERE)

Consumption by Sector and Source Consumption by Sector and Source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed

73

NW Natural (Gas) - Business Energy Efficiency Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

NW Natural (Gas) - Business Energy Efficiency Rebate Program NW Natural (Gas) - Business Energy Efficiency Rebate Program NW Natural (Gas) - Business Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Appliances & Electronics Other Manufacturing Water Heating Maximum Rebate Custom: $1/annual therm saved Program Info Funding Source Energy Trust of Oregon State District of Columbia Program Type Utility Rebate Program Rebate Amount HVAC Unit Heater: $1.50/kBtu Furnace: $3/kBtu/hr Radiant Heating (Non-Modulating): $6.50/kBtu/hr Radiant Heating (Modulating): $10/kBtu/hr Tank Water Heater: 2.50/kBtu/hr Tankless/Instantaneous Water Heater: $2.00/kBtu/hr

74

Lesson 2: Energy Sources Overview  

E-Print Network [OSTI]

Earth's internal heat; ­solar energy from the Sun; ­gravitaDonal energy · There are three sources of external energy: ­ solar energy: radiant energy from and some is converted to tsunami #12;Overview · Solar Energy: ­ Of the three

Chen, Po

75

Alternative Energy Sources – Myths and Realities  

E-Print Network [OSTI]

Alternative Energy Sources - Myths and Realities Walterneed to think about alternative energy sources; the worlddepletion of oil? Alternative energy sources can be divided

Youngquist, Walter

1998-01-01T23:59:59.000Z

76

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2013 9, 2013 Students from the University of Maryland's Designing a Sustainable World course, a class based on the Energy Department's Energy 101 Course Framework, present their end-of-year design projects. | Photo courtesy of the University of Maryland. Class Is Now in Session: Energy 101 This week, energy.gov is going back to school. Our first stop: a look at how the Energy Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. July 11, 2013 Department of Energy Releases New Report on Energy Sector Vulnerablities Report Details Effects of Climate Change and Extreme Weather on Nation's Critical Energy Infrastructure and Supply June 21, 2013 Did you know: Incandescent light bulbs only convert about 10 percent of the energy they consume into light and the rest is released as heat. The Energy Department's Energy Bike demonstrates the physical effort it takes to power incandescent, compact fluorescent and LED light bulbs. Students from Churchill Road Elementary School in Virginia recently pedaled for power at their Earth Day assembly, learning firsthand about energy efficiency. | Photo courtesy of the Energy Department.

77

Strategic Sourcing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Strategic Sourcing Strategic Sourcing Strategic Sourcing Energy Wide Strategic Sourcing (EWSS) DOE leadership has recognized that benefits could be achieved at the federal level through an organized, systematic and collaborative approach to acquiring commonly used goods and services. The DOE strategic sourcing program builds upon historical accomplishments as well as establishes a more cohesive and disciplined program, consistent with OMB's direction, for the conduct of DOE future strategic sourcing efforts. The DOE and NNSA Senior Procurement Executives have created a strategic sourcing capability and organizational components to identify federal strategic sourcing opportunities and coordinate strategic thinking. To date, this program has identified a number of opportunities; particularly in the areas of

78

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

City of Bloomington - Sustainable Development Incentives City of Bloomington - Sustainable Development Incentives The City of Bloomington offers fee waivers and other design incentives for developers that incorporate the city's sustainability goals. The city's four goals include: October 16, 2013 Boulder County - EnergySmart Commercial Energy Efficiency Rebate Program (Colorado) EnergySmart offers a full suite of energy efficiency services. EnergySmart helps businesses (and homes) identify and implement energy improvements. The "One Stop Shop" aims to reduce the hassles and hurdles associated with improving the energy efficiency and comfort of a home or business by providing an expert Energy Advisor to each participant. The Advisor assists with scheduling an energy assessment, reviewing contractor bids, and

79

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 17, 2012 July 17, 2012 Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future Making sure the best, most efficient wind energy technologies are developed and manufactured here in America. June 27, 2012 Kim Saylors-Laster, Vice President of Walmart Energy and ambassador for the Clean Energy Education & Empowerment Initiative. | Photo courtesy of Walmart. Join the Discussion: Trailblazing a Path for Women in Clean Energy "My supervisors asked what I'd like to do next, and when I answered, 'something that makes a difference in the world,' they suggested energy." June 25, 2012 Join our Women in Clean Energy Twitter Chat this Wednesday, June 27 at 1 pm EDT. | Photo courtesy of Dennis Schroeder/NREL. Join Us On Twitter! Women in Clean Energy Chat on Wednesday, June 27

80

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Goals and Standards for Federal Government Energy Goals and Standards for Federal Government The federal Energy Policy Act of 2005 (EPAct 2005) established several goals and standards to reduce energy use in existing and new federal buildings. Executive Order 13423, signed in January 2007, expanded on those goals and standards and was later reaffirmed by congress with the Energy Independence and Security Act of 2007 (EISA 2007). October 16, 2013 Energy Efficiency Portfolio Standard In May 2008, Ohio enacted broad electric industry restructuring legislation ([http://www.legislature.state.oh.us/BillText127/127_SB_221_EN_N.pdf SB 221]) containing energy efficiency requirements for investor-owned utilities. October 16, 2013 Energy Efficiency Financing for Public Sector Projects (California) Cities, counties, public care institutions, public hospitals, public

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

82

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Commercial from Market Trends Commercial from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

83

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Residential from Market Trends Residential from Market Trends Industrial and commercial sectors lead U.S. growth in primary energy use figure data Total primary energy consumption, including fuels used for electricity generation, grows by 0.3 percent per year from 2011 to 2040, to 107.6 quadrillion Btu in 2040 in the AEO2013 Reference case (Figure 53). The largest growth, 5.1 quadrillion Btu from 2011 to 2040, is in the industrial sector, attributable to increased use of natural gas in some industries (bulk chemicals, for example) as a result of an extended period of relatively low prices coinciding with rising shipments in those industries. The industrial sector was more severely affected than the other end-use sectors by the 2007-2009 economic downturn; the increase in industrial energy consumption from 2008 through 2040 is 3.9 quadrillion Btu.

84

Monitoring-based HVAC Commissioning of an Existing Office Building for Energy Efficiciency  

E-Print Network [OSTI]

site energy use intensity (EUI) of this building is 268 kWh/indicates that its source EUI of 643 kWh/m 2 /yr (204 kBtu/the whole building source EUI of 580 kWh/m 2 /yr (184 kBtu/

Wang, Liping

2014-01-01T23:59:59.000Z

85

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 21, 2011 April 21, 2011 Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Secretary Chu Highlights Completion of the Department of Energy's First Recovery Act-Funded Hydropower Project April 18, 2011 Department of Energy Offers $2.1 Billion Conditional Commitment Loan Guarantee to Support California Solar Thermal Power Plant California Solar Project Estimated to Create Over 1,000 Jobs and Avoid Over 710,000 Tons of Carbon Dioxide Annually April 15, 2011 Dr. Peter B. Lyons Confirmed as Assistant Secretary for Nuclear Energy Washington, D.C. - Dr. Peter B. Lyons was confirmed by the Senate on Thursday, April 14, as the Department of Energy's Assistant Secretary for Nuclear Energy. April 15, 2011 U.S. Departments of Agriculture and Energy Announce Funding for Biomass

86

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 15, 2009 March 15, 2009 As OPEC Ministers Meet, Secretary Chu Stresses the Importance of Energy Independence Washington, DC - As OPEC ministers held a meeting in Vienna Sunday, U.S. Energy Secretary Steven Chu again stressed the need for energy independence and called for global cooperation on energy, economic and climate challenges. June 30, 2011 Department of Energy Offers Conditional Loan Guarantee Commitments to Support Nearly $4.5 Billion in Loans for Three California Photovoltaic Solar Power Plants Projects Expected to Create 1,400 Jobs and Generate Approximately 1330 Megawatts of Installed Solar Power June 28, 2011 Department of Energy Awards Nearly $7.5 Million to Help Develop Next Generation Wind Turbines June 21, 2011 Department of Energy Conditional Loan Guarantee Commitment to Support the

87

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 17, 2011 February 17, 2011 Department of Energy Offers Support for an Oregon Solar Manufacturing Project Project Estimated to Create Over 700 Jobs and Greater Efficiencies in the Production of Photovoltaic Panels February 4, 2011 Chu, Salazar to Announce Major Offshore Wind Energy Initiatives NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. January 24, 2011 Departments of Energy and Commerce Announce New Partnership to Further Cooperation on Renewable Energy Modeling and Forecasting WASHINGTON - The Department of Energy and the Department of Commerce today announced a new agreement to further collaboration between the agencies on

88

Renewable energy generation sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

directly supports the Department of Energy's SunShot goals by providing lower thermal-energy storage costs and greater collection efficiencies. "It really gives a complete...

89

Carbon-Neutral Energy Sources  

Science Journals Connector (OSTI)

Among the main approaches to decarbonizing global economy, the switching to carbon-neutral energy sources such as nuclear and renewables (solar, wind, biomass, etc.) is mentioned most often. Nuclear energy is ...

Nazim Muradov

2014-01-01T23:59:59.000Z

90

Alternative Energy Sources - An Interdisciplinary Module for...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Energy Sources - An Interdisciplinary Module for Energy Education Alternative Energy Sources - An Interdisciplinary Module for Energy Education Below is information...

91

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 5, 2010 November 5, 2010 Chu in Ireland: A Case Study in Wind Power Secretary Chu visited Ireland, a country which shares many of the same energy challenges and opportunities as the United States. Like the U.S., Ireland has the potential to tap enormous renewable energy resources. November 3, 2010 Solar panels at the Community Market Building in Danville, Va., have generated 36.4 MWh of energy since March. | Photo Courtesy of Danville Historic Virginia Market Powered by Solar Energy The historic building where area farmers sell produce straight from the field to consumers is now home to Danville, Virg.'s first renewable energy project - a 154-panel solar energy system. November 2, 2010 From South Carolina to Massachusetts, Recovery Act Boosts Domestic Wind New facilities will help meet design testing needs right here at home.

92

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 17, 2010 November 17, 2010 Department of Energy Announces Five Awards to Modernize the Nation's Electric Grid Total public-private investment of more than $30 million to increase reliability, efficiency and security October 8, 2010 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support World's Largest Wind Project Recovery Act-Supported Loan Will Create Jobs and Avoid Over 1.2 Million Tons of Carbon Pollution Annually September 15, 2010 Department of Energy Announces $20 Million to Boost Development of Innovative Geothermal Technologies Washington, DC - U.S. Energy Secretary Steven Chu today announced $20 million to research, develop and demonstrate cutting-edge geothermal technologies that could reduce U.S. September 9, 2010 Department of Energy Awards $37 Million for Marine and Hydrokinetic Energy

93

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Clean Energy Development Boards Local Option - Clean Energy Development Boards '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' October 16, 2013 Local Government Energy Loan Program Through a public-private partnership with PowerSouth, Alabama's Local Government Energy Loan Program offers zero-interest loans to local governments, K-12 schools, and public colleges and universities for renewable energy systems and energy efficiency improvements that will eventually have a payback through utility savings. Under the program,

94

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 18, 2011 August 18, 2011 Energy Secretary Steven Chu Statement on Final Report from Natural Gas Subcommittee Washington DC --- The Natural Gas Subcommittee of the Secretary Energy Advisory Board today submitted its final 90-day report on recommendations to reduce the environmental impacts from shale gas production to Energy Secretary Steven Chu. Earlier this year, President Obama announced a plan for U.S. energy security in which he instructed the Secretary of Energy to work with other agencies, the natural gas industry, states, and environmental experts to improve the safety of shale gas development. August 15, 2011 Brookhaven National Laboratory is modeling the metabolic processes in rapeseed plants to optimize production of plant oils for biofuels. Shown above are developing embryos extracted from a growing rapeseed plant. The embryos accumulate seed oils which represent the most energy-dense form of biologically stored sunlight, and have great potential as renewable resources for fuel and industrial chemicals.

95

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 22, 2009 September 22, 2009 President Barack Obama at UN Climate Change Summit August 2, 2011 A Solar Re-Skin at FedEx Field If solar power could score a touchdown, then this week's news would definitely count. The Washington Redskins are working with NRG Energy, one of America's largest energy companies, to install 8,000 translucent solar panels. July 28, 2011 A Clean Energy Standard: Good for Consumers, Good for the Country Earlier this week, the Congressional Budget Office issued a new report that highlights the important role a clean energy standard could have in creating the clean energy jobs of the future at minimal cost to consumers.
 
The report evaluates several proposed clean and renewable energy standards, running them through a variety of models to determine the

96

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Net Metering Net Metering In Massachusetts, the state's investor-owned utilities must offer net metering. Municipal utilities are not obligated to offer net metering, but they may do so voluntarily. (There are no electric cooperatives in Massachusetts.) October 16, 2013 Municipal Energy Reduction Fund In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's municipal governments to invest in energy efficiency and alternative energy. A wide variety of energy-efficiency measures and alternative energy technologies are eligible, and the program is customizable, based on a municipality's needs. Loans are typically structured so that payments are made with money yielded by energy savings. October 16, 2013

97

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 23, 2012 May 23, 2012 Unlocking the Power of Energy Data To help harness the power of data through a combination of technology and ingenuity, the Obama Administration has launched the Energy Data Initiative (EDI). May 17, 2012 The Energy Department's digital team tested out Apps for Energy submissions in preparation for public voting. | Photo by Hantz Leger. Apps for Energy Public Voting Starts Today! Go to appsforenergy.challenge.gov to vote on your favorite App for Energy. May 10, 2012 Secretary of the Interior Ken Salazar speaks with First Solar and Enbridge leadership at the Enbridge Silver State North solar project in Nevada. | Photo courtesy of Interior Department, credit Tami A. Heilemann. All-of-the-Above, In Action President Obama has made it clear that our country needs an

98

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 12, 2010 July 12, 2010 Department of Energy Awards $92 Million for Groundbreaking Energy Research Projects New ARPA-E projects in 18 states will accelerate innovation in clean energy technologies, increase America's competitiveness and create jobs July 7, 2010 Department of Energy Announces $67 Million Investment for Carbon Capture Development WASHINGTON, D.C. - The US Department of Energy announced today the selection of ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion. The projects, valued at up to $67 million over three years, focus on reducing the energy and efficiency penalties associated with applying currently available carbon capture and storage (CCS) technologies to existing and new power plants.

99

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 21, 2011 September 21, 2011 An overview of the impact that the clean energy economy is having on the U.S. construction industry. Download the full resolution graphic. The Clean Energy Economy is Not a Coming Attraction - It's Here Some people talk about the clean energy economy as if it's a hypothetical future development, but the fact is that it's already here and poised for tremendous growth in the coming years. September 19, 2011 Secretary Chu meets with officials during a visit to the International Atomic Energy Agency's (IAEA) Incident and Emergency Center in Vienna. | Photo Courtesy of IAEA. Reaffirming America's Commitment to the Peaceful Use of the Atom

100

BrightSource Energy | Open Energy Information  

Open Energy Info (EERE)

search Name: BrightSource Energy Place: Oakland, California Zip: 94612 Sector: Solar Product: California-based company that develops, builds, owns, and operates large...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

AEO2011: Energy Consumption by Sector and Source - Middle Atlantic | OpenEI  

Open Energy Info (EERE)

Middle Atlantic Middle Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 2, and contains only the reference case. The dataset uses quadrillion btu. The energy consumption data is broken down by sector (residential, commercial, industrial, transportation, electric power) as well as source, and also provides total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA middle atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Middle Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment

102

Energy cost and energy sources in karate  

Science Journals Connector (OSTI)

Energy costs and energy sources in karate (wado style) were...2max) 36.8 ml · min?1 · kg?1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approxim...

M. P. Francescato; T. Talon…

1995-09-01T23:59:59.000Z

103

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

104

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet Corn Milling 217 6,851 * * 59 * 5 0 11 0 31131 Sugar 112 725 * * 22 * 2 * 46 0 311421 Fruit and Vegetable Canning 47 1,960 * * 35 * 0 0 1 0 312 Beverage and Tobacco Products 105 7,639 * * 45 * 1 0 11 0 3121 Beverages 85 6,426 * * 41 * * 0 10 0 3122 Tobacco 20 1,213 * * 4 * * 0 1 0 313 Textile Mills 207 25,271 1 * 73 * 1 0 15 0 314

105

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 16, 2010 September 16, 2010 One Man's Trash is Another Man's Fuel The average American throws away more than 900 pounds of trash every year, and as the organic waste degrades it produces methane gas. Some landfills are now exploring ways to use it rather than venting the gas directly into the atmosphere. September 16, 2010 Unearthing Geothermal's Potential Secretary of Energy Steven Chu announced $20 million towards the research and development of non-conventional geothermal energy technologies in three areas: low temperatures fluids, geothermal fluids recovered from oil and gas wells and highly pressurized geothermal fluids. September 16, 2010 Secretary Chu Highlights Clean Energy Opportunities in Montana The Secretary visited the Montana Economic Development, which highlighted

106

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 9, 2011 June 9, 2011 Secretary Chu, Senator Reid Announce Department of Energy Conditional Commitment for a Loan Guarantee for Nevada Geothermal Project Project Expected to Create Over 300 Jobs and Produce Clean Geothermal Power June 2, 2011 Secretary Chu, Senator Reid, Rep. Berkley Announce Conditional Commitment for Loan Guarantee to Fotowatio Solar Project Near Las Vegas, Nevada Washington D.C. -- U.S. Energy Secretary Steven Chu, Senate Majority Leader Harry Reid and Nevada Congresswoman Shelley Berkley today announced the offer of a conditional commitment for a $45.6 million loan guarantee by the Department of Energy to support a 20 megawatt AC photovoltaic (PV) solar generating facility. The project, sponsored by Fotowatio Renewable Ventures, Inc., is being supported by DOE with funding from the 2009

107

Department of Energy - Energy Sources  

108

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

109

Understanding Earth's Energy Sources  

K-12 Energy Lesson Plans and Activities Web site (EERE)

In Part 1, students will know how fossil fuels were formed; recognize common uses of Earth’s fossil energy resources and develop an understanding of the risks and benefits of their continued use. In Part 2, students focus on the importance of renewable energy resources for a sustainable future. Current renewable energy technologies (solar, wind, biomass, hydrogen, hydroelectric, and geothermal) are discussed. Information on solar is located on a separate power point (2006 Solar PP) as is hydrogen and transportation alternatives. Students will be able to distinguish between renewable and nonrenewable energy resources and identify the positive and negative effects of each. The long-term understanding of this unit is for the students to make informed energy decisions in the future.

110

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 17, 2011 March 17, 2011 A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use GreenFire Energy began work to demonstrate a process that would use CO2 to harness geothermal energy to make electricity. What is more, the technology has the potential to add carbon sequestration - not to mention reduced water consumption - to the benefits already associated with geothermal power. March 2, 2011 ARPA-E 2011 Keynote: Ray Mabus, Secretary of the Navy February 27, 2011 How ARPA-e is "Winning the Future" February 4, 2011 Vintage DOE: Wind We're digging through the Department's video archives. Check out this 1980 clip that outlines the beginnings of the Department's focus on wind as

111

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 23, 2010 August 23, 2010 Ring Ring. Who's There? A Wind Expert Windustry hotline is ready to take your calls or emails. Here's how it works. August 6, 2010 The 1:15 scale prototype being lowered into the wave flume at Oregon State University's O.H. Hinsdale Wave Research Laboratory | Photo courtesy of Columbia Power Manta Wings: Wave Energy Testing Floats to Puget Sound Columbia Power Technologies plans to test an intermediate-scale version of its wave energy converter device in Puget Sound later this year. The device, which is called Manta because its movements are similar to those of a manta stingray, sits like an iceberg on the water. July 1, 2010 The Farmer's Conundrum: Income from Biofuels or Protect the Soil? Selling crop residues for bioenergy could provide farmers with an extra

112

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2010 June 2, 2010 Re-Building Greensburg May 27, 2010 Lockheed Testing the Waters for Ocean Thermal Energy System The company is working to develop a system to produce electricity using temperature differences in the ocean. May 24, 2010 Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro New Hydropower Turbines to Save Snake River Steelhead Hydropower harnesses water power to create reliable, clean and plentiful renewable energy, but dams can have an unintended impact on wildlife - fish swimming through turbines can get caught and die -- which can be detrimental to the entire river ecosystem. The impact can be minimized,

113

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 28, 2010 May 28, 2010 Arizona College 5 MW System Will be "Solar with a Purpose" The "sunniest place on Earth" wants to become the go-to place for solar. April 22, 2010 DuPont Technology Breaks Away From Glass Delaware-based DuPont is working to develop ultra-thin moisture protective films for photovoltaic panels - so thin they're about 1,000 times thinner than a human hair. April 16, 2010 Geothermal Business on the Rise for Kansas Company The small business saw 80 percent of its revenues come from installing geothermal loop systems. April 15, 2010 Rancher Brings Wind Power to Arizona It all started when Bill Elkins got an idea. April 9, 2010 Wave-Energy Company Looks to Test Prototypes in Maine Waters The state has been working to position itself in the alternative energy

114

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Public Utility Commission (PUC) adopted interconnection Maine Public Utility Commission (PUC) adopted interconnection procedures in January 2010. These rules apply to all transmission and distribution utilities operating in the state and apply to all distribution generation (not just renewables). Maine's interconnection procedures, based in part on the Interstate Renewable Energy Council Inc. 2006 Model Interconnection Procedures,* identify four different tiers with corresponding technical screens. These are: October 16, 2013 Interconnection Standards In November 2005, the Indiana Utility Regulatory Commission (IURC) approved rules governing the interconnection of distributed generation (DG). Indiana's interconnection rules require the state's investor-owned utilities to provide three levels of interconnection to

115

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 10, 2012 August 10, 2012 On Monday, August 6, 2012, NASA's Curiosity rover arrived on the surface of Mars to gather geological and environmental data to determine if the planet has ever had the potential to support life. This photo was taken by a navigation camera located toward the back-left of the Curiosity rover, and features part of the rover's nuclear power supply. Beyond the rover itself, Curiosity's exploration reveals the desert-like terrain of Mars's Gale Crater. | Photo courtesy of NASA/JPL-Caltech. Photo of the Week: August 10, 2012 Check out our favorite energy-related photos! July 27, 2012 Caption This! Wind Edition We asked you to think of creative captions for our Photo of the Week on

116

Energy Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Interconnection Standards Interconnection Standards The Pennsylvania Public Utilities Commission was required to adopt interconnection standards and net-metering rules by the Alternative Energy Portfolio Standards Act of 2004.The PUC subsequently adopted interconnection standards for net-metered distributed generation (DG) systems in August 2006 (52 Pa. Code § 75.21 et seq.). October 16, 2013 Interconnection Standards '''''Note: In July 2012, the Public Utilities Commission of Ohio (PUCO) opened a docket ([http://dis.puc.state.oh.us/CaseRecord.aspx?CaseNo=12-2051&x=0&y=0 Case 12-0251-EL-ORD]) to review the net metering and interconnection rules for investor-owned utilities. Details will be posted as more information is available.''''' October 16, 2013 Interconnection Standards

117

AEO2011: Energy Consumption by Sector and Source - Mountain | OpenEI  

Open Energy Info (EERE)

Mountain Mountain Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption mountain region Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - Mountain- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

118

AEO2011: Energy Consumption by Sector and Source - New England | OpenEI  

Open Energy Info (EERE)

New England New England Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption New England Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - New England- Reference Case (xls, 297.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

119

AEO2011: Energy Consumption by Sector and Source - West South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 7, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption West South Central Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West South Central- Reference Case (xls, 297.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

120

AEO2011: Energy Consumption by Sector and Source - East South Central |  

Open Energy Info (EERE)

South Central South Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 6, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Commercial East South Central EIA Electric Power Energy Consumption Industrial Residential transportation Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - East South Central- Reference Case (xls, 297.5 KiB) Quality Metrics Level of Review Peer Reviewed

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AEO2011: Energy Consumption by Sector and Source - South Atlantic | OpenEI  

Open Energy Info (EERE)

South Atlantic South Atlantic Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 5, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption sector South Atlantic Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - South Atlantic- Reference Case (xls, 297.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

122

AEO2011: Energy Consumption by Sector and Source - West North Central |  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 4, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - West North Central- Reference Case (xls, 297.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

123

AEO2011: Energy Consumption by Sector and Source - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 10, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Consumption United States Data application/vnd.ms-excel icon AEO2011: Energy Consumption by Sector and Source - United States- Reference Case (xls, 298.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

124

Alternative Energy Sources Inc | Open Energy Information  

Open Energy Info (EERE)

company that constructs, owns and operates fuel grade ethanol plants. References: Alternative Energy Sources Inc1 This article is a stub. You can help OpenEI by expanding...

125

Army Energy Initiatives Task Force  

Broader source: Energy.gov (indexed) [DOE]

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

126

Energy Bill Literature Sources  

Broader source: Energy.gov (indexed) [DOE]

Of the "PURPA Standards" in the Of the "PURPA Standards" in the Energy Policy Act of 2005 March 22, 2006 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Karl Meeusen Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Karl Meeusen, Graduate Research Associate at The Ohio State University. This manual was sponsored by the American Public Power Association (APPA), the Edison Electric Institute (EEI), the National Association of Regulatory Utility Commissioners (NARUC), and the National

127

Energy Bill Literature Sources  

Broader source: Energy.gov (indexed) [DOE]

of the "PURPA Standards" in the of the "PURPA Standards" in the Energy Independence and Security Act of 2007 August 11, 2008 Sponsored by American Public Power Association (APPA) Edison Electric Institute (EEI) National Association of Regulatory Utility Commissioners (NARUC) National Rural Electric Cooperative Association (NRECA) Prepared by: Kenneth Rose and Mike Murphy iii Preface This manual was prepared by Kenneth Rose, a consultant and Senior Fellow at the Institute of Public Utilities at Michigan State University, and Mike Murphy, Graduate Research Associate at The Ohio State University. This manual was sponsored by the American Public Power Association (APPA), the Edison Electric Institute (EEI), the National Association of Regulatory Utility Commissioners (NARUC), and the National

128

Property:EnergyAccessPowerSource | Open Energy Information  

Open Energy Info (EERE)

Name EnergyAccessPowerSource Property Type String Description Power Source Retrieved from "http:en.openei.orgwindex.php?titleProperty:EnergyAccessPowerSource&oldid421179...

129

Renewable energy sources for Egypt  

Science Journals Connector (OSTI)

On the basis of present consumption patterns and reserve estimates, Selim Estefan predicts that Egypt and other developing countries will face severe fossil fuel supply problems unless they invest now in rapid development of renewable sources. He outlines some of the Egyptian renewable energy projects currently underway or being studied, and argues that the immediate exploitation of indigenous renewable sources is both economically feasible and can be achieved with existing technology.

Selim F. Estefan

1980-01-01T23:59:59.000Z

130

Commercial Buildings Energy Consumption and Expenditures 1992 - Executive  

U.S. Energy Information Administration (EIA) Indexed Site

& Expenditures > Executive Summary & Expenditures > Executive Summary 1992 Consumption & Expenditures Executive Summary Commercial Buildings Energy Consumption and Expenditures 1992 presents statistics about the amount of energy consumed in commercial buildings and the corresponding expenditures for that energy. These data are based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), a national energy survey of buildings in the commercial sector, conducted by the Energy Information Administration (EIA) of the U.S. Department of Energy. Figure ES1. Energy Consumption is Commercial Buidings by Energy Source, 1992 Energy Consumption: In 1992, the 4.8 million commercial buildings in the United States consumed 5.5 quadrillion Btu of electricity, natural gas, fuel oil, and district heat. Of those 5.5 quadrillion Btu, consumption of site electricity accounted for 2.6 quadrillion Btu, or 48.0 percent, and consumption of natural gas accounted for 2.2 quadrillion Btu, or 39.6 percent. Fuel oil consumption made up 0.3 quadrillion Btu, or 4.0 percent of the total, while consumption of district heat made up 0.4 quadrillion Btu, or 7.9 percent of energy consumption in that sector. When the energy losses that occur at the electricity generating plants are included, the overall energy consumed by commercial buildings increases to about 10.8 quadrillion Btu (Figure ES1).

131

Energy Sources: A Realistic Outlook  

Science Journals Connector (OSTI)

...1990 ). YERASHALMI, J, 11TH P INT FBC C MON 553 ( 1991 ). Energy sources...electricity gen-983 ofoil shales in utility boilers becomes margin-ally economic (6...Proceedings of the 11th Interna-tional FBC Conference, Montreal, Canada (Amer-ican...

Chauncey Starr; Milton F. Searl; Sy Alpert

1992-05-15T23:59:59.000Z

132

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

133

DuPont Energy Innovations  

E-Print Network [OSTI]

21 1 6 2 9 9 U. S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion BTU) Source energy flat with 1990 levels. Progress: · Consumption down 7 percent overall as compared to 1990. · SinceDuPont Energy Innovations University of Delaware Energy Institute Inauguration September 19, 2008

Firestone, Jeremy

134

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for primary electricity are 10,197 Btu/KWh, 10,173 Btu/KWh, and 9,919 Btu/KWh for 1998, 2002, and 2006, respectively. Sources: Energy Information Administration, Form EIA-846, Manufacturing Energy Consumption Surveys, 1998, 2002, and 2006. and Monthly Energy Review November 2005, and September 2009 DOE/EIA-0035(2005, 2009),Table A6. MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14

135

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

136

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Transportation from Executive Summary Transportation from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

137

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Efficiency from Executive Summary Efficiency from Executive Summary With more efficient light-duty vehicles, motor gasoline consumption declines while diesel fuel use grows, even as more natural gas is used in heavy-duty vehicles figure data The AEO2013 Reference case incorporates the GHG and CAFE standards for LDVs [6] through the 2025 model year. The increase in vehicle efficiency reduces LDV energy use from 16.1 quadrillion Btu in 2011 to 14.0 quadrillion Btu in 2025, predominantly motor gasoline (Figure 6). LDV energy use continues to decline through 2036, then levels off until 2039 as growth in population and vehicle miles traveled offsets more modest improvement in fuel efficiency. Furthermore, the improved economics of natural gas as a fuel for heavy-duty vehicles result in increased use that offsets a portion of diesel fuel

138

LightSource Renewables | Open Energy Information  

Open Energy Info (EERE)

LightSource Renewables Jump to: navigation, search Name: LightSource Renewables Place: San Diego, California Zip: 92121 Sector: Wind energy Product: Wind project developer...

139

AEO2011: Energy Consumption by Sector and Source - East North Central |  

Open Energy Info (EERE)

North Central North Central Dataset Summary Description http://en.openei.org/w/skins/openei/images/ui-bg_gloss_wave-medium_40_d6...); background-attachment: scroll; background-origin: initial; background-clip: initial; background-color: rgb(214, 235, 225); line-height: 17px; width: 650px; background-position: 50% 0%; background-repeat: repeat no-repeat; ">This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 3, and contains only the reference case. The dataset uses quadrillion btu. The data is broken down into residential, commercial, industrial, transportation, electric power and total energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago)

140

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

142

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

143

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

144

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

145

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

146

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

147

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

148

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2006; 2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel -- 41 133 23 2,119 8 547 -- Conventional Boiler Use -- 41 71 17 1,281 8 129 -- CHP and/or Cogeneration Process -- -- 62 6 838 1 417 -- Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487

149

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

150

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

151

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

152

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",25548,15 "..Electric Utilities",16661,18 "..IPP & CHP",8887,13 "Net Generation (megawatthours)",103407706,15...

153

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",15404,29 "..Electric Utilities",12691,21 "..IPP & CHP",2713,33 "Net Generation (megawatthours)",54584295,28...

154

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10,51 "Electric Utilities",, "IPP & CHP",10,51 "Net Generation (megawatthours)",71787,51 "Electric...

155

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",4491,43 "..Electric Utilities",19,49 "..IPP & CHP",4472,22 "Net Generation (megawatthours)",14428596,44...

156

The prospects for renewable energy sources  

Science Journals Connector (OSTI)

As the reserves of depletable fuels are consumed, their prices will increase, thus making renewable energy sources more cost competitive. SRI has evaluated the potential uses for and costs of renewable energy sou...

Jeffrey G. Witwer

1977-02-01T23:59:59.000Z

157

Source Selection | Department of Energy  

Office of Environmental Management (EM)

Status Reporting Requirement (pdf) Source Evaluation Board (SEB) Secretariat and Knowledge Manager - Acquisition Guide Chapter 1.4 (pdf) Acquisition Planning - Acquisition...

158

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

159

Table 7.1 Average Prices of Purchased Energy Sources, 2010  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2010; Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Coal NAICS TOTAL Acetylene Breeze Total Anthracite Code(a) Subsector and Industry (million Btu) (cu ft) (short tons) (short tons) (short tons) Total United States 311 Food 9.12 0.26 0.00 53.43 90.85 3112 Grain and Oilseed Milling 6.30 0.29 0.00 51.34 50.47 311221 Wet Corn Milling 4.87 0.48 0.00 47.74 50.47 31131 Sugar Manufacturing 5.02 0.31 0.00 53.34 236.66 3114 Fruit and Vegetable Preserving and Specialty Foods 9.78 0.27 0.00 90.59 0.00 3115 Dairy Products 11.21 0.10 0.00 103.12 0.00 3116 Animal Slaughtering and Processing

160

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table E1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

162

Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

163

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

164

Table N1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

165

UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) |  

Broader source: Energy.gov (indexed) [DOE]

UniSource Energy - Contractor Energy Efficiency Rebate Program UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) UniSource Energy - Contractor Energy Efficiency Rebate Program (Arizona) < Back Eligibility Construction Installer/Contractor Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Maximum Rebate Air Sealing with Attic Insulation: $800 Duct Sealing: $350 (prescriptive); $650 (performance measured) Air Sealing: $250 Shade Screens or Solar Film: $250 Program Info State Arizona Program Type Utility Rebate Program Rebate Amount BrightSave Home Energy Analysis: Discounted HVAC Replacement: $250

166

E Source | Open Energy Information  

Open Energy Info (EERE)

Source Source Jump to: navigation, search Name E Source Address 1965 North 57th Court Place Boulder, CO Zip 80301 Product Research firm Year founded 1986 Number of employees 51-200 Phone number 303.345.9000 Website [www.esource.com www.esource.com ] Coordinates 40.01895°, -105.2207964° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01895,"lon":-105.2207964,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Water Salination: A Source of Energy  

Science Journals Connector (OSTI)

...temperature releases free energy. Salination power...1010 watts. The energy flux available for...osmotic salination converter could possibly operate...efficiency. This energy source is renewable...of tidal, geo-thermal, wind, and hydroelectric...nonequilibrium state of the oceans (2) have been proposed...

Richard S. Norman

1974-10-25T23:59:59.000Z

168

Hydrates as an Energy Source  

Science Journals Connector (OSTI)

As an energy resource, gas hydrates are considered together with other unconventional hydrocarbon ... of these unconventional resources. Besides the tar sands and extra heavy oils, other examples are shale gas an...

Carlo Giavarini; Keith Hester

2011-01-01T23:59:59.000Z

169

Solar Energy as Heat Source  

Science Journals Connector (OSTI)

A monography on Distillation of water using solar energy was published [1]. A review was presented on the most important and recent studies on solar distillation [2]. Solar water desalination plants of the gre...

Prof. Dr. Anthony Delyannis; Dr. Euridike-Emmy Delyannis

1980-01-01T23:59:59.000Z

170

Property:File/Source | Open Energy Information  

Open Energy Info (EERE)

Source Source Jump to: navigation, search Property Name File/Source Property Type Page Description Entity that originally produced the file. In most cases, this will be an organization. Pages using the property "File/Source" Showing 25 pages using this property. (previous 25) (next 25) A Australia-Solar-Map.png + Australian Government + B BOEMRE OCS.oil.gas.2007-12.map.pdf + Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) + BOEMRE US.CSB.Map.pdf + Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) + BOEMRE US.CSB.bathy.map.pdf + Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) + BOEMRE atlantic.OCS.multiple.use.map.2003.pdf + Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) +

171

Mineral Salt: A Source of Costly Energy?  

Science Journals Connector (OSTI)

...chemically precipitated rocks conversion economics energy sources evaporites pollution...principle, any reversible process of desalination can generate power in re-verse (that...salination). One of the most efficient desalination processes de-veloped is vapor compression...

W. GARY WILLIAMS

1979-01-26T23:59:59.000Z

172

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",2119,48 "Electric Utilities",1946,39 "IPP & CHP",172,50 "Net Generation (megawatthours)",6946419,49 "Electric...

173

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",23485,17 "Electric Utilities",17148,17 "IPP & CHP",6337,17 "Net Generation (megawatthours)",77896588,19 "Electric...

174

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",14321,31 "Electric Utilities",991,42 "IPP & CHP",13330,7 "Net Generation (megawatthours)",36198121,36 "Electric...

175

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",38488,7 "Electric Utilities",29293,3 "IPP & CHP",9195,10 "Net Generation (megawatthours)",122306364,9 "Electric...

176

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",1781,49 "Electric Utilities",8,50 "IPP & CHP",1773,38 "Net Generation (megawatthours)",8309036,48 "Electric...

177

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",32547,9 "Electric Utilities",23615,7 "IPP & CHP",8933,11 "Net Generation (megawatthours)",152878688,6 "Electric...

178

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",39520,6 "Electric Utilities",10739,26 "IPP & CHP",28781,5 "Net Generation (megawatthours)",135768251,7 "Electric...

179

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",10476,34 "Electric Utilities",7807,30 "IPP & CHP",2669,34 "Net Generation (megawatthours)",35173263,39 "Electric...

180

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",59139,3 "Electric Utilities",51373,1 "IPP & CHP",7766,15 "Net Generation (megawatthours)",221096136,3 "Electric...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",71329,2 "Electric Utilities",30294,2 "IPP & CHP",41035,3 "Net Generation (megawatthours)",199518567,4 "Electric...

182

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",3357,46 "Electric Utilities",98,47 "IPP & CHP",3259,29 "Net Generation (megawatthours)",8633694,47 "Electric...

183

"Primary Energy Source","Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Natural Gas" "Net Summer Capacity (megawatts)",109568,1 "Electric Utilities",28463,4 "IPP & CHP",81106,1 "Net Generation (megawatthours)",429812510,1 "Electric...

184

The Source of Solar Energy  

Science Journals Connector (OSTI)

... not know the rate by actual observation. We know, however, what amount of mechanical energy the sun parts with in a given time, and we know the size and ... in a given time, and we know the size and the specific gravity of the solar mass. Demonstration is not needed to prove that motion of the particles within a ...

J. ERICSSON

1872-10-31T23:59:59.000Z

185

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

186

Portfolio Manager Technical Reference: Source Energy | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source Energy Source Energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder Technical documentation

187

source | OpenEI  

Open Energy Info (EERE)

source source Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 17, and contains only the reference case. The dataset uses quadrillion Btu. The data is broken down into marketed renewable energy, residential, commercial, industrial, transportation and electric power. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Renewable Energy Consumption Residential sector source transportation Data application/vnd.ms-excel icon AEO2011: Renewable Energy Consumption by Sector and Source- Reference Case (xls, 105 KiB) Quality Metrics Level of Review Peer Reviewed Comment

188

ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE  

E-Print Network [OSTI]

ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE (ULEHIIS) Materialenergy, high-intensity ion source (ULEHIIS) for materials

Anders, Andre

2010-01-01T23:59:59.000Z

189

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

4 4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished basements, equaled 2,309 square feet. EIA, 2005 Residential Energy Consumption Survey, Oct. 2008 2005 Residential Delivered Energy Consumption Intensities, by Ownership of Unit Per Square Per Household Per Household Percent of Foot (thousand Btu) (million Btu) Members (million Btu) Total Consumption

190

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal exec summary Executive Summary Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on existing coal-fired plants. EIA projects few new central-station coal-fired power plants, however, beyond those already under construction or supported by clean coal incentives. Generation from coal increases by 25 percent from 2009 to 2035, largely as a result of increased use of existing capacity; however, its share of the total generation mix falls from 45 percent to 43 percent as a result of more rapid increases in generation from natural gas and renewables over the same period. See more Mkt trends Market Trends U.S. coal production declined by 2.3 quadrillion Btu in 2009. In the

191

EA-164-A Constellation Power Source, Inc | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Source, Inc EA-164-A Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. EA-164-A...

192

EA-164 Constellation Power Source, Inc | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Constellation Power Source, Inc EA-164 Constellation Power Source, Inc Order authorizing Constellation Power Source, Inc to export electric energy to Canada. EA-164 Constellation...

193

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

194

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

195

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

196

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

197

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

198

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

199

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

200

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

202

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment...

203

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

204

Level: National Data; Row: NAICS Codes; Column: Energy Sources...  

Gasoline and Diesel Fuel Update (EIA)

7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit:...

205

Encyclopedia of Energy, Volume 1, pp 605616. Elsevier. 2004. Author nonexclusive, royalty-free copyright 1 Commercial Sector and  

E-Print Network [OSTI]

of Commercial Energy Use 3. Measuring Energy Performance 4. Performance Rating Systems 5. Energy Efficiency used from all sources in a year. British thermal unit (Btu) Generically, the amount of energy or heatEncyclopedia of Energy, Volume 1, pp 605­616. Elsevier. 2004. Author nonexclusive, royalty

Oak Ridge National Laboratory

206

Keynote Address National Seminar on Alternative Energy Sources  

E-Print Network [OSTI]

Keynote Address National Seminar on Alternative Energy Sources Prof. Rangan Banerjee Energy Systems that there is a real need for alternative energy sources. What do we understand by Alternative Energy Sources? In order Consumption 1997-98 Keynote address at Two days National Seminar on Alternative Energy Sources, 27-28 Aug

Banerjee, Rangan

207

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2006; 4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

208

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3

209

NRG Energy, Inc. (BrightSource) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

enables BrightSource Energy and its partners-NRG and Google-to build the world's largest solar thermal facility. Innovation The power tower solar thermal technology used in the...

210

Energy conservation in ethanol production from renewable resources and non-petroleum energy sources  

SciTech Connect (OSTI)

The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

Not Available

1981-03-01T23:59:59.000Z

211

Aparna Renewable Energy Sources Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Aparna Renewable Energy Sources Pvt Ltd Aparna Renewable Energy Sources Pvt Ltd Jump to: navigation, search Name Aparna Renewable Energy Sources Pvt. Ltd. Place Bangalore, Karnataka, India Zip 56003 Sector Wind energy Product Bangalore-based wind energy consultancy firm. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

213

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Energy consumption Residential Propane .............................................................. 0.53 0.53 0.52 0.52 0.52 0.52 0.52 -0.0% Kerosene ............................................................ 0.03 0.02 0.01 0.01 0.01 0.01 0.01 -1.8% Distillate fuel oil ................................................... 0.58 0.59 0.51 0.45 0.40 0.36 0.32 -2.1%

214

Kansas Energy Sources: A Geological Review  

SciTech Connect (OSTI)

Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U.S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer.

Merriam, Daniel F., E-mail: dmerriam@kgs.ku.edu [University of Kansas (United States); Brady, Lawrence L.; Newell, K. David [University of Kansas, Kansas Geological Survey (United States)

2012-03-15T23:59:59.000Z

215

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Overview In the IEO2013 Reference case, which does not include prospective greenhouse gas reduction policies, coal remains the second largest energy source worldwide. World coal consumption rises at an average rate of 1.3 percent per year, from 147 quadrillion Btu in 2010 to 180 quadrillion Btu in 2020 and 220 quadrillion Btu in 2040 (Figure 70). The near-term increase reflects significant increases in coal consumption by China, India, and other non-OECD countries. In the longer term, growth of coal consumption decelerates as policies and regulations encourage the use of cleaner energy sources, natural gas becomes more economically competitive as a result of shale gas development, and growth of industrial use of coal slows largely as a result of China's industrial activities. Consumption is dominated by

216

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

217

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

218

Definition et unites Sources d'energie primaire  

E-Print Network [OSTI]

-357 (1984). b. Source : Key World Energy Statistics 2012, IEA. F. Ravelet Energies #12;D´efinition et unitD´efinition et unit´es Sources d'´energie primaire L'´energie dans une perspective historique Etat des lieux aujourd'hui Sources et consommations par combustibles Panorama sur les ´energies F. Ravelet

Ravelet, Florent

219

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

220

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Energy-Related Carbon Dioxide Emissions, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

product (GDP) and energy is measured in Btu to allow for the summing of all energy forms (energyGDP or BtuGDP). On an economy-wide level, it is reflective of both energy...

222

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

223

Buildings Energy Data Book: 3.7 Retail Markets and Companies  

Buildings Energy Data Book [EERE]

6 6 Energy Benchmarks for Newly Constructed Retail Buildings, by Selected City and End-Use (thousand Btu per square foot) IECC Climate Zone Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 108.9 0.1 9.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 24,683 square feet and 1 floor. Benchmark interior lighting energy = 19.2 thousand Btu/SF. Interior equipment energy consumption = 7.63 thousand Btu/SF.

224

Power Sources Inc | Open Energy Information  

Open Energy Info (EERE)

Sources Inc Sources Inc Jump to: navigation, search Name Power Sources Inc. Place Charlotte, North Carolina Sector Biomass Product US-based operator and developer of biomass-to-energy power plants. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Electric Power From Ambient Energy Sources  

SciTech Connect (OSTI)

This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

2000-10-03T23:59:59.000Z

226

Wuxi Guofei Green Energy Source Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofei Green Energy Source Co Ltd Guofei Green Energy Source Co Ltd Jump to: navigation, search Name Wuxi Guofei Green Energy Source Co Ltd Place Wuxi, Jiangsu Province, China Zip 214142 Sector Solar Product Specializes in the research, production and sales of solar modules, solar systems and solar lights. Coordinates 31.574011°, 120.288223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.574011,"lon":120.288223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

SourceGas - Energy Efficiency Programs (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SourceGas - Energy Efficiency Programs (Arkansas) SourceGas - Energy Efficiency Programs (Arkansas) SourceGas - Energy Efficiency Programs (Arkansas) < Back Eligibility Commercial Industrial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate See program web site Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount $500 mail-in rebate incentive for a tankless water heater, 82% EF or higher or a condensing type water heater with a 90% EF or higher. $50 mail-in rebate incentive for a storage tank water heater, 62% EF or higher (not available for commercial customers in Fayetteville, AR). $400 mail-in rebate incentive for natural gas forced air furnaces, 90% to 94.9% AFUE. $600 mail-in rebate incentive for natural gas forced air furnaces, 95% AFUE

228

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

229

EPA Mobile Source Rule Update | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EPA Mobile Source Rule Update EPA Mobile Source Rule Update 2003 DEER Conference Presentation: U.S. Department of Energy FreedomCAR and Vehicle Technologies Program...

230

Energy Calculator- Common Units and Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

231

Matter sourced anisotropic stress for dark energy  

Science Journals Connector (OSTI)

Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w=p/?) and the ratio of their perturbations in its rest frame (cs2=?p/??). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O(10?3)?m. We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1? region.

Baorong Chang; Jianbo Lu; Lixin Xu

2014-11-24T23:59:59.000Z

232

Radiant Energy Power Source for Jet Aircraft  

SciTech Connect (OSTI)

This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

Doellner, O.L.

1992-02-01T23:59:59.000Z

233

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2012-01-01T23:59:59.000Z

234

Biomass as Renewable Source of Energy , Possible Conversion Routes  

Science Journals Connector (OSTI)

Biomass, a renewable source of energy, has been used since the beginning of ... natural gas, wood and other forms of biomass were the most important sources of energy available to humans. Today, biomass accounts ...

Prof. Martin Kaltschmitt

2013-01-01T23:59:59.000Z

235

Energy Sources and Light Curves of Macronovae  

E-Print Network [OSTI]

A macronova (kilonova) was discovered with short gamma-ray burst, GRB 130603B, which is widely believed to be powered by the radioactivity of $r$-process elements synthesized in the ejecta of a neutron star binary merger. As an alternative, we propose that macronovae are energized by the central engine, i.e., a black hole or neutron star, and the injected energy is emitted after the adiabatic expansion of ejecta. This engine model is motivated by extended emission of short GRBs. In order to compare the theoretical models with observations, we analytically formulate the light curves of macronovae. The engine model allows a wider parameter range, especially smaller ejecta mass, and better fit to observations than the $r$-process model. Future observations of electromagnetic counterparts of gravitational waves should distinguish energy sources and constrain the activity of central engine and $r$-process nucleosynthesis.

Kisaka, Shota; Takami, Hajime

2014-01-01T23:59:59.000Z

236

Geothermal: Sponsored by OSTI -- Hydrothermal energy: a source...  

Office of Scientific and Technical Information (OSTI)

Hydrothermal energy: a source of energy for alcohol production Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

237

An Empirical Pricing Model for Renewable Energy Source  

Science Journals Connector (OSTI)

The characteristics of the renewable energy source make itself the Chinese energy strategy and the most important way to develop the low carbon mode. Therefore, the renewable energy is the only way for China to resolve the energy clearance and sustainable ... Keywords: pricing model, renewable energy source, marginal cost analysis

Bai Xueyan

2012-05-01T23:59:59.000Z

238

Development of guidelines for Modeling Underfloor Air Distribution (UFAD) Systems in EnergyPlus, eQUEST, and EnergyPro for use in California non-residential Building Energy Efficiency Standards  

E-Print Network [OSTI]

Auxiliaries Fans Chiller HVAC EUI(Kbtu/sf/yr) Boiler Equest_Check run_Source HVAC EUI ? kBtu/sf/yr Auxiliaries FansSensitivity_Source (IP) HVAC EUI ? kBtu/sf/yr Fans Chiller

2011-01-01T23:59:59.000Z

239

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell…

1982-01-01T23:59:59.000Z

240

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer…

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Federal Energy Management Program: Covered Product Category: Ground-Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Source Heat Pumps to someone by E-mail Ground-Source Heat Pumps to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Google Bookmark Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Delicious Rank Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Ground-Source Heat Pumps on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

242

Solar Energy as an Alternative Energy Source to Power Mobile Robots  

Science Journals Connector (OSTI)

Solar energy can provide a viable alternative energy source to meet the special energy demands that are typically required to operate mobile robots. Conventional energy sources cannot fulfil these demands as sati...

Abdusalam Sulaiman; Freddie Inambao…

2014-01-01T23:59:59.000Z

243

Microbial Production of Energy Sources from Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Microbial Production of Energy Sources from Biomass [and Discussion] R. C. Righelato...product. However, the capital and energy costs of operating microbial conversions...recovery methods which consume little energy. Ethanol production is unlikely...

1980-01-01T23:59:59.000Z

244

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER  

E-Print Network [OSTI]

AN INTENSE LOW ENERGY MUON SOURCE FOR THE MUON COLLIDER D. Taqqu Paul Scherrer Institut, Villigen, CH Abstract A scheme for obtaining an intense source of low energy muons is described. It is based of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative

McDonald, Kirk

245

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

246

Colorado Nonpoint Source Website | Open Energy Information  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Nonpoint Source Website Abstract This is the website of the Colorado Nonpoint Source...

247

Table 7.9 Expenditures for Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002;" 9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

248

January 2013 Most Viewed Documents for Renewable Energy Sources...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documents for Renewable Energy Sources Photovoltaic Materials Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.;...

249

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" "Item","Value","Rank" "Primary Energy Source","Hydroelectric" "Net Summer Capacity (megawatts)",30910,10 "Electric Utilities",27037,6 "IPP & CHP",3873,24 "Net...

250

July 2013 Most Viewed Documents for Renewable Energy Sources...  

Office of Scientific and Technical Information (OSTI)

2013 Most Viewed Documents for Renewable Energy Sources Science Subject Feed Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 484 > Environmental Impacts of...

251

April 2013 Most Viewed Documents for Renewable Energy Sources...  

Office of Scientific and Technical Information (OSTI)

2013 Most Viewed Documents for Renewable Energy Sources Science Subject Feed Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 1252 > Seventh Edition Fuel Cell...

252

,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Relative Standard Errors for Table 10.7;" " Unit: Percents." ,,"Electricity Receipts(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

253

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

254

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

255

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

256

Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison  

Buildings Energy Data Book [EERE]

4 4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles Passenger Car gallons - Gasoline Van, Pickup Truck, or SUV gallons - Gasoline Heavy Truck gallons - Diesel Fuel Tractor Trailer Truck gallons - Diesel Fuel Note(s): Source(s): 10,749 95.8 211,312 1) Stock refrigerator consumption is per household refrigerator consumption, not per refrigerator.

257

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

mines or wells." "During manufacturing processes, it is possible that the thermal energy content of" "an energy input is not completely consumed for the production of...

258

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

259

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

260

Locally Optimal Source Routing for energy-efficient geographic routing  

Science Journals Connector (OSTI)

We analyze the problem of finding an energy-efficient path from a source node to a destination using geographic routing. ... destination than the current node can still reduce energy consumption by taking part in...

Juan A. Sanchez; Pedro M. Ruiz

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Protected Water Sources (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Protected Water Sources (Iowa) Protected Water Sources (Iowa) Protected Water Sources (Iowa) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations This chapter designates protected water sources, which are subject to additional special conditions regarding water use. Permit applications for

262

Tips: Heating and Cooling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Heating and Cooling Tips: Heating and Cooling Tips: Heating and Cooling May 30, 2012 - 7:38pm Addthis Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Household Heating Systems: Although several different types of fuels are available to heat our homes, more than half of us use natural gas. | Source: Buildings Energy Data Book 2010, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total). Heating and cooling your home uses more energy and costs more money than any other system in your home -- typically making up about 54% of your

263

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" 2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"

264

E-Print Network 3.0 - alternative energy sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sources Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative energy sources...

265

E-Print Network 3.0 - alternative energy source Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

source Search Powered by Explorit Topic List Advanced Search Sample search results for: alternative energy source...

266

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

267

Energy-Efficient Sensing and Communication of Parallel Gaussian Sources  

E-Print Network [OSTI]

Energy-Efficient Sensing and Communication of Parallel Gaussian Sources Xi Liu, Osvaldo Simeone to be operated in an energy-efficient manner in order to attain a satisfactory lifetime. Energy consumption efficiency [2] [3]. We refer to the energy cost associated with measurements and compression of information

Erkip, Elza

268

Kosovo: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

","inlineLabel":"","visitedicon":"" Country Profile Name Kosovo Population Unavailable GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code XK 3-letter ISO code...

269

Falkland Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

nlineLabel":"","visitedicon":"" Country Profile Name Falkland Islands Population 2,932 GDP Unavailable Energy Consumption Quadrillion Btu 2-letter ISO code FK 3-letter ISO code...

270

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

271

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

272

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square...

273

Property:Incentive/UserSource | Open Energy Information  

Open Energy Info (EERE)

UserSource UserSource Jump to: navigation, search Property Name Incentive/UserSource Property Type Text Description Information from user on source of incentive. Subproperties This property has the following 27 subproperties: A AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio) APS - Multifamily Energy Efficiency Program (Arizona) Alliant Energy Interstate Power and Light (Gas) - Business Energy Efficiency Rebate Programs (Minnesota) Alliant Energy Interstate Power and Light (Gas) - Residential Energy Efficiency Program B Brainerd Public Utilities - Renewable Incentives Program C Columbia Gas of Kentucky - Home Savings Rebate Program (Kentucky) ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Small Business Energy Savings Program (Illinois) Commonwealth Small Pellet Boiler Grant Program (Massachusetts)

274

Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng  

Open Energy Info (EERE)

Carriers For Remote Renewable Energy Sources Using Existing Cng Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alternative Carriers For Remote Renewable Energy Sources Using Existing Cng Infrastructure Details Activities (0) Areas (0) Regions (0) Abstract: Optimal locations of renewable energy sources are often remote relative to consumers and electricity grids. In contrast, some existing CNG pipelines pass through optimal renewable energy harvesting regions. The growing interest in the possibility of using geothermal energy in central Australia has created a need to assess the economic, technical, and environmental viability of converting remote renewable energy to fuel for transport using existing CNG pipelines, and to compare this alternative

275

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

276

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

277

Controlled Source Audio MT | Open Energy Information  

Open Energy Info (EERE)

Controlled Source Audio MT Controlled Source Audio MT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Controlled Source Audio MT Details Activities (5) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Magnetotelluric Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 1,866.44186,644 centUSD

278

Property:HeatSource | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what heats the geothermal fluid - whether it be a magmatic intrusion, a thin crust which brings the mantle closer to hydrologic systems, or only radiogenic influences (such as at Chena hot springs, Alaska). This is a property of type Page. Subproperties This property has the following 4 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Steamboat Springs Geothermal Area Pages using the property "HeatSource" Showing 9 pages using this property. C Chena Geothermal Area + Radiogenic +

279

BrightSource | Open Energy Information  

Open Energy Info (EERE)

BrightSource BrightSource Jump to: navigation, search Logo: BrightSource Name BrightSource Address 1999 Harrison Street Place Oakland, California Zip 94612 Sector Solar Product CSP developer Year founded 1984 Number of employees 51-200 Website http://www.brightsourceenergy. Coordinates 37.8020203652°, -122.270536423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8020203652,"lon":-122.270536423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources.  

E-Print Network [OSTI]

??Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply… (more)

Sliz-Szkliniarz, Beata

2013-01-01T23:59:59.000Z

282

Why Might Wood be a Good Energy Feedstock? Renewable energy sources will become  

E-Print Network [OSTI]

of energy among renewable sources in Michigan. They are solar factories, con- verting light energy in Michigan. Trees for energy have some distinct advantages: Trees are available year round. LittleWhy Might Wood be a Good Energy Feedstock? Renewable energy sources will become increasingly

283

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source  

E-Print Network [OSTI]

Ocean Thermal Energy Conversion (OTEC) A New Secure Renewable Energy Source For Defense Water Temperature Delta 2 A New Clean Renewable 24/7 Energy Source #12;Ocean Thermal Energy Conversion and Commercial Applications 1 Dr. Ted Johnson Director of Alternative Energy Programs Development Lockheed Martin

284

Electrical Generation Using Non-Salable Low BTU Natural Gas  

SciTech Connect (OSTI)

High operating costs are a significant problem for independent operators throughout the U.S. Often, decisions to temporarily idle or abandon a well or lease are dictated by these cost considerations, which are often seen as unavoidable. Options for continuing operations on a marginal basis are limited, but must include non-conventional approaches to problem solving, such as the use of alternative sources of lease power, and scrupulous reduction of non-productive operating techniques and costs. The loss of access to marginal oil and gas productive reservoirs is of major concern to the DOE. The twin difficulties of high operating costs and low or marginal hydrocarbon production often force independent operators to temporarily or permanently abandon existing lease facilities, including producing wells. Producing well preservation, through continued economical operation of marginal wells, must be maintained. Reduced well and lease operating costs are expected to improve oil recovery of the Schaben field, in Ness County, Kansas, by several hundred thousands of barrels of oil. Appropriate technology demonstrated by American Warrior, allows the extension of producing well life and has application for many operators throughout the area.

Scott Corsair

2005-12-01T23:59:59.000Z

285

Fumigation of a diesel engine with low Btu gas  

SciTech Connect (OSTI)

A 0.5 liter single-cylinder, indirect-injection diesel engine has been fumigated with producer gas. Measurements of power, efficiency, cylinder pressure, and emissions were made. At each operating condition, engine load was held constant, and the gas-to-diesel fuel ratio was increased until abnormal combustion was encountered. This determined the maximum fraction of the input energy supplied by the gas, E/sub MAX/, which was found to be dependent upon injection timing and load. At light loads, E/sub MAX/ was limited by severe efficiency loss and missfire, while at heavy loads it was limited by knock or preignition. Fumigation generally increased ignition delay and heat release rates, but peak pressures were not strongly influenced. Efficiency was slightly decreased by fumigation as were NO/sub X/ and particle emissions while CO emissions were increased.

Ahmadi, M.; Kittelson, D.B.

1985-01-01T23:59:59.000Z

286

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

287

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

288

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand Mkt trends Market Trends In the United States, average energy use per person declines from 2010 to 2040 ...Read full section Industrial and commercial sectors lead U.S. growth in primary energy use ...Read full section Renewable energy courses lead rise in primary energy consumption ...Read full section Growth in electricity use slows but still increases by 28 percent from 2011 to 2040 ...Read full section comparision Comparison with other projections Total energy consumption... Read full section figure data Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary XLS Table 2. Energy Consumption by Sector and Source - United States XLS Table 3. Energy Prices by Sector and Source - United States XLS Table 4. Residential Sector Key Indicators and Consumption XLS

289

" Row: NAICS Codes; Column: Energy Sources...  

U.S. Energy Information Administration (EIA) Indexed Site

"to other energy products (e.g., crude oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable RSE rowcolumn factor." " * Estimate less...

290

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Demand U.S. Energy Demand On This Page U.S. average energy use... Industrial and commercial... Renewable sources... Transportation uses... U.S. average energy use per person and per dollar of GDP declines through 2035 Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to

291

Energy information systems (EIS): Technology costs, benefit, and best practice uses  

E-Print Network [OSTI]

and natural gas energy savings: Electrical energy savings (gas energy cost savings: Electrical energy cost savings ($/sf) = Electrical energy savings (kBtu/sf) × National

Granderson, Jessica

2014-01-01T23:59:59.000Z

292

Role of renewable energy sources in environmental protection: A review  

Science Journals Connector (OSTI)

Renewable technologies are considered as clean sources of energy and optimal use of these resources minimize environmental impacts, produce minimum secondary wastes and are sustainable based on current and future economic and social societal needs. Sun is the source of all energies. The primary forms of solar energy are heat and light. Sunlight and heat are transformed and absorbed by the environment in a multitude of ways. Some of these transformations result in renewable energy flows such as biomass and wind energy. Renewable energy technologies provide an excellent opportunity for mitigation of greenhouse gas emission and reducing global warming through substituting conventional energy sources. In this article a review has been done on scope of CO2 mitigation through solar cooker, water heater, dryer, biofuel, improved cookstoves and by hydrogen.

N.L. Panwar; S.C. Kaushik; Surendra Kothari

2011-01-01T23:59:59.000Z

293

Contextually Supervised Source Separation with Application to Energy Disaggregation  

E-Print Network [OSTI]

Contextually Supervised Source Separation with Application to Energy Disaggregation Matt Wytock amounts of data but no explicit su- pervision; our motivating application is energy disag- gregation of hourly smart meter data (the separation of whole-home power signals into different energy uses). Here

Kolter, J. Zico

294

1 INTRODUCTION Alternative energy sources have increasingly gained  

E-Print Network [OSTI]

1 INTRODUCTION Alternative energy sources have increasingly gained the interest for governments it is required, is a major concern for alternative energy systems. Profits and environmental benefits, research institutes, academia, and industry in order to advance the penetration of sustainable energy

Sandborn, Peter

295

Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1814,3 "Natural Gas",7426,1 "Net Electricity",3035,1 " Purchases",3044,1

296

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1959,10 "Natural Gas",6468,1.3 "Net Electricity",2840,1.4 " Purchases",2882,1.4

297

Legislative Findings: Least-Cost Energy Sources (Nebraska) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) Legislative Findings: Least-Cost Energy Sources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Public Power District

298

Energy Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview for CNA Panel Discussion May 8, 2013 | Crystal City, VA by Howard Gruenspecht, Deputy Administrator Non-OECD nations drive the increase in energy demand 2 world energy consumption quadrillion Btu Source: EIA, International Energy Outlook 2011 0 100 200 300 400 500 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 Non-OECD OECD 244 260 482 288 History Projections 2008 Howard Gruenspecht , CNA Panel May 8, 2013 Growth in income and population drive rising energy use; energy intensity improvements moderate increases in energy demand 3 average annual change (2008-2035) percent per year Source: EIA, International Energy Outlook 2011 -4 -3 -2 -1 0 1 2 3 4 5 6 7 U.S. OECD Europe Japan South Korea China India Brazil Middle East Africa Russia

299

E-Print Network 3.0 - alternate energy sources Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: to alternative (including nuclear) and renewable energy sources (including solar,energy sources (including solar... , until alternative and renewable energy...

300

International Energy Outlook 1999 - Notes and Sources  

Gasoline and Diesel Fuel Update (EIA)

sources.gif (4045 bytes) sources.gif (4045 bytes) [1] Turkey and Belarus are Annex I nations that have not ratified the Framework Convention on Climate Change and did not commit to quantifiable emissions targets under the Kyoto Protocol. [2] The Annex I countries under the Framework Convention on Climate Change are Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, the Ukraine, the United Kingdom, and the United States. Turkey and Belarus are also considered Annex I countries, but neither has agreed to any limits on greenhouse gas emissions.

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Hydrogen Analysis Repository: Stochastic Energy Source Access  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stochastic Energy Source Access Management (SESAM) Stochastic Energy Source Access Management (SESAM) Project Summary Full Title: Stochastic Energy Source Access Management (SESAM): Infrastructure-integrative modular plant for hydrogen-electric co-generation Project ID: 140 Principal Investigator: Kai Strunz Purpose The model demonstrates a renewable power plant that is designed to seamlessly integrate with the given energy infrastructure while serving the dual purpose of generating electric power and hydrogen. A multilevel storage absorbs short-term shocks on the infrastructure while also compensating for intermittency of wind and solar energy conversion in the long term. The model supports in particular analysis and design of a hydrogen infrastructure with a high penetration of renewable energy. Performer

302

FACTSHEET: Energy Department Launches Open-Source Online Training Resource  

Broader source: Energy.gov (indexed) [DOE]

Launches Open-Source Online Training Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills FACTSHEET: Energy Department Launches Open-Source Online Training Resource to Help Students, Workers Gain Valuable Skills June 21, 2012 - 7:47am Addthis The Energy Department and SRI International today officially launched the National Training and Education Resource (NTER), an open-source platform for job training, workforce development and certification. NTER was envisioned by the Department and developed by SRI. WASHINGTON -- As part of the Obama Administration's commitment to invest in skills for American workers, the Energy Department officially launched today its National Training and Education Resource (NTER), an open-source platform that brings together information technologies to support

303

Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovation: Innovation: Sources of Technical and Commercial Breakthroughs Thomas D. Perry IV and Mackay Miller National Renewable Energy Laboratory Lee Fleming Harvard Business School Kenneth Younge University of Colorado James Newcomb National Renewable Energy Laboratory Current Affiliation: Rocky Mountain Institute Technical Report NREL/TP-6A20-50624 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

304

EarthSource Energy Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

Region: Greater Boston Area Sector: Geothermal energy Product: Manufacture geothermal heat pumps Website: http:www.earthsource-energy. Coordinates: 42.3409324,...

305

Solid Waste as an Energy Source  

E-Print Network [OSTI]

. PROCESS The solLd waste energy conversion system bullt by Kelley Company consists of a combustion unit and an energy recovery boLler. The combustion unit uses a two stage process; the refuse is fLrst converted to gases by a pyrolysis process... wlll be conslderably lower than the temperature that woulq be achleved If stoichiometrlc air to fuel ratlo was malntained. The resulting temperatures In the pyrolysis chamber ranges from 1200 0 to 1500 o P. The low a lr lnput, as compared wlth...

Erlandsson, K. I.

1979-01-01T23:59:59.000Z

306

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" "Item","Value","Rank" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",7631,39 "Electric Utilities",6637,32 "IPP & CHP",993,44 "Net Generation...

307

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee" "Item","Value","Rank" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",21322,20 "Electric Utilities",20635,13 "IPP & CHP",687,47 "Net Generation...

308

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" "Item","Value","Rank" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",8380,36 "Electric Utilities",7278,31 "IPP & CHP",1102,43 "Net Generation...

309

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" "Item","Value","Rank" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",16285,25 "Electric Utilities",10590,27 "IPP & CHP",5695,18 "Net Generation...

310

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" "Item","Value","Rank" "Primary Energy Source","Coal" "Net Summer Capacity (megawatts)",45406,4 "Electric Utilities",455,44 "IPP & CHP",44951,2 "Net Generation...

311

Contributions of Renewable Energy Resources to Re-source Diversity  

E-Print Network [OSTI]

of sources such as wind, solar, photovoltaic, biofuels, geo- thermal and hydro for energy supply analysis, economics and operations, utility regulatory policy, renewable resource integration and industry, Berkeley. Dr. Gross has consulted on electricity issues with utilities, government organizations

Gross, George

312

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" "Item","Value","Rank" "Primary Energy Source","Hydroelectric" "Net Summer Capacity (megawatts)",4911,42 "..Electric Utilities",3394,37 "..IPP & CHP",1517,39 "Net Generation...

313

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" "Item","Value","Rank" "Primary Energy Source","Hydroelectric" "Net Summer Capacity (megawatts)",15544,27 "Electric Utilities",10888,25 "IPP & CHP",4656,19 "Net Generation...

314

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota" "Item","Value","Rank" "Primary Energy Source","Hydroelectric" "Net Summer Capacity (megawatts)",4057,45 "Electric Utilities",3428,36 "IPP & CHP",629,48 "Net Generation...

315

Alternative and Transitional Energy Sources for Urban Transportation  

Science Journals Connector (OSTI)

In urban areas, the transportation sector is one of the principal sources of substantial energy consumption. Although public modes of transportation have ... cities still prefer owning and using their private cars

Linna Li; Becky P. Y. Loo

2014-03-01T23:59:59.000Z

316

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",45146,5 "..Electric Utilities",5274,34 "..IPP & CHP",39872,4 "Net Generation...

317

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",4323,44 "Electric Utilities",1121,41 "IPP & CHP",3202,31 "Net Generation...

318

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",1235,50 "Electric Utilities",329,45 "IPP & CHP",906,46 "Net Generation...

319

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",24849,16 "Electric Utilities",20626,14 "IPP & CHP",4223,23 "Net Generation...

320

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",23083,18 "Electric Utilities",21280,10 "IPP & CHP",1803,37 "Net Generation...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",9060,35 "Electric Utilities",152,46 "IPP & CHP",8909,12 "Net Generation...

322

"Sources: U.S. Energy Information Administration, Form EIA-860...  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" "Item","Value","Rank" "Primary Energy Source","Nuclear" "Net Summer Capacity (megawatts)",18924,22 "Electric Utilities",517,43 "IPP & CHP",18407,6 "Net Generation...

323

VA Energy Management Action Plan  

Broader source: Energy.gov (indexed) [DOE]

VA Energy Management VA Energy Management Action Plan Ken Demers Chief, VA National Energy Business Center Purpose Cited Deficiencies Within VA's Previous Energy Program... *No comprehensive Department-wide policy *Lack of coordinated acquisition and investment strategies throughout the Administrations and Staff Offices *No uniform measurement and verification of energy usage *Unverifiable reporting mechanism *Lack of capturing "lessons learned" and best practices from previous experiences Potential Annual Savings ENERGY COST ($000) CONSUMPTION (Billion Btu) Baseline - FY 2005: $397,577 Baseline - FY 2005: 29,094 Savings Savings SOURCE OF SAVINGS FY 2007 FY 2008 Future TOTAL

324

An Alternative Source for Dark Energy  

E-Print Network [OSTI]

In the present work, an alternative interpretation of the source of accelerated expansion of the Universe is suggested. A probable candidate is the interaction between the quantum spin of a moving particle and the torsion of space-time, produced by the background gravitational field of the Universe. This interaction has been suggested by the author in a previous work, with some experimental and observational evidences for its existence. It has been shown that this interaction gives rise to a repulsive force. The accelerated expansion of the Universe may give a further evidence on the existence of this interaction on the cosmological scale.

M. I. Wanas

2007-04-27T23:59:59.000Z

325

7Name ________________________________ System Watts Energy source  

E-Print Network [OSTI]

of electricity they consume in order to operate. The most energy-consuming items involve an electrical motor lamp 100 Electric Utility Company Television 90 Electric Utility Company Computer 200 Electric Utility Company Refrigerator 500 Electric Utility Company Small House 1,000 Electric Utility Company Small town 5

326

Breeder reactors: A renewable energy source  

Science Journals Connector (OSTI)

Based on a cost analysis of uranium extracted from seawater it is concluded that the world’s energy requirements for the next 5 billion years can be met by breeder reactors with no price increase due to fuel costs.(AIP)

Bernard L. Cohen

1983-01-01T23:59:59.000Z

327

Home - Energy Explained, Your Guide To Understanding Energy - Energy  

Gasoline and Diesel Fuel Update (EIA)

Explained Explained Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook Factors Affecting Gasoline Prices Regional Price Differences

328

Air-Source Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

329

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006;" 3.4 Number of Establishments by Fuel Consumption, 2006;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"

330

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" 4 Number of Establishments by Offsite-Produced Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

331

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Number of Establishments by Fuel Consumption, 2002;" 4 Number of Establishments by Fuel Consumption, 2002;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Establishment Counts." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ","Any",,,,,,,,,"RSE" "NAICS"," ","Energy","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Gas(e)","NGL(f)","Coal","and Breeze","Other(g)","Factors"

332

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

333

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect (OSTI)

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

334

Comparative study of energy saving light sources  

Science Journals Connector (OSTI)

Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23 W CFL, 21 W EEFL, 18 W fluorescent tube or 15 W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100 W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of ?20 °C LED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems.

N. Khan; N. Abas

2011-01-01T23:59:59.000Z

335

Linac Coherent Light Source Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Linac Coherent Light Source Overview Linac Coherent Light Source Overview Linac Coherent Light Source Overview Addthis Description Take an animated tour of the Linac Coherent Light Source (LCLS). Follow the laser pulse from the injector gun all the way through to the Far Experimental Hall. Duration 5:50 Topic Physics Credit Energy Department Video MR. : The SLAC National Accelerator Laboratory is located in the heart of California's beautiful San Francisco Bay Area. Operated by Stanford University for the U.S. Department of Energy, SLAC has been home to the world's longest particle accelerator for nearly 50 years. In 2009 SLAC ushered in a new era in its long history of physics research with a new kind of laser called the Linac Coherent Light Source, or LCLS. The LCLS is the first laser in the world to produce hard X-rays, which can

336

Property:Geothermal/FundingSource | Open Energy Information  

Open Energy Info (EERE)

FundingSource FundingSource Jump to: navigation, search Property Name Geothermal/FundingSource Property Type String Description Funding Source Pages using the property "Geothermal/FundingSource" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + American Recovery and Reinvestment Act of 2009 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + American Recovery and Reinvestment Act of 2009 +

337

Introduction Radiation is the primary energy source and the  

E-Print Network [OSTI]

18 Introduction Radiation is the primary energy source and the ultimate energy sink for the Earth in the Earth's atmosphere and can be used for the evaluation and improvement of models designed for weather. Also, an example of measurement quality control is given. Then it is shown how the calibration

Haak, Hein

338

Energy Research at the UW Crea ng sustainable energy sources  

E-Print Network [OSTI]

design: designing proteins for use in fuel cells and hydrogen produc on Solar: energy from the sun Tidal on energy use Fuel cells: conver ng fuels to electricity IT and telecommunica ons: transmi ng and processing renewable energy at the lowest cost Mechanical storage: flywheels, pumped storage, compressed gas Ba eries

Yetisgen-Yildiz, Meliha

339

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

340

Imaging of granular sources in high energy heavy ion collisions  

E-Print Network [OSTI]

We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduced by Brown and Danielewicz is suitable for probing the granular structure of the sources. Our data-fitting results indicate that there is not visible granularity for the sources at AGS energies. However, the data for the RHIC collisions with the selections of $40 < {\\rm centrality} < 90%$ and $0.20source has more parameters than the simple Gaussian, hence can describe more complicated shapes.

Zhi-Tao Yang; Wei-Ning Zhang; Lei Huo; Jing-Bo Zhang

2008-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Use of surplus napalm as an energy source  

SciTech Connect (OSTI)

The current military surplus of napalm should be viewed as an energy source rather than as hazardous waste. The energy content of this resource is too valuable to waste. There are at present significant problems to be overcome both scientifically and politically before this material can be used as an energy source. Scientific problems include solubility in a proper fuel matrix, methods to ensure complete combustion, and safety in transportation and handling. In this paper, the authors present data on gasoline and benzene extraction from napalm, napalm fuel matrix solubilities, burner characteristics of these napalm fuel mixtures, and the accelerated storage stability studies of these mixtures.

Mushrush, G.W.; Beal, E.J.; Hardy, D.R.; Hughes, J.M.

2000-03-01T23:59:59.000Z

342

International Energy Outlook 2000 - Notes & Sources  

Gasoline and Diesel Fuel Update (EIA)

To International Forecasting Home Page To International Forecasting Home Page To Annual Energy Outlook 2000 bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage [1] Turkey and Belarus are Annex I nations that have not ratified the Framework Convention on Climate Change and did not commit to quantifiable emissions targets under the Kyoto Protocol. [2] The Annex I countries under the Framework Convention on Climate Change are Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Lithuania, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russia, Slovakia, Slovenia, Spain, Sweden, Switzerland, the Ukraine, the United Kingdom, and the United States. Turkey and Belarus are also considered Annex I countries, but neither has agreed to any limits on greenhouse gas emissions.

343

Iowa's 2nd congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

BTU Iowa Renewable Energy LLC Riksch Biofuels Solar Dynamics Utility Companies in Iowa's 2nd congressional district Interstate Power and Light Co Retrieved from "http:...

344

New Jersey Industrial Energy Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

452.1 trillion British thermal units (Btu). As part of an initiative to reduce the energy intensity of the American manufacturing sector, the United States Department of...

345

Leading the Way in Energy Best Practices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

fleet efficiency, which ultimately saves taxpayers money. This year's Federal Energy and Water Management Award winners saved a total of 1.9 trillion British thermal units (Btu)...

346

Control of Ribosome Synthesis in Escherichia coli: Analysis of an Energy Source Shift-Down  

Science Journals Connector (OSTI)

...as the sole carbon and energy source. The new growth rate was determined...completely different carbon and energy sources when identical...Escherichia coli: analysis ofan energy source shift-down...A. Benjamin Inc., New York. 25. von Meyenburg...

Søren Molin; Kaspar Von Meyenburg; Ole Maaløe; Mogens T. Hansen; Martin L. Pato

1977-07-01T23:59:59.000Z

347

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

348

Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable  

Broader source: Energy.gov (indexed) [DOE]

Cumberland Valley Electric Cooperative - Energy Efficiency and Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program Cumberland Valley Electric Cooperative - Energy Efficiency and Renewable Energy Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Insulation: $400 Program Info State Kentucky Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Insulation: $20 for every 1000 BTU offset Geothermal Heat Pump: $100 Provider Cumberland Valley Electric Cumberland Valley Electric offers a number of programs to promote energy conservation. This program offers rebates for air source heat pumps,

349

A Stochastic Calculus for Network Systems with Renewable Energy Sources  

E-Print Network [OSTI]

We consider the performance modeling and evaluation of network systems powered with renewable energy sources such as solar and wind energy. Such energy sources largely depend on environmental conditions, which are hard to predict accurately. As such, it may only make sense to require the network systems to support a soft quality of service (QoS) guarantee, i.e., to guarantee a service requirement with a certain high probability. In this paper, we intend to build a solid mathematical foundation to help better understand the stochastic energy constraint and the inherent correlation between QoS and the uncertain energy supply. We utilize a calculus approach to model the cumulative amount of charged energy and the cumulative amount of consumed energy. We derive upper and lower bounds on the remaining energy level based on a stochastic energy charging rate and a stochastic energy discharging rate. By building the bridge between energy consumption and task execution (i.e., service), we study the QoS guarantee under...

Wu, Kui; Marinakis, Dimitri

2011-01-01T23:59:59.000Z

350

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy is an important source of power, supplying 20 energy is an important source of power, supplying 20 percent of the nation's electricity. More than 100 nuclear power plants are operating in the U.S., and countries around the world are implementing nuclear power as a carbon-free alternative to fossil fuels. We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from nuclear fuel, improve waste management, and strengthen nuclear nonproliferation controls. To develop viable technical solutions, these interdependent challenges must be addressed through tightly integrated multidisciplinary research and development efforts. Los Alamos National Laboratory is playing a key role in

351

Renewable Energy Sources Optimization: A Micro-Grid Model Design  

Science Journals Connector (OSTI)

Abstract This paper analyzes the possibility to develop the simple micro-grid model in optimizing the utilization of local renewable energy for on-grid area. The proposed micro-grid model integrates the power plants driven by renewable energy sources employing micro hydro (MHP) and photovoltaic system (PV) which is connected to grid system. This model is analyzed using HOMER and MATLAB software. Based on the load profiles and the availability of water resources, the HOMER simulates the proposed micro-grid model with three options of MHP capacity. The simulation results show that the micro-grid model with the largest capacity MHP produced the lowest energy cost, greatest reduction of CO2 emission, and largest fraction of renewable energy. However, these result required the expensive initial capital cost. In addition, the PV power generation was always recommended with a minimum capacity. Hence, MATLAB results show the performances of the power plants with renewable energy sources were used maximally.

R. Nazir; H.D. Laksono; E.P. Waldi; E. Ekaputra; P. Coveria

2014-01-01T23:59:59.000Z

352

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

353

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

354

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

355

Sources for Department of Energy Scientific and Technical Reports | OSTI,  

Office of Scientific and Technical Information (OSTI)

Sources for Department of Energy Scientific and Technical Reports Sources for Department of Energy Scientific and Technical Reports You can find full-text scientific and technical reports produced since 1991 (and some reports published prior to 1991) online at SciTech Connect. If you do not find what you are searching for at SciTech Connect, you can try the sources listed below. Depending on the source, documents may be available online or in other formats. Also, visit Adopt-A-Doc for an on-demand service that provides the option to sponsor the digitization of full-text DOE technical reports. Public Access: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Phone: 1-800-553-NTIS (6847) or 703-605-6000 Fax: 703-321-8547 TDD: 703-487-4639 Internet: http://www.ntis.gov/help/ordermethods.aspx

356

Chapter 2 - Coal as Multiple Sources of Energy  

Science Journals Connector (OSTI)

Abstract Coal as multiple sources of energy is mined for its solid and gas-, oil-, and condensate-derived hydrocarbons as well as liquefied for synfuels. More than 50 countries mine coal as feedstock for power plants to generate electricity but only six of these countries monopolize 73% of the total recoverable coalbed gas resources of the world. Worldwide, about 30,000 coal mine explosions are caused by methane and carbon dioxide, and to prevent outbursts and emissions, underground, surface, and abandoned coalmine gases are exploited for industrial and commercial uses. Still, a large volume of unrecovered fugitive coalmine gases is released as global greenhouse gas emissions. An alternative source for foreign oil dependent countries is synfuels from coal liquefaction technology. Also, coal-derived hydrocarbons are a part of the conventional resources that is, gas, oil, and condensate sourced from coal but expelled into adjoining reservoirs, are attractive alternative energy sources.

Romeo M. Flores

2014-01-01T23:59:59.000Z

357

Effect of warm up on energy cost and energy sources of a ballet dance exercise  

Science Journals Connector (OSTI)

To evaluate the effect of warm up on energy cost and energy sources of a ballet dance exercise, 12...tours piqués en dedans on pointe...) without and following a warm up. Warm up consisted in a light running foll...

Laura Guidetti; Gian Pietro Emerenziani…

2007-02-01T23:59:59.000Z

358

IPCC Special Report on Renewable Energy Sources and Climate Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IPCC Special Report on Renewable Energy Sources and Climate Change IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Title IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Edenhofer, Ottmar, Ramon Pichs-Madruga, Youba Sokona, Kristin Seyboth, Dan Arvizu, Thomas Bruckner, John Christensen, Helena Chum, Jean-Michel Devernay, Andre Faaij, Manfred Fischedick, Barry Goldstein, Gerrit Hansen, John Huckerby, Arnulf Jäger-Waldau, Susanne Kadner, Daniel M. Kammen, Volker Krey, Arun Kumar, Anthony Lewis, Oswaldo Lucon, Patrick Matschoss, Lourdes Maurice, Catherine Mitchell, William Moomaw, José Moreira, Alain Nadai, Lars J. Nilsson, John Nyboer, Atiq Rahman, Jayant A. Sathaye, Janet Sawin, Roberto Schaeffer, Tormod Schei, Steffen Schlömer, Ralph Sims, Christoph von Stechow, Aviel Verbruggen, Kevin Urama, Ryan H. Wiser, Francis Yamba, and Timm Zwickel

359

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Nuclear market trends icon Nuclear Mkt trends Market Trends After Fukushima, prospects for nuclear power dim in Japan and Europe but not elsewhere.... Read full section Renewable energy sources lead rise in primary energy consumption.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Nuclear power plant capacity grows slowly through uprates and new builds.... Read full section issues Issues in Focus Nuclear power in AEO2012.... Read full section figure data Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary XLS Table 9. Electricity Generating Capacity XLS Table 56. Electricity Generation by Electricity Market Module Region and Source XLS

360

Oil shale as an energy source in Israel  

SciTech Connect (OSTI)

Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EPA Climate Leaders Mobile Source Guidance | Open Energy Information  

Open Energy Info (EERE)

EPA Climate Leaders Mobile Source Guidance EPA Climate Leaders Mobile Source Guidance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA Climate Leaders Mobile Source Guidance Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Phase: Determine Baseline Topics: GHG inventory Resource Type: Guide/manual Website: www.epa.gov/climateleaders/resources/cross-sector.html Country: United States Cost: Free UN Region: Northern America References: http://www.epa.gov/climateleaders/resources/cross-sector.html Logo: EPA Climate Leaders Mobile Source Guidance "This module is used to identify and estimate direct GHG emissions associated with fossil fuel combustion in owned or operated mobile sources. The module is divided into Road, Air, Waterborne, Rail Transport, and Other

362

Optimization and integration of renewable energy sources on a community scale using Artificial Neural Networks and Genetic Algorithms  

E-Print Network [OSTI]

a variable renewable energy source (solar) and suggest afrom a variable energy source (solar). While both objectivesand uncertain energy source such as solar. The end result of

Davis, Bron

2011-01-01T23:59:59.000Z

363

Energy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors  

E-Print Network [OSTI]

states of the measurement quality, of channel SNR, and of the data queue, the energy management unit must is referred to as energy neutral [4]. Moreover, when sensors are tasked with acquiring complex measures1 Energy-Neutral Source-Channel Coding in Energy-Harvesting Wireless Sensors P. Castiglione, O

Zemen, Thomas

364

U.S. Energy Facts - Energy Explained, Your Guide To Understanding Energy -  

U.S. Energy Information Administration (EIA) Indexed Site

Explained Explained Home > Energy Explained > U.S. Energy Facts Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

365

Compact, energy EFFICIENT neutron source: enabling technology for various applications  

SciTech Connect (OSTI)

A novel neutron source comprising of a deuterium beam (energy of about 100 KeV) injected into a tube filled with tritium gas and/or tritium plasma that generates D-T fusion reactions, whose products are 14.06 MeV neutrons and 3.52 MeV alpha particles, is described. At the opposite end of the tube, the energy of deuterium ions that did not interact is recovered. Beryllium walls of proper thickness can be utilized to absorb 14 MeV neutrons and release 2-3 low energy neutrons. Each ion source and tube forms a module. Larger systems can be formed from multiple units. Unlike currently proposed methods, where accelerator-based neutron sources are very expensive, large, and require large amounts of power for operation, this neutron source is compact, inexpensive, easy to test and to scale up. Among possible applications for this neutron source concept are sub-critical nuclear breeder reactors and transmutation of radioactive waste.

Hershcovitch, A.; Roser, T.

2009-12-01T23:59:59.000Z

366

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

666,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737358...

367

Report: An Updated Annual Energy Outlook 2009 Reference Case...  

U.S. Energy Information Administration (EIA) Indexed Site

086,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.737365...

368

Alternative Fuels Created From Unlikely Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuels Created From Unlikely Sources Alternative Fuels Created From Unlikely Sources Alternative Fuels Created From Unlikely Sources January 7, 2010 - 3:46pm Addthis Innovation is key for ClearFuels Technology and Rentech Inc, partners in the energy field of biomass. Both companies work on projects to produce fuels that aren't just green but also cost-effective. They're working together to bring a viable alternative fuel to the marketplace. The companies have been selected to receive a $22.6 million grant from the Department of Energy. "DOE has recognized the benefits of these two technologies coming together" says Hunt Ramsbottom, CEO of Rentech. Hawaii-based ClearFuels has developed a process to turn waste into renewable fuel. They partner with local wood and sugar mills, collecting

369

Alternative Fuels Created From Unlikely Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alternative Fuels Created From Unlikely Sources Alternative Fuels Created From Unlikely Sources Alternative Fuels Created From Unlikely Sources January 7, 2010 - 3:46pm Addthis Innovation is key for ClearFuels Technology and Rentech Inc, partners in the energy field of biomass. Both companies work on projects to produce fuels that aren't just green but also cost-effective. They're working together to bring a viable alternative fuel to the marketplace. The companies have been selected to receive a $22.6 million grant from the Department of Energy. "DOE has recognized the benefits of these two technologies coming together" says Hunt Ramsbottom, CEO of Rentech. Hawaii-based ClearFuels has developed a process to turn waste into renewable fuel. They partner with local wood and sugar mills, collecting

370

Carbon Capture and Storage from Industrial Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Carbon Capture and Storage from Industrial Sources Carbon Capture and Storage from Industrial Sources In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from DOE's Energy Information Administration. In a major step forward in the fight to reduce CO2 emissions from industrial plants, DOE has allocated Recovery Act funds to more than 25 projects that capture and sequester CO2 emissions from industrial sources - such as cement plants, chemical plants, refineries, paper mills, and manufacturing facilities - into underground formations. Large-Scale Projects Three projects are aimed at testing large-scale industrial carbon capture

371

Denver Museum Taps Into Unique Geothermal Source | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm Addthis Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city’s municipal water system. | Photo courtesy of Denver Museum of Nature & Science Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city's municipal water system. | Photo courtesy of Denver Museum of Nature & Science Stephen Graff Former Writer & editor for Energy Empowers, EERE What will the project do? These energy efficient practices could save the museum up to $7 million over the next 20 years. The heating and air conditioning in the new wing of the Denver Museum if

372

SourceGas - Commercial Energy Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Commercial Energy Efficiency Rebate Program Commercial Energy Efficiency Rebate Program SourceGas - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Program Info State Colorado Program Type Utility Rebate Program Rebate Amount '''Small Commercial''' Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Integrated Space/Water Heater: $300

373

SourceGas - Residential Energy Efficiency Rebate Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Residential Energy Efficiency Rebate Program Residential Energy Efficiency Rebate Program SourceGas - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Commercial Weatherization Manufacturing Appliances & Electronics Water Heating Maximum Rebate Hot Water Insulation/Infiltration Measures: minimum purchase of $40 Programmable Thermostats: 2 per account Insulation/Air Sealing: $300 Program Info State Colorado Program Type Utility Rebate Program Rebate Amount Furnace: $200 - $300 Boiler: $150 Proper Sizing of Boiler/Furnace: $50 Hot Water Heater (Tank): $50 Hot Water Heater (Tankless): $300 Programmable Thermostat: $25 Hot Water Insulation/Infiltration Measures: $25 Insulation/Air Sealing: 30% of cost

374

The World Energy situation andThe World Energy situation and the Role of Renewable Energy Sources and  

E-Print Network [OSTI]

The World Energy situation andThe World Energy situation and the Role of Renewable Energy Sources, in Solving the Energy and Environmental Problems Mohamed Abdou Distinguished Professor of Engineering and Applied Science (UCLA) Director, Center for Energy Science & Technology (UCLA) President, Council

Abdou, Mohamed

375

Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect (OSTI)

Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

Not Available

2011-02-11T23:59:59.000Z

376

Renewable Energy Consumption for Electricity Generation by Energy Use  

Open Energy Info (EERE)

Electricity Generation by Energy Use Electricity Generation by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description Provides annual renewable energy consumption (in quadrillion btu) for electricity generation in the United States by energy use sector (commercial, industrial and electric power) and by energy source (e.g. biomass, geothermal, etc.) This data was compiled and published by the Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords biomass Commercial Electric Power Electricity Generation geothermal Industrial PV Renewable Energy Consumption solar wind Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Elec_.Gen_EIA.Aug_.2010.xls (xls, 19.5 KiB) Quality Metrics Level of Review Some Review

377

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

378

Energy storage for desalination processes powered by renewable energy and waste heat sources  

Science Journals Connector (OSTI)

Abstract Desalination has become imperative as a drinking water source for many parts of the world. Due to the large quantities of thermal energy and high quality electricity requirements for water purification, the desalination industry depends on waste heat resources and renewable energy sources such as solar collectors, photovoltaic arrays, geothermal and wind and tidal energy sources. Considering the mismatch between the source supply and demand and intermittent nature of these energy resources, energy storage is a must for reliable and continuous operation of desalination facilities. Thermal energy storage (TES) requires a suitable medium for storage and circulation while the photovoltaic/wind generated electricity needs to be stored in batteries for later use. Desalination technologies that utilize thermal energy and thus require storage for uninterrupted process operation are multi-stage flash distillation (MSF), multi-effect evaporation (MED), low temperature desalination (LTD) and humidification–dehumidification (HD) and membrane distillation (MD). Energy accumulation, storage and supply are the key components of energy storage concept which improve process performance along with better resource economics, and minimum environmental impact. Similarly, the battery energy storage (BES) is essential to store electrical energy for electrodialysis (ED), reverse osmosis (RO) and mechanical vapor compression (MVC) technologies. This research-review paper provides a critical review on current energy storage options for different desalination processes powered by various renewable energy and waste heat sources with focus on thermal energy storage and battery energy storage systems. Principles of energy storage (thermal and electrical energy) are discussed with details on the design, sizing, and economics for desalination process applications.

Veera Gnaneswar Gude

2014-01-01T23:59:59.000Z

379

Federal Energy and Water Management Awards 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Djibouti In FY 2013, the energy team at Camp Lemonnier, Djibouti implemented an air conditioning improvement project that saves 61 billion Btu and 2 million annually....

380

E-Print Network 3.0 - annual energy-sources technology Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the flexible and efficient energy system 12 Energy... Chemistry Division at Ris. Bioenergy - a precious, renewable energy ... Source: Ris National Laboratory Collection:...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Refining Crude Oil - Energy Explained, Your Guide To Understanding Energy -  

Gasoline and Diesel Fuel Update (EIA)

Oil and Petroleum Products > Refining Crude Oil Oil and Petroleum Products > Refining Crude Oil Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

382

Characterization of a low-energy constricted-plasma source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40374 (text only) 40374 (text only) Review. Sci. Instruments 69 (1998) 1340-1343. Characterization of a low-energy constricted-plasma source André Anders 1 and Michael Kühn 2 1 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 2 Institute of Physics, Technical University of Chemnitz, 09107 Chemnitz, Germany ABSTRACT The construction and principle of operation of the Constricted-Plasma Source are described. A supersonic plasma stream is produced by a special form of a dc-glow discharge, the constricted glow discharge. The discharge current and gas flow pass through an orifice of small diameter (constriction) which causes a space charge double layer but also serves as a nozzle to gasdynamically accelerate the plasma flow. Plasma parameters have been measured using Langmuir probes, optical emission spectroscopy, and a plasma monitor for mass-resolved energy measurements. Experiments have been done with nitrogen as the discharge gas. It was found that the energy distribution of both atomic and molecular ions have two peaks at about 5 eV and 15 eV, and the energy of almost all ions is less than 20 eV. The ionization efficiency decreases with increasing gas flow. The downstream plasma density is relatively low but activated species such as excited molecules and radicals contribute to film growth when the source is used for reactive film deposition

383

Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption  

Buildings Energy Data Book [EERE]

3 3 Commercial Delivered and Primary Energy Consumption Intensities, by Year Percent Delivered Energy Consumption Primary Energy Consumption Floorspace Post-2000 Total Consumption per Total Consumption per (million SF) Floorspace (1) (10^15 Btu) SF (thousand Btu/SF) (10^15 Btu) SF (thousand Btu/SF) 1980 50.9 N.A. 5.99 117.7 10.57 207.7 1990 64.3 N.A. 6.74 104.8 13.30 207.0 2000 (2) 68.5 N.A. 8.20 119.7 17.15 250.3 2010 81.1 26% 8.74 107.7 18.22 224.6 2015 84.1 34% 8.88 105.5 18.19 216.2 2020 89.1 43% 9.02 101.2 19.15 214.9 2025 93.9 52% 9.56 101.8 20.06 213.6 2030 98.2 60% 9.96 101.5 20.92 213.1 2035 103.0 68% 10.38 100.8 21.78 211.4 Note(s): Source(s): EIA, State Energy Consumption Database, June 2011 for 1980-2009; DOE for 1980 floorspace; EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127 for 2000 floorspace; and EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012,

384

Renewable Energy Consumption | OpenEI  

Open Energy Info (EERE)

Consumption Consumption Dataset Summary Description Total annual renewable electricity consumption by country, 2005 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA renewable electricity Renewable Energy Consumption world Data text/csv icon total_renewable_electricity_net_consumption_2005_2009billion_kwh.csv (csv, 8.5 KiB) text/csv icon total_renewable_electricity_net_consumption_2005_2009quadrillion_btu.csv (csv, 8.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 2005 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

385

Renewable Energy Generation | OpenEI  

Open Energy Info (EERE)

Generation Generation Dataset Summary Description Total annual renewable electricity net generation by country, 1980 to 2009 (available in Billion Kilowatt-hours or as Quadrillion Btu). Compiled by Energy Information Administration (EIA). Source EIA Date Released Unknown Date Updated Unknown Keywords EIA Renewable Energy Generation world Data text/csv icon total_renewable_electricity_net_generation_1980_2009billion_kwh.csv (csv, 37.3 KiB) text/csv icon total_renewable_electricity_net_generation_1980_2009quadrillion_btu.csv (csv, 43 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Time Period 1980 - 2009 License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata

386

Acetate as Sole Carbon and Energy Source for Growth of Methanosarcina Strain 227  

Science Journals Connector (OSTI)

...as sole source of carbon and energy for growth. DISCUSSION Methanosarcina...served as the sole source of energy in both media. The mechanistic...Barnea (ed.), Microbial energy conversion. Pergammon Press, New York. 12. Mah, R. A., M...

Michael R. Smith; Robert A. Mah

1980-05-01T23:59:59.000Z

387

Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings  

SciTech Connect (OSTI)

This procedure provides source energy factors and emission factors to calculate the source (primary) energy and emissions from a building's annual site energy consumption. This report provides the energy and emission factors to calculate the source energy and emissions for electricity and fuels delivered to a facility and combustion of fuels at a facility. The factors for electricity are broken down by fuel type and presented for the continental United States, three grid interconnections, and each state. The electricity fuel and emission factors are adjusted for the electricity and the useful thermal output generated by combined heat and power (CHP) plants larger than one megawatt. The energy and emissions from extracting, processing, and transporting the fuels, also known as the precombustion effects, are included.

Deru, M.

2007-01-01T23:59:59.000Z

388

Calculating CO2 Emissions from Mobile Sources | Open Energy Information  

Open Energy Info (EERE)

Calculating CO2 Emissions from Mobile Sources Calculating CO2 Emissions from Mobile Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Calculating CO2 Emissions from Mobile Sources,GHG Protocol Agency/Company /Organization: Aether, Environmental Data Services, Aether, Environmental Data Services Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials & Scenarios Resource Type: Guide/manual Complexity/Ease of Use: Not Available Website: cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20 Cost: Free References: http://cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20and%20Infrastructure%20Planning/Climate%20Change/Guidance_for_mobile_emissions_GHG_protocol.pdf Related Tools Tool and Calculator (Transit, Fuel)

389

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected to grow over the next  

E-Print Network [OSTI]

Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements for the Certificate in Wind Energy

Kusiak, Andrew

390

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Power generation from renewables and natural gas continues to increase ...Read full section Mkt trends Market Trends Wind power leads rise in world renewable generation, solar power also grows rapidly.... Read full section Renewable energy sources lead rise in primary energy consumption.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Wind dominates renewable capacity grow, but solar and biomass gain market share.... Read full section Nonhydropower renewable generation surpasses hydropower by 2020....

391

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

Next MECS will be fielded in 2015 Table 3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28 50 36 15 0 29 31131 Sugar Manufacturing 73 73 3 36 67 12 W 7 14 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 210 3115 Dairy Products 998 998 12 217 908

392

September 2013 Most Viewed Documents for Renewable Energy Sources | OSTI,  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Renewable Energy Sources September 2013 Most Viewed Documents for Renewable Energy Sources Chapter 11. Heat Exchangers Rafferty, Kevin D.; Culver, Gene (1998) 362 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 Chapter 17. Engineering cost analysis Higbee, Charles V. (1998) 79 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi; Norman Turnquist; Farshad Ghasripoor (2012) 79 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 76 PROPERTIES AND PERFORMANCE OF CEMENT-BASED GROUTS FOR GEOTHERMAL HEAT PUMP APPLICATIONS. ALLAN,M.L. (1999) 70 Solar radiation data manual for flat-plate and concentrating collectors Dunlap, M.A. [ed.]; Marion, W.; Wilcox, S. (null)

393

Overcoming High Energy Backgrounds at Pulsed Spallation Sources  

E-Print Network [OSTI]

Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

Cherkashyna, Nataliia; DiJulio, Douglas D; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P; Fissum, Kevin G; Ansell, Stuart; Iverson, Erik B; Ehlers, Georg; Gallmeier, Franz X; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M

2015-01-01T23:59:59.000Z

394

Table 7.9 Expenditures for Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010; 9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107 31131 Sugar Manufacturing 367 105 7 18 87 1 118 29 2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,408 698 17 Q 579 18 7 0 18 3115 Dairy Products 1,186 695 20 40 412 8 1 0 10 3116 Animal Slaughtering and Processing

395

How Much Energy Does Each State Produce? | Department of Energy  

Office of Environmental Management (EM)

Much Energy Does Each State Produce? How Much Energy Does Each State Produce? Energy Production in Trillion Btu: 2012 Click on each state to learn more about how much energy it...

396

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book [EERE]

0 0 Energy Benchmarks for Newly Constructed Primary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 59.6 0.5 3.1 1.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 73,932 square feet and 1 floor. Benchmark interior lighting energy = 15.80 thousand Btu/SF. Interior equipment energy consumption = 18.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

397

Buildings Energy Data Book: 3.9 Educational Facilities  

Buildings Energy Data Book [EERE]

2 2 Energy Benchmarks for Newly Constructed Secondary Schools, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 96.7 2.2 2.8 5.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 210,810 square feet and 2 floors. Benchmark interior lighting energy = 15.20 thousand Btu/SF. Interior equipment energy consumption = 11.83 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

398

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book [EERE]

5 5 Energy Benchmarks for Newly Constructed Large Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 60.9 13.2 76.3 8.4 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 122,075 square feet and 6 floors. Benchmark interior lighting energy = 11.28 thousand Btu/SF. Interior equipment energy consumption = 24.77 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

399

Buildings Energy Data Book: 3.10 Hotels/Motels  

Buildings Energy Data Book [EERE]

6 6 Energy Benchmarks for Newly Constructed Small Hotels, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 36.6 2.7 12.0 3.9 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 43,186 square feet and 4 floors. Benchmark interior lighting energy = 13.79 thousand Btu/SF. Interior equipment energy consumption = 21.98 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

400

Electricity in the United States - Energy Explained, Your Guide To  

Gasoline and Diesel Fuel Update (EIA)

Secondary Sources > Electricity > Electricity in the U.S. Secondary Sources > Electricity > Electricity in the U.S. Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear Power and the Environment - Energy Explained, Your Guide To  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Explained > Nonrenewable Sources > Nuclear > Nuclear Power & the Environment Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From

402

Business Energy Efficiency Rebate for Existing Buildings | Department of  

Broader source: Energy.gov (indexed) [DOE]

Business Energy Efficiency Rebate for Existing Buildings Business Energy Efficiency Rebate for Existing Buildings Business Energy Efficiency Rebate for Existing Buildings < Back Eligibility Agricultural Commercial Industrial Institutional Multi-Family Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Other Manufacturing Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate $500,000 per site, per year Program Info Funding Source Public Benefits Fund State Oregon Program Type State Rebate Program Rebate Amount Air Conditioners Units: $180 - $750, varies by size and efficiency Heat Pumps: $100 - $300, varies by type and size HVAC Unit Heater: $1.50/kBtu/hr in Warm-Air Furnace: $3/kBtu/hr in

403

On the Frontiers of a New Energy Source | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source May 2, 2012 - 3:59pm Addthis Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Secretary Chu Secretary Chu Former Secretary of Energy What are the key facts? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The United States has an abundance of this untapped resource - methane hydrates are found in and under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today, we're announcing that the Department of Energy, along with the

404

On the Frontiers of a New Energy Source | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source On the Frontiers of a New Energy Source May 2, 2012 - 3:59pm Addthis Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Building on this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic. Secretary Chu Secretary Chu Former Secretary of Energy What are the key facts? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The United States has an abundance of this untapped resource - methane hydrates are found in and under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today, we're announcing that the Department of Energy, along with the

405

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

406

Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption  

Buildings Energy Data Book [EERE]

3 3 Building Type Pre-1995 1995-2005 Pre-1995 1995-2005 Pre-1995 1995-2005 Single-Family 38.4 44.9 102.7 106.2 38.5 35.5 Detached 37.9 44.7 104.5 107.8 38.8 35.4 Attached 43.8 55.5 86.9 85.1 34.2 37.6 Multi-Family 63.8 58.7 58.3 49.2 27.2 24.3 2 to 4 units 69.0 55.1 70.7 59.4 29.5 25.0 5 or more units 61.5 59.6 53.6 47.2 26.3 24.2 Mobile Homes 82.4 57.1 69.6 74.5 29.7 25.2 Note(s): Source(s): 2005 Residential Delivered Energy Consumption Intensities, by Principal Building Type and Vintage Per Square Foot (thousand Btu) (1) Per Household (million Btu) Per Household Member (million Btu) 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average

407

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Oil Icon Oil/Liquids Oil Icon Oil/Liquids exec summary Executive Summary Domestic crude oil production increases....Read full section With modest economic growth, increased efficiency, growing domestic production, and continued adoption of nonpetroleum liquids, net imports of petroleum and other liquids make up a smaller share of total U.S. energy consumption ...Read full section Market trends icon Market Trends Oil price cases depict uncertainty in world oil markets.... Read full section Trends in petroleum and other liquids markets are defined largely by the developing nations... Read full section Production from resources other than crude oil and natural gas liquids increases... Read full section Renewable energy sources lead rise in primary energy consumption... Read full section

408

Renewable energy sources in the Mexican electricity sector  

Science Journals Connector (OSTI)

This paper analyzes the role of renewable energy sources (RES) in the Mexican electricity sector in the context of the proposed renewable energy bill currently under consideration in the Mexican Congress. This paper was divided into three parts. The first part presents a chronology of institutional background related to the RES. This is followed by an analysis of the coordination and management system of the Mexican electricity sector, which can facilitate the promotion and integration of the RES without significant structural changes. Finally, the pros and cons of the renewable energy bill are analyzed in order to demonstrate the need for greater coherence between the bill and the coordination system of the sector. It is concluded that when inconsistency is eliminated, RES would strongly be promoted in Mexico.

B.J. Ruiz; V. Rodríguez-Padilla; J.H. Martínez

2008-01-01T23:59:59.000Z

409

Improved design of proton source and low energy beam transport line for European Spallation Source  

SciTech Connect (OSTI)

The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy)] [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Torrisi, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Università Mediterranea di Reggio Calabria, Via Graziella, 89122 Reggio Calabria (Italy); Cheymol, B.; Ponton, A. [European Spallation Source ESS AB, Lund (Sweden)] [European Spallation Source ESS AB, Lund (Sweden); Galatà, A. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy)] [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy); Patti, G. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Viale dell'università 2, 35020 Legnaro (Italy); Gozzo, A.; Lega, L. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy) [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Università degli Studi di Catania, Viale Andrea Doria 6, 95123 Catania (Italy)

2014-02-15T23:59:59.000Z

410

The difference between source and site energy | ENERGY STAR Buildings &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The difference between source and site energy The difference between source and site energy Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

411

Home Energy Saver  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glossary Glossary Heating, Ventilation and Cooling Terminology System Capacity System capacity is a measurement of the total amount of heat or cooling the furnace, heat pump or air conditioner can produce in one hour. This amount is reported in Btu/hr on the nameplate of the equipment. Btu Btu, short for British Thermal Unit is a unit of heat energy. One Btu is the amount of heat needed to raise the temperature of one pound of water 1°F. To get a rough idea of how much heat energy this is, the heat given off by burning one wooden kitchen match is approximately one Btu. AFUE The AFUE, or Annualized Fuel Utilization Efficiency, is the ratio of the total useful heat the gas furnace delivers to the house to the heat value of the fuel it consumes. Heat Pump A heat pump is basically an air conditioner with a reversible valve

412

Gridless, very low energy, high-current, gaseous ion source  

SciTech Connect (OSTI)

We have made and tested a very low energy gaseous ion source in which the plasma is established by a gaseous discharge with electron injection in an axially diverging magnetic field. A constricted arc with hidden cathode spot is used as the electron emitter (first stage of the discharge). The electron flux so formed is filtered by a judiciously shaped electrode to remove macroparticles (cathode debris from the cathode spot) from the cathode material as well as atoms and ions. The anode of the emitter discharge is a mesh, which also serves as cathode of the second stage of the discharge, providing a high electron current that is injected into the magnetic field region where the operating gas is efficiently ionized. In this discharge configuration, an electric field is formed in the ion generation region, accelerating gas ions to energy of several eV in a direction away from the source, without the use of a gridded acceleration system. Our measurements indicate that an argon ion beam is formed with an energy of several eV and current up to 2.5 A. The discharge voltage is kept at less than 20 V, to keep below ion sputtering threshold for cathode material, a feature which along with filtering of the injected electron flow, results in extremely low contamination of the generated ion flow.

Vizir, A. V.; Oks, E. M. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Shandrikov, M. V.; Yushkov, G. Yu. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

2010-02-15T23:59:59.000Z

413

Microwave plasma source for remote low energy ion stream  

Science Journals Connector (OSTI)

A plasma source capable of delivering a narrow (2 to 3?in. diameter) low ion energy (10–30 eV) plasma stream has been designed and tested. Microwave plasmas were excited in a 3?in.?diam chamber by cw electromagnetic waves (2.45 GHz 200–1000 W) in the presence of static axial magnetic fields of 875–930 G. Plasma was delivered to the sample via a 12?in.?long 2?in.?diam?metal tube. Ion current densities of several hundred ?A/cm2 at gas pressures 1–3×10? 4 Torr (N2 Xe) were achieved at distances of 15–16 in. from the source output.

Oleg A. Popov; William Hale; August O. Westner

1990-01-01T23:59:59.000Z

414

Monthly energy review: September 1996  

SciTech Connect (OSTI)

Energy production during June 1996 totaled 5.6 quadrillion Btu, a 0.5% decrease from the level of production during June 1995. Energy consumption during June 1996 totaled 7.1 quadrillion Btu, 2.7% above the level of consumption during June 1995. Net imports of energy during June 1996 totaled 1.6 quadrillion Btu, 4.5% above the level of net imports 1 year earlier. Statistics are presented on the following topics: energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, and international energy. 37 figs., 59 tabs.

NONE

1996-09-01T23:59:59.000Z

415

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 7 percent in the AEO2013 Reference case, from 98 quadrillion Btu in 2011 to 104 quadrillion Btu in 2035-2.5 quadrillion Btu less than in AEO2012-and continues to grow at a rate of 0.6 percent per year, reaching about 108 quadrillion Btu in 2040 (Figure 7). The fossil fuel share of energy consumption falls from 82 percent in 2011 to 78 percent in 2040, as consumption of petroleum-based liquid fuels falls, largely as a result of the incorporation of new fuel efficiency standards for LDVs. figure dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in 2040, and its share of

416

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Consumption by Primary Fuel Consumption by Primary Fuel Total primary energy consumption grows by 12% in the AEO2014 Reference case, from 95 quadrillion Btu in 2012 to 106 quadrillion Btu in 2040-1.3 quadrillion Btu less than in AEO2013 (Figure 8). The fossil fuel share of energy consumption falls from 82% in 2012 to 80% in 2040, as consumption of petroleum-based liquid fuels declines, largely as a result of slower growth in VMT and increased vehicle efficiency. figure dataTotal U.S. consumption of petroleum and other liquids, which was 35.9 quadrillion Btu (18.5 MMbbl/d) in 2012, increases to 36.9 quadrillion Btu (19.5 MMbbl/d) in 2018, then declines to 35.4 quadrillion Btu (18.7 MMbbl/d) in 2034 and remains at that level through 2040. Total consumption of domestically produced biofuels increases slightly through 2022 and then

417

Renewable Energy Consumption for Nonelectric Use by Energy Use Sector and  

Open Energy Info (EERE)

Nonelectric Use by Energy Use Sector and Nonelectric Use by Energy Use Sector and Energy Source, 2004 - 2008 Dataset Summary Description This dataset provides annual renewable energy consumption (in quadrillion Btu) for nonelectric use in the United States by energy use sector and energy source between 2004 and 2008. The data was compiled and published by EIA; the spreadsheet provides more details about specific sources for data used in the analysis. Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords Commercial Electric Power Industrial Nonelectric Renewable Energy Consumption Residential transportation Data application/vnd.ms-excel icon 2008_RE.Consumption.for_.Non-Elec.Gen_EIA.Aug_.2010.xls (xls, 27.1 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

418

Analysis of Energy Consumption for a Building Using Wind and Solar Energy Sources  

Science Journals Connector (OSTI)

Abstract The Renewable Energy Sources (RES) are more and more mixed and exploited in urban site buildings. The main goal of this paper is to understand the nonlinear dynamics of the energy consumption of a building in real time. This way will lead us to predict, in real time, the energy needed depending on the weather. The knowledge of good models is essential to design efficient predictors. This paper develops a simulation model for energy consumption and production of a house equipped with a multiple RE sources systems (PV, Thermal, Wind and storage system). Storage using batteries is also considered. This forward prediction is useful for the Energy Management System that will control the energy sources for the power production answering the demand. After the analysis of house consumption for thermal heating and the classical loads, we consider the modeling of the energy source. This analysis will be used to try new real time management approaches which decide on the optimum connection of the RES to be used for the power demands at each time instant depending on the weather conditions and the Hybrid RES operating states.

Mouna Abarkan; Fatima Errahimi; Nacer K.M'Sirdi; Aziz Naamane

2013-01-01T23:59:59.000Z

419

Prospects for inertial fusion as an energy source  

SciTech Connect (OSTI)

Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

Hogan, W.J.

1989-06-26T23:59:59.000Z

420

U.S. States - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

Table C1. Energy Consumption Overview: Estimates by Energy Source and Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2011 (Trillion Btu) State Total Energy b Sources End-Use Sectors a Fossil Fuels Nuclear Electric Power Renewable Energy e Net Interstate Flow of Electricity f Net Electricity Imports g Residential Commercial Industrial b Transportation Coal Natural Gas c Petroleum d Total Alabama 1,931.3 651.0 614.8 549.5 1,815.4 411.8 260.6 -556.6 0.0 376.9 257.2 810.0 487.2 Alaska 637.9 15.5 337.0 267.1 619.6 0.0 18.4 0.0 (s) 53.7 68.2 315.4 200.7 Arizona 1,431.5 459.9 293.7 500.9 1,254.5 327.3 136.6 -288.4 1.5 394.7 345.5 221.2 470.1 Arkansas 1,117.1 306.1 288.6 335.7 930.5 148.5 123.7 -85.6 0.0 246.3 174.7 405.0 291.2

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

natural gas Natural Gas natural gas Natural Gas exec summary Executive Summary Natural gas production increases throughout the projection period, allowing the United States to transition from a et importer to a net exporter of natural gas....Read full section Power generation from renewables and natural gas continues to increase ...Read full section Evolving Marcellus shale gas resource estimates....Read full section Mkt trends Market Trends U.S. reliance on imported natural gas from Canada declines as exports grow.... Read full section Trends in petroleum and other liquids markets are defined largely by the developing nations... Read full section Renewable energy sources lead rise in primary energy consumption... Read full section Reliance on natural gas and natural gas liquids rises as industrial

422

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Renewables from Executive Summary Renewables from Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use figure data The share of U.S. electricity generation from renewable energy grows from 13 percent in 2011 to 16 percent in 2040 in the Reference case. Electricity generation from solar and, to a lesser extent, wind energy sources grows as their costs decline, making them more economical in the later years of the projection. However, the rate of growth in renewable electricity generation is sensitive to several factors, including natural gas prices and the possible implementation of policies to reduce GHG emissions. If future natural gas prices are lower than projected in the Reference case, as illustrated in the High Oil and Gas Resource case, the share of renewable

423

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use...Read full section Mkt trends Market Trends Production of liquid fuels from biomass, coal, and natural gas increases.... Read full section Renewables and natural gas lead rise in primary energy consumption.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate

424

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal exec summary Executive Summary Coal's share of electric power generation falls over the projection period ...Read full section Mkt trends Market Trends Production of liquid fuels from biomass, coal, and natural gas increases.... Read full section Renewables and natural gas lead rise in primary energy consumption.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate beyond 2023.... Read full section Costs and regulatory uncertainities vary across options for new

425

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Electric Power exec summary Executive Summary Coal's share of electric power generation falls...Read full section Natural gas consumption grows in industrial ...Read full section Renewable fuel use grows at a faster rate than fossil fuel use ...Read full section Mkt trends Market Trends Electricity use per household declines from 2011 to 2040 in the Reference case.... Read full section Renewable energy fuels most additions to commercial distributed generation capacity.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Growth in electric use slows but still increases by 28 percent from 2011 to 2040.... Read full section Coal-fired plants continue to be the largest source of U.S.

426

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Renewables from Executive Summary Renewables from Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use figure data The share of U.S. electricity generation from renewable energy grows from 13 percent in 2011 to 16 percent in 2040 in the Reference case. Electricity generation from solar and, to a lesser extent, wind energy sources grows as their costs decline, making them more economical in the later years of the projection. However, the rate of growth in renewable electricity generation is sensitive to several factors, including natural gas prices and the possible implementation of policies to reduce GHG emissions. If future natural gas prices are lower than projected in the Reference case, as illustrated in the High Oil and Gas Resource case, the share of renewable

427

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Electric Power exec summary Executive Summary Coal's share of electric power generation falls...Read full section Natural gas consumption grows in industrial ...Read full section Renewable fuel use grows at a faster rate than fossil fuel use ...Read full section Mkt trends Market Trends Electricity use per household declines from 2011 to 2040 in the Reference case.... Read full section Renewable energy fuels most additions to commercial distributed generation capacity.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Growth in electric use slows but still increases by 28 percent from 2011 to 2040.... Read full section Coal-fired plants continue to be the largest source of U.S.

428

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Renewables market trends icon Renewables exec summary Executive Summary Renewable fuel use grows at a faster rate than fossil fuel use...Read full section Mkt trends Market Trends Production of liquid fuels from biomass, coal, and natural gas increases.... Read full section Renewables and natural gas lead rise in primary energy consumption.... Read full section Reliance on natural gas, natural gas liquids, and renewables rises as industrial energy use grows.... Read full section Sales of alternative fuel, fuel flexible, and hybrid vehicles rise.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity generation.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate

429

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Oconee","Nuclear","Duke Energy Carolinas, LLC",2538 2,"Cross","Coal","South Carolina Public Service...

430

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce...

431

,"Energy Source","State Energy Data System","Annual/Monthly Energy Review"  

U.S. Energy Information Administration (EIA) Indexed Site

A. Comparison of fuel detail for the State Energy Data System and the Annual and Monthly Energy Review data systems" A. Comparison of fuel detail for the State Energy Data System and the Annual and Monthly Energy Review data systems" ,"Energy Source","State Energy Data System","Annual/Monthly Energy Review" "Consumption Sector","Category","Fuel Detail","Fuel Detail" "Residential ","Coal","Coal","Coal" "Residential ","Natural Gas","Natural Gas","Natural Gas" "Residential ","Petroleum","Distillate Fuel","Distillate Fuel" "Residential ","Petroleum","Kerosene","Kerosene" "Residential ","Petroleum","LPG","LPG"

432

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book [EERE]

4 4 Energy Benchmarks for Newly Constructed Hospitals, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 89.1 25.2 3.9 13.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 241,263 square feet and 5 floors. Benchmark interior lighting energy = 16.36 thousand Btu/SF. Interior equipment energy consumption = 15.15 thousand Btu/SF. Ventilation includes energy used by fans and heat rejection systems.

433

Bibliography of information sources on East Asian energy  

SciTech Connect (OSTI)

The first section of this bibliography is a subject index by title to sources of information on East Asian energy. The countries considered were: Brunei, the PRC, Taiwan, Hong Kong, Indonesia, Japan, the Koreas, Malaysia, the Philippines, Singapore, Thailand and Vietnam. If the geographic coverage by any source is restricted to a particular country and was not indicated by the title, a country abbreviation in parentheses was added. Titles that include the term data base are computerized. The second section contains the Title Index which lists each printed publication alphabetically with frequency of publication and the US$ price for a yearly air mail subscription. The publisher or distribution office is listed below the title. The Data Base Index lists computerized sources with the author and the vendor providing either online access or tapes. No prices have been quoted in this section because of the wide range of methods in use and the impossibility of running benchmarks for this study. The Address Index lists the publishers, data base authors and vendors alphabetically.

Salosis, J.

1982-11-01T23:59:59.000Z

434

Level: National Data; Row: NAICS Codes; Column: Energy Sources  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Number of Establishments by Fuel Consumption, 2006; 3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17 44 19 18 0 18 31131 Sugar Manufacturing 78 78 11 43 61 35 26 13 45 3114 Fruit and Vegetable Preserving and Specialty Food 1,125 1,125 13 112 961 325 W 0 127 3115 Dairy Product 1,044 1,044 25 88 941 147 W 0 104 3116 Animal Slaughtering and Processing

435

Level: National Data; Row: NAICS Codes; Column: Energy Sources;  

Gasoline and Diesel Fuel Update (EIA)

4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; 4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn Milling 59 59 W 26 50 36 15 0 28 31131 Sugar Manufacturing 73 73 3 36 67 12 11 W 11 3114 Fruit and Vegetable Preserving and Specialty Foods 987 987 17 207 839 503 W 0 207 3115 Dairy Products 998 998 12 217 908 161 W 0 79 3116 Animal Slaughtering and Processing

436

Biochemical Screening of Pyrimidine Antimetabolites: I. Systems with Oxidative Energy Source  

Science Journals Connector (OSTI)

...Systems with Oxidative Energy Source* JOSEPHE. STONEANDVANR...to the uridine nucleo tides. Normal rat liver cytoplasm...furnished the source of energy for the reactions. A...of an agent upon the energy source, the absolute...ics to uridine nucleo- tides, could be used for production...

Joseph E. Stone and Van R. Potter

1956-12-01T23:59:59.000Z

437

Enhancing Hyperthermic Cytotoxicity in L929 Cells by Energy Source Restriction and Insulin Exposure  

Science Journals Connector (OSTI)

...Cytotoxicity in L929 Cells by Energy Source Restriction and Insulin...absence of insulin. Thus, the energy source require ments for HSP...detail and suggest that perturbed energy source utilization may be exploited...restricted set of polypep- tides whose synthesis is induced by...

Karl W. Lanks; Vipin Shah; and Nena W. Chin

1986-03-01T23:59:59.000Z

438

Energy recovery linacs as synchrotron radiation sources ,,invited... Sol M. Grunera)  

E-Print Network [OSTI]

, Cornell University, Ithaca, New York 14853 Don Bilderback Cornell High Energy Synchrotron Source York 14853 Ken Finkelstein Cornell High Energy Synchrotron Source, Cornell University, Ithaca, New York, Ithaca, New York 14853 Qun Shen Cornell High Energy Synchrotron Source and Department of Materials

Shen, Qun

439

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE *  

E-Print Network [OSTI]

PHOTOINJECTED ENERGY RECOVERY LINAC UPGRADE FOR THE NATIONAL SYNCHROTRON LIGHT SOURCE * Ilan Ben of the National Synchrotron Light Source (NSLS). This upgrade will be based on the Photoinjected Energy Recovering limitations. First, the emittance of a storage ring based light source is proportional to the energy

Brookhaven National Laboratory

440

Annual Energy Review 1997  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in quadrillion Btu, 0.16 net imported electricity from nonrenewable sources; -0.04 hydroelectric pumped storage; and -0.10 ethanol blended into motor gasoline, which is accounted...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Annual Energy Review 1999  

Gasoline and Diesel Fuel Update (EIA)

in quadrillion Btu, 0.11 net imported electricity from nonrenewable sources; -0.06 hydroelectric pumped storage; and -0.11 ethanol blended into motor gasoline, which is accounted...

442

Annual Energy Review 1998  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

in uadrillion Btu, 0.09 net imported electricity from nonrenewable sources -0.05 hydroelectric pumped storage and -0.11 ethanol blended into motor gasoline, which is accounted...

443

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from USA) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

444

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA Natural Gas Reserves 6,928,000,000,000 Cubic Meters (cu m) 6 2010 CIA World Factbook

445

United States: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

United States: Energy Resources United States: Energy Resources (Redirected from United States of America) Jump to: navigation, search Click on a state to view that state's page. Country Profile Name United States Population Unavailable GDP Unavailable Energy Consumption 99.53 Quadrillion Btu 2-letter ISO code US 3-letter ISO code USA Numeric ISO code 840 UN Region[1] Northern America OpenEI Resources Energy Maps 1143 view Tools 94 view Programs 25 view Energy Organizations 8947 view Research Institutions 128 view References CIA World Factbook, Appendix D[2] Energy Resources Resource Value Units Rank Period Source Wind Potential 2,237,435 Area(km²) Class 3-7 Wind at 50m 3 1990 NREL Solar Potential 24,557,081,451 MWh/year 6 2008 NREL Coal Reserves 260,551.00 Million Short Tons 1 2008 EIA

446

Renewable energy sources in the Egyptian electricity market: A review  

Science Journals Connector (OSTI)

This review paper presents an appraisal of renewable energy RE options in Egypt. An appraisal review of different \\{REs\\} is presented. The study shows that electric energy produced from \\{REs\\} in Egypt are very poor compared with other energy sources. The utilization of the renewable energies can also be a good opportunity to fight the desertification and dryness in Egypt which is about 60% of Egypt territory. The rapid growth of energy production and consumption is strongly affecting and being affected by the Egyptian economy in many aspects. It is evident that energy will continue to play an important role in the development of Egypt's economy in coming years. The total installed electricity generating capacity had reached around 22025 MW with a generating capacity reached 22605 MW at the end of 2007. Hydropower and coal has no significant potential increase. During the period 1981/82–2004/05 electricity generation has increased by 500% from nearly 22 TWh for the year 1981/1982 to 108.4 TWh in the year 2004/2005 at an average annual growth rate of 6.9%. Consequently, oil and gas consumed by the electricity sector has jumped during the same period from around 3.7 MTOE to nearly 21 MTOE. The planned installed capacity for the year 2011/2012 is 28813 MW and the required fuel (oil and gas) for the electricity sector is estimated to reach about 29 MTOE by the same year. The renewable energy strategy targets to supply 3% of the electricity production from renewable resources by the year 2010. Electrical Coverage Electrical energy has been provided for around 99.3% of Egypt's population, representing a positive sign for the welfare of the Egyptian citizen due to electricity relation to all development components in all walks of life. The article discusses perspectives of wind energy in Egypt with projections to generate ? 3.5 GWe by 2022, representing ?9% of the total installed power at that time (40.2 GW). Total renewables (hydro + wind + solar) are expected to provide ?7.4 GWe by 2022 representing ? 19% of the total installed power. Such a share would reduce dependence on depleting oil and gas resources, and hence improve country's sustainable development.

A. Ibrahim

2012-01-01T23:59:59.000Z

447

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

448

Renewable sources of energy and technologies in Austria: Present situation, goals and prospects  

Science Journals Connector (OSTI)

The main goal of the energy policy of the Austrian government is, beside of a more efficient use of energy, the increase of renewable sources of energy. The technical, economical and ecological aspects of renewable sources of energy and their technologies are analysed and the present situation of renewable sources of energy in Austria and its prospects are described. Of the renewable energy carriers the following resources are of importance in Austria: hydropower, firewood, biogenic energy carriers, including fuels, solar energy and ambient heat and geothermic energy.

Gerhard Faninger

1994-01-01T23:59:59.000Z

449

Global energy in transition: environmental aspects of new and renewable sources for development  

SciTech Connect (OSTI)

Technical, development, and environmental aspects of the following alternative sources are assessed: solar energy, wind energy, energy from the oceans, hydropower, geothermal energy, biomass, fuelwood and charcoal, peat, oil shale and tar sands, and draft animal power. Policy issues for energy planning and development are presented for: rural energy, industry and transport, and financing new and renewable sources of energy. Summaries of the following national reports are included: China, Federal Republic of Germany, Hungary, Jamaica, Korea, Pakistan, Peru, Sudan, and United States. (MHR)

Bassan, E.

1981-07-01T23:59:59.000Z

450

Buildings Energy Data Book: 3.8 Hospitals and Medical Facilities  

Buildings Energy Data Book [EERE]

6 6 Energy Benchmarks for Newly Constructed Outpatient Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 99.7 8.8 1.4 17.7 Commercial building energy benchmarks are based off of the current stock of commercial buildings and are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 40,932 square feet and 3 floors. Benchmark interior lighting energy = 13.02 thousand Btu/SF. Interior equipment energy consumption = 46.01 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

451

Buildings Energy Data Book: 3.7 Retail Markets and Companies  

Buildings Energy Data Book [EERE]

8 8 Energy Benchmarks for Newly Constructed Supermarkets, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 145.6 0.3 0.6 20.5 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations.The benchmark building had 44,985 square feet and 1 floor. Benchmark interior lighting energy = 19.7 thousand Btu/SF. Interior equipment energy consumption = 20.7 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

452

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book [EERE]

9 9 Energy Benchmarks for Newly Constructed Large Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 31.7 1.7 0.6 1.3 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 498,407 square feet and 12 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 15.94 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

453

Buildings Energy Data Book: 3.6 Office Building Markets and Companies  

Buildings Energy Data Book [EERE]

1 1 Energy Benchmarks for Newly Constructed Medium Office Buildings, by Selected City and End-Use (thousand Btu per square foot) Miami 1A Houston 2A Phoenix 2B Atlanta 3A Los Angeles 3B Las Vegas 3B San Francisco 3C Baltimore 4A Albuquerque 4B Seattle 4C Chicago 5A Boulder 5B Minneapolis 6A Helena 6B Duluth 7 Fairbanks 8 Note(s): Source(s): 38.6 0.9 0.8 1.1 Commercial building energy benchmarks are based off of the current stock of commercial buildings and reflect 2004 ASHRAE 90.1 Climate Zones. They are designed to provide a consistent baseline to compare building performance in energy-use simulations. The benchmark building had 53,608 square feet and 3 floors. Benchmark interior lighting energy = 10.7 thousand Btu/SF. Interior equipment energy consumption = 18.85 thousand Btu/SF. DOE/EERE/BT, Commercial Building Benchmark Models, Version 1.3_5.0, Nov. 2010, accessed January 2012 at

454

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Energy Information Administration / Annual Energy Outlook 2013 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Marketed renewable energy 1 Residential (wood) ............................................... 0.44 0.45 0.44 0.44 0.45 0.45 0.45 0.1% Commercial (biomass) ........................................ 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.0% Industrial 2 ............................................................. 2.32 2.18 2.53 2.67 2.82 3.08 3.65 1.8% Conventional hydroelectric ................................. 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0%

455

Complementary Effect of Wind and Solar Energy Sources in a Microgrid  

E-Print Network [OSTI]

Complementary Effect of Wind and Solar Energy Sources in a Microgrid M. A. Barik, Student Member. Index Terms--Microgrid, renewable energy sources, reactive power mismatch, solar integration, voltage-mass energy, etc. Of them wind and solar energy is broadly used for their characteristics. This paper presents

Pota, Himanshu Roy

456

International Energy Outlook 2006 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2006 Highlights World energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. Figure 1. World Marketed Energy Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2006 (IEO2006) reference case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a

457

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

458

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Nuclear market trends icon Nuclear Mkt trends Market Trends Renewables and natural gas lead rise in primary energy consumption.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity geeration.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate beyond 2023.... Read full section Costs and regulatory uncertainties vary across options for new capacity.... Read full section Nuclear power plant capacity grows slowly through uprates and new builds.... Read full section issues Issues in Focus Nuclear power in AEO2013.... Read full section legs Legislation and Regulations Nuclear waste disposal and the waste confidence.... Read full

459

U.S. Energy Information Administration (EIA) - Source  

Gasoline and Diesel Fuel Update (EIA)

market trends icon Nuclear market trends icon Nuclear Mkt trends Market Trends Renewables and natural gas lead rise in primary energy consumption.... Read full section Coal-fired plants continue to be the largest source of U.S. electricity geeration.... Read full section Most new capacity additions use natural gas and renewables.... Read full section Additions to power plant capacity slow after 2012 but accelerate beyond 2023.... Read full section Costs and regulatory uncertainties vary across options for new capacity.... Read full section Nuclear power plant capacity grows slowly through uprates and new builds.... Read full section issues Issues in Focus Nuclear power in AEO2013.... Read full section legs Legislation and Regulations Nuclear waste disposal and the waste confidence.... Read full

460

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect (OSTI)

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Influence of coal as an energy source on environmental pollution  

SciTech Connect (OSTI)

This article considers the influence of coal energy on environmental pollution. Coal is undoubtedly part of the greenhouse problem. The main emissions from coal combustion are sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), particulates, carbon dioxide (CO{sub 2}), and mercury (Hg). Since 1980, despite a 36% increase in electricity generation and more than a 50% increase in coal use, electric utility SO{sub 2} and NOx emissions have declined significantly. Globally, the largest source of anthropogenic greenhouse gas (GHG) emissions is CO{sub 2} from the combustion of fossil fuels - around 75% of total GHG emissions covered under the Kyoto Protocol. At the present time, coal is responsible for 30-40% of world CO{sub 2} emission from fossil fuels.

Balat, M. [University of Mahallesi, Trabzon (Turkey)

2007-07-01T23:59:59.000Z

462

Annual Energy Review 1994. highlights  

Gasoline and Diesel Fuel Update (EIA)

Quadrillion Quadrillion Btu Highlights: Annual Energy Review 1994 At the halfway mark of this century, coal was the leading source of energy produced in the United States. Now, as we approach the end of the 20th century, coal is still the leading source of energy produced in this country (Figure 1). Between those points of time, however, dramatic changes occurred in the composition of our Nation's energy production. For example, crude oil and natural gas plant liquids production overtook coal production in the early 1950s. That source was matched by natural gas for a few years in the mid-1970s, and then, in the early 1980s, coal regained its prominence. After 1985, crude oil production suffered a nearly steady annual decline. While the fossil fuels moved up and down in their indi-

463

Major Source Permits (District of Columbia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) < Back Eligibility Utility Commercial Industrial Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment The District reviews designs for new pollution sources and design modifications for existing sources. Permits are issued to allow sources to emit limited and specified amounts of pollution as allowed by air quality laws and regulations. Major sources include power plants, heating plants, and large printing facilities. Three types of permits are issued: pre-construction review permits; new source review permits; and operating permits. These permits include conditions intended to minimize emissions of

464

Ethics - Gifts from Outside Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

from Outside Sources Ethics - Gifts from Outside Sources When can I accept a gift? Generally, anything that has monetary value is considered a gift. With some exceptions mentioned...

465

Real-Time Implementation Control for Multi-source Energy System  

Science Journals Connector (OSTI)

This paper describes the first stage of an on going project dealing with the multi-source energy management Strategy. In this work, a combined system producing electrical energy from Photovoltaic (PV) energy, wind

Adil Mehdary; Aziz Naamane; Nacer M’sirdi

2012-01-01T23:59:59.000Z

466

Faroe Islands: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

"inlineLabel":"","visitedicon":"" Country Profile Name Faroe Islands Population 48,351 GDP 2,450,000,000 Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code FO 3-letter...

467

Monaco: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

up":"","inlineLabel":"","visitedicon":"" Country Profile Name Monaco Population 35,352 GDP 5,424,000,000 Energy Consumption Quadrillion Btu 2-letter ISO code MC 3-letter ISO...

468

American Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

inlineLabel":"","visitedicon":"" Country Profile Name American Samoa Population 55,519 GDP Unavailable Energy Consumption 0.01 Quadrillion Btu 2-letter ISO code AS 3-letter ISO...

469

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

470

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace...

471

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

472

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

473

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

474

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total...

475

EIA - Annual Energy Outlook 2012 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Sector Energy Consumption by Sector Transportation figure data Delivered energy consumption in the transportation sector grows from 27.6 quadrillion Btu in 2010 to 28.8 quadrillion Btu in 2035 in the AEO2012 Reference case (Figure 7). Energy consumption by light-duty vehicles (LDVs) (including commercial light trucks) initially declines in the Reference case, from 16.5 quadrillion Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to 16.3 quadrillion Btu in 2035. The AEO2012 Reference case projections do not include proposed increases in LDV fuel economy standards-as outlined in the December 2011 EPA and NHTSA Notice of Proposed Rulemaking for 2017 and

476

Definition: British thermal unit | Open Energy Information  

Open Energy Info (EERE)

thermal unit thermal unit Jump to: navigation, search Dictionary.png British thermal unit The amount of heat required to raise the temperature of one pound of water one degree Fahrenheit; often used as a unit of measure for the energy content of fuels.[1][2] View on Wikipedia Wikipedia Definition The British thermal unit (BTU or Btu) is a traditional unit of energy equal to about 1055 joules. It is the amount of energy needed to cool or heat one pound of water by one degree Fahrenheit. In scientific contexts the BTU has largely been replaced by the SI unit of energy, the joule. The unit is most often used as a measure of power (as BTU/h) in the power, steam generation, heating, and air conditioning industries, and also as a measure of agricultural energy production (BTU/kg). It is still used

477

BPS, energy efficiency and renewable energy sources for buildings greening and zero energy cities planning: Harmony and ethics of sustainability  

Science Journals Connector (OSTI)

This paper reviews crucial role of building performance simulation (BPS) – dynamic analysis of the inextricable linkage of building's energy demand for HVAC and other building's technical systems sustainable energy supply and renewable energy sources (RES) availability to reach building's zero energy status. Reviewed are BPS advances in buildings energy efficiency optimization, solar, geothermal and other renewable energy sources integrated implementation, as well as hybridization and mixed distributed energy generation, co- and tri-generation for building's greening and sustainable neighborhoods, settlements, as well as “high performance” Zero Energy Cities Planning. As an introduction, outlined is the intrinsic harmony of the traditional village houses balanced use of renewable materials and energy sources and presented are feasibility study results on the sustainable Zero Energy ECO Settlement at the Mediterranean Sea proceeded by the description of the site's sustainability's constrains assessment. Architectural design and building's dynamic behavior and energy efficiency optimization resulting in minimization of thermal and lighting loads, precede to the multidisciplinary engineering investigation and preliminary design of sustainable Zero Energy Buildings confirming feasibility of settlement's sustainable energy and water supply by the reliable implementation of solar PV and wind technologies, including PV powered sea water desalination. Further, interwoven with presentation of a few case studies, paper outlines advances in BPS and Co-simulation. Reviewed are optimization of mixed, natural and mechanical ventilation via CFD integrated with architectural modeling; BPS and Co-simulation approach to the “total building performance optimization” encompassing multifunctional facades, day-lighting, IE&AQ and HVAC systems operation offering an enormous potential for energy saving by residential/municipal RES integrated renovation. Stressed has been that it is impossible to reach sustainability without harmonious interdisciplinary interacting, without balance between materiality and spirituality, science and art, technology development and cultural and other human values improvement, without ethics of sustainability.

Marija S. Todorovi?

2012-01-01T23:59:59.000Z

478

Assumptions to the Annual Energy Outlook 2001 - Table 4. Coefficients of  

Gasoline and Diesel Fuel Update (EIA)

Coefficients of Linear Equations for Natural Gas- and Coefficients of Linear Equations for Natural Gas- and Oil-Related Methane Emissions Emissions Sources Intercept Variable Name and Units Coefficient Variable Name and Units Coefficient Natural Gas -38.77 Time trend (calendar year) .02003 Dry gas production (thousand cubic feet .02186 Natural Gas Processing -0.9454 Natural gas liquids production (million barrels per day) .9350 Not applicable Natural Gas Transmission and Storage 2.503 Pipeline fuel use (thousand cubic feet) 1.249 Dry gas production (thousand cubic feet) -0.06614 Natural Gas Distribution -58.16 Time trend (calendar year) .0297 Natural gas consumption (quadrillion Btu) .0196 Oil production, Refining, and Transport 0.03190 Oil consumption (quadrillion Btu) .002764 Not applicable Source: Derived from data used in Energy Information Administration, Emissions of Greenhouse Gases in the United States 1999, DOE/EIA-0573(99), (Washington, DC, October 2000).

479

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

480

Nuclear energy is an important source of power, supplying 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We can maximize the climate and energy security benefits provided by responsible global nuclear energy expansion by developing options to increase the energy extracted from...

Note: This page contains sample records for the topic "btu sources energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Best Management Practice: Alternate Water Sources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Best Management Practice: Alternate Water Sources Best Management Practice: Alternate Water Sources Best Management Practice: Alternate Water Sources October 8, 2013 - 9:50am Addthis Many Federal facilities may have water uses that can be met with non-potable water from alternate water sources. Potentially available alternative water sources for Federal sources include municipal-supplied reclaimed water, treated gray water from on-site sanitary sources, and storm water. Overview On-site alternative water sources are most economic if included in the original design. Common uses for these sources include landscape irrigation, ornamental pond and fountain filling, cooling tower make-up, and toilet and urinal flushing. Municipal-Supplied Reclaimed Water Municipal supplied reclaimed water has been treated and recycled for

482

EIA - 2010 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Analyses> International Energy Outlook 2010 - Highlights Analyses> International Energy Outlook 2010 - Highlights International Energy Outlook 2010 - Highlights print version PDF Logo World marketed energy consumption increases by 49 percent from 2007 to 2035 in the Reference case. Total energy demand in non-OECD countries increases by 84 percent, compared with an increase of 14 percent in OECD countries. In the IEO2010 Reference case, which does not include prospective legislation or policies, world marketed energy consumption grows by 49 percent from 2007 to 2035. Total world energy use rises from 495 quadrillion British thermal units (Btu) in 2007 to 590 quadrillion Btu in 2020 and 739 quadrillion Btu in 2035 (Figure 1). Figure 1. World marketed energy consumption, 2007-2035 (quadrillion Btu) Chart data

483

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2006;" 3 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES"

484

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

485

EIA - Annual Energy Outlook 2008 (Early Release)-Energy-Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Annual Energy Outlook 2008 (Early Release) Energy Consumption Total primary energy consumption in the AEO2008 reference case increases at an average rate of 0.9 percent per year, from 100.0 quadrillion Btu in 2006 to 123.8 quadrillion Btu in 2030—7.4 quadrillion Btu less than in the AEO2007 reference case. In 2030, the levels of consumption projected for liquid fuels, natural gas, and coal are all lower in the AEO2008 reference case than in the AEO2007 reference case. Among the most important factors resulting in lower total energy demand in the AEO2008 reference case are lower economic growth, higher energy prices, greater use of more efficient appliances, and slower growth in energy-intensive industries. Figure 2. Delivered energy consumption by sector, 1980-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

486

Sleep Control for Base Stations Powered by Heterogeneous Energy Sources  

E-Print Network [OSTI]

to the power grid, some BSs are purely powered by the renewable energy. BS sleep is introduced not only to save grid power, but also to store renewable energy for future use when the temporal traffic variation does is to exploit renewable energy, e.g. solar energy, wind energy and so on. The technology, termed as "energy

487

Energy Secretary Moniz Dedicates the World’s Brightest Synchrotron Light Source  

Broader source: Energy.gov [DOE]

U.S. Department of Energy (DOE) Secretary Ernest Moniz today dedicated the world’s most advanced light source, the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL).

488

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Establishment Counts." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ","Any",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

489

Monthly Energy Review - September 2014  

Gasoline and Diesel Fuel Update (EIA)

Btu) Overview, 1949-2013 Overview, Monthly Overview, June 2014 Net Imports, January-June Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table 1.1. 2 U.S....

490

Monthly Energy Review - August 2014  

Gasoline and Diesel Fuel Update (EIA)

Btu) Overview, 1949-2013 Overview, Monthly Overview, May 2014 Net Imports, January-May Web Page: http:www.eia.govtotalenergydatamonthlysummary. Source: Table 1.1. 2 U.S....

491

3rd Miami international conference on alternative energy sources  

SciTech Connect (OSTI)

The conference includes sessions on solar energy, ocean thermal energy, wind energy, hydro power, nuclear breeders and nuclear fusion, synthetic fuels from coal or wastes, hydrogen production and uses, formulation of workable policies on energy use and energy conservation, heat and energy storage, and energy education. The volume of the proceedings presents the papers and lectures in condensed format grouped by subject under forty-two sessions for 319 presentations.

Nejat Veziroglu, T.

1980-01-01T23:59:59.000Z

492

Table 7.1 Average Prices of Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Purchased Energy Sources, 2002;" Average Prices of Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: All Energy Sources Collected;" " Unit: U.S. Dollars per Physical Units." ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,"Selected Wood and Other Biomass Components" ,,,,,,"Coal Components",,,"Coke",,,"Electricity Components",,,,,,,,,,,,,,"Natural Gas Components",,,"Steam Components" ,,,,,,,,,,,,,,"Total",,,,,,,,,,,,,,,,,,,,,,,"Wood Residues" " "," "," ",,,,,"Bituminous",,,,,,"Electricity","Diesel Fuel",,,,,,"Motor",,,,,,,"Natural Gas",,,"Steam",,,," ",,,"and","Wood-Related",," ",," "

493

Table 7.4 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002;" 4 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate","Natural ","LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

494

"Table E8.1. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Average Prices of Selected Purchased Energy Sources, 1998;" 1. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Physical Units." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and",,"RSE" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Row" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)","Factors"

495

DOE Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Inc. |  

Broader source: Energy.gov (indexed) [DOE]

Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Inc. DOE Finalizes $1.6 Billion Loan Guarantee for BrightSource Energy Inc. April 11, 2011 - 12:00am Addthis Washington D.C. - Announced this afternoon via Twitter.com/energy, the U.S. Department of Energy finalized $1.6 billion in loan guarantees to support the Ivanpah Solar Energy Generating System, three related utility-scale concentrated solar power plants. The Recovery Act funded project, sponsored by BrightSource Energy, Inc., will be located on federally-owned land in the Mojave Desert in southeastern California, near the Nevada border, and will be one of the world's largest concentrated solar power complexes. BrightSource estimates the project will create approximately 1,000 construction jobs and 86 operations and maintenance

496

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" ,"Plant","Primary Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Bath County","Pumped Storage","Virginia Electric & Power Co",3003 2,"North...

497

NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-10-01T23:59:59.000Z

498

NiSource Energy Technologies: Optimizing Combined Heat and Power Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-01-01T23:59:59.000Z

499

Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps  

Broader source: Energy.gov [DOE]

Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

500

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Source","Operating Company","Net Summer Capacity (MW)" 1,"Oahe","Hydroelectric","USCE-Missouri River District",714 2,"Big Bend","Hydroelectric","USCE-Missouri...