Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

2

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

3

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

4

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

5

" of Supplier, Census Region, Census Division, and Economic Characteristics"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity and Steam by Type" Quantity of Purchased Electricity and Steam by Type" " of Supplier, Census Region, Census Division, and Economic Characteristics" " of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ," Electricity",," Steam" ," (million kWh)",," (billion Btu)" ,,,,,"RSE" " ","Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

6

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

7

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the...

8

The Btu tax is dead, long live the Btu tax  

SciTech Connect

The energy industry is powerful. That is the only explanation for its ability to jettison a cornerstone of the Clinton Administration's proposed deficit reduction package, the Btu tax plan, expected to raise about $71.5 billion over a five-year period. Clinton had proposed a broad-based energy tax of 25.7 cents per million Btus, and a surcharge of 34.2 cents on petroleum products, to be phased in over three years starting July 1, 1994. House Democrats went along, agreeing to impose a tax of 26.8 cents per million Btus, along with the 34.2-cent petroleum surcharge, both effective July 1, 1994. But something happened on the way to the Senate. Their version of the deficit reduction package contains no broad-based energy tax. It does, however, include a 4.3 cents/gallon fuel tax. Clinton had backed down, and House Democrats were left feeling abandoned and angry. What happened has as much to do with politics-particularly the fourth branch of government, lobbyists-as with a President who wants to try to please everyone. It turns out that almost every lawmaker or lobbyist who sought an exemption from the Btu tax, in areas as diverse as farming or ship and jet fuel used in international commercial transportation, managed to get it without giving up much in return. In the end, the Btu tax was so riddled with exemptions that its effectiveness as a revenue-raiser was in doubt. Meanwhile, it turns out that the Btu tax is not dead. According to Budget Director Leon Panetta, the Administration has not given up on the Btu tax and will fight for it when the reconciliation bill goes to a joint House-Senate conference.

Burkhart, L.A.

1993-07-15T23:59:59.000Z

9

RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. RSE Pulp & Chemical, LLC (Subsidiary of Red...

10

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

11

Re: NBP RFI: CommunicationRse quirements | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFI: CommunicationRse quirements Pepco Holdings, Inc. (PHI) is pleased to respond to the U.S Department of Energy request for comments regarding the communications requirements of...

12

Diagram 5. Electricity Flow, 2007 (Quadrillion Btu)  

E-Print Network (OSTI)

generation. f Transmission and distribution losses (electricity losses that occur between the pointDiagram 5. Electricity Flow, 2007 (Quadrillion Btu) Energy Information Administration / Annual Energy Review 2007 221 Coal 20.99 Nuclear Electric Power 8.41 Energy Consumed To Generate Electricity 42

Bensel, Terrence G.

13

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

14

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

15

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

16

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

17

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

18

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

19

2003 Commercial Buildings Energy Consumption - What is an RSE  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of a statistically-designed subset of the entire commercial building population in the United States, or a "sample". Consequently, the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to understand: CBECS estimates should not be considered as finite point estimates, but as estimates with some associated error in each direction. The standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100.

20

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

RSE Table N6.3 and N6.4. Relative Standard Errors for Tables...  

U.S. Energy Information Administration (EIA) Indexed Site

Heating, Ventilation, and Air Conditioning '(Facility HVAC)' excludes" "steam and hot water." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." "...

22

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

23

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

24

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

25

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

26

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

27

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

28

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 1949–2012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 1949–2012

29

Conversion of forest residues to a methane-rich gas. Detailed economic feasibility study  

DOE Green Energy (OSTI)

An economic evaluation of the application of the multi-solid fluid reactor design to wood gasification was completed. The processing options examined include plant capacity, production of a high-Btu (1006 Btu/SCF HHV) gas versus an intermediate-Btu gas (379 Btu/SCF HHV), and operating pressure. 9 figs., 29 tabs.

Not Available

1986-03-01T23:59:59.000Z

30

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

31

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

32

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

33

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

This paper is intended to give the reader knowledge into utility marketing strategies, rates, and services. Although water is a utility service, this paper will concern itself with the energy utilities, gas and electric. Commonality and diversity exist in the strategies and rates of the gas and electric utilities. Both provide services at no charge which make energy operation for their customers easier, safer and more economical. It is important to become familiar with utility strategies, rates, and services because energy knowledge helps your business operate at the lowest energy cost ($/BTU).

Phillips, J. N.

1993-03-01T23:59:59.000Z

34

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

35

BTU convergence spawning gas market opportunities in North America  

Science Conference Proceedings (OSTI)

The so-called BTU convergence of US electric power and natural gas sectors is spawning a boom in market opportunities in the US Northeast that ensures the region will be North America`s fastest growing gas market. That`s the view of Catherine Good Abbott, CEO of Columbia Gas Transmission Corp., who told a Ziff Energy conference in Calgary that US Northeast gas demand is expected to increase to almost 10 bcfd in 2000 and more than 12 bcfd in 2010 from about 8 bcfd in 1995 and only 3 bcfd in 1985. The fastest growth will be in the US Northeast`s electrical sector, where demand for gas is expected to double to 4 bcfd in 2010 from about 2 bcfd in 1995. In other presentations at the Ziff Energy conference, speakers voiced concerns about the complexity and speed of the BTU convergence phenomenon and offered assurances about the adequacy of gas supplies in North American to meet demand growth propelled by the BTU convergence boom. The paper discusses the gas demand being driven by power utilities, the BTU convergence outlook, electric power demand, Canadian production and supply, and the US overview.

NONE

1998-06-29T23:59:59.000Z

36

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

37

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma, 1960 - 2011 1960 33.9 902.0 1,118.9 0.0 NA 17.8 17.8 2,072.6 1961 26.1 976.9 1,119.9 0.0 NA 20.2 20 ...

38

Table PT2. Energy Production Estimates in Trillion Btu, California ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, California, 1960 - 2011 1960 0.0 589.7 1,771.0 (s) NA 270.2 270.2 2,630.9 1961 0.0 633.8 1,737.7 0.1 NA 248.2 ...

39

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

40

Table PT2. Energy Production Estimates in Trillion Btu, Texas ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Texas, 1960 - 2011 1960 26.4 6,610.7 5,379.4 0.0 NA 50.2 50.2 12,066.6 1961 26.5 6,690.2 5,447.3 0.0 NA 52.0 ...

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table PT2. Energy Production Estimates in Trillion Btu, Indiana ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Indiana, 1960 - 2011 1960 346.3 0.3 69.9 0.0 NA 24.6 24.6 441.1 1961 336.7 0.4 66.7 0.0 NA 24.2 24.2 428.0

42

Table PT2. Energy Production Estimates in Trillion Btu, Oregon ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oregon, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 190.5 190.5 190.5 1961 0.0 0.0 0.0 0.0 NA 188.9 188.9 188.9

43

Table PT2. Energy Production Estimates in Trillion Btu, Arizona ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Arizona, 1960 - 2011 1960 0.1 0.0 0.4 0.0 NA 36.2 36.2 36.7 1961 0.0 0.0 0.4 0.0 NA 35.1 35.1 35.5

44

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

45

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

46

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

47

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

48

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

49

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

50

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

51

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

52

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

53

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat requirement of the boiler feed water. Chart III shows potential steam energy savings and will be useful in estimating the steam energy savings of high pressure processes.

Vallery, S. J.

1985-05-01T23:59:59.000Z

54

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils, the inability to utilize caking coals, and the inability to accept coal fines. Mansfield Carbon Products, Inc., a subsidiary of A.T. Massey Coal Company, has developed an atmospheric pressure, two-stage process that eliminates these three problems.

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

55

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

56

Table A27. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity, Steam, and Natural Gas by Type" Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," Electricity",," Steam",," Natural Gas" ," (Million (kWh)",," (Billion Btu)",," (Billion cu ft)" ," -----------------------",," -----------------------",," ------------------------------------",,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

57

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

58

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 - 2011 1960 796.6 36.9 31.3 0.0 NA 37.0 37.0 901.9 1961 756.0 37.3 32.7 0.0 NA 36.4 36.4 862.4

59

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

60

Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock  

DOE Green Energy (OSTI)

A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

Desrosiers, R. E.

1979-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

62

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

63

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

64

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

65

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

66

Table 6.2 Consumption Ratios of Fuel, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Consumption Ratios of Fuel, 2002;" 2 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,"Consumption" " ",,"Consumption","per Dollar"," " " ","Consumption","per Dollar","of Value","RSE" "Economic","per Employee","of Value Added","of Shipments","Row" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

67

" Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002;" 3 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Values of Shipments within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

68

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Consumption Ratios of Fuel, 1998;" 3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

69

" Row: Employment Sizes within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002;" 4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per Employee","of Value Added","of Shipments","Row" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

70

RSE Table 7.5 Relative Standard Errors for Table 7.5  

U.S. Energy Information Administration (EIA) Indexed Site

" Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal...

71

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

72

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

73

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

74

Workshop on Carbon Sequestration Science -- Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Economics Economics Howard Herzog MIT Energy Laboratory May 22, 2001 Cost Components * Capture S Separation S Compression * Sequestration S Transport S Injection Approach * Extract cost data from literature studies S Includes capture and compression S Excludes transportation and injection * Adjust cost data to common economic basis * Construct composite cost model * Conduct sensitivity analyses and other studies with the composite cost model Methodology for Analysis of Economic Studies 7210 Btu/kWh 2884 x 10 6 Btu/hr CO 2 to atmosphere 270 tonnes/hr (0.674 kg/kWh) 400 MW a) Reference Plant (No Capture) 9173 Btu/kWh 2884 x 10 6 Btu/hr 2 CO to atmosphere 28 tonnes/hr (0.088 kg/kWh) 314 MW 242 tonnes/hr (0.769 kg/kWh) b) Capture Plant CO 2 captured CO 2 Captured vs. CO 2 Avoided 0 0.2 0.4 0.6 0.8 1 Reference Plant Capture Plant

75

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network (OSTI)

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (?) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of ?. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).

Lawrence, Benjamin Daniel

2007-12-01T23:59:59.000Z

76

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

77

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

78

EIA - International Energy Outlook 2009-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2009 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2009 projections, total world consumption of marketed energy is projected to increase by 44 percent from 2006 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 10. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 12. Marketed Energy Use by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

79

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

80

EIA - International Energy Outlook 2008-World Energy Demand and Economic  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2008 Chapter 1 - World Energy Demand and Economic Outlook In the IEO2008 projections, total world consumption of marketed energy is projected to increase by 50 percent from 2005 to 2030. The largest projected increase in energy demand is for the non-OECD economies. Figure 9. World Marketed EnergyConsumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

RSE Table 7.4 Relative Standard Errors for Table 7.4  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 7.4;" 4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",8,21,14,7,9,13 " 20-49",4,6,15,4,13,4 " 50-99",3,6,4,3,6,8 " 100-249",3,8,17,2,5,7 " 250-499",4,1,9,7,1,37 " 500 and Over",1,7,4,1,1,1 "Total",2,3,7,2,1,11

82

Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993  

Science Conference Proceedings (OSTI)

Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

Powars, C.A.; Moyer, C.B.; Lowell, D.D.

1994-02-01T23:59:59.000Z

83

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

84

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

85

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

86

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last yearÂ’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

87

Analysis of medium-BTU gasification condensates, June 1985-June 1986  

DOE Green Energy (OSTI)

This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers and pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.

Elliott, D.C.

1987-05-01T23:59:59.000Z

88

Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

89

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

90

Table E1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," ",," " " "," ",," "," ",," "," ",," ","Shipments","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

91

"Table A49. Average Prices of Purchased Electricity, Steam, and Natural Gas"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Average Prices of Purchased Electricity, Steam, and Natural Gas" 9. Average Prices of Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam",," Natural Gas" ," (Million kWh)",," (Billion Btu)",," (1000 cu ft)" ,"-","-----------","-","-----------","-","-","-","RSE" " ","Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

92

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

detailedtables20032003rsetablesfilesplainlink.css" typetextcss relstylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey...

93

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

94

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

95

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

96

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

97

"Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region, Census Division," Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000 ","(1000","(trillion","Row" "Economic Characteristics(a)","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","Btu)","Factors"

98

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

Science Conference Proceedings (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

99

High-Btu gas from peat. Feasibility study. Volume II. Executive summary  

Science Conference Proceedings (OSTI)

In September 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first is the Executive Summary. This Volume II contains all of the text of the report, and Volume III includes all of the specifications, drawings, and appendices applicable to the project. Contents of Volume II are: introduction; project scope and objectives; commercial plant description; engineering specifications; design and construction schedules; capital cost estimates; operating cost estimates; financial analysis; and future areas for investigation. 15 figures, 17 tables.

Not Available

1984-01-01T23:59:59.000Z

100

High-Btu gas from peat. Feasibility study. Volume I. Executive summary  

Science Conference Proceedings (OSTI)

In September, 1980, the US Department of Energy awarded a grant to the Minnesota Gas Company (Minnegasco) to evaluate the commercial, technical, economic, and environmental viability of producing 80 million Standard Cubic Feet per day (SCF/day) of substitute natural gas (SNG) from peat. Minnegasco assigned the work for this study to a project team consisting of the following organizations: Dravo Engineers and Constructors for the design, engineering and economic evaluation of peat harvesting, dewatering, and gasification systems; Ertec, Inc. for environmental and socioeconomic analyses; Institute of Gas Technology for gasification process information, and technical and engineering support; and Deloitte Haskins and Sells for management advisory support. This report presents the work performed by Dravo Engineers and Constructors to meet the requirements of: Task 1, peat harvesting; Task 2, peat dewatering; Task 3, peat gasification; Task 4, long lead items; and Task 9.1, economic analysis. The final report comprises three volumes, the first of which is this Executive Summary. Subsequent volumes include Volume II which contains all of the text of the report, and Volume III which includes all of the specifications, drawings, and appendices applicable to the project. As part of this study, a scale model of the proposed gasification facility was constructed. This model was sent to Minnegasco, and photographs of the model are included at the end of this summary.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

102

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

103

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

104

"RSE Table E1.1. Relative Standard Errors for Table E1.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

.1. Relative Standard Errors for Table E1.1;" .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

105

"RSE Table E13.2. Relative Standard Errors for Table E13.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table E13.2;" 2. Relative Standard Errors for Table E13.2;" " Unit: Percents." " ",,,"Renewable Energy" ,,,"(excluding Wood" "Economic","Total Onsite",,"and" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",15,15,58,37 " 20-49",17,19,27,7 " 50-99",6,6,5,9 " 100-249",7,7,25,4 " 250-499",2,2,0,0 " 500 and Over",1,1,0,1 "Total",2,2,15,1 "Employment Size" " Under 50",16,16,90,35

106

"RSE Table E13.1. Relative Standard Errors for Table E13.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table E13.1;" 1. Relative Standard Errors for Table E13.1;" " Unit: Percents." " ",," "," ",," " ,,,,"Sales and","Net Demand" "Economic",,,"Total Onsite","Transfers","for" "Characteristic(a)","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,52,15,4,4 " 20-49",2,14,17,33,2 " 50-99",2,31,6,10,2 " 100-249",1,13,7,9,1 " 250-499",2,2,2,1,2 " 500 and Over",1,2,1,1,1

107

"RSE Table E7.2. Relative Standard Errors for Table E7.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table E7.2;" 2. Relative Standard Errors for Table E7.2;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS",,"Consumption","per Dollar","of Value" "Code(a)","Economic Characteristic(b)","per Employee","of Value Added","of Shipments" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",2,2,2 ," 20-49",2,3,2 ," 50-99",3,3,2 ," 100-249",2,3,2 ," 250-499",3,3,3

108

"RSE Table E2.1. Relative Standard Errors for Table E2.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

E2.1. Relative Standard Errors for Table E2.1;" E2.1. Relative Standard Errors for Table E2.1;" " Unit: Percents." " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",9,87,48,26,1,85,16,25 " 20-49",11,32,28,5,63,20,3,21 " 50-99",8,23,38,2,22,49,42,4

109

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

110

Table A44. Average Prices of Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

4. Average Prices of Purchased Electricity and Steam" 4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

111

"RSE Table E7.1. Relative Standard Errors for Table E7.1;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Relative Standard Errors for Table E7.1;" 1. Relative Standard Errors for Table E7.1;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" "Economic","Consumption","per Dollar","of Value" "Characteristic(a)","per Employee","of Value Added","of Shipments" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2,2,2 " 20-49",2,3,2 " 50-99",3,3,2 " 100-249",2,3,2 " 250-499",3,3,3 " 500 and Over",1,2,2 "Total",1,1,1 "Employment Size" " Under 50",2,3,3 " 50-99",3,3,3

112

"RSE Table E13.3. Relative Standard Errors for Table E13.3;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Relative Standard Errors for Table E13.3;" 3. Relative Standard Errors for Table E13.3;" " Unit: Percents." ,"Total of" "Economic","Sales and","Utility","Nonutility" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,4,10 " 20-49",33,35,70 " 50-99",10,12,10 " 100-249",9,14,1 " 250-499",1,1,3 " 500 and Over",1,1,2 "Total",3,4,5 "Employment Size" " Under 50",42,44,21 " 50-99",20,21,73 " 100-249",16,16,38 " 250-499",1,2,1

113

"Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors" ,"Total United States" "RSE Column Factors:",0.6,0.8,1.2,0.7,2.5,0.9 "Value of Shipments and Receipts" "(million dollars)" " Under 20",18.96,2.9,5.56,3.6,8.66,1.74, 2.4 " 20-49",15.07,2.53,4.9,2.8,5.87,1.81, 2.7

114

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

115

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

116

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

117

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

118

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

119

Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002;" 5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

120

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 3 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","Breeze","Other(e)","Factors"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

122

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

123

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

124

"Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Average Prices of Selected Purchased Energy Sources, 1998;" 2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Factors" ,"Total United States"

125

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

126

Technical and economic assessment of the IGT peat-gasification process. Engineering support services for the DOE/GRI Coal Gasification Research Program  

SciTech Connect

Kellogg has completed a moderately detailed design and cost estimate of a 250 billion Btu/Day grass-roots SNG plant using the Peatgas process. Results indicate that the cost of SNG would be $4.40/MM Btu, using a cost of $1.50/MM Btu for peat feedstock at 50% moisture. The SNG cost is reasonably competitive with that currently estimated for SNG from coal, and Kellogg would anticipate that capital cost reductions, via design optimization, could reduce the NSG cost to a level which is quite competitive. The cost of peat feedstock is a critical area of concern in evaluating economics of the Peatgas process. The value chosen for the base-case economics ($1.50/MM Btu) is in the higher portion of the price range considered typical by most investigators; the price of $1.50/MM Btu was chosen arbitrarily to represent a 50% increase over the cost of coal ($1.00/MM Btu) used by Kellogg in parallel studies, to reflect higher costs for land use and reclamation and for harvesting and dewatering of peat. In a study concurrent with that reported here, Kellogg found that one method of wet harvesting and mechanical/thermal dewatering yields a peat (50% moisture) cost which is unfavorably high and was therefore rejected for use as a base-case cost since much cheaper feedstock is apparently available by other harvesting/dewatering methods. The base-case cost of SNG is moderate somewhat by the values placed on the benzene and oil coproducts (i.e., $1.10 and $0.75 per gallon, respectively). The total of such credits amounts to about 39% of the gross operating cost; a reduction in value of the coproducts would adversely affect the cost of SNG. Certain technical factors are discussed: materials handling problems, high reactivity, low sulfur content, and limited gasification data.

Bostwick, L.E.; Hubbard, D.A.; Laramore, R.W.; Senules, E.A.; Shah, K.V.

1981-04-01T23:59:59.000Z

127

Economic Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmitted to the Congress February 2008 Transmitted to the Congress February 2008 Together with the Annual Report of the Council of Economic Advisers Economic Report of the President Economic Report of the President For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: (866) 512-1800; DC area (202) 512-1800 ISBN 978-0-16-079822-1 Transmitted to the Congress February 2008 together with THE ANNUAL REPORT of the COUNCIL OF ECONOMIC ADVISERS UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 2008 Fax: (202) 512-2104 Mail Stop: IDCC, Washington, DC 20402-0001 C O N T E N T S ECONOMIC REPORT OF THE PRESIDENT ............................................. ANNUAL REPORT OF THE COUNCIL OF ECONOMIC ADVISERS* ...

128

Economic regulation and the commercialization of synthetic gas  

Science Conference Proceedings (OSTI)

The history of the Great Plains coal-gasification plant (proposed for Mercer Co., N.D.) illuminates the role of economic regulation in commercializing new energy technologies. Even though sponsors of such projects seek to ensure cost recovery and profit in advance via the regulatory process, the regulators are reluctant to provide more than partial assurance. Future economic-regulatory entities will have to develop better criteria for deciding which synthetic-gas projects will have access to rolled-in pricing. At least in the near term, most high-Btu manufactured gas will require cross-subsidization by other lower priced gas sources in order to be competitive economically; this makes advance approval of rolled-in pricing crucial to the pace and extent of syngas's market penetration. Regulatory agencies must also address the structure of escalation clauses and price ceilings.

Hall, G.R.

1981-11-05T23:59:59.000Z

129

ECONOMIC DISPATCH  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ECONOMIC DISPATCH ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 United States Department of Energy February 2007 ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 Sections 1234 and 1832 of the Energy Policy Act of 2005 (EPAct) 1 direct the U.S. Department of Energy (the Department, or DOE) to: 1) Study the procedures currently used by electric utilities to perform economic dispatch; 2) Identify possible revisions to those procedures to improve the ability of non-utility generation resources to offer their output for sale for the purpose of inclusion in

130

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

131

Energy and Economic Impacts From Recent Energy Conservation Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy and Economic Impacts From Recent Energy Conservation Standards Energy and Economic Impacts From Recent Energy Conservation Standards Speaker(s): Gregory Rosenquist Date: August 10, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Louis-Benoit Desroches In the last several years, there has been a significant growth in the activities of the Department of Energy's Appliance and Commercial Equipment Standards program. EETD's Energy Efficiency Standards group has been heavily involved in the analyses supporting recently published federal energy conservation standards, for a diverse set of appliances and commercial equipment. In this talk, I will review the EES group's efforts supporting these energy conservation standards. Collectively, they are estimated to save the nation between 14.15 to 15.17 quads (quadrillion Btu)

132

RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2  

U.S. Energy Information Administration (EIA) Indexed Site

E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,18,10,7,3,8 " 20-49",2,19,5,3,11,8 " 50-99",2,14,6,2,17,10 " 100-249",1,11,4,2,1,12 " 250-499",2,1,10,2,0,1 " 500 and Over",1,1,1,1,0,1

133

Economic impact  

Science Conference Proceedings (OSTI)

In federal fiscal year 2000 (FY00), Berkeley Lab had 4,347 full- and part-time employees. In addition, at any given time of the year, there were more than 1,000 Laboratory guests. These guests, who also reside locally, have an important economic impact on the nine-county Bay Area. However, Berkeley Lab's total economic impact transcends the direct effects of payroll and purchasing. The direct dollars paid to the Lab's employees in the form of wages, salaries, and benefits, and payments made to contractors for goods and services, are respent by employees and contractors again and again in the local and greater economy. Further, while Berkeley Lab has a strong reputation for basic scientific research, many of the Lab's scientific discoveries and inventions have had direct application in industry, spawning new businesses and creating new opportunities for existing firms. This analysis updates the Economic Impact Analysis done in 1996, and its purpose is to describe the economic and geographic impact of Laboratory expenditures and to provide a qualitative understanding of how Berkeley Lab impacts and supports the local community. It is intended as a guide for state, local, and national policy makers as well as local community members. Unless otherwise noted, this analysis uses data from FY00, the most recent year for which full data are available.

Technology Transfer Department

2001-06-01T23:59:59.000Z

134

Impacts of the national energy programme on solar economics  

SciTech Connect

The National Energy Plan (NEP) sets as a goal the use of solar energy in two and a half million homes in 1985. A key provision of the NEP (as well as congressional alternatives) provides for the subsidization of solar equipment. The extent to which these subsidies (income tax credits) might offset the impact of continued energy-price control is examined. Regional prices and availability of conventional energy sources (oil, gas, and electricity) were compiled to obtain a current and consistent set of energy prices by state and energy type. These prices are converted into equivalent terms ($/10/sup 6/ Btu) that account for combustion and heat-generation efficiencies. Projections of conventional-fuel price increases (or decreases) are made under both the NEP scenario and a projected scenario where all wellhead price controls are removed on natural gas and crude oil production. The economic feasibility (life-cycle cost basis) of solar energy for residential space heating and domestic hot water is examined on a state-by-state basis. Solar-system costs are developed for each state by fraction of Btu heating load provided. The total number of homes, projected energy savings, and sensitivity to heating loads, alternative energy costs, and prices are included in the analysis.

Ben-David, S.; Noll, S.; Roach, F.; Schulze, W.

1978-01-01T23:59:59.000Z

135

On economic bicameralism  

E-Print Network (OSTI)

(cont.) for both economic profitability and democratic justice, is explored after the roots of the idea of economic bicameralism in socio-economic history and existing socio-economic institutions (such as Works Councils) ...

Ferreras, Isabelle, 1975-

2004-01-01T23:59:59.000Z

136

Economics of Plant Energy Savings Projects in a Changing Market  

E-Print Network (OSTI)

Energy prices have exhibited significant volatility in recent years. For example, natural gas prices ranged from $4 to $15 per MM BTU's in calendar years 2005 through 2011. Future prices are uncertain but are likely to retain a high level of volatility. This volatility complicates analysis of potential plant capital investments to reduce energy usage, in particular those that involve consideration of alternate energy sources, since traditional financial investment valuation assumes that future cash flows are known exactly. Yet, this is clearly not the case for many energy saving investments. In addition, future price probability functions may be best characterized as non symmetric and economic objective functions as non-linear further complicating investment analysis. Failure to recognize these effects can result in incorrectly valuing the potential financial return of the investment. In this paper, appropriate techniques to evaluate such investments are presented along with case studies illustrating the approach.

White, D. C.

2011-01-01T23:59:59.000Z

137

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - Curry Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 1 mile of 72" pipeline to replace a segment of the Curry Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,258 ac-ft of water per year and 1,092,823,269 BTUs (320,288 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.68 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000598 per BTU ($0.204 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $27.49 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000568 per BTU ($0.194 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.84.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-09-01T23:59:59.000Z

138

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 1 (Edinburg) - North Branch / East Main - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves installing 4.83 miles of multi-size pipeline to replace a segment of the North Branch / East Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 48-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 5,838 ac-ft of water per year and 3,293,049,926 BTUs (965,138 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $15.58 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0000392 per BTU ($0.134 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $30.68 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0000544 per BTU ($0.186 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.58.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

139

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining “Lateral A” with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Popp, Michael; Robinson, John; Sturdivant, Allen; Lacewell, Ronald; Rister, Edward

2003-07-01T23:59:59.000Z

140

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District – 72" and 54" Pipeline Replacing Main Canal – Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 54" pipeline to replace 2.29 miles of the “Main Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,844 ac-ft of water per year and 313,797,977 BTUs (91,969 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $24.70 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001740 per BTU ($0.594 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $56.74 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003335 per BTU ($1.138 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.46.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Economic and Conservation Evaluation of Capital Renovation Project: Hidalgo County Irrigation District No. 2 (San Juan) - Relining Lateral A – Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves relining “Lateral A” with a geomembrane and shotcrete cover. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 2,542 ac-ft of water per year and 551,738,646 BTUs (161,705 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $74.49 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0003698 per BTU ($1.262 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $57.76 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0002661 per BTU ($0.908 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -14.29.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

142

Economic and Conservation Evaluation of Capital Renovation Projects: Brownsville Irrigation District – 72" and 48" Pipeline Replacing Main Canal – Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Brownsville Irrigation District to the North American Development Bank (NADB) and Bureau of Reclamation (BOR). The proposed project involves constructing a 72" and 48" pipeline to replace 2.31 miles of the “Main Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,872 ac-ft of water per year and 318,479,103 BTUs (93,341 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $27.98 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0001933 per BTU ($0.660 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $58.60 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0003444 per BTU ($1.175 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -1.53.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-10-01T23:59:59.000Z

143

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) – Infrastructure Rehabilitation – Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-07-01T23:59:59.000Z

144

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) - Infrastructure Rehabilitation - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a five-component capital renovation project proposed by Cameron County Irrigation District No. 2, (a.k.a. San Benito) to the Bureau of Reclamation (BOR). The proposed project involves rehabilitating 42+ miles of canals, laterals, and pipelines. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all five components of the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 19,580 ac-ft of water per year and 2,151,277,209 BTUs (630,503 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $45.60 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0004399 per BTU ($1.501 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $46.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004275 per BTU ($1.459 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -9.04.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.; Popp, Michael C.

2003-08-01T23:59:59.000Z

145

Economic evaluation of the MIT process for manufacture of ethanol  

DOE Green Energy (OSTI)

This report summarizes the results of an economic evaluation of the MIT process for the manufacture of ethanol from cellulosic residues. Conceptual process designs were developed for two cases, Case A which is based on the experimental data obtained to date, and Case B which hypothesizes the suppression of acid byproducts. Manufacturing costs, including profit, were estimated at $12.20/million Btu for Case A and $9.40/million Btu for Case B. These are equivalent to about $1.05 and $0.80/gal ethanol respectively. These economic estimates may be slightly on the low side since they do not consider feedstock storage nor working capital requirements. Nevertheless, the manufacturing costs for Case A appear to be comparable to those of the manufacture of ethanol from corn. The plant size used for this analysis was 1500 ton/day corn stover. This is considered to be a realistic size. The conceptual plants make about 27 million gal/yr ethanol in Case A and 41 million gal/yr in Case B. The MIT process appears to be one of the more promising programs being developed under contract for DOE. It is recommended that the process research be continued. Three areas of concern were identified which must be investigated before the process can be commercialized. First, a satisfactory means of storage of corn stover and other agricultural residues must be developed. Second, a method to sterilize corn stover must be developed or it must be demonstrated that the MIT process can run continuously for extended periods with stover that has been sterilized. Third, research must be done to demonstrate the recycle and reuse of process water.

Jenkins, D.M.; Reddy, T.S.

1979-06-28T23:59:59.000Z

146

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

147

table6.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Consumption Ratios of Fuel, 2002; 4 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 395.7 4.3 2.3 3.6 50-99 663.4 6.8 3.3 5 100-249 905.8 7.9 3.8 3.6 250-499 1,407.1 11.1 5.1 4.3 500-999 1,999.6 12.4 5.9 5.6 1000 and Over 1,597.7 8.5 3.9 2.5 Total 1,172.2 8.9 4.2 2 311 FOOD Employment Size Under 50 893.5 6.6 2.4

148

table6.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

3 Consumption Ratios of Fuel, 2002; 3 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 281.0 3.9 2.2 3 20-49 583.7 6.1 3.0 4.6 50-99 889.2 8.1 3.8 4.9 100-249 1,268.8 8.7 4.1 4.6 250-499 2,146.6 11.2 5.3 7.6 500 and Over 3,807.1 12.5 5.4 2.3 Total 1,172.2 8.9 4.2 2 311 FOOD Value of Shipments and Receipts

149

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

DOE Green Energy (OSTI)

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

150

Buildings and Energy in the 1980's  

U.S. Energy Information Administration (EIA) Indexed Site

2 (Estimates in Trillion Btu) SIC Code a Industry Groups and Industry Total Electricity b Residual Fuel Oil Distillate Fuel Oil c Natural Gas d LPG Coal Coke and Breeze Other e RSE...

151

Impact of the national energy plan on solar economics. [Economic analysis of solar space heating and solar water heating by state  

SciTech Connect

The National Energy Plan (NEP) sets as a goal the use of solar energy in two and a half million homes in 1985. A key provision of the NEP (as well as congressional alternatives) provides for the subsidization of solar equipment. The extent to which these subsidies (income tax credits) might offset the impact of continued energy price control is examined. Regional prices and availability of conventional energy sources (oil, gas, and electricity) were compiled to obtain a current and consistent set of energy prices by state and energy type. These prices are converted into equivalent terms ($/10/sup 6/ Btu) which account for combustion and heat generation efficiencies. Projections of conventional fuel price increases (or decreases) are made under both the NEP scenario and a projected scenario where all wellhead price controls are removed on natural gas and crude oil production. The economic feasibility (life-cycle cost basis) of solar energy for residential space heating and domestic hot water is examined on a state-by-state basis. Solar system costs are developed for each state by fraction of Btu heating load provided. The total number of homes, projected energy savings, and sensitivity to heating loads, alternative energy costs and prices are included in the analysis.

Ben-David, S.; Noll, S.; Roach, F.; Schulze, W.

1977-01-01T23:59:59.000Z

152

Financial and Economic Terms  

E-Print Network (OSTI)

This publication lists and defines many financial and economic terms with which producers should be familiar.

McCorkle, Dean; Klinefelter, Danny A.

2008-12-05T23:59:59.000Z

153

Economic and Conservation Evaluation of Capital Renovation Projects: Maverick County Water Control and Improvement District No. 1 (Eagle Pass) – Lining Main Canal – Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a capital renovation project proposed by Maverick County Water Control and Improvement District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves lining 3 miles of the “Main Canal” with a urethane lining and a concrete anchor and ballast system. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 8,084 ac-ft of water per year and 2,041,095,338 BTUs (598,211 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $33.37 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0001322 per BTU ($0.451 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $25.97 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001029 per BTU ($0.351 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -13.65.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2004-01-01T23:59:59.000Z

154

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Rehabilitation of Alamo Main Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a two-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, to the U. S. Bureau of Reclamation (USBR). The proposed project primarily consists of relining the Alamo Main canal and installing a flow-management system in the Alamo Main canal. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 876 ac-ft of water per year and 331,389,647 BTUs (97,125 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $201.50 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0005592 per BTU ($1.908 per kwh). In addition, expected real (vs nominal) values are indicated for the USBRs three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $182.98 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0004837 per BTU ($1.650 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -20.74.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-04-01T23:59:59.000Z

155

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) – 48" Pipeline Replacing Wisconsin Canal – Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the “Wisconsin Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2003-05-01T23:59:59.000Z

156

Economic and Conservation Evaluation of Capital Renovation Projects: Maverick County Water Control and Improvement District No. 1 (Eagle Pass) – Lining Main Canal – Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a capital renovation project proposed by Maverick County Water Control and Improvement District No. 1 to the Bureau of Reclamation and North American Development Bank. The proposed project involves lining 3 miles of the “Main Canal” with a urethane lining and a concrete anchor and ballast system. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated 49-year useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 8,084 ac-ft of water per year and 2,041,095,338 BTUs (598,211 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $33.37 per ac-ft. The calculated economic and financial cost of energy savings is estimated to be $0.0001322 per BTU ($0.451 per kwh). In addition, expected real (rather than nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $25.97 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001029 per BTU ($0.351 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -13.65.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.

2004-04-01T23:59:59.000Z

157

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - 48" Pipeline Replacing Wisconsin Canal - Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a single-component capital renovation project proposed by Hidalgo County Irrigation District No. 2, (a.k.a. San Juan) to the North American Development Bank (NADBank) and Bureau of Reclamation. The proposed project involves constructing a 48" pipeline to replace the “Wisconsin Canal.” Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 977 ac-ft of water per year and 372,892,700 BTUs (109,289 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $70.97 per ac-ft. The calculated economic and financial cost of energy savings is estimated at $0.0002124 per BTU ($0.725 per kwh). In addition, expected real (vs nominal) values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The initial construction cost per ac-ft of water savings measure is $75.29 per ac-ft of water savings. The initial construction cost per BTU (kwh) of energy savings measure is $0.0001973 per BTU ($0.673 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.12.

Rister, Edward; Lacewell, Ronald; Sturdivant, Allen; Robinson, John; Popp, Michael

2003-07-01T23:59:59.000Z

158

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) – Rehabilitation of Main Canal, Laterals, and Diversion Pump Station – Final  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the District’s Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,522 ac-ft of water per year and 3,520,302,471 BTUs (1,031,742 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $341.51 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001574 per BTU ($0.537 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $359.42 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003468 per BTU ($1.183 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.551.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2006-03-01T23:59:59.000Z

159

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by the United Irrigation District to the U.S. Bureau of Reclamation (USBR). The proposed project involves: installing 4.66 miles of pipeline in the Main Canal and Lateral 7N, installing 13.46 miles of pipeline in several laterals and sub-laterals, and rehabilitating the District’s Rio Grande diversion pumping plant. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful lives for all three components. Sensitivity results for both the cost of saving water and the cost of saving energy are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 1,409 ac-ft of water per year and 4,506,882,727 BTUs (1,320,892 kwh) of energy per year. The calculated economic and financial cost of saving water is estimated to be $325.20 per ac-ft. The calculated economic and financial cost of saving energy is estimated at $0.0001113 per BTU ($0.380 per kwh). In addition, real (vs. nominal) values are estimated for the USBRs three principal evaluation measures specified in the U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water savings measure is $354.30 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

2005-09-01T23:59:59.000Z

160

Analysis of the economic potential of solar thermal energy to provide industrial process heat. Final report, Volume I. [In-depth analysis of 78 industries  

SciTech Connect

The process heat data base assembled as the result of this survey includes specific process applications from 78 four-digit Standard Industrial Classification (SIC) groups. These applications account for the consumption of 9.81 quadrillion Btu in 1974, about 59 percent of the 16.6 quadrillion Btu estimated to have been used for all process heat in 1974. About 7/sup 1///sub 2/ percent of industrial process heat is used below 212/sup 0/F (100/sup 0/C), and 28 percent below 550/sup 0/F (288/sup 0/C). In this study, the quantitative assessment of the potential of solar thermal energy systems to provide industrial process heat indicates that solar energy has a maximum potential to provide 0.6 quadrillion Btu per year in 1985, and 7.3 quadrillion Btu per year in 2000, in economic competition with the projected costs of conventional fossil fuels for applications having a maximum required temperature of 550/sup 0/ (288/sup 0/C). A wide variety of collector types were compared for performance and cost characteristics. Performance calculations were carried out for a baseline solar system providing hot water in representative cities in six geographical regions within the U.S. Specific industries that should have significant potential for solar process heat for a variety of reasons include food, textiles, chemicals, and primary metals. Lumber and wood products, and paper and allied products also appear to have significant potential. However, good potential applications for solar process heat can be found across the board throughout industry. Finally, an assessment of nontechnical issues that may influence the use of solar process heat in industry showed that the most important issues are the establishment of solar rights, standardization and certification for solar components and systems, and resolution of certain labor-related issues. (Volume 1 of 3 volumes.)

1977-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Table A23. Quantity of Purchased Electricity, Steam, and Natural Gas by Type  

U.S. Energy Information Administration (EIA) Indexed Site

3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" 3. Quantity of Purchased Electricity, Steam, and Natural Gas by Type" " of Supplier, Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam",," Natural Gas" ,," (Million kWh)",," (Billion Btu)",," (Billion cu ft)" ,," -------------------------",," -------------------------",," ---------------------------------------",,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Utility","Transmission","Other","Row"

162

CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994  

SciTech Connect

Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

BUTCHER,T.A.

1994-01-04T23:59:59.000Z

163

Economic Development | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Development Carbon Fiber Cluster Strategy Additive Manufacturing Cluster Strategy Entrepreneurial Development Programs Oak Ridge Science and Technology Park Economic...

164

Economic Development and Pollutants.  

E-Print Network (OSTI)

?? The purpose of this paper is to investigate the correlation of economic development and pollutants in Brazil from 1960 to 2008. This investigation is… (more)

Törnros, Sara

2013-01-01T23:59:59.000Z

165

One: California Economic Outlook  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMIC OUTLOOK: AN IMPROVED POWER SITUATIONwas sluggish. An improved outlook for consumer spending inforecast compared with the outlook of UCLA's Anderson

Lieser, Tom K

2002-01-01T23:59:59.000Z

166

Economic Forecast Report Economic Outlook and Forecasts  

E-Print Network (OSTI)

volatile prices such as food and energy, is even softer, averaging around 1% for the year. Inflation should in our last report, the rebound in economic activity has been weak and uninspiring with below-trend formation is far below desired level, the overall trend is positive. Despite these improve- ments, we fear

de Lijser, Peter

167

Economic and Conservation Evaluation of Capital Renovation Projects: Edinburg Irrigation District Hidalgo County No. 1 - 72" Pipeline Replacing Delivery Canal and Multi-Size Pipeline Replacing Delivery Canal  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Edinburg Irrigation District Hidalgo County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., 72" pipeline replacing a segment of delivery canal along the "Curry Main" and multi-size pipeline replacing a segment of delivery canal along the "North Branch / East Main"). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $29.87 per ac-ft and energy savings are measured at an aggregate value of $0.0000595 per BTU (i.e., $0.203 per kwh). In addition, expected values are indicated for the Bureau of Reclamation's three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $50.90 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0000777 per BTU ($0.265 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.01.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-11-01T23:59:59.000Z

168

U. S. energy and economic growth, 1975--2010  

SciTech Connect

This study projects economic growth (GNP) and energy demand for the U.S. to the year 2010. The main finding is that both GNP and total energy demand are likely to grow significantly more slowly than has been assumed in most analyses of energy policy. Projections of energy, GNP, and electricity (total and per capita) are summarized, with electricity demand expected to grow more rapidly than total energy demand. Two scenarios designated ''high'' and ''low'' were developed in this study. However, even the ''high'' scenario, 126 quads (q; 1 q equals 10/sup 15/ Btu) in 2000, is much lower than most previous estimates. It is felt that this raises serious questions about fundamental energy and energy R and D policies which, generally, have been based on perceptions of more lavish energy futures. Although the aggregate demands and GNP are projected to increase rather modestly, the energy demands per capita and GNP per capita increase at rates comparable to or even higher than historic rates. The authors believe that the projections developed in this study represent a logical culmination of many trends toward lower growth. These trends have not yet been factored into the older energy projections upon which so much energy policy is based. 136 references.

Allen, E.L.; Cooper, C.L.; Edmonds, F.C.; Edmonds, J.A.; Reister, D.B.; Weinberg, A.M.; Whittle, C.E.; Zelby, L.W.

1976-09-01T23:59:59.000Z

169

Economic Value of Veterinary  

E-Print Network (OSTI)

laboratories such as TVMDL. Without TVMDL's services, Texas would experience both a health and a fiscal crisis Diagnostic Laboratory (TVMDL) works to protect animal and human health through diagnostic testing of samplesEconomic Value of Veterinary Diagnostics Public Investment in Animal Health Testing Yields Economic

170

Wind Economic Development (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

171

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

N7.1. Consumption Ratios of Fuel, 1998;" N7.1. Consumption Ratios of Fuel, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

172

" Row: NAICS Codes; Column: Energy-Consumption Ratios;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Consumption Ratios of Fuel, 2002;" 1 Consumption Ratios of Fuel, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar"," " " "," ","Consumption","per Dollar","of Value","RSE" "NAICS"," ","per Employee","of Value Added","of Shipments","Row" "Code(a)","Subsector and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","Factors"

173

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" ,,,,"Distillate",,,"Coal" ,,,,"Fuel Oil",,,"(excluding" ,,"Net","Residual","and Diesel",,,"Coal Coke",,"RSE" ,"Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Other(d)","Row" "End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(billion cu ft)","(1000 bbls)","(1000 short tons)","(trillion Btu)","Factors" ,,,,,,,,,,, ,"Total United States"

174

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

,,,,,,,,"Coal" ,,,,,,,,"Coal" " Part 1",,,,,,,,"(excluding" " (Estimates in Btu or Physical Units)",,,,,"Distillate",,,"Coal Coke" ,,,,,"Fuel Oil",,,"and" ,,,"Net","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" "SIC",,"Total","Electricity(b)","Fuel Oil","Fuel","(billion","LPG","(1000 Short","Other","Row" "Code(a)","End-Use Categories","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors",

175

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

176

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Code(a)","Industry Groups and Industry","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

177

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

1",,,,,,,"Coal" 1",,,,,,,"Coal" " (Estimates in Btu or Physical Units)",,,,,,,"(excluding" ,,,,"Distillate",,,"Coal Coke" ,,"Net",,"Fuel Oil",,,"and" ,,"Electricity(a)","Residual","and Diesel","Natural Gas",,"Breeze)",,"RSE" ,"Total","(million","Fuel Oil","Fuel","(billion","LPG","(1000 short","Other","Row" "End-Use Categories","(trillion Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","(trillion Btu)","Factors"

178

Essays in financial economics  

E-Print Network (OSTI)

This thesis consists of three essays in financial economics. Chapter 1 is entitled "Inside Debt." Existing theories advocate the use of cash and equity in executive compensation. However, recent empirical studies have ...

Edmans, Alex

2007-01-01T23:59:59.000Z

179

Displaying Economic Value  

Science Conference Proceedings (OSTI)

The distinction between forecast quality and economic value in a cost–loss formulation is well known. Also well known is their complex relationship, even with some instances of a reversal between the two, where higher quality is associated with ...

Caren Marzban

2012-12-01T23:59:59.000Z

180

PNNL: Economic Development Office  

NLE Websites -- All DOE Office Websites (Extended Search)

business looking for a door to the Laboratory? The Economic Development Office at PNNL is here to help you start, grow, or relocate your business. We help you tap into...

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PART ONE: ECONOMIC REVIEW  

E-Print Network (OSTI)

I Policy Environment 1.1 During the year 1999-2000, the Indian economy exhibited a good degree of resilience. Economic growth continued to be in line with the trend in the post 1991 period, notwithstanding

unknown authors

2000-01-01T23:59:59.000Z

182

Economic Policy Rationales and Studies  

Science Conference Proceedings (OSTI)

... on Economic Growth. Brief No. 13-3: The Economic Benefits from Improved Cyber Security Infrastructure. Brief No. 13-4: Beyond ...

2013-06-28T23:59:59.000Z

183

On Impacts of Economic Growth.  

E-Print Network (OSTI)

??This thesis presents four papers on impacts of economic growth. The results indicate that faster economic growth improves the short-run political survival prospects of national… (more)

Burke, Paul John

2011-01-01T23:59:59.000Z

184

Boiler Stack Economizer Tube Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Boiler Stack Economizer Tube Failure ... performed to investigate the failure of a type 304 stainless steel tube from a boiler stack economizer.

185

Transportation Economic Assistance Program (Wisconsin)  

Energy.gov (U.S. Department of Energy (DOE))

The Transportation Economic Assistance Program provides state grants to private business and local governments to improve transportation to projects improving economic conditions and creating or...

186

Argonne TDC: Regional Economic Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Economic Development Argonne participates in economic development activities with State of Illinois agencies and programs, business and industrial organizations, and...

187

Minority Economic Impact | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Minority Economic Impact Minority Economic Impact Diversity and Inclusion Supporting Small Businesses Minority Economic Impact Partnering with Minority Serving Institutions...

188

Power Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

CRSP Management Center CRSP Management Center Western Area Power Administration January 2011 Power Economic Analysis of Operational Restrictions at Glen Canyon Dam In February, 1997, the operating criteria for Glen Canyon Dam were changed. Operation was restricted to a Modified Low Fluctuating Flow as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement, March, 1995. These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore the economic value of the electricity it produced. The Environmental Impact Statement provided impact information to support the Record of Decision governing dam operations. The impact

189

Interaction between economic dynamical systems  

Science Conference Proceedings (OSTI)

The paper considers economic dynamical systems, the state spaces being the Riemannian manifolds. Between two economic dynamical systems, global feedforward and the feedback interaction is defined and the connection between their linearization and prolongation ... Keywords: economic dynamical system, economic flow, feedback, feedforward, linearization, prolongation by derivation

Constantin Patrascoiu

2009-07-01T23:59:59.000Z

190

Economics of ALMR deployment  

SciTech Connect

The Advanced Liquid Metal Reactor (ALMR) has the potential to extend the economic life of the nuclear option and of reducing the number of high level waste repositories which will eventually be needed in an expanding nuclear economy. This paper reports on an analysis which models and evaluates the economics of the use of ALMRs as a component of this country`s future electricity generation mix. The ALMR concept has the ability to utilize as fuel the fissile material contained in previously irradiated nuclear fuel (i.e., spent fuel) or from surplus weapons grade material. While not a requirement for the successful deployment of ALMR power plant technology, the reprocessing of spent fuel from light water reactors (LWR) is necessary for any rapid introduction of ALMR power plants. In addition, the reprocessing of LWR spent fuel may reduce the number of high level waste repositories needed in the future by burning the long-lived actinides produced in the fission process. With this study, the relative economics of a number of potential scenarios related to these issues are evaluated. While not encompassing the full range of all possibilities, the cases reported here provide an indication of the potential costs, timings, and relative economic attractiveness of ALMR deployment.

Delene, J.G.; Fuller, L.C.; Hudson, C.R.

1994-12-31T23:59:59.000Z

191

Opportunity and Economic  

E-Print Network (OSTI)

-feet powered by green energy. This could include heating with wood pellet-fired boilers, putting solar panels of projects related to wood pellet emissions, operations, economics, and applications. The facility would research partnerships, and be an architectural prototype for natural materials, innovative wood products

Northern British Columbia, University of

192

Programming Languages in Economics  

Science Conference Proceedings (OSTI)

Young economists sometimes ask which computer programming languages they should learn. This paper answers that question by suggesting that they begin with a high level language like GAUSS, GAMS, Mathematica, Maple or MATLAB depending on their field ... Keywords: computational economics, computer languages, programming languages, software

David A. Kendrick; Hans M. Amman

1999-10-01T23:59:59.000Z

193

Publications Agricultural Economics  

E-Print Network (OSTI)

. (2012). Economics of IPM Decisions. Stored Product Protection (1- 9). Manhattan, KS: Kansas State (1-11). Manhattan, KS: Kansas State. http://entomology.k-state.edu/doc/finished- chapters/s156-ch-27 of Food and Agriculture­ Conservation Effects Assessment Project. How to Build Better Agricultural

194

" Generation by Census Region, Industry Group, Selected Industries, Presence of"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Inputs of Energy for Heat, Power, and Electricity" 4. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, Presence of" " General Technologies, and Industry-Specific Technologies for Selected" " Industries, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.3

195

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

196

Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by Harlingen Irrigation District Cameron County No. 1 to the North American Development Bank (NADBank). Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for each of the four components of the proposed project (i.e., canal meters and telemetry equipment, impervious-lining of delivery canals, 24" pipelines replacing delivery canals, and on-farm delivery-site meters). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for each of the four components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $31.37 per ac-ft and energy savings are measured at an aggregate value of $0.0002253 per BTU (i.e., $0.769 per kwh). In addition, expected values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $26.87 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001603 per BTU ($0.547 per kwh). The amount of initial construction costs per dollar of total annual economic savings is estimated to be -1.30.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2002-10-01T23:59:59.000Z

197

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) – Interconnect Between Canals 39 and 13-A1 and Replacement of Rio Grande Diversion Pumping Plant  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for the capital renovation project proposed by the Cameron County Irrigation District No. 2 (a.k.a. San Benito) to the North American Development Bank (NADBank) and Bureau of Reclamation. Both nominal and real, expected economic and financial costs of water and energy savings are identified throughout the anticipated useful lives for both components of the proposed project (i.e., a lined interconnect between Canals 39 and 13-A1 and replacement of the Rio Grande diversion pumping plant). Sensitivity results for both the cost of water savings and cost of energy savings are presented for several important parameters. Expected cost of water savings and cost of energy savings for both components are aggregated into a composite set of cost measures for the total proposed project. Aggregate cost of water savings is estimated to be $41.26 per ac-ft and energy savings are measured at an aggregate value of $0.0001586 per BTU (i.e., $0.541 per kwh). In addition, expected values are indicated for the Bureau of Reclamation’s three principal evaluation measures specified in the United States Public Law 106-576 legislation. The aggregate initial construction cost per ac-ft of water savings measure is $157.07 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001777 per BTU ($0.606 per kwh). The ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.80.

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2003-01-01T23:59:59.000Z

198

Economic Impact & Diversity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ECONOMIC IMPACT AND DIVERSITY ECONOMIC IMPACT AND DIVERSITY FOURTH QUARTER STATUS (As of August 10, 2006) Executive Summary: ED is responsible for managing the department's on-going small business programs, Affirmative Action programs, Employee Concerns program, EEO programs, and the Department's Minority Education program. ED serves as the support office for department-wide efforts to broaden and/or diversify the Department's base as it relates to employment, contracting and financial assistance awards. Where we are today: ED finalized the reorganization/restructuring process which reduced the offices within ED from five to three. Along with this process, ED moved the Employee Concerns and Special Emphasis activities and personnel to the Office of Civil Rights and Diversity

199

Economics of geothermal energy  

DOE Green Energy (OSTI)

A selected summary is presented of the resource, technical, and financial considerations which influence the economics of geothermal energy in the US. Estimates of resource base and levelized busbar cost of base load power for several types of geothermal resources are compared with similar estimates for more conventional energy resources. Current geothermal electric power plants planned, under construction, and on-line in the US are noted.

Morris, G.E.; Tester, J.W.; Graves, G.A.

1980-01-01T23:59:59.000Z

200

Energy, Environmental & Economic Systems Analysis  

E-Print Network (OSTI)

Energy, Environmental & Economic Systems Analysis GTMax: A New Deregulated Power Market Analysis Tool Opportunity Decision and Information Sciences Division Center for Energy, Environmental & Economic hourly energy transactions, costs, and revenues. GTMax has a user-friendly geographical information

Kemner, Ken

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

TRANSPORTATION POLICY AND ECONOMIC DEVELOPMENT  

E-Print Network (OSTI)

TRANSPORTATION POLICY AND ECONOMIC DEVELOPMENT: OUR CHOICE FOR THE FUTURE Proceedings from PROCEEDINGS North Dakota's Transportation Network: Our Choice for the Future Program Biographical Sketches PROCEEDINGS Transportation and Economic Development: Our Choice for the Future Program Biographical Sketches

Levinson, David M.

202

Refund for Economic Development (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Refund for Economic Development under the Tax Code for state tax refunds for economic development. Some Texas property owners may be eligible to receive refunds of state sales and use taxes and...

203

One: The California Economic Outlook  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMIC OUTLOOK Christopher Thornberg,signs of having peaked. The outlook for 2006 is dominated by

Thornberg, Christopher

2006-01-01T23:59:59.000Z

204

Economic doctrines and network policy  

Science Conference Proceedings (OSTI)

Disagreements over how to craft Internet policy have become more and more contentious and political. Beyond the technical and engineering aspects are economic questions, and the points of view of various stakeholders and participants on such network ... Keywords: Broadband, Copyright, Doctrines, Economic ideology, Neoclassical economics, Net neutrality, Privacy

Robert D. Atkinson

2011-06-01T23:59:59.000Z

205

Retrofit Air Preheat Economics  

E-Print Network (OSTI)

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can be increased to a range of 89% to 92%. The economic justification for the addition of this equipment is presented in new total investment curves and simple payout curves for a range of fuel cost. This will enable the owner to quickly determine the preliminary feasibility and conceptual requirements for his project before proceeding with more vigorous work.

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

206

Estimation, Economic methodology  

E-Print Network (OSTI)

In this paper I analyse the main strengths and weaknesses of agent-based computational models. I first describe how agent-based simulations can complement more traditional modelling techniques. Then, I rationalise the main theoretical critiques against the use of simulation, which point to the following problematic areas: (i) interpretation of the simulation dynamics, (ii) estimation of the simulation model, and (iii) generalisation of the results. I show that there exist solutions for all these issues. Along the way, I clarify some confounding differences in terminology between the computer science and the economic literature.

Matteo Richiardi; Laboratorio Riccardo; Revelli Centre; Employment Studies; I’m Indebted Francesco Devicienti; Roberto Leombruni; Bruno Contini For Their

2004-01-01T23:59:59.000Z

207

2005 RSE's - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Eileen O'Brien Eileen.O'Brien@eia.doe.gov Survey Manager Phone: (202) 586-1122 FAX: (202) 586-0018 ...

208

Economics of gas from coal  

SciTech Connect

This study deals with three questions: What does gas from coal cost and what affects this cost; How do different approaches and processes compare; and How near to competitive cost-levels is present-day technology. Discussion covers production of both substitute natural gas (SNG) and medium calorific gas (MCG: 10-16 MJ/Nm3 or 250-400 Btu/SCF). Conclusions are that SNG from low-cost U.S. coal and West German brown coal are, on the basis of mature technology and Government rates-of-return, roughly competitive with gas imports into the U.S. and Europe respectively. Similarly MCG from second-generation gasifiers is competitive with gas-oil or No. 2 heating oil in Europe, North America and Japan. However, capital costs form about half total gas costs at 10 percent rate-of-return, so that the competitiveness of gas from coal is sensitive to capital costs: this is the area of greatest uncertainty.

Teper, M.; Hemming, D.F.; Ulrich, W.C.

1983-01-01T23:59:59.000Z

209

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

210

PNNL: Economic Development Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Calendar Events Calendar left arrow January 2014 right arrow Su Mo Tu We Th Fr Sa 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 Scheduled events for January 4, 2014 Calendar contains no events. Past Events 2013 September 20, 2013 - Startup Weekend Tri-Cities January 29, 2013 - PTAC Class: Developing Your Capability Statement January 24, 2013 - Economic Outlook Summit January 23, 2013 - Women in Business Conference January 10, 2013 - Venture Investment and Partnering Forum January 07, 2013 - New Routes for U.S.-Japan Collaboration / Ambassadorial Outreach Tour 2012 November 29, 2012 - Innovation Summit October 18, 2012 - Funding for Startups from the National Cancer Institute October 11, 2012 - Career Fair October 09, 2012 - Understanding Government Contracting Solicitations

211

AND RESOURCE ECONOMICS  

E-Print Network (OSTI)

This report studies the economic impacts of energy policies and climate adaptation generally, and particularly as this relates to employment and innovation. In addition to disseminating original research findings, this study is intended to contribute to policy dialogue and public awareness about environment-economy linkages and sustainable growth. All opinions expressed here are those of the authors and should not be attributed to their affiliated institutions. For this project on Energy Efficiency, Innovation, and Job Creation in California, we express thanks to Next 10, who recognized the importance of this issue for California’s economy and provided essential intellectual impetus and financial support. Thanks are also due for outstanding research assistance by Elliott Deal,

David Roland-holst; Dave Graham-squire; Maryam Kabiri; Fredrich Kahrl; Mehmet Seflek; F. Noel Perry; Morrow Cater; Sarah Henry

2008-01-01T23:59:59.000Z

212

New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981  

DOE Green Energy (OSTI)

A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

Cunniff, R.A.; Ferguson, E.; Archey, J.

1981-07-01T23:59:59.000Z

213

Community Economic Development Business Program (Prince Edward...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Economic Development Business Program (Prince Edward Island, Canada) Community Economic Development Business Program (Prince Edward Island, Canada) Eligibility...

214

ECONOMIC REPORT OF THE PRESIDENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ECONOMIC REPORT ECONOMIC REPORT OF THE PRESIDENT Economic Report of the President | 3 ECONOMIC REPORT OF THE PRESIDENT To the Congress of the United States: Over the past 6 years of economic expansion, the American economy has proven its strength and resilience. Job creation grew uninterrupted for a record period of time, inflation remains moderate, unemployment is low, and productivity continues to grow. The economy is built upon a strong foundation, with deep and sophisticated capital markets, flexible labor markets, low taxes, and open trade and investment policies. Americans should be confident about the long-term strength of our economy, but our economy is undergoing a period of uncertainty, and there are heightened risks to our near-term economic growth. To insure against

215

Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22  

E-Print Network (OSTI)

Initial construction costs and net annual changes in operating and maintenance expenses are identified for a three-component capital renovation project proposed by Hidalgo County Irrigation District No. 2. The proposed project primarily consists of replacing aged mortar-joint pipe in pipeline units I-7A, I-18, and I-22 with new rubber-gasketed, reinforced concrete pipe. Both nominal and real estimates of water and energy savings and expected economic and financial costs of those savings are identified throughout the anticipated useful life for the proposed project. Sensitivity results for the cost of saving water are presented for several important parameters. Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost-of-saving water is estimated to be $385.46 per ac-ft. The calculated economic and financial cost-of-saving energy is estimated to be $0.0010735 per BTU {$3.663 per kwh}. In addition, expected real (vs. nominal) values are provided for the U.S. Bureau of Reclamation’s three principal evaluation measures specified in U.S. Public Law 106-576. The aggregate initial construction cost per ac-ft of water saved measure is $510.92. The aggregate initial construction cost per unit of energy saved measure is $0.0013798 per BTU {$4.708 per kwh}. The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -2.53.

Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

2007-06-01T23:59:59.000Z

216

Economics of Steam Pressure Reduction  

E-Print Network (OSTI)

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper will address the following. 1. Factors that determine the feasibility of reducing the plant steam operating pressure. 2. The operating advantages and disadvantages associated with the decreased steam pressure. 3. The economics of steam pressure reduction. Appropriate visual aids will be utilized as part of the discussion.

Sylva, D. M.

1985-05-01T23:59:59.000Z

217

Economical Desulfurization of Petroleum Coke  

Science Conference Proceedings (OSTI)

Presentation Title, Economical Desulfurization of Petroleum Coke ... " Desulfurization of Petroleum Coke Beyond 1600'C" by Christopher A. Paul of Great Lakes ...

218

Agricultural and Resource Economics Update  

E-Print Network (OSTI)

Europe. It is producing biodiesel from veg- etable oil, fromsuch as Jatropha, for biodiesel. Some industrial forestsfor the production of biodiesel. The econom- ics of algae as

2011-01-01T23:59:59.000Z

219

The Economics of Green Building  

E-Print Network (OSTI)

returns to the investments in green buildings. Section Vproperty investments; the economic premium to green buildinggreen buildings relative to those of comparable high quality property investments,

Eichholtz, Piet; Kok, Nils; Quigley, John M.

2010-01-01T23:59:59.000Z

220

National Reservation Economic Summit (RES)  

Energy.gov (U.S. Department of Energy (DOE))

Sponsored by the National Center for American Indian Economic Development, this annual event will feature 18 dynamic and informative workshops on a range of topics, including agriculture, energy,...

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Economic Recovery Loan Program (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

The Economic Recovery Loan Program provides subordinate financing to help businesses remain viable and improve productivity. Eligibility criteria are based on ability to repay, and the loan is...

222

Agricultural and Resource Economics Update  

E-Print Network (OSTI)

econom- ics of algae as a source of biofuel is dependent onThe future of algae as a source of biofuel will depend on

2011-01-01T23:59:59.000Z

223

Diversity, Institutions and Economic Outcomes  

E-Print Network (OSTI)

GDP growth and social diversity, the economics literature onmush- roomed. 1 Why is social diversity inversely related toand Hideo Owan. 2004. ”Diversity and Pro- ductivity in

Santacreu Vasut, Estefania

2010-01-01T23:59:59.000Z

224

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

225

table4.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Offsite-Produced Fuel Consumption, 2002; Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.6 1.3 2.2 0.7 1.4 1.5 0.6 1 Value of Shipments and Receipts (million dollars) Under 20 1,276 437 15 50 598 W 47 W 97 14.5 20-49 1,258 417 28 22 590 W 112 W 72 6.1 50-99 1,463 401 17 W 731 7 185 W 97 4.9 100-249 2,041 571 43 17 968 8 253 7 175 4.6 250-499 1,962 475 54 W 826 W 326 W 255 5.6 500 and Over 3,971 618 38 W 2,077 37 259 W 607 1.5 Total 11,970

226

table3.3_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption, 2002; Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Net Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.7 1.3 2.1 0.7 1.4 1.5 0.7 0.9 Value of Shipments and Receipts (million dollars) Under 20 1,312 436 15 50 598 W 47 W 132 13.9 20-49 1,465 407 28 22 590 W 112 W 289 6.9 50-99 1,598 394 17 W 731 7 185 W 237 4.5 100-249 2,385 561 43 17 972 8 253 7 525 4.2 250-499 2,598 458 57 W 826 W 326 W 906 5.4 500 and Over 6,914 584 47 21 2,077 55 259 530 3,342 1.5 Total 16,273 2,840

227

table7.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002; 5 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Million Btu. RSE Economic Residual Distillate Natural LPG and Row Characteristic(a) Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 19.67 3.98 7.29 4.91 9.79 2.57 11.3 20-49 16.48 3.64 6.42 4.57 9.97 1.77 6.5 50-99 14.79 4.07 6.53 4.1 7.14 2.11 4.7 100-249 12.72 3.94 6.6 3.74 5.2 1.87 5.5 250-499 11.2 3.46 5.69 3.84 5.97 1.74 4.6 500 and Over 11.64 3.88 5.23 3.48 5.83 1.84 1.7 Total 14.13

228

" Census Region, Census Division, Industry Group, and Selected Industries, 1994"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Electricity and Steam by Type of Supplier," Quantity of Purchased Electricity and Steam by Type of Supplier," " Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,," Electricity",," Steam" ,," (million kWh)",," (billion Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

229

Economical Condensing Turbines?  

E-Print Network (OSTI)

Steam turbines have long been used at utilities and in industry to generate power. There are three basic types of steam turbines: condensing, letdown and extraction/condensing. • Letdown turbines reduce the pressure of the incoming steam to one or more pressures and generate power very efficiently, assuming that all the letdown steam has a use. Two caveats: Letdown turbines produce power based upon steam requirements and not based upon power requirements, and if all the steam letdown does not have a use, letdown turbines can become a very expensive way of producing electric power. • Condensing turbines have the ability to handle rapid swings in electrical load. Unfortunately, they can only condense a small percentage of the steam, usually less than 14%. Therefore only a small percent of the heat of condensation is available for their use. Also equipment must be used to condense the remaining steam below atmospheric pressure. • Extraction/condensing turbines both extract steam at a useful temperature and pressure and then condense the remainder of the steam. These units have the ability to load follow also. They are often used in concert with gas turbines to produce the balance of electrical power and to keep a electric self generator from drawing electrical power from the grid. The method for analyzing the cost of the condensing steam produced power is exactly the same in all cases. This paper will attempt to provide a frame work for preliminary economic analysis on electric power generation for condensing steam turbines.

Dean, J. E.

1997-04-01T23:59:59.000Z

230

Magnetic fusion reactor economics  

SciTech Connect

An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

Krakowski, R.A.

1995-12-01T23:59:59.000Z

231

The composition of a quad of buildings sector energy: Physical, economic, and environmental quantities  

SciTech Connect

In an analysis conducted for the US Department of Energy Office of Building Technologies (OBT), the Pacific Northwest Laboratory examined the fuel type composition of energy consumed in the US buildings sector. Numerical estimates were developed for the physical quantities of fuel consumed, as well as of the fossil fuel emissions (carbon dioxide, sulfur dioxide, nitrogen oxides) and nuclear spent fuel byproducts associated with that consumption. Electric generating requirements and the economic values associated with energy consumption also were quantified. These variables were quantified for a generic quad (1 quadrillion Btu) of primary energy for the years 1987 and 2010, to illustrate the impacts of a fuel-neutral reduction in buildings sector energy use, and for specific fuel types, to enable meaningful comparisons of benefits achievable through various OBT research projects or technology developments. Two examples are provided to illustrate how these conversion factors may be used to quantify the impacts of energy savings potentially achievable through OBT building energy conservation efforts. 18 refs., 6 figs., 16 tabs.

Secrest, T.J.; Nicholls, A.K.

1990-07-01T23:59:59.000Z

232

Competitive economics of nuclear power  

Science Conference Proceedings (OSTI)

Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

Hellman, R.

1981-03-02T23:59:59.000Z

233

Energy, Environmental & Economic Systems Analysis  

E-Print Network (OSTI)

Market Simulations Opportunity Decision and Information Sciences Division Center for EnergyEnergy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place

Kemner, Ken

234

Economic Development | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Success Stories Success Stories Commercialization and Licensing Economic Development Industrial Partnerships Sponsored Research Partnerships Home | Connect with ORNL | For Industry | Partnerships | Success Stories | Economic Development Success Stories Economic Development 1-3 of 3 Results ORNL and Enterprise Center Help Revitalize Chattanooga September 02, 2011 - The Enterprise Center, through its technology-based economic development initiatives, is focused on economic transformation in Chattanooga, Hamilton County, and the Tennessee Valley Corridor region. Seven Companies Selected for ORNL Mentor Protégé Program November 28, 2012 - Seven companies have been selected to participate in the mentor protégé program sponsored by ORNL. The program is a DOE initiative designed to assist energy-related companies in an effort to

235

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

236

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S5.1. Selected Byproducts in Fuel Consumption, 1998;" S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

237

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 2. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources","Row"

238

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ","Coke and"," "," " " "," ",,"Net","Residual","Distillate","Natural Gas(d)"," ","Coal","Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row"

239

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

240

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural ","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2002;" 1 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

242

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Fuel Consumption, 1998;" 2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," "," ","Net","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

243

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2002;" 2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

244

Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Net","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

245

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

246

" Electricity Generation by Census Region, Census Division, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" A6. Total Inputs of Selected Byproduct Energy for Heat, Power, and" " Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," ","Waste"," " " "," "," ","Blast"," "," "," "," ","Oils/Tars","RSE" "SIC"," "," ","Furnace/Coke"," ","Petroleum","Pulping","Wood Chips,","And Waste","Row"

247

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

248

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2002;" 1 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","(million","(million","Other(f)","Row"

249

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel" Nonfuel" " Purposes by Census Region, Industry Group, and Selected Industries, 1994: Part 2" " (Estimates in Trillion Btu) " " "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," ","Residual","Distillate "," "," "," ","Coke "," ","Row" "Code(a)","Industry Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

250

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

251

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ","Coal"," "," " " "," ",,,,"Fuel Oil",,,"(excluding Coal" " "," "," ","Net","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)"," ","RSE"

252

Table A1. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," ",," "," "," "," "," "," "," "," ","RSE" "SIC"," ",,"Net","Residual","Distillate "," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry"," Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

253

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

254

Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","of Energy Sources","Row"

255

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

256

" Electricity Generation by Census Region, Industry Group, and Selected"  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," "," " " "," "," "," "," "," "," "," "," "," "," ","RSE" "SIC"," "," "," ","Residual","Distillate"," "," "," ","Coke"," ","Row" "Code(a)","Industry Groups and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","LPG","Coal","and Breeze","Other(e)","Factors"

257

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

258

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Fuel Consumption, 1998;" 1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ","Net","Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

259

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

260

Table N1.1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" 1. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources and Shipments;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)","LPG and","Coal","Breeze"," ","of Energy Sources","RSE"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Complexity Economics: A Different Framework  

E-Print Network (OSTI)

in the gross profits References Aghion P, Howitt P (1992) A model of growth through creative destruction IV van Dijk TWP (1994) The limits of patent protection. Essays on the Economics of Intellectual

Tesfatsion, Leigh

262

Economic Sustainability and Ecological Compatibility  

E-Print Network (OSTI)

BY JESSICA CLEMENT Economic Sustainability Preserve our current industrial capacity Talk Xcel Corporation 9 Edwards Rich Colorado State Forest Service 10 Edwards Sally Xcel Energy 11 Ewy Don Focused

263

Renewing Economically Distressed American Communities  

E-Print Network (OSTI)

All communities do not fare equally well after recessions and other economic shocks. Some bounce back fairly quickly. Others suffer more and take longer to recover—sometimes decades longer. A sluggish return to growth is ...

Greenstone, Michael

264

Design goals for advanced heat pumps: Engineering economics methodology: Final report  

SciTech Connect

An advanced heat pump (AHP) could make significant improvements in both the seasonal efficiency and peak power demand characteristics of all-electric equipment for space heating and cooling and water heating in residential and small commercial buildings. At the same time, however, the initial cost premium of an AHP must be low enough to make it a competitive offering in the heating and cooling marketplace of the 1990's. An essential step in the research and development process is the evaluation of the economic benefits of alternative AHP candidates. A present, residential electric rates do not provide an adequate basis for measuring such benefits in terms of actual resource utilization, especially with regard to power demand. For this reason, incremental electricity supply costs are developed in this report for typical utilities in different regions of the United States. These costs include both energy and demand charges on an hourly basis. A methodology is established to estimate the hourly kWh consumption of air-source heat pump systems with and without integrated water heating capability and to determine the annual operating cost of these systems based on the incremental electricity supply costs. Alternative design approaches for an AHP are evaluated in this analytical framework in order to determine the cost effectiveness of each approach in each region. Based on a preliminary analysis of a limited number of design alternatives, an air-source heat pump with an Energy Efficiency Ratio at 95/sup 0/F of 11.0 Btu/Wh, with integrated water heating, and in some regions, an adjustable-speed compressor, appears to be the most economic candidate for an AHP.

Petersen, S.R.

1987-06-01T23:59:59.000Z

265

Technical and economic feasibility of utilizing apple pomace as a boiler feedstock  

DOE Green Energy (OSTI)

Apple pomace or presscake, was evaluated for suitability as a boiler feedstock for Michigan firms processing apple juice. Based upon the physical and chemical characteristics of pomace, handling/direct combustion systems were selected to conform with operating parameters typical of the industry. Fresh pomace flow rates of 29,030 and 88,998 kg/day (64,000 and 194,000 lb/day) were considered as representative of small and large processors, respectively, and the material was assumed to be dried to 15% moisture content (wet basis) prior to storage and combustion. Boilers utilizing pile-burning, fluidized-bed-combustion, and suspension-firing technologies were sized for each flow rate, resulting in energy production of 2930 and 8790 kW (10 and 30 million Btu/h), respectively. A life-cycle cost analysis was performed giving Average Annual Costs for the three handling/combustion system combinations (based on the Uniform Capital Recovery factor). An investment loan at 16% interest with a 5-year payback period was assumed. The break-even period for annual costs was calculated by anticipated savings incurred through reduction of fossil-fuel costs during a 5-month processing season. Large processors, producing more than 88,998 kg pomace/day, could economically convert to a suspension-fired system substituting for fuel oil, with break-even occurring after 4 months of operation of pomace per year. Small processors, producing less than 29,030 kg/day, could not currently convert to pomace combustion systems given these economic circumstances. A doubling of electrical-utility costs and changes in interest rates from 10 to 20% per year had only slight effects on the recovery of Average Annual Costs. Increases in fossil-fuel prices and the necessity to pay for pomace disposal reduced the cost-recovery period for all systems, making some systems feasible for small processors. 39 references, 13 figures, 10 tables.

Sargent, S.A.

1983-01-01T23:59:59.000Z

266

Economic viability of biogas technology  

SciTech Connect

Biogas has emerged as a suitable technology for providing alternative and additional sources of energy, especially for rural areas of developing countries. Although the experience gained in China and India established its technological success, social scientists are still involved in the controversial issue of its economic viability. The available literature presents very contradictory situations, ranging between the two extreme poles of high economic viability and nonviability. Such contradictory conclusions are derived since economic benefits from the technology are influenced by a number of factors. A review of the literature reveals that various factors are either not considered, or that the economics have been worked out assuming a very ideal situation, while biogas plants are operating under very different conditions. Using the coal replacement method even as coal is seldom used by villages is only a single example of this approach. In most of the developing countries, rural populations depend mainly on non-commercial fuels like firewood, dungcakes, agricultural wastes and leaves for cooking and heating purposes. Under the present technological limitations, biogas can most commonly be used for cooking and lighting. For testing the economic viability of biogas systems, a number of authors have considered the benefits in terms of savings in traditional fuels. But considering the actual thermal efficiency of different non-commercial fuel items, as well as biogas, it has still be be decided at what point of the market prices of fuel items that the biogas system becomes economically viable and remains viable. The present paper thus reviews different approaches adopted and suggested for working out the economics or the cost-benefit ratio of the biogas technology at the first stage, and then spells out the factors influencing the economic benefits of the technology under various situations, with the help of empirical

Agrawal, S.C.; Agrawal, S.; Khare, O.P.

1983-12-01T23:59:59.000Z

267

14.731 Economic History, Fall 2003  

E-Print Network (OSTI)

A survey of world economic history, designed to introduce economics graduate students to the subject matter and methodology of economic history. Topics chosen to show a wide variety of historical experience and illuminate ...

Temin, Peter

268

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report LBNL Report Number LBNL-1248E Year of Publication 2008 Authors...

269

Advanced Coal Wind Hybrid: Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Coal Wind Hybrid: Economic Analysis Title Advanced Coal Wind Hybrid: Economic Analysis Publication Type Report Year of Publication 2008 Authors Phadke, Amol, Charles A....

270

Economic and Environmental Optimization of Microgrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Environmental Optimization of Microgrids Title Economic and Environmental Optimization of Microgrids Publication Type Presentation Year of Publication 2013 Authors...

271

Attribution of climate forcing to economic sectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Attribution of climate forcing to economic sectors Title Attribution of climate forcing to economic sectors Publication Type Journal Article Year of Publication 2010 Authors Unger,...

272

The Economic Impact of Oil Spills  

U.S. Energy Information Administration (EIA)

Oil spills not only affect environmentally but also economically. The economic impacts are directly or indirectly related to the environmental impacts ...

273

Economic Impact & Diversity (WCF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Impact & Diversity (WCF) Economic Impact & Diversity (WCF) The purpose of the workforce Plan is to provide focus and direction to Human Resources (HR) strategy. This will...

274

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

275

Data Center Economizer Contamination and Humidity Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Data Center Economizer Contamination and Humidity Study Title Data Center Economizer Contamination and Humidity Study Publication Type...

276

Resource & Energy Investment Program - First Peoples Economic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Energy Investment Program - First Peoples Economic Growth Fund Inc. (Manitoba, Canada) Resource & Energy Investment Program - First Peoples Economic Growth Fund Inc....

277

Revolving Economic Development and Initiative (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Revolving Economic Development and Initiative (REDI) provides low interest loans to start-up firms, businesses that are expanding or relocating and local economic development corporations. The...

278

Economic potential of inertial fusion  

SciTech Connect

Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

Nuckolls, J.H.

1984-04-01T23:59:59.000Z

279

Energy Efficiency Economics and Policy  

E-Print Network (OSTI)

Energy efficiency and conservation are considered key means for reducing greenhouse gas emissions and achieving other energy policy goals, but associated market behavior and policy responses have engendered debates in the economic literature. We review economic concepts underlying consumer decisionmaking in energy efficiency and conservation and examine related empirical literature. In particular, we provide an economic perspective on the range of market barriers, market failures, and behavioral failures that have been cited in the energy efficiency context. We assess the extent to which these conditions provide a motivation for policy intervention in energy-using product markets, including an examination of the evidence on policy effectiveness and cost. While theory and empirical evidence suggest there is potential for welfare-enhancing energy efficiency policies, many open questions remain, particularly relating to the extent of some of the key market and behavioral failures.

Kenneth Gillingham; Richard G. Newell; Karen Palmer

2009-01-01T23:59:59.000Z

280

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

282

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

283

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

284

The Economics of Cogeneration Selection  

E-Print Network (OSTI)

The design and choice of a specific cogeneration system is a process of selecting and deciding from numerous alternatives, including the option not to cogenerate. The final system specification is in reality the result of an extensive tradeoff analysis. The reason for performing a thorough tradeoff analysis is to design a cogeneration system that will meet or surpass stated technical, operational and economic criteria. This paper outlines the steps necessary to select the preferred cogeneration system through the use of standard economic evaluation techniques.

Fisk, R. W.; Hall, E. W.; Sweeney, J. H.

1985-05-01T23:59:59.000Z

285

Virginia Coalfield Economic Development Authority (Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) Virginia Coalfield Economic Development Authority (Virginia) < Back Eligibility Commercial Construction Industrial Program Info Start Date 1990 State Virginia Program Type Industry Recruitment/Support Loan Program Public Benefits Fund Provider Virginia Coalfield Economic Development Authority The Virginia Coalfield Economic Development Authority (VACEDA) was created in 1988 to encourage economic development in the western section of the state. The Authority administers incentive and financing programs designed to encourage new job creation and economic diversification, specifically in the electronic information technology, energy, education, and emerging technology sectors. VCEDA provides financial support for fixed assets,

286

Retrofit Sizing and Economics of Air Preheaters and Economizers for Process Heaters and Boilers  

E-Print Network (OSTI)

The conservation of energy in industrial operations is essential to meet national goals. In the short term, conservation is essentially the only option, not only to buy time to develop new reserves and alternative supplies, but also to move toward more efficient use of energy and existing non-renewable resources. We will examine conservation potential oriented to industries in Texas. But since Texas has a substantial segment of the process industries, much of this would be applicable to U.S. industrial operations. Let us first consider the status of industrial energy prior to 1974. Report S/D-10, prepared for the GEAC presents the 1973 energy use by 308 plants of Texas in the categories: petroleum refining, chemical manufacture, pulp and paper, and metal production, and also estimates potential energy savings. The data are presented in Table I. Note that the energy use was 2.46 x 1015 BTU for a production of 291 x 106 tons of product giving an average specific energy consumption (SEC) of 8.4 x 106 BTU/ton of product; and the estimated average potential energy savings falls in 20-30% range. The SEC value is useful in tracking energy conservation in a plant on an individual process as conservation proceeds.

Kumar, A.; Vasquez, R.; Crump, J. R.

1979-01-01T23:59:59.000Z

287

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

288

Variational Inequalities and Economic Equilibrium  

Science Conference Proceedings (OSTI)

Variational inequality representations are set up for a general Walrasian model of consumption and production with trading in a market. The variational inequalities are of functional rather than geometric type and therefore are able to accommodate a ... Keywords: Walrasian economic equilibrium, complementarity problems, equilibrium computations, equilibrium constraints, functional variational inequalities

Alejandro Jofré; R. Terry Rockafellar; Roger J-B. Wets

2007-02-01T23:59:59.000Z

289

ECONOMIC POLICY The State's Tax  

E-Print Network (OSTI)

the solar furnace here on Earth, and to extract energy from plant waste; they are ex- ploring ways to store efficient that they can also power vehicles. As the former chief economist of the World Bank, Nicho- las economic growth. They also offer the only chance to slow down the global rise in temperatures associated

290

Online social networks in economics  

Science Conference Proceedings (OSTI)

This paper describes how economists study social networks. While economists borrow from other fields like sociology or computer science, their approach of modeling of social networks is distinguished by the emphasis on the role of choices under constraints. ... Keywords: Economics, Information transmission, Social networks

Adalbert Mayer

2009-06-01T23:59:59.000Z

291

THE ECONOMICS OF NUCLEAR POWER  

SciTech Connect

Economic aspects of nuclear power development in the U. S. are tabulated and graphed. Included are figures on presently operating reactors as well as those contemplated or scheduled. Also a brief description of the objectives of short- and long-range programs is given as well as tables listing some of the characteristics of each reactor. (J.R.D.)

Lane, J.A.

1959-04-27T23:59:59.000Z

292

Economics of quality of experience  

Science Conference Proceedings (OSTI)

While the recent strong increase of interest in Quality of Experience both in industry and academia has managed to place the end user again into the center of service quality evaluation, corresponding economic implications have not received similar attention ... Keywords: WQL hypothesis, Weber-Fechner law, charging for QoE, telecommunication ecosystem, utility function

Peter Reichl; Bruno Tuffin; Patrick Maillé

2012-01-01T23:59:59.000Z

293

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

294

table5.1_02  

U.S. Energy Information Administration (EIA) Indexed Site

End Uses of Fuel Consumption, 2002; End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.4 1 NF TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6

295

Assessing economic impacts of clean diesel engines. Phase 1 report: U.S.- or foreign-produced clean diesel engines for selected light trucks  

DOE Green Energy (OSTI)

Light trucks' share of the US light vehicle market rose from 20% in 1980 to 41% in 1996. By 1996, annual energy consumption for light trucks was 6.0 x 10{sup 15} Btu (quadrillion Btu, or quad), compared with 7.9 quad for cars. Gasoline engines, used in almost 99% of light trucks, do not meet the Corporate Average Fuel Economy (CAFE) standards. These engines have poor fuel economy, many getting only 10--12 miles per gallon. Diesel engines, despite their much better fuel economy, had not been preferred by US light truck manufacturers because of problems with high NO{sub x} and particulate emissions. The US Department of Energy, Office of Heavy Vehicle Technologies, has funded research projects at several leading engine makers to develop a new low-emission, high-efficiency advanced diesel engine, first for large trucks, then for light trucks. Recent advances in diesel engine technology may overcome the NO{sub x} and particulate problems. Two plausible alternative clean diesel (CD) engine market penetration trajectories were developed, representing an optimistic case (High Case) and an industry response to meet the CAFE standards (CAFE Case). However, leadership in the technology to produce a successful small, advanced diesel engine for light trucks is an open issue between U.S. and foreign companies and could have major industry and national implications. Direct and indirect economic effects of the following CD scenarios were estimated by using the Standard and Poor's Data Resources, Inc., US economy model: High Case with US Dominance, High Case with Foreign Dominance, CAFE Case with US Dominance, and CAFE Case with Foreign Dominance. The model results demonstrate that the economic activity under each of the four CD scenarios is higher than in the Base Case (business as usual). The economic activity is highest for the High Case with US dominance, resulting in maximum gains in such key indicators as gross domestic product, total civilian employment, and federal government surplus. Specifically, the cumulative real gross domestic product surplus over the Base Case during the 2000--2022 period is about $56 x 10{sup 9} (constant 1992 dollars) under this high US dominance case. In contrast, the real gross domestic product gains under the high foreign dominance case would be only about half of the above gains with US dominance.

Teotia, A.P.; Vyas, A.D.; Cuenca, R.M.; Stodolsky, F.

1999-11-02T23:59:59.000Z

296

ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

Richard E. Waryasz; Gregory N. Liljedahl

2004-09-08T23:59:59.000Z

297

ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

Richard E. Waryasz; Gregory N. Liljedahl

2004-09-08T23:59:59.000Z

298

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2011 Institute for Economic and Environmental Studies (IEES), Califo  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

299

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2011 Institute for Economic and Environmental Studies (IEES), Cal  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

300

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2012 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2011 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2011 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

302

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator February 2012 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator February 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

303

Southern California Leading Economic IndicatorSouthern California Leading Economic IndicatorSouthern California Leading Economic IndicatorSouthern California Leading Economic Indicator May 2010 Institute for Economic and Environmental Studies (IEES), Cal  

E-Print Network (OSTI)

Southern California Leading Economic IndicatorSouthern California Leading Economic IndicatorSouthern California Leading Economic IndicatorSouthern California Leading Economic Indicator May 2010 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

304

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2012 Institute for Economic and Environmental Studies (IEES), Califo  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator May 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

305

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2010 Institute for Economic and Environmental Studies (IEES), C  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator November 2010 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

306

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2012 Institute for Economic and Environmental Studies (IEES), Cal  

E-Print Network (OSTI)

Southern California Leading EconomicSouthern California Leading EconomicSouthern California Leading EconomicSouthern California Leading Economic IndicatorIndicatorIndicatorIndicator August 2012 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph

de Lijser, Peter

307

Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery  

Science Conference Proceedings (OSTI)

Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

Jones, Susanne B.; Zhu, Yunhua

2009-04-01T23:59:59.000Z

308

Alleghany Highlands Economic Development Authority (Virginia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alleghany Highlands Economic Development Authority (Virginia) Alleghany Highlands Economic Development Authority (Virginia) Alleghany Highlands Economic Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Enterprise Zone Industry Recruitment/Support Loan Program Public Benefits Fund Provider Alleghany Highlands Economic Development Corporation The Alleghany Highlands Economic Development Authority was created to encourage economic development in the Alleghany Highlands. The Authority provides financial support for the purchase of real estate, construction of

309

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

310

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

311

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

312

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

313

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

314

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

315

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

c Electricity-only and combined-heat-and-power (CHP) ... and electrical system energy losses. ... • Geographic coverage is the 50 states and the Distr ...

316

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1997-Jan : 01/10 : 3.79 : ...

317

Figure 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review October 2013

318

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

319

Table PT2. Energy Production Estimates in Trillion Btu, Minnesota ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

320

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

322

British Thermal Units (Btu) - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

323

ENERGY STAR Challenge for Industry: BTU QuickConverter | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

324

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

1963 54.3 228.1 837.6 0.0 na 10.6 10.6 1,130.6 ... 1976 562.9 339.4 778.1 0.0 na 12.5 12.5 1,692.9 ... 2010 7,658.3 2,521.3 r 308.8 r 0.0 0.9 43.5 r ...

325

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Fossil Fuelsa Nuclear Electric Power Renew-able Energyb Total Imports Exports Net Importsc ... fuel ethanol stock change; and biodiesel stock change and balancing item.

326

POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL  

Science Conference Proceedings (OSTI)

It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

Booz, Allen, and Hamilton, Inc.,

1980-04-01T23:59:59.000Z

327

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

328

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

329

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

330

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

331

Table 2.3 Commercial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

e Conventional hydroelectric power. f Electricity retail sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service ...

332

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

333

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

334

Analysis of drying wood waste fuels with boiler exhaust gases: simulation, performance, and economics  

DOE Green Energy (OSTI)

This study evaluates the feasibility of retrofitting a rotary dryer to a hog fuel boiler, using the boiler exhaust gases as the drying medium. Two simulation models were developed. Each model accurately predicts system performance given site-specific parameters such as boiler steam demand, fue moisture content, boiler exhaust temperature and combustion excess air. Three rotary dryers/hog fuel boilers currently in operation in the forest products industry were analyzed. The data obtained were used to validate te accuracy of the simulation models and to establish the performance of boiler/dryer systems under field conditions. The boiler exhaust temperatures observed ranged from 340 to 500/sup 0/F and indicated that significant drying could be realized at moderate stack temperatures, as substantitated by experimental moisture content data. The simulation models were used to evaluate a general boiler/dryer system's sensitivity to variation in operating conditions. The sensitivity analyses indicated that under moderate conditions (400/sup 0/F boiler exhaust, etc.) the installation of a rotary dryer results in a 15% increase in boiler efficiency and a 13% decrease in fuel consumption. Both the field data and sensitivity analyses indicated that a greater increase in boiler efficiency could be realized at higher stack temperatures, approximately a 30% increase in boiler efficiency for a stack temperature of 600/sup 0/F. The cash flow basis payback periods based on hog fuel savings due to dryer installation ranged from 2.7 years for a used dryer to 3.9 years for a new dryer. The payback periods for equivalent BTU savings of gas and oil ranged from 1.2 to 2.0 for gas and from 1.3 to 2.1 years for oil. This study concludes that retrofitting a rotary dryer to an existing hog fuel boiler is an economically feasible option to the forest products industry. 31 references, 24 figures, 18 tables.

Kirk, R.W.; Wilson, J.B.

1984-09-01T23:59:59.000Z

335

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

336

ULCOS scenarios and economic modeling  

E-Print Network (OSTI)

Modeling activities and scenario building are at the heart of the economic analysis delivered by the ULCOS program. Two main objectives were followed in the framework of SP9. First the modeling team had to provide a set of coherent energy economic scenarios using POLES model. Second, the economic conditions for the emergence of the ULCOS technologies were analyzed. ULCOS contributes to the elaboration of contrasted scenarios that the steel industry could face in the long term. To aim at these objectives specific tools have been used: POLES model for the global energy system modeling and ISIM model for the steel sector based prospective ([1] Hidalgo, 2003). The most promising steel production technologies identified in ULCOS Phase 1 have been introduced into ISIM as generic technologies. ISIM was then integrated as a module into POLES modeling system. The main model outputs are the energy prices and mixes and the steel sector balances with a focus on the technology mix. Actually the climate policy scenarios developped in project allow making recommendations to the steel industry in terms of sustainable development but also in terms of business strategy.

Elie Bellevrat

2009-01-01T23:59:59.000Z

337

Essays in public finance and labor economics  

E-Print Network (OSTI)

This thesis examines three questions of causality relevant to public finance and labor economics: the effect of racial segregation on city characteristics, the effect of divorce on women's economic outcomes, and the effect ...

Ananat, Elizabeth Oltmans

2006-01-01T23:59:59.000Z

338

Economic feasibility of bagasse charcoal in Haiti  

E-Print Network (OSTI)

The economics of implementing bagasse-based charcoal manufacturing in Haiti was investigated. From these main inputs, three different manufacturing economic scenarios were modeled using a simple, dynamic excel spreadsheet. ...

Kamimoto, Lynn K. (Lynn Kam Oi)

2005-01-01T23:59:59.000Z

339

Energy, Environmental, and Economic Systems Analysis  

E-Print Network (OSTI)

Energy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System (EMCAS): A New Long-term Power Market Simulation Tool Opportunity Decision and Information Sciences Division Center for Energy, Environmental & Economic Systems Analysis Energy systems are being privatized

Kemner, Ken

340

Variables Affecting Economic Development of Wind Energy  

DOE Green Energy (OSTI)

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Variables Affecting Economic Development of Wind Energy  

SciTech Connect

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

342

2013 Midyear Economic Forecast Sponsorship Opportunity  

E-Print Network (OSTI)

2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing

de Lijser, Peter

343

Essays on conflict, cooperation and economic development  

E-Print Network (OSTI)

This dissertation consists of three chapters on topics relating to conflict, social cooperation and development economics. Several studies have identified the impact of adverse economic shocks on civil conflict using ...

Ralston, Laura R. (Laura Rosalind)

2013-01-01T23:59:59.000Z

344

Putting Economic Power In Distributed Power t  

U.S. Energy Information Administration (EIA)

Putting Economic Power in Distributed Power. A distributed electricity generation system, often called distributed power, usually consists of ...

345

NREL: Energy Analysis - Jobs and Economic Competitiveness  

NLE Websites -- All DOE Office Websites (Extended Search)

in the global renewable energy market. NREL's economic competitiveness analysis efforts focus on assessing: jobs creation, workforce development needs, manufacturing...

346

Distributed Intelligence for Constructing Economic Models  

Science Conference Proceedings (OSTI)

This paper presents an integrated and distributed intelligent system being capable of automatically estimating and updating large-size economic models. The input-output model of economics uses a matrix representation of a nation's or a region's economy ... Keywords: Distributed Intelligence, Economic Models, Environmental Impact Assessment, Input-Output Tables, Machine Learning, Matrix Estimation, Parallel Optimization

Ting Yu

2010-07-01T23:59:59.000Z

347

Economics, cognitive science and social cognition  

Science Conference Proceedings (OSTI)

I discuss the role of economics in the study of social cognition. A currently popular view is that microeconomics should collapse into psychology partly because cognitive science has shown that valuation is constitutively social, whereas non-psychological ... Keywords: Aggregation, Atomism, Behavioral economics, Economic theory, Sociality

Don Ross

2008-03-01T23:59:59.000Z

348

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis Principal Authors Amol Phadke1 , Charles;Advanced Coal Wind Hybrid: Economic Analysis ii LBNL-1248E Advanced Coal Wind Hybrid: Economic Analysis and Analysis of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. #12;#12;Advanced Coal

349

Cogeneration Economics for Process Plants  

E-Print Network (OSTI)

This paper presents the incentives for cogeneration, describing pertinent legislation and qualification requirements for cogeneration benefits, and indicates the performance and economic characteristics of combined cycle cogeneration applications. The Fuel Use Act (FUA) restricts the use of un-renewable or premium fuels (e.g., natural gas and oil) for high-load-factor or base-load power generation. The Public Utility Regulatory Policy Act (PURPA) encourages high-efficiency cogeneration by providing exemptions to the restrictions and requiring that utilities purchase cogenerated power at rates corresponding to the costs they "avoid" by not generating this power.

Ahner, D. J.

1985-05-01T23:59:59.000Z

350

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

351

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type" Type" " and End Use, 1994: Part 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,"Residual","Distillate",,,"(excluding","RSE" "SIC",,"Net Demand","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code(a)","End-Use Categories","for Electricity(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.5,1.4,1.4,0.8,1.2,1.2 ,"TOTAL INPUTS",3132,441,152,6141,99,1198,2.4

352

" Electricity Generation by Employment Size Categories, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group," " and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.4,1.5,1,0.9,1,1

353

"Table A25 Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Average Prices of Selected Purchased Energy Sources by Census" Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 2" " (Estimates in Dollars per Million Btu)" ,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate"," "," "," ","Row" "Code(a)","Industry Groups and Industry","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","LPG","Coal","Factors" ,,"Total United States" ,"RSE Column Factors:",0.7,0.8,1,2.8,1,0.7 20,"Food and Kindred Products",15.789,2.854,6.064,2.697,7.596,1.433,4.5

354

" Electricity Sales/Transfers Out",96,4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Selected Energy Sources, 1994" " (Estimates in Trillion Btu)" ,,"RSE" ,,"Row" "Selected Energy Sources","Total","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",2105,4 "Natural Gas",6835,3 "Net Electricity",2656,2 " Purchased Electricity",2689,1 " Transfers In",53,4 " Generation from Noncombustible",," " " Renewable Resources",10,10 " Electricity Sales/Transfers Out",96,4 "Coke and Breeze",449,8 "Residual Fuel Oil",490,3

355

Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998  

U.S. Energy Information Administration (EIA) Indexed Site

.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1814,3 "Natural Gas",7426,1 "Net Electricity",3035,1 " Purchases",3044,1

356

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" 5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First Use","Factors" ,"Total United States" "RSE Column Factor:",1 "Coal ",1959,10 "Natural Gas",6468,1.3 "Net Electricity",2840,1.4 " Purchases",2882,1.4

357

Table A37. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" "Total United States" "RSE Column Factors:","NF",0.4,1.6,1.5,0.7,1,1.6,"NF" "TOTAL INPUTS",15027,2370,414,139,5506,105,1184,5309,3 "Boiler Fuel","--","W",296,40,2098,18,859,"--",3.6

358

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

359

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,"Net Demand","Residual","Distillate",,,"(excluding","RSE" "SIC",,"for Electri-","Fuel","Fuel Oil and","Natural",,"Coal Coke","Row" "Code","End-Use Categories","city(b)","Oil","Diesel Fuel(c)","Gas(d)","LPG","and Breeze)","Factors" "20-39","ALL INDUSTRY GROUPS" ,"RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6 ,"TOTAL INPUTS",2799,414,139,5506,105,1184,3 ,"Boiler Fuel",32,296,40,2098,18,859,3.6 ,"Total Process Uses",2244,109,34,2578,64,314,4.1

360

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural Gas(c)","LPG","Breeze)","Other(d)","Factors" ,"Total United States" "RSE Column Factors:"," NF",0.5,1.3,1.4,0.8,1.2,1.2," NF" "TOTAL INPUTS",16515,2656,441,152,6141,99,1198,5828,2.7 "Indirect Uses-Boiler Fuel"," --",28,313,42,2396,15,875," --",4

362

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

363

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

364

Economic Impact of Recovery Act Investments in the Smart Grid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Impact of Recovery Act Investments in the Smart Grid Report (April 2013) Economic Impact of Recovery Act Investments in the Smart Grid Report (April 2013) The Economic...

365

Economics of Current and Future Biofuels  

Science Conference Proceedings (OSTI)

This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

Tao, L.; Aden, A.

2009-06-01T23:59:59.000Z

366

Economic analysis of nuclear reactors  

SciTech Connect

The report presents several methods for estimating the power costs of nuclear reactors. When based on a consistent set of economic assumptions, total power costs may be useful in comparing reactor alternatives. The principal items contributing to the total power costs of a nuclear power plant are: (1) capital costs, (2) fuel cycle costs, (3) operation and maintenance costs, and (4) income taxes and fixed charges. There is a large variation in capital costs and fuel expenses among different reactor types. For example, the standard once-through LWR has relatively low capital costs; however, the fuel costs may be very high if U/sub 3/O/sub 8/ is expensive. In contrast, the FBR has relatively high capital costs but low fuel expenses. Thus, the distribution of expenses varies significantly between these two reactors. In order to compare power costs, expenses and revenues associated with each reactor may be spread over the lifetime of the plant. A single annual cost, often called a levelized cost, may be obtained by the methods described. Levelized power costs may then be used as a basis for economic comparisons. The paper discusses each of the power cost components. An exact expression for total levelized power costs is derived. Approximate techniques of estimating power costs will be presented.

Owen, P.S.; Parker, M.B.; Omberg, R.P.

1979-05-01T23:59:59.000Z

367

Economic and policy implications of pandemic influenza.  

SciTech Connect

Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.

Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.; Brown, Theresa Jean; Warren, Drake E.; Vargas, Vanessa N.

2010-03-01T23:59:59.000Z

368

Cogeneration Economics and Financial Analysis  

E-Print Network (OSTI)

Cogeneration has received much attention as a way to improve the efficiency of energy generation and conversion. This interest has been stimulated by higher energy costs for fuel and electricity as well as economic incentives granted by the federal government for industrial cogeneration. This paper discusses a variety of cogeneration systems applied at specific sites drawn from the major industrial sectors - food, textiles, pulp and paper, chemicals, and petroleum refining. Various technologies are considered. Capital and operating cost estimates are developed for the most promising systems to calculate cash flows and determine return on investment for a industrial ownership options of these facilities. Conclusions summarize the relation between technology, relative electric energy costs, and fuel costs.

Kusik, C. L.; Golden, W. J.; Fox, L. K.

1983-01-01T23:59:59.000Z

369

A State Space Model of the Economic Fundamentals  

E-Print Network (OSTI)

Asset Values and Economic Fundamentals, Economics Department28, Key words: ECONOMIC FUNDAMENTALS Dynamic programming, smodel o f the economic fundamentals. In t h e o r y t h e

Craine, Roger; Bowman, David

1988-01-01T23:59:59.000Z

370

Economic Sector Data for Modeling the Impact of Less Ignition ...  

Science Conference Proceedings (OSTI)

... U S. Department of Agriculture. Economic Researcti Service. National Economics Division Tobacco Outlook and Situation Report. Washington DC. ...

2012-10-27T23:59:59.000Z

371

Canada-Saskatchewan Western Economic Partnership Agreement (Saskatchew...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada-Saskatchewan Western Economic Partnership Agreement (Saskatchewan, Canada) Canada-Saskatchewan Western Economic Partnership Agreement (Saskatchewan, Canada) Eligibility...

372

Community Development Block Grant/Economic Development Infrastructure...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GrantEconomic Development Infrastructure Financing (CDBGEDIF) (Oklahoma) Community Development Block GrantEconomic Development Infrastructure Financing (CDBGEDIF) (Oklahoma) <...

373

Regional variation in solar energy economic performance  

SciTech Connect

The Los Alamos/UNM solar economic performance code (EASE-III) is used to indicate the extent of production function variations as applied to a Trombe wall solar design incorporated in a new home. The economic performance of the solar heated residence is compared to the alternative non-solar home heated by the characteristic conventional fuel of each region. These economic results are used to discuss the impact of subsidy programs.

Brunton, D.; Kirschner, C.; Ben-David, S.; Roach, F.

1981-01-01T23:59:59.000Z

374

Solar economic analysis: an alternative approach  

SciTech Connect

Conventional economic analysis which utilizes the discounted present value criterion is examined from a critical perspective. It is found that this technique has a number of limiting characteristics which contribute to the lack of general usage of economic analysis for evaluating passive solar installations. Within this context an alternative approach is suggested for determining the economic desirability of such investments. This latter method, compound future worth analysis, is found to be both more understandable and flexible.

Thayer, M.A.; Brunton, D.; Noll, S.A.

1979-01-01T23:59:59.000Z

375

Southern California Leading Economic Indicator August 2009 Institute for Economic and Environmental Studies (IEES), California State University Fullerton  

E-Print Network (OSTI)

Southern California Leading Economic Indicator August 2009 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph.D. Department of Economics, California State University Fullerton Institute for Economic and Environmental Studies (IEES

de Lijser, Peter

376

Southern California Leading Economic Indicator February 2008 Institute for Economic and Environmental Studies (IEES), California State University Fullerton  

E-Print Network (OSTI)

Southern California Leading Economic Indicator February 2008 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph.D. Department of Economics, California State University Fullerton Institute for Economic and Environmental Studies (IEES

de Lijser, Peter

377

Southern California Leading Economic Indicator September 2006 Institute for Economic and Environmental Studies (IEES), California State University Fullerton  

E-Print Network (OSTI)

Southern California Leading Economic Indicator September 2006 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph.D. Department of Economics, California State University Fullerton Institute for Economic and Environmental Studies (IEES

de Lijser, Peter

378

Southern California Leading Economic Indicator November 2009 Institute for Economic and Environmental Studies (IEES), California State University Fullerton  

E-Print Network (OSTI)

Southern California Leading Economic Indicator November 2009 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph.D. Department of Economics, California State University Fullerton Institute for Economic and Environmental Studies (IEES

de Lijser, Peter

379

Southern California Leading Economic Indicator February 2010 Institute for Economic and Environmental Studies (IEES), California State University Fullerton  

E-Print Network (OSTI)

Southern California Leading Economic Indicator February 2010 © Institute for Economic and Environmental Studies (IEES), California State University Fullerton Adrian R. Fleissig, Ph.D. Department of Economics, California State University Fullerton Institute for Economic and Environmental Studies (IEES

de Lijser, Peter

380

Economic Improvement Districts (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement Districts (Indiana) Improvement Districts (Indiana) Economic Improvement Districts (Indiana) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Bond Program Industry Recruitment/Support Provider Indiana Economic Development Corporation A legislative body may adopt an ordinance establishing an economic improvement district and an Economic Improvement Board to manage development in a respective district. The Board can choose to issue revenue

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

PERI Green Economics | Open Energy Information  

Open Energy Info (EERE)

PERI Green Economics PERI Green Economics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: PERI Green Economics Agency/Company /Organization: Political Economy Research Institute Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Buildings Phase: Create a Vision, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., Prepare a Plan Resource Type: Publications, Lessons learned/best practices User Interface: Website Website: www.peri.umass.edu/green_economics0/

382

Economic Development Incentive Program (Massachusetts) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) Economic Development Incentive Program (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Massachusetts Program Type Corporate Tax Incentive Provider Office of Business Development The Economic Development Incentive Program (EDIP) is a tax incentive program designed to foster job creation and stimulate business growth throughout the Commonwealth. Participating companies may receive state and

383

Economics and the Ising model - CECM  

E-Print Network (OSTI)

Dec 24, 2003 ... The context of economics renames these variables to mirror features important in the study of social impact. Word of mouth in neighbour ...

384

Sandia National Laboratories: News: Economic Impact  

Sandia National Laboratories has a robust and widespread economic impact. Spending by the Labs exceeds $2 billion a year. Nearly $1 billion goes to the procurement of ...

385

The Economics of Green Building | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

The Economics of Green Building Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

386

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network (OSTI)

Mar 22, 2012 ... Economic and Environmental Analysis of Photovoltaic Energy ... However, their approach is based on a specific net tariff system that was used ...

387

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

388

Data Center Economizer Contamination and Humidity Study  

E-Print Network (OSTI)

on electronic equipment”, ASHRAE Transactions, 97, 455-463.and recently published ASHRAE standards. 2. Economizer useconcentrations still met the ASHRAE standards. However,

Shehabi, Arman

2010-01-01T23:59:59.000Z

389

Essays in Labor and Development Economics  

E-Print Network (OSTI)

of studies on job training and program evaluation in thethe Effect of Training Programs,” Review of Economics andof the Evaluation of Training Programs,” Journal of the

Mutsalklisana, Charles Saharuk

2011-01-01T23:59:59.000Z

390

2012 Reservation Economic Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Summit Indian Energy & Energy Infrastructure to be Showcased at RES 2012 in Las Vegas Glossary of Energy Related Terms 2012 Renewable Energy Technology Conference...

391

NIST Budget, Planning and Economic Studies  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Budget, Planning and Economic Studies. ... Table providing the NIST budget summary for FY 2012 - FY 2014. FY 2013. ...

2013-06-27T23:59:59.000Z

392

Economic Development - Oak Ridge National Laboratory | ORNL  

Economic Development Entrepreneurial Programs. Partnerships staff believes that one of the very best ways to translate ORNL R&D into the commercial marketplace is to ...

393

Mountain Association for Community Economic Development - Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heater Loan Program Mountain Association for Community Economic Development - Solar Water Heater Loan Program Eligibility Commercial Residential Savings For Heating &...

394

NREL: Jobs and Economic Competitiveness - Jobs Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

on understanding how investments in clean energy technology deployment impact jobs creation and economic output at the national, state and community level. NREL's jobs analyses...

395

NETL: U.S. Economic Competitiveness  

NLE Websites -- All DOE Office Websites (Extended Search)

States' dependence on petroleum, a significant fraction of which consists of foreign oil imports, for supplying fuels and chemicals essential to the country's economic...

396

Brownfields Revitalization and Economic Development Program ...  

Open Energy Info (EERE)

icon Twitter icon Brownfields Revitalization and Economic Development Program (South Dakota) This is the approved revision of this page, as well as being the most...

397

Intelligent Economic Alarm Processor (IEAP)  

E-Print Network (OSTI)

The advent of electricity market deregulation has placed great emphasis on the availability of information, the analysis of this information, and the subsequent decision-making to optimize system operation in a competitive environment. This creates a need for better ways of correlating the market activity with the physical grid operating states in real time and sharing such information among market participants. Choices of command and control actions may result in different financial consequences for market participants and severely impact their profits. This work provides a solution, the Intelligent Economic Alarm Processor to be implemented in a control center to assist the grid operator in rapidly identifying the faulted sections and market operation management. The task of fault section estimation is difficult when multiple faults, failures of protection devices, and false data are involved. A Fuzzy Reasoning Petri-nets approach has been proposed to tackle the complexities. In this approach, the fuzzy reasoning starting from protection system status data and ending with estimation of faulted power system section is formulated by Petri-nets. The reasoning process is implemented by matrix operations. Next, in order to better feed the FRPN model with more accurate inputs, the failure rates of the protections devices are analyzed. A new approach to assess the circuit breaker’s life cycle or deterioration stages using its control circuit data is introduced. Unlike the traditional “mean time” criteria, the deterioration stages have been mathematically defined by setting up the limits of various performance indices. The model can be automatically updated as the new real-time condition-based data become available to assess the CB’s operation performance using probability distributions. The economic alarm processor module is discussed in the end. This processor firstly analyzes the fault severity based on the information retrieved from the fault section estimation module, and gives the changes in the LMPs, total generation cost, congestion revenue etc. with electricity market schedules and trends. Then some suggested restorative actions are given to optimize the overall system benefit. When market participants receive such information in advance, they make estimation about the system operator's restorative action and their competitors' reaction to it.

Guan, Yufan

2013-08-01T23:59:59.000Z

398

The Economics of Solar Electricity ?  

E-Print Network (OSTI)

The benefits and costs of increasing solar electricity generation depend on the scale of the increase and on the timeframe over which it occurs. Short-run analyses focus on the cost-effectiveness of incremental increases in solar capacity, holding the rest of the power system fixed. Solar’s variability adds value if its power occurs at high-demand times and displaces relatively carbon-intensive generation. Medium-run analyses consider the implications of non-incremental changes in solar capacity. The cost of each installation may fall through experience effects, but the cost of grid integration increases when solar requires ancillary services and fails to displace investment in other types of generation. Long-run analyses consider the role of solar in reaching twentyfirst century carbon targets. Solar’s contribution depends on the representation of grid integration costs, on the availability of other low-carbon technologies, and on the potential for technological advances. By surveying analyses for different time horizons, this paper begins to connect and integrate a fairly disjointed literature on the economics of solar energy.

Erin Baker; Meredith Fowlie; Derek Lemoine; Stanley S. Reynolds; Erin Baker; Meredith Fowlie; Derek Lemoine; Stanley S. Reynolds

2013-01-01T23:59:59.000Z

399

Clean, economical, underwater (hydrocarbon) storage  

SciTech Connect

A consortium consisting of Howaldtswerke-Deutsche Werft A.G., Phoenix Gummiwerke A.G., Strabag Bau-A.G., and Bugsier Reederei und Bergungs-A.G. offers a plausible solution to the large-scale underwater storage of hydrocarbons. Up to 20 storage compartments of 8000 cu m capacity can be assembled for a capacity of 160,000 cu m. Each compartment is divided in half by a nylon-reinforced polyurethane diaphragm which isolates oil or other products on one side from sea-water ballast on the other side. As oil is pumped into storage on one side of the diaphragm, the diaphragm moves and ballast on the other side is displaced to the sea. Ballast re-enters the compartment during unloading. The system can enable small offshore platforms to produce more economically. Cargo tankers load at 8000 cu m/hr. The tanks will be used in 200 m or greater water depths. The loading station is installed in a buoy 30 m below the water surface.

1978-08-01T23:59:59.000Z

400

Tennessee Business and economic ouTlook  

E-Print Network (OSTI)

Business and Economic Outlook -- 1 The U.S. Forecast introduction Economic conditions continue to deteriorate, raising concerns about a potentially deeper and more prolonged downturn. Throughout 2007 as oil business cycle. Even seemingly positive news loses its luster when one probes beneath the surface. Export

Tennessee, University of

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Economic Development Impacts of 20% Wind (Poster)  

SciTech Connect

Meeting 20% of the nation's electricity demand with wind energy will require enourmous investment in wind farms, manufacturing, and infrastructure. This investment will create substantial economic development impacts on local, regional, and national levels. This conference poster for Windpower 2007 outlines the various economic development impacts from a 20% wind scenario.

Kelly, M.; Tegen, S.

2007-06-01T23:59:59.000Z

402

Workshop on internet economics (WIE2011) report  

Science Conference Proceedings (OSTI)

The second Workshop on Internet Economics [2], hosted by CAIDA and Georgia Institute of Technology on December 1-2, 2011, brought together network technology and policy researchers with providers of commercial Internet facilities and services (network ... Keywords: economics, internet, network management

kc claffy

2012-03-01T23:59:59.000Z

403

ECONOMIC IMPACT OF CENTURY ALUMINUM OF  

E-Print Network (OSTI)

that supported nearly 1,600 jobs and $111 million in employee compensation. This report documents the economic. The economic impacts estimated in this report are business volume, employee compensation, employment's presence in the state in 2007 generated a total business volume impact in excess of $579 million

Mohaghegh, Shahab

404

Economic load dispatch using improved harmony search  

Science Conference Proceedings (OSTI)

This paper presents the use of the improved harmony search method for solving economic load dispatch problems. The harmony search method mimics a jazz improvisation process by musicians in order to seek a fantastic state of harmony. To assess the searching ... Keywords: adaptive tabu search, economic dispatch, evolutionary programming, genetic algorithms, particle swarm optimization

T. Ratniyomchai; A. Oonsivilai; P. Pao-La-Or; T. Kulworawanichpong

2010-04-01T23:59:59.000Z

405

Jobs and Economic Development Impacts (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the Jobs and Economic Development Benefits model. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the Jobs and Economic Development Benefits model section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

406

Bureau of Business and Economic Research College of Business and Economics  

E-Print Network (OSTI)

market, health, economic development, industry analysis, public finance, forecasting and other related research areas. More information about the BBER can be found at www.bber.wvu.edu. Responsibilities in economics or resource economics with specialization in regional, health, public finance, energy, public

Mohaghegh, Shahab

407

World Economic Forum | Open Energy Information  

Open Energy Info (EERE)

World Economic Forum World Economic Forum Jump to: navigation, search Logo: The World Economic Forum (WEF) Name The World Economic Forum (WEF) Address World Economic Forum Switzerland 91-93 route de la Capite, CH-1223 Cologny/Geneva Switzerland Year founded 1971 Website http://www.weforum.org Coordinates 46.2169537°, 6.18583° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.2169537,"lon":6.18583,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Building Energy Software Tools Directory: Photovoltaics Economics  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics Economics Calculator Photovoltaics Economics Calculator Web-based tool which allows you to describe your solar system in detail and provides a detailed breakdown of what sort of power you'll get out of it and how economical of a investment the system will be. It uses the TMY2 solar data from the NREL Renewable Resource Data Center. This calculator allows users to customize their setup, providing greater feedback on how much power is provided when, and most importantly, a detailed economics breakdown of how the investment works out. It also keeps track of battery charge states for off-grid users. Screen Shots Keywords solar, photovoltaic, economics Validation/Testing Validated against PVWatts, a widely recognized solar power output calculator. When given the exact same conditions, power production is

409

Economic evaluation of smart well technology  

E-Print Network (OSTI)

The demand of oil and gas resources is high and the forecasts show a trend for higher requirements in the future. More unconventional resource exploitation along with an increase in the total recovery in current producing fields is required. At this pivotal time the role of emerging technologies is of at most importance. Smart or intelligent well technology is one of the up and coming technologies that have been developed to assist improvements in field development outcome. In this paper a comprehensive review of this technology has been discussed. The possible reservoir environments in which smart well technology could be used and also, the possible benefits that could be realized by utilizing smart well technology has been discussed. The economic impact of smart well technology has been studied thoroughly. Five field cases were used to evaluate the economics of smart well technology in various production environments. Real field data along with best estimate of smart well technology pricings were used in this research. I have used different comparisons between smart well cases and conventional completion to illustrate the economic differences between the different completion scenarios. Based on the research, I have realized that all the smart well cases showed a better economic return than conventional completions. The offshore cases showed a good economic environment for smart well technology. Large onshore developments with smart well technology can also provide a lucrative economic return. These situations can increase the overall economic return and ultimate recovery which will assist in meeting some of the oil demand around the globe.

Al Omair, Abdullatif A.

2003-05-01T23:59:59.000Z

410

HTGR Application Economic Model Users' Manual  

SciTech Connect

The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

A.M. Gandrik

2012-01-01T23:59:59.000Z

411

Dan Miller Associate, Industrial and Economic Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Name, Phone, e-mail address Name, Phone, e-mail address Dan Miller Associate, Industrial and Economic Development Dan Miller joined Oak Ridge National Laboratory in January, 2010 as an Associate in Industrial Partnerships and Economic Development. His responsibilities include leading and supporting initiatives in the energy storage portfolio focused on technology commercialization, economic development, and industrial partnerships. He also manages ORNL's relationships with companies involved in the Oak Ridge Science & Technology Park and is actively recruiting additional companies to locate there. Prior to joining ORNL, Dan was a Licensing Associate in Rice University Office of Technology Transfer, where he managed the patent portfolio of the university's physical science technologies.

412

Data Center Economizer Contamination and Humidity Study  

SciTech Connect

Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE standards. However, concentration were still above the levels measured in data centers that do not use economizers (3) Current filtration in data centers is minimal (ASHRAE 40%) since most air is typically recycled. When using economizers, modest improvements in filtration (ASHRAE 85%) can reduce particle concentrations to nearly match the level found in data centers that do not use economizers. The extra cost associated with improve filters was not determined in this study. (4) Humidity was consistent and within the ASHRAE recommended levels for all data centers without economizers. Results show that, while slightly less steady, humidity in data centers with economizers can also be controlled within the ASHRAE recommended levels. However, this control of humidity reduces energy savings by limiting the hours the economizer vents are open. (5) The potential energy savings from economizer use has been measured in one data center. When economizers were active, mechanical cooling power dropped by approximately 30%. Annual savings at this center is estimated within the range of 60-80 MWh/year, representing approximately a 5% savings off the mechanical energy load of the data center. Incoming temperatures and humidity at this data center were conservative relative to the ASHRAE acceptable temperature and humidity ranges. Greater savings may be available if higher temperature humidity levels in the data center area were permitted. The average particle concentrations measured at each of the eight data center locations are shown in Table 1. The data centers ranged in size from approximately 5,000 ft{sup 2} to 20,000 ft{sup 2}. The indoor concentrations and humidity in Table 1 represents measurements taken at the server rack. Temperature measurements at the server rack consistently fell between 65-70 F. The Findings section contains a discussion of the individual findings from each center. Data centers currently operate under very low contamination levels. Economizers can be expected to increase the particle concentration in data centers, but the increase appears to still be

Shehabi, Arman; Tschudi, William; Gadgil, Ashok

2007-03-06T23:59:59.000Z

413

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

414

Table A39. Total Expenditures for Purchased Electricity and Steam  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Expenditures for Purchased Electricity and Steam" 9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic Characteristics(a)","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors" ,"Total United States" "RSE Column Factors:",0.3,2,1.6,1.2

415

Table A19. Components of Total Electricity Demand by Census Region and  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region and" Components of Total Electricity Demand by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,1.4,1.3,1.9,0.5 "Value of Shipments and Receipts" "(million dollars)"

416

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

417

Community Economic Analysis Guide | Open Energy Information  

Open Energy Info (EERE)

Community Economic Analysis Guide Community Economic Analysis Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Community Economic Analysis How-to manual Agency/Company /Organization: R. Hustedde, R. Shaffer, G. Pulver Phase: Create a Vision, Determine Baseline User Interface: Website Website: www.epa.gov/greenkit/pdfs/howto.pdf 100 page manual on how to analyze a community's economy. Useful for those not interested in building a detailed model. Retrieved from "http://en.openei.org/w/index.php?title=Community_Economic_Analysis_Guide&oldid=332592" Categories: Tools Community Energy Tools What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

418

Economizers; a Field Perspective and Case Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Economizers; a Field Perspective and Case Studies Economizers; a Field Perspective and Case Studies Speaker(s): David Sellers Date: January 18, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Liping Wang Economizers are a common HVAC process with the potential to deliver significant energy savings by using outdoor air cooling to offset internal loads. But evidence from the field suggests that their track record is not good in terms of delivering those savings. This talk will provide a field perspective on some of the issues behind the poor track record, frequently illustrated with mini-case studies, and will conclude with a case study of a dysfunctional economizer in a cold environment and how the problem it was having was corrected by applying some of the concepts discussed earlier in the talk

419

EIA - AEO2010 - Trends in Economic Activity  

Gasoline and Diesel Fuel Update (EIA)

Trends in Economic Activity Trends in Economic Activity Annual Energy Outlook 2010 with Projections to 2035 Trends in Economic Activity Real gross domestic product returns to its pre-recession level by 2011 AEO2010 presents three views of economic growth (Figure 31). The rate of growth in real GDP depends on assumptions about labor force growth and productivity. In the Reference case, growth in real GDP averages 2.4 percent per year. Figure 31. Average annual growth rates of real GDP, labot force, and productivity in three cases, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 32. Average annual inflation, interest, and unemployment rates in three cases, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 33. Sectoral composition of industrial output growth rates in three cases, 2008-2035

420

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Wind Research - Analyzing Economic Development Through...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analyzing Economic Development Through Wind Power July 22, 2013 Audio with Audio with Eric Lantz, NREL Senior Research analyst (MP3 3.0 MB). Download Windows Media Player. Time:...

422

Puerto Rico- Economic Development Incentives for Renewables  

Energy.gov (U.S. Department of Energy (DOE))

The 2008 Economic Incentives for the Development of Puerto Rico Act (EIA) provides a wide array of tax incentives and credits that enable local and foreign companies dedicated to certain business...

423

Passive solar economics in 15 northwest locations  

DOE Green Energy (OSTI)

The economic performance of Trombe wall and direct gain passive solar heating designs are evaluated using the LASL/UNM solar economic performance code. Both designs are integrated into a ranch style tract home concept thereby facilitating intra-regional comparison. The economic performance of these systems is evaluated for 15 sites in the Northwest region. Space heating loads have been locally specified. System sizes have been optimized against the natural gas and electric resistance heating alternatives, the current price and future escalation of which is established for each locale. Sensitivity analysis is conducted to determine the maximum competitive add-on costs for each system under a specified set of energy price, solar performance and economic conditions.

Kirschner, C.; Ben-David, S.; Roach, F.

1979-08-10T23:59:59.000Z

424

Essays on genetic variation and economic behavior  

E-Print Network (OSTI)

This thesis is a collection of papers in which behavior genetic methods are used to shed light on individual differences in economic preferences, behaviors and outcomes. Chapter one uses the classical twin design to provide ...

Cesarini, David Alexander

2010-01-01T23:59:59.000Z

425

Megacities : sustainability, transport, and economic development  

E-Print Network (OSTI)

The connections between sustainability, transport, and economic development are and will remain essential in the governance of cities. Sustainability concepts include valuing and preserving the earth's resources so that ...

Tobias, Justin Charles, 1980-

2005-01-01T23:59:59.000Z

426

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Coal prices have been far less volatile than natural gas prices.Coal Prices Figure 9 is similar to Figure 8 except the natural gas pricesCoal Wind Hybrid: Economic Analysis interested in natural gas prices

Phadke, Amol

2008-01-01T23:59:59.000Z

427

Coal mining technology, economics and policy 1989  

SciTech Connect

This book contains papers reported on a conference on Coal Mining Technology, Economics and policy 1989. Topics covered include: automation and controls; coal policy; coal preparation; Environment; and Management.

Not Available

1989-01-01T23:59:59.000Z

428

The economics of investing in green buildings  

E-Print Network (OSTI)

This thesis discusses economics of green buildings. The need to reduce greenhouse gases emissions became clear. Buildings account for a large part of the greenhouse gases emissions, changing the atmosphere's composition. ...

Rizk, Charbel Maroun

2010-01-01T23:59:59.000Z

429

Data Center Economizer Contamination and Humidity Study  

E-Print Network (OSTI)

published ASHRAE standards. 2. Economizer use caused sharp increases in particle concentrations when, the annual average concentrations still met the ASHRAE standards. However, concentration were still above is minimal (ASHRAE 40%) since most air is typically r

430

Essays in public economics and political economy  

E-Print Network (OSTI)

This thesis studies topics in public economics in developed and developing countries, including health insurance regulation, public goods provision and inequality and welfare measurement. The first chapter analyzes the ...

Pinkovskiy, Maxim L

2013-01-01T23:59:59.000Z

431

Economic assessment of CO? capture and disposal  

E-Print Network (OSTI)

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

432

Taking Economics Seriously in US Energy Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Taking Economics Seriously in US Energy Policy Speaker(s): Severin Borenstein Date: October 22, 2009 - 12:00pm Location: 90-3122 Description: From environmental externalities, to...

433

Publication Price Quantity Total Economic Outlook Studies  

E-Print Network (OSTI)

to Work in WV 2010 20.00$ $ Other Studies >> The Economic Impact of the Natural Gas Industry and the Marcellus Shale Development in West Virginia in 2009 20.00$ ___________ >> Consensus Coal Production

Mohaghegh, Shahab

434

Malaysia: economic transformation advances oil palm industry  

Science Conference Proceedings (OSTI)

Malaysia is currently the world’s largest exporter of palm oil although it is the second-largest producer of the oil after neighboring Indonesia. Malaysia: economic transformation advances oil palm industry Inform Magazine Biofuels and Bioproducts and Bi

435

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network (OSTI)

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery.

Kinnier, R. J.

1979-01-01T23:59:59.000Z

436

Economic characteristics of a smaller, simpler reactor  

SciTech Connect

Reduced load growth and heightened concern with economic risk has led to an expressed utility preference for smaller capacity additions. The Modular High Temperature Reactor (MHTGR) plant has been developed as a small, simple plant that has limited financial risk and is economically competitive with comparatively sized coal plants. Competitive economics is achieved by the simplifications made possible in a small MHTGR, reduction in the quantity of nuclear grade construction and design standardization and certification. Assessments show the MHTGR plant to have an economic advantage over coal plants for plant sizes from 270 MWe to 1080 MWe. Financial risk is limited by small unit sizes and short lead times that allow incremental deployment. Evaluations show the MHTGR incremental deployment capability to reduce negative cash flows by almost a factor of 2 relative to that required by a single large nuclear plant.

LaBar, M.; Bowers, H.

1988-01-01T23:59:59.000Z

437

Essays on contract theory and behavioral economics  

E-Print Network (OSTI)

This thesis is a collection of essays on contract theory and behavioral economics. Chapter 1 proposes a model of choice under risk based on imperfect memory and self-deception. The model assumes that people have preferences ...

Gottlieb, Daniel, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

438

Technical Demonstration and Economic Validation of Geothermally...  

Open Energy Info (EERE)

in Texas and the Gulf Region, creating a strong stimulus for economic growth and job creation while also enhancing U.S. energy security, providing a new option for states to...

439

Economic Development Project Districts (Indiana) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

may petition legislative bodies to designate economic development project districts in cities with populations between 80,500 and 500,000. Such districts may be established if it...

440

Techno-Economics & Life Cycle Assessment (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

Dutta, A.; Davis, R.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Essays in the theory of economic growth  

E-Print Network (OSTI)

This thesis is a collection of three theoretical essays on institutions and economic growth. Chapter 1 considers a particular institution: ethnicity. Ethnic, religious and tribal divisions are empirically associated with ...

Lester, Ashley

2005-01-01T23:59:59.000Z

442

Essays in development economics and political economy  

E-Print Network (OSTI)

This thesis is a collection of three empirical essays on issues in economic development, with a focus ,on political economy and the labor market in India. Chapter 1] analyzes the effect of television coverage on political ...

Datta, Saugato

2007-01-01T23:59:59.000Z

443

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

at the bottom of the “Gasifier_Economics” tab.     Finally, to as a directly heated gasifier.  Control of the  movement in a directly heated gasifier can be problematic.   In 

Cattolica, Robert

2009-01-01T23:59:59.000Z

444

2010 Sandia Economic Impact on New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Sandia Economic Impact on New Mexico 2010 data is based on Sandia's fiscal year beginning 100109 and ending 93010. While Sandia spends a large portion of its funding...

445

International Journal of Energy Economics and Policy  

NLE Websites -- All DOE Office Websites (Extended Search)

Journal of Energy Economics and Policy Journal of Energy Economics and Policy Vol. 3, No. 1, 2013, pp.60-74 ISSN: 2146-4553 www.econjournals.com 60 Carbon Emissions Caps and the Impact of a Radical Change in Nuclear Electricity Costs Benjamin D. Leibowicz Management Science and Engineering Department, Stanford University, United States. Email: bleibowicz@stanford.edu Maria Roumpani Management Science and Engineering Department,

446

Wind Energy and Economic Development in Nebraska  

SciTech Connect

This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

Lantz, E.

2009-06-01T23:59:59.000Z

447

An inverse theorem on 'economic' maps  

SciTech Connect

We prove that the bound from the theorem on 'economic' maps is best possible. Namely, for m>n+d we construct a map from an n-dimensional simplex to an m-dimensional Euclidean space for which (and for any close map) there exists a d-dimensional plane whose preimage has cardinality not less than the upper bound [(dn+n+1)/(m-n-d)]+d from the theorem on 'economic' maps. Bibliography: 16 titles.

Bogataya, Svetlana I; Bogatyi, Semeon A; Kudryavtseva, Elena A

2012-04-30T23:59:59.000Z

448

Rethinking the economics of global warming  

SciTech Connect

Most of the debates over the impact of the greenhouse effect have centered around the reliability of computer models and have neglected considerations of the economic effects of attempts to reduce global warming. Economic models have certain limitations but the input of cost benefit analysis is needed for arriving at suitable policies for lowering anthropogenic input into warming of the earth. Care must be used in extrapolating from data of time periods which are inappropriate. Estimates of costs of reducing greenhouse-gas emissions also must include possible benefits; at present this is not being done. Economic models must address differences in the distribution of global warming's consequences over time and geographical space. The costs of delaying or accelerating reduction in greenhouse-gas emissions need to be included in policy considerations. A global agreement must not adversely affect developing countries. Faulty assumptions of the effect of market forces on costs impair economic models. We have to recognize that economic and environmental goals need not be incompatible. If economic models are viewed as possible scenarios and not as predictions, then these scenarios can be useful in determining policies for reducing the greenhouse effect without harming populations and their economies.

Miller, A.; Mintzer, I.; Brown, P.G. (Univ. of Maryland, College Park (USA))

1990-01-01T23:59:59.000Z

449

FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)  

DOE Green Energy (OSTI)

The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

2001-11-01T23:59:59.000Z

450

The Rise and Fall of Economic History at MIT  

E-Print Network (OSTI)

This paper recalls the unity of economics and economics at MIT before the Second World War, and their divergence thereafter. Economic history at MIT reached its peak in the 1970s with three teachers of the subject to ...

Temin, Peter

2013-06-05T23:59:59.000Z

451

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 1" " (Estimates in Trillion Btu)",," ",,,,,,," "," "," " ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE"

452

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

453

" Electricity Generation by Employment Size Categories, Industry Group, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Consumption of Offsite-Produced Energy for Heat, Power, and" Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Employment Size Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,,"Employment Size(b)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," ",,,,,"1,000","Row" "Code(a)","Industry Groups and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors"," "," "," "," "," "," "

454

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " ",," ","Distillate"," "," ","Coal"," " " ",,,"Fuel Oil",,,"(excluding Coal" " ","Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)","RSE" " ","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Row"

455

Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

456

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2002;" 2 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

457

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

458

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

459

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

460

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002;" 8 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " ",," ","Distillate"," "," ",," " " ","Net Demand",,"Fuel Oil",,,"Coal","RSE" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Factors"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

1 End Uses of Fuel Consumption, 2002;" 1 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal" " "," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Row"

462

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. End Uses of Fuel Consumption, 1998;" 3. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " "," ",,,"Fuel Oil",,,"(excluding Coal" " "," ","Net Demand","Residual","and","Natural Gas(d)","LPG and","Coke and Breeze)","RSE" "NAICS"," ","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","NGL(e)","(million","Row"

463

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

464

Table A38. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

1" 1" " (Estimates in Btu or Physical Units)",,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors" "20-39","ALL INDUSTRY GROUPS"

465

" by Type of Supplier, Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Average Prices of Purchased Electricity and Steam" 3. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Dollars per Physical Units)" ,," Electricity",," Steam" ,," (kWh)",," (million Btu)" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and Industry","Supplier(b)","Supplier(c)","Supplier(b)","Supplier(c)","Factors"

466

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Offsite-Produced Fuel Consumption, 2002;" 2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," ","Row" "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","and Breeze","Other(f)","Factors"

467

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 1. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(c)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","NGL(d)","(million","(million","Other(e)","Row"

468

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

469

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

470

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," "," ",," ","Distillate"," "," ",," "," " " "," ",,,,"Fuel Oil",,,"Coal",,"RSE" "NAICS"," "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)","Factors"

471

" Row: NAICS Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002;" 6 Quantity of Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity","Fuel Oil","Fuel Oil(b)"," Gas(c)","NGL(d)","(million","(million ","Other(e)","Row"

472

Table A12. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Type and End Use," Type and End Use," " 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,,"for","Residual","and","Natural Gas(d)",,"and Breeze)","RSE" "SIC",,"Electricity(b)","Fuel Oil","Diesel Fuel(c)","(billion","LPG","(1000 short","Row" "Code(a)","End-Use Categories","(million kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","tons)","Factors"

473

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

474

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" 2. Nonfuel (Feedstock) Use of Combustible Energy, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "SIC"," "," ","Residual","Distillate",,"LPG and",,"Coke"," ","Row" "Code(a)","Major Group and Industry","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","and Breeze","Other(e)","Factors"

475

" Row: Selected SIC Codes; Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

S4.1. Offsite-Produced Fuel Consumption, 1998;" S4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

476

" Row: NAICS Codes (3-Digit Only); Column: Energy Sources;"  

U.S. Energy Information Administration (EIA) Indexed Site

N4.1. Offsite-Produced Fuel Consumption, 1998;" N4.1. Offsite-Produced Fuel Consumption, 1998;" " Level: National Data; " " Row: NAICS Codes (3-Digit Only); Column: Energy Sources;" " Unit: Physical Units or Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,"Coke" " "," "," ",,"Residual","Distillate","Natural Gas(d)","LPG and","Coal","and Breeze"," ","RSE" "NAICS"," ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","NGL(e)","(million","(million","Other(f)","Row"

477

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3 End Uses of Fuel Consumption, 2002;" 3 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" " "," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","RSE" "NAICS"," ","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Row"

478

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

479

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

480

" and Electricity Generation by Census Region, Census Division, Industry Group,"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," 3. Total Inputs of Selected Wood and Wood-Related Products for Heat, Power," " and Electricity Generation by Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Billion Btu)" ,,,,"Selected Wood and Wood-Related Products" ,,,,,"Biomass" " "," ",," "," "," ","Wood Residues","Wood-Related"," " " "," ","Pulping Liquor",," ","Wood Harvested","and Byproducts","and","RSE" "SIC"," ","or","Biomass","Agricultural","Directly","from","Paper-Related","Row"

Note: This page contains sample records for the topic "btu rse economic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2002;" 4 End Uses of Fuel Consumption, 2002;" " Level: National Data; " " Row: End Uses within NAICS Codes;" " Column: Energy Sources, including Net Demand for Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " "," ","Net Demand",,"Fuel Oil",,,"Coal","RSE" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal","Row" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Gas(d)","NGL(e)","Coke and Breeze)","Factors"

482

" by Census Region, Census Division, Industry Group, Selected Industries, and"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 1" " (Estimates in Trillion Btu)" ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," "," "," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE",," " "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

483

Trust: Economic Notions and its role in Money and Banking.  

E-Print Network (OSTI)

??This thesis has two aims; to explore the economic notions of trust to develop a coherent understanding of trust within economics and to apply this… (more)

Hughes, Peter T.

2010-01-01T23:59:59.000Z

484

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Model The Jobs and Economic Development Impacts (JEDI) Coal model allows the user to estimate economic development impacts from coal power generation projects. Applying a...

485

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind...

486

U.S. Energy Secretary Bodman Highlights the Economic Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Energy Secretary Bodman Highlights the Economic Incentives of Energy Efficiency at the Pittsburgh Energy Summit 2006 U.S. Energy Secretary Bodman Highlights the Economic...

487

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

488

Web-Based Economic and Environmental Optimization of Microgrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Web-Based Economic and Environmental Optimization of Microgrids Title Web-Based Economic and Environmental Optimization of Microgrids Publication Type Conference Paper LBNL Report...

489

Energy Storage Systems 2007 Peer Review - Economics Presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economics Presentations Energy Storage Systems 2007 Peer Review - Economics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September...

490

Economic Evaluation of Climate Change Adaptation Projects: Approaches...  

Open Energy Info (EERE)

Economic Evaluation of Climate Change Adaptation Projects: Approaches for the Agricultural Sector and Beyond Jump to: navigation, search Tool Summary Name: Economic Evaluation of...

491

About Fermilab | Fermilab Fact Sheets | Archives | Economic Impacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Impacts Economic Impact FY2010 FY2009 FY2008 FY2007 Procurement Distribution Payroll by Zip Code last modified 0207...

492

Reassessing Wind Potential Estimates for India: Economic and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reassessing Wind Potential Estimates for India: Economic and Policy Implications Title Reassessing Wind Potential Estimates for India: Economic and Policy Implications Publication...

493

Sandia National Laboratories: Sandia/California Economic Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

SandiaCalifornia Economic Impact Summary Making an impact Sandia generates nearly 1 billion in economic output in California with nearly half coming from the San Francisco Bay...

494

White House Council of Economic Advisers and Energy Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters White House Council of Economic Advisers...

495

NREL: Jobs and Economic Development Impacts (JEDI) Models - About...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine & Hydrokinetic Power Model The Jobs and Economic Development Impacts (JEDI) Marine and Hydrokinetic (MHK) model allows users to estimate economic development impacts from...

496

NREL Report Highlights Positive Economic Impact and Job Creation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home NREL Report Highlights Positive Economic Impact and Job Creation from 1603 Renewable Energy Grant Program NREL Report Highlights Positive Economic...

497

Energy Implications of Economizer Use in California Data Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

Us Department Contacts Media Contacts Energy Implications of Economizer Use in California Data Centers Title Energy Implications of Economizer Use in California Data Centers...

498

Can combining economizers with improved filtration save energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Media Contacts Can combining economizers with improved filtration save energy and protect equipment in data centers? Title Can combining economizers with...

499

Economic resource allocation in system simulation and control design  

E-Print Network (OSTI)

to an economic simulation problem(ESP)[32]. This chapter isan economic design problem ( ESP)[32]. A particularly simplesimulation problem (ESP) as designing the simulation of a

Li, Faming

2006-01-01T23:59:59.000Z

500

Resource and Energy Investment Program - First Peoples Economic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource and Energy Investment Program - First Peoples Economic Growth Fund Inc. (Manitoba, Canada) Resource and Energy Investment Program - First Peoples Economic Growth Fund Inc....