National Library of Energy BETA

Sample records for btu rse economic

  1. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value

  2. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and

  3. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 6.3;" " Unit: Percents." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" "

  4. " of Supplier, Census Region, Census Division, and Economic Characteristics"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Electricity and Steam by Type" " of Supplier, Census Region, Census Division, and Economic Characteristics" " of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ," Electricity",," Steam" ," (million kWh)",," (billion Btu)" ,,,,,"RSE" " ","Utility","Nonutility","Utility","Nonutility","Row" "Economic

  5. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand

  6. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  7. Btu)","per Building

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Number of Buildings (thousand)","Floorspace (million square feet)","Floorspace per Building (thousand square feet)","Total (trillion Btu)","per Building (million Btu)","per...

  8. First BTU | Open Energy Information

    Open Energy Info (EERE)

    that is consumed by the United States.3 References First BTU First BTU Green Energy About First BTU Retrieved from "http:en.openei.orgwindex.php?titleFirstBT...

  9. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  10. Re: NBP RFI: CommunicationRse quirements | Department of Energy

    Energy Savers [EERE]

    CommunicationRse quirements Re: NBP RFI: CommunicationRse quirements Pepco Holdings, Inc. (PHI) is pleased to respond to the U.S Department of Energy request for comments regarding the communications requirements of electric utilities deploying the Smart Grid. PDF icon Re: NBP RFI: CommunicationRse quirements More Documents & Publications Re: NBP RFI: Communications Requirements Re: NBP RFI-Implementing the National Broadband Plan by Studying the Communications Requirements of Electric

  11. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    1862 Product: US-based manufacturer of thermal processing equipment, semiconductor packaging, and surface mount assembly. References: BTU International Inc1 This article is a...

  12. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide...

  13. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) |

    Energy Savers [EERE]

    Department of Energy RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) A fact sheet detailling a proposal of a biorefinery facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. PDF icon RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) More Documents & Publications Pacific Ethanol, Inc EA-1888:

  14. "RSE Table N13.1. Relative Standard Errors for Table N13.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Energy Consumption Survey.'" X-Input-Content-Type: applicationvnd.ms-excel X-Translator-Status: translating "RSE Table N13.1. Relative Standard Errors for Table...

  15. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  16. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalCapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  18. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Number. Pages using the property "GeothermalAnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR...

  19. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:00:20 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  20. Microfabricated BTU monitoring device for system-wide natural gas

    Office of Scientific and Technical Information (OSTI)

    monitoring. (Technical Report) | SciTech Connect Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for system-wide natural gas monitoring. The natural gas industry seeks inexpensive sensors and instrumentation to rapidly measure gas heating value in widely distributed locations. For gas pipelines, this will improve gas quality during transfer and blending, and will

  1. DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Information Resources » Energy Analysis » DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) DYNAMIC MANUFACTURING ENERGY SANKEY TOOL (2010, UNITS: TRILLION BTU) About the Energy Data Use this diagram to explore (zoom, pan, select) and compare energy flows across U.S. manufacturing and key subsectors. Line widths indicate the volume of energy flow in trillions of British thermal units (TBtu). The 15 manufacturing subsectors together consume 95% of all

  2. table6.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars)

  3. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  4. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  5. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Major Fuel, 1995 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) Primary Electricity (trillion Btu) RSE Row Factor Number of...

  6. A Requirement for Significant Reduction in the Maximum BTU Input Rate of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers | Department of Energy A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers Comment that a requirement to reduce the BTU input rate of existing decorative

  7. Industrial co-generation through use of a medium BTU gas from biomass produced in a high throughput reactor

    SciTech Connect (OSTI)

    Feldmann, H.F.; Ball, D.A.; Paisley, M.A.

    1983-01-01

    A high-throughput gasification system has been developed for the steam gasification of woody biomass to produce a fuel gas with a heating value of 475 to 500 Btu/SCF without using oxygen. Recent developments have focused on the use of bark and sawdust as feedstocks in addition to wood chips and the testing of a new reactor concept, the so-called controlled turbulent zone (CTZ) reactor to increase gas production per unit of wood fed. Operating data from the original gasification system and the CTZ system are used to examine the preliminary economics of biomass gasification/gas turbine cogeneration systems. In addition, a ''generic'' pressurized oxygen-blown gasification system is evaluated. The economics of these gasification systems are compared with a conventional wood boiler/steam turbine cogeneration system.

  8. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  9. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  10. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011

  11. Low-Btu coal gasification in the United States: company topical. [Brick producers

    SciTech Connect (OSTI)

    Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

    1983-07-01

    Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

  12. table6.2_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Consumption Ratios of Fuel, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE Economic per Employee of Value Added of Shipments Row Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 1 0.9 Value of Shipments and Receipts (million dollars) Under 20 281.0 3.9 2.2 3 20-49 583.7

  13. table6.4_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 1 1 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 395.7 4.3 2.3 3.6 50-99 663.4

  14. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,056 1,055 1,057 1,043 983 983 983 983 983 983 983 983 2014 947 946 947 947 947 947 951 978 990 968 974 962 2015 968 954 947 959 990 1,005 1,011 965 989 996 996 997 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of Buildings...

  16. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.2. Total Energy Consumption by Major Fuel, 1992 Building Characteristics RSE Column Factor: All Buildings Total Energy Consumption (trillion Btu) RSE Row Factor Number of...

  17. Lng vehicle technology, economics, and safety assessment. Final report, April 1991-June 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Lowell, D.D.

    1994-02-01

    Liquid natural gas (LNG) is an attractive transportation fuel because of its high heating value and energy density (i.e. Btu/lb and Btu/gal), clean burning characteristics, relatively low cost ($/Btu), and domestic availability. This research evaluated LNG vehicle and refueling system technology, economics, and safety. Prior and current LNG vehicle projects were studied to identify needed technology improvements. Life-cycle cost analyses considered various LNG vehicle and fuel supply options. Safety records, standards, and analysis methods were reviewed. The LNG market niche is centrally fueled heavy-duty fleet vehicles with high fuel consumption. For these applications, fuel cost savings can amortize equipment capital costs.

  18. Low/medium Btu coal gasification assessment of central plant for the city of Philadelphia, Pennsylvania. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The objective of this study is to assess the technical and economic feasibility of producing, distributing, selling, and using fuel gas for industrial applications in Philadelphia. The primary driving force for the assessment is the fact that oil users are encountering rapidly escalating fuel costs, and are uncertain about the future availability of low sulfur fuel oil. The situation is also complicated by legislation aimed at reducing oil consumption and by difficulties in assuring a long term supply of natural gas. Early in the gasifier selection study it was decided that the level of risk associated with the gasification process sould be minimal. It was therefore determined that the process should be selected from those commercially proven. The following processes were considered: Lurgi, KT, Winkler, and Wellman-Galusha. From past experience and a knowledge of the characteristics of each gasifier, a list of advantages and disadvantages of each process was formulated. It was concluded that a medium Btu KT gas can be manufactured and distributed at a lower average price than the conservatively projected average price of No. 6 oil, provided that the plant is operated as a base load producer of gas. The methodology used is described, assumptions are detailed and recommendations are made. (LTN)

  19. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,014 1,015 1,016 1,015 1,014 1,015 1,016 1,019 1,017 1,016 1,017 1,017 2014 1,018 1,018 1,018 1,018 1,021 1,022 1,023 1,023 1,027 1,026 1,026 1,025 2015 1,025 1,026 1,025 1,026 1,028 1,031 1,030 1,028 1,029 1,028 1,026 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,032 1,030 1,033 1,040 1,051 1,056 1,057 1,058 1,037 1,032 1,033 2014 1,030 1,036 1,038 1,041 1,051 1,050 1,048 1,048 1,050 1,055 1,042 1,051 2015 1,046 1,044 1,051 1,059 1,059 1,070 1,073 1,069 1,076 1,069 1,060 1,051 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,016 1,015 1,016 1,015 1,016 1,015 1,016 1,016 1,017 1,017 1,018 1,018 2014 1,018 1,018 1,018 1,019 1,019 1,019 1,022 1,023 1,024 1,023 1,024 1,025 2015 1,024 1,025 1,024 1,024 1,026 1,026 1,026 1,024 1,024 1,023 1,023 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Connecticut Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,018 1,025 1,011 1,022 1,028 1,024 1,032 1,028 1,030 1,030 1,026 1,024 2014 1,015 1,015 1,016 1,019 1,020 1,022 1,022 1,023 1,021 1,020 1,018 1,017 2015 1,017 1,026 1,029 1,026 1,049 1,027 1,027 1,026 1,026 1,028 1,027 1,026 - = No Data Reported; -- = Not Applicable;

  4. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,025 1,029 1,029 1,030 1,031 1,030 1,030 1,027 1,028 1,032 1,033 1,032 2014 1,034 1,033 1,034 1,036 1,040 1,039 1,043 1,047 1,044 1,046 1,044 1,045 2015 1,045 1,047 1,047 1,051 1,054 1,060 1,059 1,059 1,058 1,058 1,057 1,056 - = No Data Reported; -- = Not Applicable; NA = Not

  5. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    U.S. Energy Information Administration (EIA) Indexed Site

    per Cubic Foot) Other Sectors Consumers (BTU per Cubic Foot) U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,029 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,025 1,028 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016

  6. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,028 1,026 1,028 1,028 1,027 1,027 1,025 2010's 1,023 1,022 1,024 1,027 1,032 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 02/29/2016 Next Release Date: 03/31/2016 Referring Pages:

  7. Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 - = No Data Reported; -- = Not Applicable;

  8. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,017 1,017 1,019 1,018 1,018 1,020 1,020 1,020 1,018 1,017 1,016 1,017 2014 1,017 1,017 1,019 1,023 1,022 1,023 1,025 1,025 1,027 1,025 1,028 1,025 2015 1,033 1,034 1,035 1,036 1,044 1,039 1,040 1,042 1,039 1,037 1,035 1,031 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,015 1,031 1,021 1,010 997 988 994 1,001 1,026 1,034 1,054 2014 1,048 1,036 1,030 1,022 1,006 993 984 996 1,005 1,019 1,046 1,039 2015 1,047 1,037 1,030 1,023 1,000 1,010 1,034 1,028 1,024 1,033 1,035 1,041 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,015 1,015 1,014 1,015 1,015 1,016 1,017 1,019 1,018 2014 1,020 1,020 1,020 1,020 1,020 1,020 1,022 1,020 1,021 1,021 1,023 1,024 2015 1,027 1,030 1,029 1,028 1,029 1,027 1,027 1,027 1,028 1,028 1,030 1,030 - = No Data Reported; -- = Not Applicable; NA = Not

  12. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,011 1,012 1,013 1,015 1,019 1,020 1,019 1,021 1,020 1,018 1,015 1,014 2014 1,016 1,017 1,019 1,019 1,023 1,023 1,025 1,030 1,028 1,027 1,025 1,029 2015 1,028 1,029 1,031 1,039 1,037 1,043 1,043 1,044 1,041 1,039 1,034 1,033 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,020 1,021 1,020 1,021 1,026 1,030 1,028 1,029 1,028 1,029 1,029 1,027 2014 1,031 1,027 1,033 1,034 1,038 1,042 1,042 1,051 1,046 1,040 1,038 1,040 2015 1,041 1,034 1,033 1,037 1,044 1,047 1,043 1,041 1,039 1,041 1,045 1,041 - = No Data Reported; -- = Not Applicable;

  14. Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 - = No Data Reported; -- = Not Applicable;

  15. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,014 1,014 1,013 1,014 1,013 1,017 1,015 1,016 1,019 1,013 1,014 2014 1,013 1,013 1,014 1,014 1,011 1,016 1,016 1,018 1,017 1,018 1,017 1,017 2015 1,017 1,020 1,025 1,026 1,024 1,026 1,026 1,026 1,026 1,025 1,024 1,023 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,032 1,027 1,032 1,028 1,031 1,033 1,030 1,031 1,037 1,032 1,029 2014 1,029 1,030 1,030 1,030 1,033 1,030 1,031 1,039 1,023 1,016 1,025 1,027 2015 1,033 1,035 1,030 1,025 1,022 1,020 1,020 1,018 1,019 1,026 1,025 1,027 - = No Data Reported; -- = Not Applicable; NA = Not

  18. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,041 1,037 1,032 1,027 1,037 1,042 1,060 1,056 1,062 1,059 1,061 1,059 2014 1,053 1,048 1,045 1,049 1,047 1,052 1,051 1,051 1,049 1,052 1,057 1,057 2015 1,059 1,061 1,058 1,051 1,058 1,057 1,055 1,049 1,050 1,053 1,049 1,050 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cubic Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,037 1,033 1,032 1,033 1,035 1,032 1,033 1,034 1,036 1,038 1,033 1,030 2014 1,035 1,032 1,031 1,030 1,030 1,031 1,030 1,029 1,029 1,028 1,029 1,028 2015 1,035 1,035 1,030 1,029 1,027 1,027 1,029 1,028 1,027 1,028 1,029 1,030 - = No Data Reported; -- = Not

  20. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,021 1,021 1,022 1,026 1,020 1,022 1,024 1,021 1,019 1,019 1,017 1,019 2014 1,019 1,021 1,021 1,017 1,020 1,019 1,015 1,028 1,022 1,023 1,026 1,029 2015 1,027 1,026 1,030 1,035 1,028 1,033 1,034 1,035 1,036 1,034 1,041 1,040 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels ADVANCED MANUFACTURING OFFICE Enabling Clean Combustion of Low-Btu and Reactive Fuels in Gas Turbines By enabling ultralow-emission, lean premixed combustion of a wide range of gaseous opportunity fuels, this unique, fuel- fexible catalytic combustor for gas turbines can reduce natural gas consumption in industry. Introduction Gas turbines are commonly used in industry for onsite power and heating needs because of their high

  2. Table 2.2 Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu )

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for All Purposes, 2006 (Trillion Btu ) NAICS 1 Code Manufacturing Group Coal Coal Coke and Breeze 2 Natural Gas Distillate Fuel Oil LPG 3 and NGL 4 Residual Fuel Oil Net Electricity 5 Other 6 Shipments of Energy Sources 7 Total 8 311 Food 147 1 638 16 3 26 251 105 (s) 1,186 312 Beverage and Tobacco Products 20 0 41 1 1 3 30 11 -0 107 313 Textile Mills 32 0 65 (s) (s) 2 66 12 -0 178 314 Textile Product Mills 3 0 46 (s) 1 Q 20 (s) -0 72 315 Apparel 0 0 7 (s) (s)

  3. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  4. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  5. Combined compressed air storage-low BTU coal gasification power plant

    DOE Patents [OSTI]

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  6. Table 3.1 Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fossil Fuel Production Prices, 1949-2011 (Dollars per Million Btu) Year Coal 1 Natural Gas 2 Crude Oil 3 Fossil Fuel Composite 4 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Nominal 5 Real 6 Percent Change 7 1949 0.21 1.45 0.05 0.37 0.44 3.02 0.26 1.81 – – 1950 .21 1.41 .06 .43 .43 2.95 [R] .26 1.74 -3.6 1951 .21 1.35 .06 .40 .44 2.78 .26 1.65 -5.4 1952 .21 1.31 [R] .07 .45 .44 2.73 .26 1.63 -1.0 1953 .21 1.29 .08 .50 .46 2.86 .27 1.69 3.3 1954 .19 1.18 .09 .55 .48 2.94 .28 1.70 .7 1955

  7. RSE Table 7.4 Relative Standard Errors for Table 7.4

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  8. RSE Table 7.5 Relative Standard Errors for Table 7.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate","Natural ","LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  9. 2003 CBECS RSE Tables

    Gasoline and Diesel Fuel Update (EIA)

    Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used...

  10. Energy generation from cotton gin trash: an economic analysis

    SciTech Connect (OSTI)

    Lacewell, R.D.; Taylor, C.R.; Hiler, E.A.

    1981-01-01

    This study consists of economic analyses of electric power generation and low-Btu (British thermal unit) gas generation from cotton gin trash. Both analyses consider the use of a large gin, sized at 40,000 bales per year. A fluidized-bed combustor is used to produce the low Btu gas and in conjunction with a boiler and turbine to produce electricity. For this case study, the consideration of economic feasibility involves the saving of the cost of energy not purchased, the sale of surplus electricity, and the saving of the cost of gin trash disposal eliminated; all are results of on-site energy generation. Electricity requirements will be satisfied, and waste heat will be used for cotton drying. The savings that would result from these two measures total about $126,000 (based on a 300,000 Btu per bale requirement for cotton drying with natural gas priced at $2.50 per thousand cubic feet and electricity priced at 4 cents per kWh). (MCW)

  11. Table 2.9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Commercial Buildings Consumption by Energy Source, Selected Years, 1979-2003 (Trillion Btu) Energy Source and Year Square Footage Category Principal Building Activity Census Region 1 All Buildings 1,001 to 10,000 10,001 to 100,000 Over 100,000 Education Food Sales Food Service Health Care Lodging Mercantile and Service Office All Other Northeast Midwest South West Major Sources 2 1979 1,255 2,202 1,508 511 [3] 336 469 278 894 861 1,616 1,217 1,826 1,395 526 4,965 1983 1,242 1,935 1,646 480 [3]

  12. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  13. Table A44. Average Prices of Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Average Prices of Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Dollars per Physical Units)" ," Electricity",," Steam" ," (kWh)",," (million Btu)" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  14. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    of District Heat by End Use, 1989 District Heat Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  15. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Consumption of Fuel Oil by End Use, 1989 Fuel Oil Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  16. table1.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments RSE Economic Net Residual Distillate Natural LPG and Coke and of Energy Sources Row Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Factors Total United States RSE Column Factors: 0.8 0.9 1.4 2.7 0.8 0.6 2 1.4 1.1

  17. table2.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Breeze Other(e) Factors Total United States RSE Column Factors: 1 0.4 6.4 0.6 0.5 1.1 1.7 0.8 Value of Shipments and Receipts (million dollars) Under 20 94 * 6 19 W W W W 9 20-49 135 19 3 8 W W

  18. table4.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.6 1.3 2.2 0.7 1.4 1.5 0.6 1 Value of Shipments and Receipts (million dollars) Under 20 1,276 437 15 50 598 W 47 W 97 14.5

  19. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu)...

  20. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels for Mercantile and Office Buildings, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  1. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Intensity for Sum of Major Fuels in Older Buildings by Year Constructed, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  2. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1992 Building Characteristics RSE Column Factor: Sum of Major Fuel Consumption (trillion Btu) Total...

  3. Table 3.3 Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by Source, 1970-2010 (Dollars 1 per Million Btu) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 9,10,14 Coal Natural Gas 3 Petroleum Nuclear Fuel Biomass 8 Total 9,10 Distillate Fuel Oil Jet Fuel 4 LPG 5 Motor Gasoline 6 Residual Fuel Oil Other 7 Total 1970 0.38 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1971 .42 .63 1.22 .77 1.46 2.90 .58 1.45 1.78 .18 1.31 1.15 .38 5.30 1.76 1972 .45 .68 1.22

  4. COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal

    SciTech Connect (OSTI)

    Smith, V.E.; Merriam, N.W.

    1994-10-01

    Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

  5. "Table A33. Total Quantity of Purchased Energy Sources by Census Region, Census Division,"

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Energy Sources by Census Region, Census Division," " and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  6. "Table E8.2. Average Prices of Selected Purchased Energy Sources, 1998;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Average Prices of Selected Purchased Energy Sources, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate",,"LPG and",,"Row"

  7. Table A13. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Total Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," "," ","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" "

  8. Table A26. Total Quantity of Purchased Energy Sources by Census Region and

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Quantity of Purchased Energy Sources by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,"Natural",,,"Coke" " ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" "

  9. "RSE Table E1.1. Relative Standard Errors for Table E1.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    .1. Relative Standard Errors for Table E1.1;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy

  10. "RSE Table E13.1. Relative Standard Errors for Table E13.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Relative Standard Errors for Table E13.1;" " Unit: Percents." " ",," "," ",," " ,,,,"Sales and","Net Demand" "Economic",,,"Total Onsite","Transfers","for" "Characteristic(a)","Purchases","Transfers In(b)","Generation(c)","Offsite","Electricity(d)" ,"Total United States" "Value of Shipments and

  11. "RSE Table E13.2. Relative Standard Errors for Table E13.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Relative Standard Errors for Table E13.2;" " Unit: Percents." " ",,,"Renewable Energy" ,,,"(excluding Wood" "Economic","Total Onsite",,"and" "Characteristic(a)","Generation","Cogeneration(b)","Other Biomass)(c)","Other(d)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",15,15,58,37 "

  12. "RSE Table E13.3. Relative Standard Errors for Table E13.3;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Relative Standard Errors for Table E13.3;" " Unit: Percents." ,"Total of" "Economic","Sales and","Utility","Nonutility" "Characteristic(a)","Transfers Offsite","Purchaser(b)","Purchaser(c)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",4,4,10 " 20-49",33,35,70 " 50-99",10,12,10 "

  13. "RSE Table E2.1. Relative Standard Errors for Table E2.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    E2.1. Relative Standard Errors for Table E2.1;" " Unit: Percents." " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

  14. "RSE Table E7.1. Relative Standard Errors for Table E7.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Relative Standard Errors for Table E7.1;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" "Economic","Consumption","per Dollar","of Value" "Characteristic(a)","per Employee","of Value Added","of Shipments" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2,2,2

  15. "RSE Table E7.2. Relative Standard Errors for Table E7.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Relative Standard Errors for Table E7.2;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" "NAICS",,"Consumption","per Dollar","of Value" "Code(a)","Economic Characteristic(b)","per Employee","of Value Added","of Shipments" ,,"Total United States" " 311 - 339","ALL

  16. Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Economic Development Los Alamos is committed to investing and partnering in economic development initiatives and programs that have a positive impact to stimulate business growth that creates jobs and strengthens communities in Northern New Mexico. September 20, 2013 LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA,

  17. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  18. Philadelphia gas works medium-Btu coal gasification project: capital and operating cost estimate, financial/legal analysis, project implementation

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This volume of the final report is a compilation of the estimated capital and operating costs for the project. Using the definitive design as a basis, capital and operating costs were developed by obtaining quotations for equipment delivered to the site. Tables 1.1 and 1.2 provide a summary of the capital and operating costs estimated for the PGW Coal Gasification Project. In the course of its Phase I Feasibility Study of a medium-Btu coal-gas facility, Philadelphia Gas Works (PGW) identified the financing mechanism as having great impact on gas cost. Consequently, PGW formed a Financial/Legal Task Force composed of legal, financial, and project analysis specialists to study various ownership/management options. In seeking an acceptable ownership, management, and financing arrangement, certain ownership forms were initially identified and classified. Several public ownership, private ownership, and third party ownership options for the coal-gas plant are presented. The ownership and financing forms classified as base alternatives involved tax-exempt and taxable financing arrangements and are discussed in Section 3. Project implementation would be initiated by effectively planning the methodology by which commercial operation will be realized. Areas covered in this report are sale of gas to customers, arrangements for feedstock supply and by-product disposal, a schedule of major events leading to commercialization, and a plan for managing the implementation.

  19. Table 2.4 Household Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted)

    U.S. Energy Information Administration (EIA) Indexed Site

    Household 1 Energy Consumption by Census Region, Selected Years, 1978-2009 (Quadrillion Btu, Except as Noted) Census Region 2 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 United States Total (does not include wood) 10.56 9.74 9.32 9.29 8.58 9.04 9.13 9.22 10.01 10.25 9.86 10.55 10.18 Natural Gas 5.58 5.31 4.97 5.27 4.74 4.98 4.83 4.86 5.27 5.28 4.84 4.79 4.69 Electricity 3 2.47 2.42 2.48 2.42 2.35 2.48 2.76 3.03 3.28 3.54 3.89 4.35 4.39 Distillate Fuel Oil and Kerosene 2.19

  20. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  1. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  2. Economic Dispatch

    Office of Environmental Management (EM)

    Economic Dispatch and Technological Change Report to Congress March 2014 United States Department of Energy Washington, DC 20585 Page left intentionally blank Department of Energy | March 2014 Message from the Assistant Secretary In this report, the Department of Energy is responding to Sections 1234 and 1832 of the Energy Policy Act of 2005, which directed the Secretary of Energy to conduct an annual study of economic dispatch and potential ways to improve such dispatch to benefit American

  3. Economics | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACEconomics content top NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) Posted by Admin on Mar 1, 2012 in | Comments 0 comments NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) NISAC has developed N-ABLE(tm) to assist federal decision makers in improving the security and resilience of the U.S. economy. N-ABLE(tm) is a large-scale microeconomic simulation tool that models the complex supply-chain, spatial market dynamics, and critical-infrastructure interdependencies of

  4. ECONOMIC DISPATCH

    Office of Environmental Management (EM)

    ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 United States Department of Energy February 2007 ECONOMIC DISPATCH OF ELECTRIC GENERATION CAPACITY A REPORT TO CONGRESS AND THE STATES PURSUANT TO SECTIONS 1234 AND 1832 OF THE ENERGY POLICY ACT OF 2005 Sections 1234 and 1832 of the Energy Policy Act of 2005 (EPAct) 1 direct the U.S. Department of Energy (the Department, or DOE) to: 1) Study

  5. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  6. ECONOMIC IMPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ECONOMIC IMPACT 2015 SANDIA NATIONAL LABORATORIES National Security Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, and reliable, and can fully support our nation's deterrence policy. NUCLEAR WEAPONS DEFENSE SYSTEMS & ASSESSMENTS We provide technical solutions for global security by engineering and integrating advanced science and technology to help defend and protect the United States. Jill Hruby President and Laboratories Director "Qualified, diverse

  7. Economic Performance

    Office of Environmental Management (EM)

    09 Executive Order 13514-Federal Leadership in Environmental, Energy, and Economic Performance October 5, 2009 By the authority vested in me as President by the Constitution and the laws of the United States of America, and to establish an integrated strategy towards sustainability in the Federal Government and to make reduction of greenhouse gas emissions a priority for Federal agencies, it is hereby ordered as follows: Section 1. Policy. In order to create a clean energy economy that will

  8. Ecological economizer

    SciTech Connect (OSTI)

    Peterson, E.M.

    1992-06-16

    This patent describes an engine economizer system adapted to supply an internal combustion engine with a heated air and water vapor mixture. It comprises a containment vessel, the vessel having: water level control means, an engine coolant fluid circuit, an engine lubricant circuit, an elongated air passage, air disbursement means, a water reservoir, air filter means, a vacuum aspiration port, and engine induction means associated with one of the carburetor and intake manifold and adapted to draw in the heated air and water vapor mixture by means of a hose connection to the aspiration port.

  9. Table 1.13 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 U.S. Government Energy Consumption by Agency and Source, Fiscal Years 2003, 2010, and 2011 (Trillion Btu) Resource and Fiscal Years Agriculture Defense Energy GSA 1 HHS 2 Interior Justice NASA 3 Postal Service Trans- portation Veterans Affairs Other 4 Total Coal 2003 (s) 15.4 2.0 0.0 (s) (s) 0.0 0.0 0.0 0.0 0.2 0.0 17.7 2010 (s) 15.5 4.5 .0 0.0 0.0 .0 .0 (s) .0 .1 .0 20.1 2011 P 0.0 14.3 4.2 .0 .0 .0 .0 .0 (s) .0 .1 .0 18.6 Natural Gas 5 2003 1.4 76.6 7.0 7.6 3.7 1.3 8.6 2.9 10.4 .7 15.6 4.2

  10. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  11. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  12. Condensing economizers for small coal-fired boilers and furnaces

    SciTech Connect (OSTI)

    Butcher, T.A.; Litzke, W.

    1994-01-01

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impactors are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  13. Condensing economizers for thermal efficiency improvements and emissions control

    SciTech Connect (OSTI)

    Heaphy, J.P.; Carbonara, J.; Litzke, W.; Butcher, T.A.

    1993-12-31

    Flue gas condensing economizers improve the thermal efficiency of boilers by recovering sensible heat and water vapor latent heat from flue gas exhaust. In addition to improving thermal efficiency, condensing economizers also have the potential to act as control devices for emissions of particulates, SO{sub x}, and air toxics. Both Consolidated Edison of New York and Brookhaven National LaborAtory are currently working on condensing economizer technology with an emphasis on developing their potential for emissions control. Con Edison is currently conducting a condensing economizer demonstration at their oil-fired 74th Street Station in New York. Since installing this equipment in February of 1992 a heat rate improvement of 800 Btu/kWh has been seen. At another location, Ravenswood Station, a two stage condensing economizer has been installed in a pilot test. In this advanced configuration -the ``Integrated Flue Gas Treatment or IFGT system- two heat exchanger sections are installed and sprays of water with and without SO{sub 2} sorbents are included. Detailed studies of the removal of particulates, SO{sub 2}, SO{sub 3}, and selected air toxics have been done for a variety of operating conditions. Removal efficiencies for SO{sub 2} have been over 98% and for SO{sub 3} over 65%. Brookhaven National Laboratory`s studies involve predicting and enhancing particulate capture in condensing economizers with an emphasis on small, coal-fired applications. This work is funded by the Pittsburgh Energy Technology Center of the Department of Energy. Flyash capture efficiencies as high as 97% have been achieved to date with a single stage economizer.

  14. RSE Table E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2

    U.S. Energy Information Administration (EIA) Indexed Site

    E8.1 and E8.2. Relative Standard Errors for Tables E8.1 and E8.2;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" ,"Total United States" "Value of Shipments and Receipts"

  15. table3.3_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. RSE Economic Net Residual Distillate Natural LPG and Coke and Row Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Factors Total United States RSE Column Factors: 0.6 0.7 1.3 2.1 0.7 1.4 1.5 0.7 0.9 Value of Shipments and Receipts (million dollars) Under 20 1,312 436 15 50 598 W 47 W 132 13.9 20-49

  16. table7.5_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Million Btu. RSE Economic Residual Distillate Natural LPG and Row Characteristic(a) Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 19.67 3.98 7.29 4.91 9.79 2.57 11.3 20-49

  17. "Table A29. Average Prices of Selected Purchased Energy Sources by Census"

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors"

  18. "Table A41. Average Prices of Selected Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Dollars per Million Btu)" " "," "," "," "," "," "," ","RSE" " "," ","Residual","Distillate","Natural"," "," ","Row" "Economic Characteristics(a)","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","Factors"

  19. Table 7.5 Average Prices of Selected Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Average Prices of Selected Purchased Energy Sources, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: U.S. Dollars per Million Btu." " ",," "," ",," "," ","RSE" "Economic",,"Residual","Distillate","Natural ","LPG and",,"Row"

  20. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel

  1. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    of Natural Gas by End Use, 1989 Natural Gas Consumption (trillion Btu) Space Water a Total Heating Heating Cooking Other RSE Building Row Characteristics Factor 1.0 NF...

  2. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    Small start-up with breakthrough technology seeking funding to prove commercial feasibility Coordinates: 45.425788, -122.765754 Show Map Loading map......

  3. Economic Impact | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's Hall A Jefferson Lab generates many economic benefits for the nation and Virginia, providing many well-paying jobs for highly skilled and well-educated workers. A D D I T I O N A L L I N K S: Brochures Fact Sheets JLab Video 12 GeV Construction Economic Impact top-right bottom-left-corner bottom-right-corner economic impact Jefferson Lab generates many economic benefits. For the nation, Jefferson Lab generates $679.1 million in economic output and 4,422 jobs. The economic output

  4. CONDENSING ECONOMIZERS FOR SMALL COAL-FIRED BOILERS AND FURNACES PROJECT REPORT - JANUARY 1994

    SciTech Connect (OSTI)

    BUTCHER,T.A.

    1994-01-04

    Condensing economizers increase the thermal efficiency of boilers by recovering sensible and latent heat from exhaust gas. These economizers are currently being used commercially for this purpose in a wide range of applications. Performance is dependent upon application-specific factors affecting the utility of recovered heat. With the addition of a condensing economizer boiler efficiency improvements up to 10% are possible. Condensing economizers can also capture flue gas particulates. In this work, the potential use of condensing economizers for both efficiency improvement and control of particulate emissions from small, coal water slurry-fired boilers was evaluated. Analysis was done to predict heat transfer and particulate capture by mechanisms including: inertial impaction, interception, diffusion, thermophoretic forces, and condensation growth. Shell-and-tube geometries were considered with flue gas on the outside of Teflon-covered tubes. Experimental studies were done with both air- and water-cooled economizers refit to a small boiler. Two experimental arrangements were used including oil-firing with injection of flyash upstream of the economizer and direct coal water slurry firing. Firing rates ranged from 27 to 82 kW (92,000 to 280,000 Btu/hr). Inertial impaction was found to be the most important particulate capture mechanism and removal efficiencies to 95% were achieved. With the addition of water sprays directly on the first row of tubes, removal efficiencies increased to 98%. Use of these sprays adversely affects heat recovery. Primary benefits of the sprays are seen to be the addition of small impaction sites and future design improvements are suggested in which such small impacts are permanently added to the highest velocity regions of the economizer. Predicted effects of these added impactors on particulate removal and pressure drop are presented.

  5. Characteristics RSE Column Factor: All Vehicle Types

    U.S. Energy Information Administration (EIA) Indexed Site

    or More ... 19.1 13.0 12.3 0.7 1.0 1.7 Q 2.7 Q 21.8 Below Poverty Line 100 Percent ... 12.4 9.5 8.9 0.5 Q Q Q 1.8 Q...

  6. SWAMC Economic Summit

    Broader source: Energy.gov [DOE]

    The 27th Annual Southwest Alaska Economic Summit and Business Meeting is a three-day conference covering energy efficiency planning, information on Alaska programs, and more.

  7. Economic Values | Open Energy Information

    Open Energy Info (EERE)

    Economic Values Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleEconomicValues&oldid612356...

  8. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  9. table4.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Offsite-Produced Fuel Consumption, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) (million (million Other(f) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  10. table5.5_02

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE

  11. table6.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Consumption Ratios of Fuel, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value RSE NAICS per Employee of Value Added of Shipments Row Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Factors Total United States RSE Column Factors: 1.1 0.9 1 311 Food 867.8 6.0 2.6 5.9 311221 Wet Corn Milling 24,113.7 65.7 26.2 1.8 31131 Sugar 8,414.5 54.2 17.9 1

  12. table7.6_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column

  13. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development Office Is your technology business looking for a door to the Laboratory? The Economic Development Office at PNNL is here to help you start, grow, or relocate your business. We help you tap into technology experts, facilities, and other resources available at the Laboratory...some at no cost to you. We've helped more than 400 companies in our region and 100 more nationwide. Our goals: to expand the economy's technology sector and create high-value jobs. Economic Development

  14. Pilot test of Pickliq{reg_sign} process to determine energy and environmental benefits & economic feasibility

    SciTech Connect (OSTI)

    Olsen, D.R.

    1997-07-13

    Green Technology Group (GTG) was awarded Grant No. DE-FG01-96EE 15657 in the amount of $99,904 for a project to advance GTG`s Pickliq{reg_sign} Process in the Copper and Steel Industries. The use of the Pickliq{reg_sign} Process can significantly reduce the production of waste acids containing metal salts. The Pickliq{reg_sign} Process can save energy and eliminate hazardous waste in a typical copper rod or wire mill or a typical steel wire mill. The objective of this pilot project was to determine the magnitude of the economic, energy and environmental benefits of the Pickliq{reg_sign} Process in two applications within the metal processing industry. The effectiveness of the process has already been demonstrated at facilities cleaning iron and steel with sulfuric acid. 9207 companies are reported to use sulfuric and hydrochloric acid in the USA. The USEPA TRI statistics of acid not recycled in the US is 2.4 x 10{sup 9} lbs (net) for Hydrochloric Acid and 2.0 x 10{sup 9} lbs (net) for Sulfuric Acid. The energy cost of not reclaiming acid is 10.7 x 10{sup 6} BTU/ton for Hydrochloric Acid and 21.6 x 10{sup 6} BTU/Ton for Sulfuric Acid. This means that there is a very large market for the application of the Pickliq{reg_sign} Process and the widespread use of the process will bring significant world wide savings of energy to the environment.

  15. Table 8.3a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.3b and 8.3c; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 1989 323,191 95,675 461,905 92,556 973,327 546,354 30,217 576,571 39,041 1,588,939 1990 362,524 127,183 538,063 140,695 1,168,465 650,572 36,433 687,005 40,149 1,895,619 1991 351,834 112,144 546,755 148,216 1,158,949 623,442 36,649

  16. Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Billion Btu) Year Fossil Fuels Renewable Energy Other 7 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Biomass Total Wood 5 Waste 6 Commercial Sector 8<//td> 1989 13,517 3,896 9,920 102 27,435 145 10,305 10,450 – 37,885 1990 14,670 5,406 15,515 118 35,709 387 10,193 10,580 – 46,289 1991 15,967 3,684 20,809 118 40,578 169 8,980 9,149 1 49,728 1992

  17. SWAMC Economic Summit

    Broader source: Energy.gov [DOE]

    Hosted by the Southwest Alaska Municipal Conference (SWAMC), the 27th Annual Southwest Alaska Economic Summit and Business Meeting is a three-day conference covering energy efficiency planning,...

  18. Renewable Energy Economic Potential

    Broader source: Energy.gov [DOE]

    The report describes a geospatial analysis method to estimate the economic potential of several renewable resources available for electricity generation in the United States. Economic potential, one measure of renewable generation potential, is defined in this report as the subset of the available resource technical potential where the cost required to generate the electricity (which determines the minimum revenue requirements for development of the resource) is below the revenue available in terms of displaced energy and displaced capacity.

  19. Conflict Between Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conflict Between Economic Growth and Environmental Protection Dr. Brian Czech Advancement - Steady State Economy Monday, Jan 9, 2012 - 4:15PM MBG AUDITORIUM Refreshments at 4:00PM The confict between economic growth and environmental protection may not be reconciled via technological progress. The fundamentality of the confict ultimately boils down to laws of thermodynamics. Physicists and other scholars from the physical sciences are urgently needed for helping the public and policy makers

  20. Regional Economic Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Economic Development Regional Economic Development Supporting companies in every stage of development through access to technology, technical assistance or investment Questions Richard P. Feynman Center for Innovation Regional Programs (505) 665-9090 New Mexico Small Business Assistance Email Venture Acceleration Fund Email DisrupTECH Email SBIR/STTR Email FCI facilitates commercialization in New Mexico to accelerate and enhance our efforts to convert federal and state research

  1. Economic Impact Analysis for EGS

    Broader source: Energy.gov [DOE]

    Project objective: To conduct an economic impact study for EGS and to develop a Geothermal Economics Calculator (GEC) tool to quantify (in economic terms) the potential job, energy and environmental impacts associated with electric power production from geothermal resources.

  2. Economical wind protection - underground

    SciTech Connect (OSTI)

    Kiesling, E.W.

    1980-01-01

    Earth-sheltered buildings inherently posess near-absolute occupant protection from severe winds. They should sustain no structural damage and only minimal facial damage. Assuming that the lower-hazard risk attendant to this type of construction results in reduced insurance-premium rates, the owner accrues economic benefits from the time of construction. Improvements to aboveground buildings, in contrast, may not yield early economic benefits in spite of a favorable benefit-to-cost ratio. This, in addition to sensitivity to initial costs, traditionalism in residential construction, and lack of professional input to design, impede the widespread use of underground improvements and the subsequent economic losses from severe winds. Going underground could reverse the trend. 7 references.

  3. Jobs and Economic Development Modeling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: Develop models to estimate jobs and economic impacts from geothermal project development and operation.

  4. Economic Development Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Gary Spanner PNNL Manager, Economic Development 509/372-4296 ROB/1210 Robin Conger Program Manager 509/372-4328 ROB/1216 Bernard Hansen Entrepreneurial Programs Manager 206/842-9485 HOME003/ Pam Dawson Specialist 509/375-2075 ROB/1230

  5. Establishing Economic Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishing Economic Competitiveness Energy storage technologies can transform electric systems operation by providing flexibility. This can improve the efficiency of electric system operation. For example, energy storage systems can smooth the otherwise variable production of renewable energy technologies and help shift the peak demand to reduce peak electric prices. Though energy storage technologies can be game-changing grid technology, they must inevitably compete with alternative

  6. WINDExchange: Wind Economic Development

    Wind Powering America (EERE)

    Development WINDExchange provides software applications and publications to help individuals, developers, local governments, and utilities make decisions about wind power. Projecting costs and benefits of new installations, including the economic development impacts created, is a key element in looking at potential wind applications. Communities, states, regions, job markets (i.e., construction, operations and maintenance), the tax base, tax revenues, and others can be positively affected. These

  7. Economic Development - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Development As the designated Community Reuse Organization (CRO) for the Department of Energy's Savannah River Site, the Savannah River Site Community Reuse Organization (SRSCRO) is charged with the responsibility for developing and implementing a comprehensive plan to diversify the economy of the SRSCRO region. During its 50 year history, the Savannah River Site has supported America's national defense mission, contributing significantly to the successful end of the Cold War at the

  8. MTBE Production Economics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne

  9. Cogeneration: Economics and politics

    SciTech Connect (OSTI)

    Prince, R.G.H.; Poole, M.L.

    1996-12-31

    Cogeneration is a well established process for supplying heat and electricity from a single fuel source. Its feasibility and implementation in any particular case depend on technical, economic and internal and external {open_quotes}cultural{close_quotes} factors, including government policies. This paper describes the current status of small scale industrial cogeneration in Australia. A model has been developed to analyse the technical and economic aspects of retrofitting gas turbine cogeneration in the size range 3 to 30MW to industrial sites. The model demonstrates that for typical Australian energy cost data, the payback and the size of the optimized cogeneration plant depend strongly on electricity buyback prices. Also reviewed are some of the {open_quotes}cultural{close_quotes} factors which often militate against an otherwise economic installation, and government policies which may retard cogeneration by concern about local air emissions or favor it as increasing efficiency of energy use and reducing greenhouse emissions. A case study of a small gas turbine plant in Australia is outlined. 2 refs., 2 figs.

  10. Arctic Economics Model

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    AEM (Arctic Economics Model) for oil and gas was developed to provide an analytic framework for understanding the arctic area resources. It provides the capacity for integrating the resource and technology information gathered by the arctic research and development (R&D) program, measuring the benefits of alternaive R&D programs, and providing updated estimates of the future oil and gas potential from arctic areas. AEM enables the user to examine field or basin-level oil and gas recovery,more » costs, and economics. It provides a standard set of selected basin-specified input values or allows the user to input their own values. AEM consists of five integrated submodels: geologic/resource submodel, which distributes the arctic resource into 15 master regions, consisting of nine arctic offshore regions, three arctic onshore regions, and three souhtern Alaska (non-arctic) regions; technology submodel, which selects the most appropriate exploration and production structure (platform) for each arctic basin and water depth; oil and gas production submodel, which contains the relationship of per well recovery as a function of field size, production decline curves, and production decline curves by product; engineering costing and field development submodel, which develops the capital and operating costs associated with arctic oil and gas development; and the economics submodel, which captures the engineering costs and development timing and links these to oil and gas prices, corporate taxes and tax credits, depreciation, and timing of investment. AEM provides measures of producible oil and gas, costs, and ecomonic viability under alternative technology or financial conditions.« less

  11. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    SciTech Connect (OSTI)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  12. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-02-01

    Report on the specific factors driving wind-power-related economic development and on the impact of specific economic development variables on new wind project economic benefits.

  13. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  14. Consider Installing a Condensing Economizer

    Broader source: Energy.gov [DOE]

    This tip sheet summarizes the benefits of condensing economizers and is part of a series of tip sheets on how to optimize an industrial steam system.

  15. SRS Economic Impact Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SRSCRO commissioned an Economic Impact Study to examine both SRS's value to the economy, as well as its overall impact on five SRSCRO counties, Aiken, Allendale, and...

  16. Magnetic fusion reactor economics

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1995-12-01

    An almost primordial trend in the conversion and use of energy is an increased complexity and cost of conversion systems designed to utilize cheaper and more-abundant fuels; this trend is exemplified by the progression fossil fission {yields} fusion. The present projections of the latter indicate that capital costs of the fusion ``burner`` far exceed any commensurate savings associated with the cheapest and most-abundant of fuels. These projections suggest competitive fusion power only if internal costs associate with the use of fossil or fission fuels emerge to make them either uneconomic, unacceptable, or both with respect to expensive fusion systems. This ``implementation-by-default`` plan for fusion is re-examined by identifying in general terms fusion power-plant embodiments that might compete favorably under conditions where internal costs (both economic and environmental) of fossil and/or fission are not as great as is needed to justify the contemporary vision for fusion power. Competitive fusion power in this context will require a significant broadening of an overly focused program to explore the physics and simbiotic technologies leading to more compact, simplified, and efficient plasma-confinement configurations that reside at the heart of an attractive fusion power plant.

  17. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  18. Competitive economics of nuclear power

    SciTech Connect (OSTI)

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  19. WINDExchange: Jobs and Economic Development Impact Models

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Jobs and Economic Development Impacts Model Resources & Tools Siting Jobs and Economic Development Impact Models JEDI: Jobs and Economic Development Impacts Model Fact Sheet PDF The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels. Based on

  20. Transcript of Tribal Energy and Economic Webinar: Energy Planning for Tribal Economic Development

    Broader source: Energy.gov [DOE]

    Transcript for the Tribal Energy and Economic Webinar: Energy Planning for Tribal Economic Development held on Jan. 27, 2016.

  1. Economic Analysis of Commercial Idling Reduction Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction ... A Key Enabler of Expanded U.S. Trade and Economic Growth Comparing Emissions Benefits from ...

  2. Technical Demonstration and Economic Validation of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic ...

  3. Travois Indian Country Affordable Housing & Economic Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Travois Indian Country Affordable Housing & Economic Development Conference Travois Indian Country Affordable Housing & Economic Development Conference April 4, 2016 8:00AM CDT to ...

  4. Workforce and Economic Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce and Economic Development Workforce and Economic Development Slides presented in the "What's Working in Residential Energy Efficiency Upgrade Programs Conference - ...

  5. Microsoft Word - Smart Grid Economic Impact Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a dual mission: a primary mission of economic stimulus for the American workforce and ... Grid projects, as they have generated economic benefits and are beginning to ...

  6. Economic Analysis of Policy Effects Analysis Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Analysis of Policy Effects Analysis Platform March 24, 2015 Jason Hansen, PhD ... * Annual Milestone (93015): Identify economic benefits of co- products on biorefinery ...

  7. PERI Green Economics | Open Energy Information

    Open Energy Info (EERE)

    PERI Green Economics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: PERI Green Economics AgencyCompany Organization: Political Economy Research Institute Sector:...

  8. Renewable Energy: science, politics, and economics (Technical...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy: science, politics, and economics Citation Details In-Document Search Title: Renewable Energy: science, politics, and economics Authors: Migliori, Albert 1 + ...

  9. Chemical incident economic impact analysis methodology. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Chemical incident economic impact analysis methodology. Citation Details In-Document Search Title: Chemical incident economic impact analysis methodology. You are accessing a...

  10. Sandia National Laboratories: News: Economic Impact

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Working with Sandia Economic Impact Sandia National Laboratories has a robust and widespread economic impact. Spending by the Labs exceeds 2...

  11. Adrian Cooper CEO, Oxford Economics

    Gasoline and Diesel Fuel Update (EIA)

    macroeconomic impact of lower oil prices June 2015 Adrian Cooper CEO, Oxford Economics acooper@oxfordeconomics.com Lower oil prices big boost for the global economy... 2 ...but global economic news has been disappointing 3 Who should be the winners? 4 ...and losers? 5 Fall in oil prices give US households extra $1,000 6 But investment down sharply... 7 ...and further falls likely 8 Extraction sector employment also hit hard 9 But not all countries have seen lower gas prices 10 Contrasting

  12. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect (OSTI)

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

  13. Considerations When Selecting a Condensing Economizer

    Broader source: Energy.gov [DOE]

    This tip sheet lays out considerations when selecting condensing economizers as part of optimized steam systems.

  14. BEST (Battery Economics for more Sustainable Transportation)

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    Computer software for the simulation of battery economics based on various transportation business models.

  15. table2.1_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1

  16. table5.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Row Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total

  17. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  18. 2003 Commercial Buildings Energy Consumption - What is an RSE

    U.S. Energy Information Administration (EIA) Indexed Site

    the estimates differ from the true population values. However, the sample design permits us to estimate the sampling error in each value. It is important to...

  19. Characteristics RSE Column Factor: All Model Years Model Year

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 19.1 1.4 2.0 2.2 5.0 4.4 2.1 0.6 Q 0.9 14.3 Below Poverty Line 100 Percent ... 12.4 Q Q 0.6 2.1 2.1 2.4 1.7...

  20. Characteristics RSE Column Factor: Households with Children Households...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 7.6 2.1 3.3 2.2 11.5 Q Q Q 1.4 6.9 2.8 18.8 Below Poverty Line 100 Percent ... 6.6 1.6 3.6 1.3 5.8 0.3 0.7...

  1. economic hydrogen fuel cell vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    economic hydrogen fuel cell vehicles - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  2. The Economics of Micro Grids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Energy Resiliency Go Electric The Economics of Micro Grids SPIDERS Industry Day August 27, 2015 1 Go Electric: Who We Are Lisa Laughner Founder, President & CEO Tony Soverns Engineering Director Alex Creviston Chief Engineer Mechanical Systems Go Electric Anderson, Indiana 2 Go Electric: What We Do Go Electric Our Role in SPIDERS Phase III: Delivered: * 500kW LYNC(tm) UPS * 1500kW Diesel Generators * Micro Grid Control & Integration Micro Grid in a Box * Provides Uninterruptible

  3. table1.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 *

  4. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  5. Environmentally and Economically Beneficial Practices on Federal...

    Office of Environmental Management (EM)

    Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds This Environmental Protection Agency report contains recommendations for a series of...

  6. Economic Impact Tools | Department of Energy

    Office of Environmental Management (EM)

    Economic Impact Tools Economic Impact Tools Photo of a well drilling rig. A man stands on the platform while another is climbing the rig. Technology Feasibility and Cost Analysis is performed to determine the potential economic viability of geothermal energy production and helps to identify which technologies have the greatest likelihood of economic success. Results from technology feasibility analysis efforts provide input to the Geothermal Technologies Office (GTO) research, development, and

  7. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  8. Economic viability of anaerobic digestion

    SciTech Connect (OSTI)

    Wellinger, A.

    1995-11-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters-type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates-define the investment and operating costs of anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters in somewhat higher than that of anaerobic digestion, but the investment costs 11/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  9. Iowa Department of Economic Development | Open Energy Information

    Open Energy Info (EERE)

    Department of Economic Development Jump to: navigation, search Name: Iowa Department of Economic Development Place: Des Moines, Iowa Zip: 50309 Product: Iowa economic development...

  10. 2016 Tribal Energy and Economic Development January Webinar:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January Webinar: Energy Planning for Tribal Economic Development 2016 Tribal Energy and Economic Development January Webinar: Energy Planning for Tribal Economic Development The ...

  11. The Office of Minority Economic Impact (MI) was established in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Minority Economic Impact (MI) was established in Fiscal Year 1979 pursuant to Section 641 ... PART 3 - - MINORITY ECONOMIC IMPACT SEC. 641. MINORITY ECONOMIC IMPACT. "(a) Establishment ...

  12. Economic and policy implications of pandemic influenza.

    SciTech Connect (OSTI)

    Smith, Braeton J.; Starks, Shirley J.; Loose, Verne W.; Brown, Theresa Jean; Warren, Drake E.; Vargas, Vanessa N.

    2010-03-01

    Pandemic influenza has become a serious global health concern; in response, governments around the world have allocated increasing funds to containment of public health threats from this disease. Pandemic influenza is also recognized to have serious economic implications, causing illness and absence that reduces worker productivity and economic output and, through mortality, robs nations of their most valuable assets - human resources. This paper reports two studies that investigate both the short- and long-term economic implications of a pandemic flu outbreak. Policy makers can use the growing number of economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. Experts recognize that pandemic influenza has serious global economic implications. The illness causes absenteeism, reduced worker productivity, and therefore reduced economic output. This, combined with the associated mortality rate, robs nations of valuable human resources. Policy makers can use economic impact estimates to decide how much to spend to combat the pandemic influenza outbreaks. In this paper economists examine two studies which investigate both the short- and long-term economic implications of a pandemic influenza outbreak. Resulting policy implications are also discussed. The research uses the Regional Economic Modeling, Inc. (REMI) Policy Insight + Model. This model provides a dynamic, regional, North America Industrial Classification System (NAICS) industry-structured framework for forecasting. It is supported by a population dynamics model that is well-adapted to investigating macro-economic implications of pandemic influenza, including possible demand side effects. The studies reported in this paper exercise all of these capabilities.

  13. Tribal Economic Outlook Conference | Department of Energy

    Energy Savers [EERE]

    Tribal Economic Outlook Conference Tribal Economic Outlook Conference April 6, 2016 9:00AM to 12:00PM MST Flagstaff, Arizona High Country Conference Center 201 E. Butler Ave. Flagstaff, AZ 86001 Hosted by Northern Arizona University, the Tribal Economic Outlook Conference will preview the conditions that will impact business and economy in the year ahead. Hear what the experts are predicting for 2016 at the tribal, state, and local level.

  14. "Conflict Between Economic Growth and Environmental Protection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2012, 4:15pm Colloquia MBG Auditorium "Conflict Between Economic Growth and Environmental Protection", Dr. Bryan Czech, resident, Center for the Advancement of the Steady State...

  15. CAIED Tribal Economic Development Outlook Conference

    Broader source: Energy.gov [DOE]

    How will the tribal economy do this year? What will impact your bottom line? What does the tribal economic future look like?

  16. CAIED Tribal Economic Development Outlook Conference

    Broader source: Energy.gov [DOE]

    The Center for American Indian Economic Development (CAIED) is hosting a conference on the impact that business and the economy will have on the next year for Tribes.

  17. Community Economic Analysis Guide | Open Energy Information

    Open Energy Info (EERE)

    Economic Analysis How-to manual AgencyCompany Organization: R. Hustedde, R. Shaffer, G. Pulver Phase: Create a Vision, Determine Baseline User Interface: Website Website:...

  18. Photovoltaics Economic Calculator (United States) | Open Energy...

    Open Energy Info (EERE)

    (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application...

  19. International Economic Platform for Renewable Energies IWR |...

    Open Energy Info (EERE)

    Platform for Renewable Energies IWR Jump to: navigation, search Name: International Economic Platform for Renewable Energies (IWR) Place: Mnster, Germany Zip: 48159 Sector:...

  20. Saratoga County Economic Opportunity Council, Inc. - Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Recovery Act was enacted to promote economic prosperity through job creation and ... RECOMMENDATION As part of its responsibilities for managing the Weatherization Program, we ...

  1. Department of Energy Analysis of Economic Impact

    National Nuclear Security Administration (NNSA)

    Department of Energy Analysis of Economic Impact Final Rule, 10 CFR 810 February 3, 2015 1 Executive Summary The Department of Energy (DOE) published a Notice of Proposed ...

  2. Reservation Economic Summit: Nevada | Department of Energy

    Office of Environmental Management (EM)

    over the phases of the project. Download the RES 2012 presentation. Addthis Related Articles Reservation Economic Summit: Nevada Indian Energy & Energy Infrastructure to be...

  3. Economic Impacts and Business Opportunities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Impacts and Business Opportunities NREL contributes to the local and national economy in various ways. We are one of the largest employers in Jefferson County, Colorado,...

  4. Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects

    SciTech Connect (OSTI)

    None

    2009-02-26

    Brochure on the Jobs and Economic Development Impact (JEDI) Model for calculating the economic impacts of wind development.

  5. table1.5_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. RSE Total Row Energy Source First Use Factors Total United States RSE Column Factor: 1.0 Coal 1,959 10.0 Natural Gas 6,468 1.3 Net Electricity 2,840 1.4 Purchases 2,882 1.4 Transfers In 35 2.6 Onsite Generation from Noncombustible Renewable

  6. table5.2_02

    U.S. Energy Information Administration (EIA) Indexed Site

    End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE NAICS Net Residual and Natural LPG and (excluding Coal Row Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Other(f) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: 0.3 1 1 2.4 1.1 1.3 1 NF TOTAL FUEL CONSUMPTION 16,273 2,840

  7. table5.4_02

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2002; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE NAICS for Residual and Natural LPG and (excluding Coal Row Code(a) End Use Electricity(b) Fuel Oil Diesel Fuel(c) Gas(d) NGL(e) Coke and Breeze) Factors Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES RSE Column Factors: NF 1 2.4 1.1 1.3 1 TOTAL FUEL CONSUMPTION 3,297 208

  8. table5.6_02

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE Net Residual and Natural LPG and (excluding Coal Row End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.3 1 0 0 TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel

  9. table5.7_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Row End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States RSE Column Factors: 0.3 2.4

  10. table5.8_02

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE for Residual and Natural LPG and (excluding Coal Row End Use Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Factors Total United States RSE Column Factors: 0.3 2.4 1.1 1.3 1 0 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127

  11. Jobs and Economic Development Impacts (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the Jobs and Economic Development Benefits model. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the Jobs and Economic Development Benefits model section on the Wind Powering America website.

  12. HTGR Application Economic Model Users' Manual

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-01-01

    The High Temperature Gas-Cooled Reactor (HTGR) Application Economic Model was developed at the Idaho National Laboratory for the Next Generation Nuclear Plant Project. The HTGR Application Economic Model calculates either the required selling price of power and/or heat for a given internal rate of return (IRR) or the IRR for power and/or heat being sold at the market price. The user can generate these economic results for a range of reactor outlet temperatures; with and without power cycles, including either a Brayton or Rankine cycle; for the demonstration plant, first of a kind, or nth of a kind project phases; for up to 16 reactor modules; and for module ratings of 200, 350, or 600 MWt. This users manual contains the mathematical models and operating instructions for the HTGR Application Economic Model. Instructions, screenshots, and examples are provided to guide the user through the HTGR Application Economic Model. This model was designed for users who are familiar with the HTGR design and Excel and engineering economics. Modification of the HTGR Application Economic Model should only be performed by users familiar with the HTGR and its applications, Excel, and Visual Basic.

  13. FEED SYSTEM INNOVATION FOR GASIFICATION OF LOCALLY ECONOMICAL ALTERNATIVE FUELS (FIGLEAF)

    SciTech Connect (OSTI)

    Michael L. Swanson; Mark A. Musich; Darren D. Schmidt

    2001-11-01

    The Feed System Innovation for Gasification of Locally Economical Alternative Fuels (FIGLEAF) project is being conducted by the Energy and Environmental Research Center and Gasification Engineering Corporation of Houston, Texas (a subsidiary of Global Energy Inc., Cincinnati, Ohio), with 80% cofunding from the U.S. Department of Energy. The goal of the project is to identify and evaluate low-value fuels that could serve as alternative feedstocks and to develop a feed system to facilitate their use in integrated gasification combined cycle and gasification coproduction facilities. The long-term goal, to be accomplished in a subsequent project, is to install a feed system for the selected fuels at Global Energy's commercial-scale 262-MW Wabash River Coal Gasification Facility in West Terre Haute, Indiana. The feasibility study undertaken for the project consists of identifying and evaluating the economic feasibility of potential fuel sources, developing a feed system design capable of providing a fuel at 400 psig to the second stage of the E-Gas (Destec) gasifier to be cogasified with coal at up to 30% on a Btu basis, performing bench- and pilot-scale testing to verify concepts and clarify decision-based options, reviewing prior art with respect to high-pressure feed system designs, and determining the economics of cofeeding alternative feedstocks with the conceptual feed system design. Activities and results thus far include the following. Several potential alternative fuels have been obtained for evaluation and testing as potential feedstocks, including sewage sludge, used railroad ties, urban wood waste, municipal solid waste, and used waste tires/tire-derived fuel. Only fuels with potential tipping fees were considered; potential energy crop fuels were not considered since they would have a net positive cost to the plant. Based on the feedstock assessment, sewage sludge has been selected as one of the primary feedstocks for consideration at the Wabash plant. Because of the limited waste heat available for drying and the ability of the gasifier to operate with alternative feedstocks at up to 80% moisture, a decision was made to investigate a pumping system for delivering the as-received fuel across the pressure boundary. High-temperature drop-tube furnace tests were conducted to determine if explosive fragmentation of high-moisture sludge droplets could be expected, but showed that these droplets underwent a shrinking and densification process that implies that the sludge will have to be well dispersed when injected into the gasifier. Fuel dispersion nozzles have been obtained for measuring how well the sludge can be dispersed in the second stage of the gasifier. Future work will include leasing a Schwing America pump to test pumping sewage sludge against 400 psig. In addition, sludge dispersion testing will be completed using two different dispersion nozzles to determine their ability to generate sludge particles small enough to be entrained out of the E-Gas entrained-flow gasifier.

  14. Petrographic characterization of economizer fly ash

    SciTech Connect (OSTI)

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  15. Data Center Economizer Contamination and Humidity Study

    SciTech Connect (OSTI)

    Shehabi, Arman; Tschudi, William; Gadgil, Ashok

    2007-03-06

    Data centers require continuous air conditioning to address high internal heat loads (heat release from equipment) and maintain indoor temperatures within recommended operating levels for computers. Air economizer cycles, which bring in large amounts of outside air to cool internal loads when weather conditions are favorable, could save cooling energy. There is reluctance from many data center owners to use this common cooling technique, however, due to fear of introducing pollutants and potential loss of humidity control. Concerns about equipment failure from airborne pollutants lead to specifying as little outside air as permissible for human occupants. To investigate contamination levels, particle monitoring was conducted at 8 data centers in Northern California. Particle counters were placed at 3 to 4 different locations within and outside of each data center evaluated in this study. Humidity was also monitored at many of the sites to determine how economizers affect humidity control. Results from this study indicate that economizers do increase the outdoor concentration in data centers, but this concentration, when averaged annually, is still below current particle concentration limits. Study results are summarized below: (1) The average particle concentrations measured at each location, both outside and at the servers, are shown in Table 1. Measurements show low particle concentrations at all data centers without economizers, regardless of outdoor particle concentrations. Particle concentrations were typically an order of magnitude below both outside particle concentrations and recently published ASHRAE standards. (2) Economizer use caused sharp increases in particle concentrations when the economizer vents were open. The particle concentration in the data centers, however, quickly dropped back to pre-economizer levels when the vents closed. Since economizers only allow outside air part of the time, the annual average concentrations still met the ASHRAE standards. However, concentration were still above the levels measured in data centers that do not use economizers (3) Current filtration in data centers is minimal (ASHRAE 40%) since most air is typically recycled. When using economizers, modest improvements in filtration (ASHRAE 85%) can reduce particle concentrations to nearly match the level found in data centers that do not use economizers. The extra cost associated with improve filters was not determined in this study. (4) Humidity was consistent and within the ASHRAE recommended levels for all data centers without economizers. Results show that, while slightly less steady, humidity in data centers with economizers can also be controlled within the ASHRAE recommended levels. However, this control of humidity reduces energy savings by limiting the hours the economizer vents are open. (5) The potential energy savings from economizer use has been measured in one data center. When economizers were active, mechanical cooling power dropped by approximately 30%. Annual savings at this center is estimated within the range of 60-80 MWh/year, representing approximately a 5% savings off the mechanical energy load of the data center. Incoming temperatures and humidity at this data center were conservative relative to the ASHRAE acceptable temperature and humidity ranges. Greater savings may be available if higher temperature humidity levels in the data center area were permitted. The average particle concentrations measured at each of the eight data center locations are shown in Table 1. The data centers ranged in size from approximately 5,000 ft{sup 2} to 20,000 ft{sup 2}. The indoor concentrations and humidity in Table 1 represents measurements taken at the server rack. Temperature measurements at the server rack consistently fell between 65-70 F. The Findings section contains a discussion of the individual findings from each center. Data centers currently operate under very low contamination levels. Economizers can be expected to increase the particle concentration in data centers, but the increase appears to still be

  16. Puerto Rico- Economic Development Incentives for Renewables

    Broader source: Energy.gov [DOE]

    The 2008 Economic Incentives for the Development of Puerto Rico Act (EIA) provides a wide array of tax credits and incentives that enable local and foreign companies dedicated to certain business...

  17. Techno-Economics & Life Cycle Assessment (Presentation)

    SciTech Connect (OSTI)

    Dutta, A.; Davis, R.

    2011-12-01

    This presentation provides an overview of the techno-economic analysis (TEA) and life cycle assessment (LCA) capabilities at the National Renewable Energy Laboratory (NREL) and describes the value of working with NREL on TEA and LCA.

  18. An Economic Engine for Washington State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pnnl.gov An Economic Engine for Washington State When Washington State leaders share their visions for a vibrant future, certain priorities rise to the top: jobs, education, and an...

  19. Life assessments of a boiler economizer unit

    SciTech Connect (OSTI)

    Lichti, K.A.; Thomas, C.W.; Wilson, P.T.; Julian, W.

    1997-09-01

    An economizer which experienced pitting corrosion during a cleaning accident was subject to recurring corrosion fatigue failures. A condition assessment was undertaken to assess the risk of further failures through metallurgical assessment, extreme value pitting assessments, and on-site NDT condition assessment with on-site extreme value pitting analysis. This was followed by a fatigue life assessment in accordance with PD6493. Condition assessment work and lifetime prediction progressed from initial failure investigation through to final recommendations in a stepwise process. Each stage of the work was followed by a review of the findings and an economic assessment of the alternative options i.e. continue with assessment, full economizer replacement or partial replacement. Selective replacement of a portion of the economizer was recommended.

  20. Economic Aspects of Small Modular Reactors

    Broader source: Energy.gov [DOE]

    The potential for SMR deployment will be largely determined by the economic value that these power plants would provide to interested power producers who would evaluate their prospects in relation...

  1. Wind Energy and Economic Development in Nebraska

    SciTech Connect (OSTI)

    Lantz, E.

    2009-06-01

    This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

  2. Biofuel Economics (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Book: Biofuel Economics Citation Details In-Document Search Title: Biofuel Economics As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a

  3. Algal Biofuels Techno-Economic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Techno-Economic Analysis Algae Platform Review March 24, 2015 Alexandria, VA Ryan Davis National Renewable Energy Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information NATIONAL RENEWABLE ENERGY LABORATORY Goal Statement Algae TEA Project Objective: *Provide process design and economic analysis support for the algae platform, to guide R&D priorities for both NREL and BETO * Translate demonstrated or proposed research

  4. WINDExchange: Wind Economic Development Resources and Tools

    Wind Powering America (EERE)

    Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 11/10/2015 News Tool Econ. Dev. Job and Economic Development Impact (JEDI) Model 10/6/2015 OK Publication Econ. Dev. New Report Outlines Wind Industry Impacts in Oklahoma

  5. Lab scientists recognized for economic development efforts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists recognized for economic development efforts Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab scientists recognized for economic development efforts Program provides regional businesses with expert assistance December 1, 2013 Winner of the 2013 Principal Investigator Award is Andy McCown Winner of a 2013 Principal Investigator Award is Andy McCown (at right, with pie), of Energy

  6. Offshore Wind Market and Economic Analysis

    Energy Savers [EERE]

    February 22, 2013 Offshore Wind Market and Economic Analysis Page ii Document Number DE-EE0005360 U.S. Offshore Wind Market and Economic Analysis Annual Market Assessment Document Number DE-EE0005360 Prepared for: U.S. Department of Energy Michael Hahn Patrick Gilman Prepared by: Navigant Consulting, Inc. Lisa Frantzis, Principal Investigator Lindsay Battenberg Mark Bielecki Charlie Bloch Terese Decker Bruce Hamilton Aris Karcanias Birger Madsen Jay Paidipati Andy Wickless Feng Zhao Navigant

  7. National Institute of Economic and Industry Research

    Office of Environmental Management (EM)

    scale export of East Coast Australia natural gas: Unintended consequences National Institute of Economic and Industry Research 1 This note summarizes the major conclusions of the NIEIR study referenced here. Many major projects to export Liquefied Natural Gas from Eastern Australia have been approved and will start to operate over the next several years. This will significantly impact the domestic supply of natural gas. The National Institute of Economic and Industry Research (NIEIR) has done an

  8. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  9. National Reservation Economic Summit 2016 | Department of Energy

    Energy Savers [EERE]

    National Reservation Economic Summit 2016 National Reservation Economic Summit 2016 March 21, 2016 9:00AM PDT to March 24, 2016 5:00PM PDT National Reservation Economic Summit (RES

  10. Use Feedwater Economizers for Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feedwater Economizers for Waste Heat Recovery Use Feedwater Economizers for Waste Heat Recovery This tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET #3 PDF icon Use Feedwater Economizers for Waste Heat Recovery (January 2012) More Documents & Publications Consider Installing a Condensing Economizer Considerations When Selecting a Condensing Economizer

  11. Tribal Energy and Economic Development Webinar Series | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Tribal Energy and Economic Development Webinar Series Tribal Energy and Economic Development Webinar Series The DOE Office of Indian Energy Policy and Programs, in...

  12. Hawaii Department of Business, Economic Development, and Tourism...

    Open Energy Info (EERE)

    Business, Economic Development, and Tourism Jump to: navigation, search Name: Hawaii Department of Business, Economic Development, and Tourism Address: P.O. Box 2359 Place:...

  13. A Low Carbon Economic Strategy for Scotland | Open Energy Information

    Open Energy Info (EERE)

    Low Carbon Economic Strategy for Scotland Jump to: navigation, search Name A Low Carbon Economic Strategy for Scotland AgencyCompany Organization Government of Scotland Sector...

  14. Economic Impact of Fuel Cell Deployment in Forklifts and for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act Title Economic Impact of Fuel Cell Deployment in...

  15. Community and Economic Development Association of Cook County...

    Open Energy Info (EERE)

    and Economic Development Association of Cook County (CEDA) Jump to: navigation, search Name: Community and Economic Development Association of Cook County (CEDA) Place: Chicago, IL...

  16. Economic Community of West African States | Open Energy Information

    Open Energy Info (EERE)

    Economic Community of West African States Jump to: navigation, search Name: Economic Community of West African States Address: 101, Yakubu Gowon Crescent, Asokoro District Place:...

  17. Center for Economic and Environmental Partnership Inc | Open...

    Open Energy Info (EERE)

    Economic and Environmental Partnership Inc Jump to: navigation, search Name: Center for Economic and Environmental Partnership Inc Place: Albany, New York Zip: NY 12207-1 Sector:...

  18. The Commission on Environmental Markets and Economic Performance...

    Open Energy Info (EERE)

    on Environmental Markets and Economic Performance CEMEP Jump to: navigation, search Name: The Commission on Environmental Markets and Economic Performance (CEMEP) Place: United...

  19. Solar Energy Education. Home economics: student activities. Field...

    Office of Scientific and Technical Information (OSTI)

    Home economics: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Home economics: student activities. Field test edition ...

  20. Department of Energy Releases New Report on Economic Impact of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impact of Recovery Act Advanced Vehicle Investments Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments July 14, 2010 ...

  1. DC Microgrids Scoping Study: Estimate of Technical and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) DC Microgrids Scoping Study: Estimate of Technical and Economic Benefits (March 2015) Microgrid ...

  2. Novel Controls for Economic Dispatch of Combined Cooling, Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controls for Economic Dispatch of Combined Cooling, Heating and Power (CHP) Systems - Fact Sheet, 2015 Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power ...

  3. Economic Impacts Associated With Commercializing Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Road Map Using the JOBS H2 Model Economic Impacts Associated With Commercializing ... This report by Argonne National Laboratory summarizes an analysis of the economic impacts ...

  4. DOE Announces Webinars on Economic Impacts of Offshore Wind,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More DOE Announces Webinars on Economic Impacts of Offshore Wind, Clean Energy Financing Programs, and More ...

  5. White House Council of Economic Advisers and Energy Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters White House Council of Economic Advisers and Energy ...

  6. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ... * www.nrel.gov Offshore Wind Jobs and Economic Development Impacts in the United ...

  7. Savings and Economic Impacts of the Better Buildings Neighborhood...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Savings and Economic Impacts of the Better Buildings Neighborhood Program, ...

  8. Secretary Bodman Highlights Economic Benefits of President Bush...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Benefits of President Bush's Energy Initiatives in Kansas City Secretary Bodman Highlights Economic Benefits of President Bush's Energy Initiatives in Kansas City March ...

  9. 2014/2015 Economic Dispatch and Technological Change Report to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Economic Dispatch and Technological Change Report to Congress Now Available 20142015 Economic Dispatch and Technological Change Report to Congress Now Available September 3, ...

  10. DOE Announces Webinars on an Offshore Wind Economic Impacts Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Economic Impacts Model, Resources for Tribal Energy Efficiency Projects, and More DOE Announces Webinars on an Offshore Wind Economic Impacts Model, Resources for ...

  11. Long Term Environment and Economic Impacts of Coal Liquefaction...

    Office of Scientific and Technical Information (OSTI)

    Long Term Environment and Economic Impacts of Coal Liquefaction in China Citation Details In-Document Search Title: Long Term Environment and Economic Impacts of Coal Liquefaction ...

  12. DOE Announces Webinars on Energy Planning for Tribal Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning for Tribal Economic Development and Water Efficiency and Energy Savings DOE Announces Webinars on Energy Planning for Tribal Economic Development and Water Efficiency and ...

  13. Before the Subcommittee on Economic Growth, Job Creation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Growth, Job Creation and Regulatory Affairs - House Committee on Oversight and Governmant Reform Before the Subcommittee on Economic Growth, Job Creation and Regulatory ...

  14. Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc. Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc. Topics Discussed: Real GDP ...

  15. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) ...

  16. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Resource Guide for Federal Facility managers and Designers; Second Edition Greening Federal Facilities: An Energy, Environmental, and Economic Resource ...

  17. White House Council of Economic Advisers and Energy Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Council of Economic Advisers and Energy Department Release New Report on Resiliency of Electric Grid During Natural Disasters White House Council of Economic Advisers ...

  18. 2011/2012 Economic Dispatch and Technological Change - Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12012 Economic Dispatch and Technological Change - Report to Congress (September 2012) 20112012 Economic Dispatch and Technological Change - Report to Congress (September 2012) ...

  19. DOE's 2016 Tribal Energy and Economic Development Webinar Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's 2016 Tribal Energy and Economic Development Webinar Series Kicks Off Jan. 27 DOE's 2016 Tribal Energy and Economic Development Webinar Series Kicks Off Jan. 27 January 14, ...

  20. Economic Potential of CHP in Detroit Edison Service Area: The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, June 2003 Economic Potential of CHP in Detroit Edison Service Area: The Customer Perspective, ...

  1. U.S. Energy Secretary Bodman Highlights the Economic Incentives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Secretary Bodman Highlights the Economic Incentives of Energy Efficiency at the Pittsburgh Energy Summit 2006 U.S. Energy Secretary Bodman Highlights the Economic ...

  2. Tribal Energy Summit: A Path to Economic Sovereignty Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit: A Path to Economic Sovereignty Program and Presentations Tribal Energy Summit: A Path to Economic Sovereignty Program and Presentations The Tribal Energy Summit: A Path to ...

  3. Economic Impact of Fuel Cell Deployment in Forklifts and for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the ... This report by Argonne National Laboratory presents estimates of economic impacts ...

  4. Estimating Renewable Energy Economic Potential in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating Renewable Energy Economic Potential in the United States: Methodology and ... 2. Capacity additions and growth II. Economic Potential 1. Summary of initial results ...

  5. 2016 Tribal Energy and Economic Development February Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February Webinar: Exploring Your Energy Markets 2016 Tribal Energy and Economic ... Laboratory - Estimating Renewable Energy Economic Potential in the United States: ...

  6. CHP: A Technical & Economic Compliance Strategy - SEE Action...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This ...

  7. 2013 Economic Dispatch and Technological Change - Report to Congress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Dispatch and Technological Change - Report to Congress (March 2014) 2013 Economic Dispatch and Technological Change - Report to Congress (March 2014) In this report, the ...

  8. Economic and Environmental Tradeoffs in New Automotive Painting...

    Office of Scientific and Technical Information (OSTI)

    Conference: Economic and Environmental Tradeoffs in New Automotive Painting Technologies Citation Details In-Document Search Title: Economic and Environmental Tradeoffs in New ...

  9. Techno-Economic Analysis of Liquid Fuel Production from Woody...

    Office of Scientific and Technical Information (OSTI)

    ...Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis ...

  10. Project Profile: Design of Social and Economic Incentives and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Incentives and Information Campaigns to Promote Solar Technology Diffusion through Data-Driven Behavior Modeling Project Profile: Design of Social and Economic ...

  11. NREL Report Highlights Positive Economic Impact and Job Creation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL Report Highlights Positive Economic Impact and Job Creation from 1603 Renewable Energy Grant Program NREL Report Highlights Positive Economic Impact and Job Creation from 1603 ...

  12. Greening Federal Facilities: An Energy, Environmental, and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL FACILITIES An Energy, Environmental, and Economic Resource Guide for Federal ... Greening Federal Facilities An Energy, Environmental, and Economic Resource Guide for ...

  13. Secretary Chu Stresses Global Cooperation on Energy, Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stresses Global Cooperation on Energy, Economic and Climate Challenges in Talks with World Energy Ministers Secretary Chu Stresses Global Cooperation on Energy, Economic and ...

  14. Microsoft PowerPoint - Overview of Biomass Energy and Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Energy and Economic Development Opportunities Dave Sjoding, Director Northwest CHP ... CHP's energy fit to biomass products * Economic development & the rural economy * Fuel ...

  15. Our impending energy, climate-change, and economic-development...

    Office of Scientific and Technical Information (OSTI)

    and economic-development crisis : Options for Change - Part 2 Citation Details In-Document Search Title: Our impending energy, climate-change, and economic-development ...

  16. Quantification of the Potential Gross Economic Impacts of Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantification of the Potential Gross Economic Impacts of Five Methane Reduction Scenarios Quantification of the Potential Gross Economic Impacts of Five Methane Reduction ...

  17. Offshore Wind Jobs and Economic Development Impacts in the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jobs and Economic Development Impacts in the United States: Four Regional Scenarios Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional ...

  18. The STEM Promise: Opportunities for Economic Empowerment. Join...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEM Promise: Opportunities for Economic Empowerment. Join the Conversation on April 8. The STEM Promise: Opportunities for Economic Empowerment. Join the Conversation on April 8. ...

  19. Taiwan Institute of Economic Research | Open Energy Information

    Open Energy Info (EERE)

    Economic Research Jump to: navigation, search Name: Taiwan Institute of Economic Research Place: Taipei, Taiwan Product: Idependent research institute engaged in research on...

  20. Illustrative Calculation of Economics for Heat Pump and "Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters PDF icon ...

  1. Community Economic Analysis: A How To Guide | Open Energy Information

    Open Energy Info (EERE)

    Name: Community Economic Analysis: A How To Guide AgencyCompany Organization: Ronald J. Hustedde Partner: Ron Shaffer Sector: Energy Focus Area: Economic Development Phase:...

  2. Biofuels Techno-Economic Models | Open Energy Information

    Open Energy Info (EERE)

    Techno-Economic Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Biofuels Techno-Economic Models AgencyCompany Organization: National Renewable Energy Laboratory...

  3. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  4. Development of a Secure, Economic and Environmentally friendly...

    Open Energy Info (EERE)

    Secure, Economic and Environmentally friendly Modern Power System (Smart Grid Project) Jump to: navigation, search Project Name Development of a Secure, Economic and...

  5. Energy Economic Environmental Consultants e3c | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: Energy Economic & Environmental Consultants (e3c) Place: Albuquerque, New Mexico Zip: 87111 Sector: Services Product: E3c, Inc. has provided economic consulting...

  6. NREL: Jobs and Economic Development Impacts (JEDI) Models - About...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Jobs and Economic Development Impacts (JEDI) biofuel models include JEDI Dry Mill Corn ... These JEDI models allow users to estimate economic development impacts from biofuel ...

  7. NREL: Energy Analysis - Jobs and Economic Development Impact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants ...

  8. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  9. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  10. Our Impending Energy, Climate, and Economic-Development Crisis...

    Office of Scientific and Technical Information (OSTI)

    Our Impending Energy, Climate, and Economic-Development Crisis Citation Details In-Document Search Title: Our Impending Energy, Climate, and Economic-Development Crisis You are...

  11. Solar Energy Education. Home economics: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home economics: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field ...

  12. ARRA Economic Impact and Jobs | Department of Energy

    Office of Environmental Management (EM)

    ARRA Economic Impact and Jobs ARRA Economic Impact and Jobs Center Map Learn More Risk Management Assessment Tool Recovery Act Top Line Messages EM Recovery Act Lessons Learned...

  13. Economic Evaluation Guide for alternative transportation fuels

    SciTech Connect (OSTI)

    de Percin, D.; Werner, J.F. Jr.

    1992-12-31

    The production of this Economic Evaluation Guide is one activity of AVFCAP. The guide is intended for use by project managers and fleet operators in the public sector. Public fleets have been identified as one of the most likely areas where ATFs will first gain widespread use, because of existing and impending state and federal legislative mandates, as well as for practical reasons such as centralized servicing and refueling. The purpose of this guide is to provide balanced decision-support information to project managers who are considering conducting, or currently managing, ATF demonstration programs. Information for this guide was gathered as part of a related AVFCAP activity, the development of an Information Resource Database. Economic issues related to the development and implementation of ATF programs at the local government level are extremely complex, and require an analysis of federal policies and national and international economics that is generally beyond the scope of local government project managers. The intent of this guide is to examine the information available on the economic evaluation of ATFs, and identify key elements that will help local governments realistically assess the potential costs and savings of an ATF program. The guide also discusses how these various economic factors are related, and how local government priorities affect how different factors are weighed.

  14. Economic Evaluation Guide for alternative transportation fuels

    SciTech Connect (OSTI)

    de Percin, D.; Werner, J.F. Jr.

    1992-01-01

    The production of this Economic Evaluation Guide is one activity of AVFCAP. The guide is intended for use by project managers and fleet operators in the public sector. Public fleets have been identified as one of the most likely areas where ATFs will first gain widespread use, because of existing and impending state and federal legislative mandates, as well as for practical reasons such as centralized servicing and refueling. The purpose of this guide is to provide balanced decision-support information to project managers who are considering conducting, or currently managing, ATF demonstration programs. Information for this guide was gathered as part of a related AVFCAP activity, the development of an Information Resource Database. Economic issues related to the development and implementation of ATF programs at the local government level are extremely complex, and require an analysis of federal policies and national and international economics that is generally beyond the scope of local government project managers. The intent of this guide is to examine the information available on the economic evaluation of ATFs, and identify key elements that will help local governments realistically assess the potential costs and savings of an ATF program. The guide also discusses how these various economic factors are related, and how local government priorities affect how different factors are weighed.

  15. Standardized wellheads proven economical for subsea operations

    SciTech Connect (OSTI)

    Moreira, C.C.; Silva Paulo, C.A. )

    1994-05-02

    A standardization program for subsea wellheads and completion equipment has made development of Brazil's offshore fields more economical and efficient. The resulting operational flexibility associated with the use of field-proven equipment and procedures saves rig time and can reduce production loss during workovers. Additionally, investments can be rationalized economically by installing part of the completion equipment at the end of the drilling job and then delaying purchase and installation of the christmas tree and the flow lines until installation of the production platform. Savings are also realized from the reduction in the number of spare parts and tools. Moreover, the savings related to improved operations exceed considerably those from equipment acquisition and storage. Thus, the greatest benefit is the operational flexibility. The paper discusses initial standards, the subsea programs, philosophy, implementation, diver-assisted trees, diverless trees, and economics.

  16. Lessons from the new institutional economics

    SciTech Connect (OSTI)

    Olson, W.P.

    1997-06-01

    Policy makers should seek to get the structure right ex ante as antitrust may not be effective ex post. It will be important to deal effectively with information asymmetries and to minimize transaction costs. The electric services industry is experiencing a period of rapid change, entrepreneurship, innovation and increased competition. The introduction of direct-access retail competition, for example, is becoming increasingly feasible because of the path-breaking activities of England, Norway, Chile and California. While the basic model of a reformed electric services industry has begun to come into a sharper focus, the techniques and methods that policy makers and regulators will need to use in evaluating electric restructuring plans are less well understood. If regulators and their staffs only use the traditional analytical tools, they could fail to analyze fully the transaction cost implications of alternative market, industry and corporate structures. An appreciation of the implications of the new institutional economics (NIE), of which transaction cost economics (TCE) is an important subset, can provide valuable insights. The new institutional economics: (1) holds that institutions matter and are susceptible to analysis..., (2) is different from but not hostile to orthodoxy, and (3) is an interdisciplinary combination of law, economics, and organization in which economics is the first among equals. This paper surveys several of the analytical tools of the new institutional economics, with an emphasis on the tools that are most relevant to the design of the market, industry and corporate structure of a restructured electric services industry. This article applies ME and TCE tools but does not attempt to provide a comprehensive survey of the issues involved in electric restructuring. Rather, it illustrates how regulators can use the tools of NIE/TCE to evaluate and solve the difficult practical problems that electric restructuring presents.

  17. Technical and economic analysis of energy efficiency of Chinese room air conditioners

    SciTech Connect (OSTI)

    Fridley, David G.; Rosenquist, Gregory; Jiang, Lin; Li, Aixian; Xin, Dingguo; Cheng, Jianhong

    2001-02-01

    China has experienced tremendous growth in the production and sales of room air conditioners over the last decade. Although minimum room air conditioner energy efficiency standards have been in effect since 1989, no efforts were made during most of the 1990's to update the standard to be more reflective of current market conditions. In 1999, China's State Bureau of Technical Supervision (SBTS) included in their annual plan the development and revision of the 1989 room air conditioner standard, and experts from SBTS worked together with LBNL to analyze the new standards. Based on the engineering and life cycle-cost analyses performed, the most predominant type of room air conditioner in the Chinese market (split-type with a cooling capacity between 2500 and 4500 W (8500 Btu/h and 15,300Btu/h)) can have its efficiency increased cost-effectively to an energy efficiency ratio (EER) of 2.92 W/W (9.9 Btu/hr/W). If an EER standard of 2.92 W/W became effective in 2001, Chinese consumers would be estimated to save over 3.5 billion Yuan (420 million U.S. dollars) over the period of 2001-2020. Carbon emissions over the same period would be reduced by approximately 12 million metric tonnes.

  18. ICT reuse in socio-economic enterprises

    SciTech Connect (OSTI)

    Ongondo, F.O.; Williams, I.D.; Dietrich, J.; Carroll, C.

    2013-12-15

    Highlights: We analyse ICT equipment reuse operations of socio-economic enterprises. Most common ICT products dealt with are computers and related equipment. In the UK in 2010, ?143,750 appliances were reused. Marketing and legislative difficulties are the common hurdles to reuse activities. Socio-economic enterprises can significantly contribute to resource efficiency. - Abstract: In Europe, socio-economic enterprises such as charities, voluntary organisations and not-for-profit companies are involved in the repair, refurbishment and reuse of various products. This paper characterises and analyses the operations of socio-economic enterprises that are involved in the reuse of Information and Communication Technology (ICT) equipment. Using findings from a survey, the paper specifically analyses the reuse activities of socio-economic enterprises in the UK from which Europe-wide conclusions are drawn. The amount of ICT products handled by the reuse organisations is quantified and potential barriers and opportunities to their operations are analysed. By-products from reuse activities are discussed and recommendations to improve reuse activities are provided. The most common ICT products dealt with by socio-economic enterprises are computers and related equipment. In the UK in 2010, an estimated 143,750 appliances were reused. However, due to limitations in data, it is difficult to compare this number to the amount of new appliances that entered the UK market or the amount of waste electrical and electronic equipment generated in the same period. Difficulties in marketing products and numerous legislative requirements are the most common barriers to reuse operations. Despite various constraints, it is clear that organisations involved in reuse of ICT could contribute significantly to resource efficiency and a circular economy. It is suggested that clustering of their operations into reuse parks would enhance both their profile and their products. Reuse parks would also improve consumer confidence in and subsequently sales of the products. Further, it is advocated that industrial networking opportunities for the exchange of by-products resulting from the organisations activities should be investigated. The findings make two significant contributions to the current literature. One, they provide a detailed insight into the reuse operations of socio-economic enterprises. Previously unavailable data has been presented and analysed. Secondly, new evidence about the by-products/materials resulting from socio-economic enterprises reuse activities has been obtained. These contributions add substantially to our understanding of the important role of reuse organisations.

  19. COLLOQUIUM: Sustainability Economics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 24, 2015, 4:15pm to 5:30pm MBG AUDITORIUM COLLOQUIUM: Sustainability Economics James Morris Rutgers University It's easy to agree that managing resources in a sustainable manner is a worthy goal. But what exactly does that mean for those of us living and working in a dollars-and-cents world? How we do balance the short-run-orientation of an unforgiving marketplace with the long-run goals and results of thinking and acting sustainably? This session will introduce key economic metrics of

  20. Economic benefits of an economizer system: Energy savings and reduced sick leave

    SciTech Connect (OSTI)

    Fisk, William J.; Seppanen, Olli; Faulkner, David; Huang, Joe

    2004-02-01

    This study estimated the health, energy, and economic benefits of an economizer ventilation control system that increases outside air supply during mild weather to save energy. A model of the influence of ventilation rate on airborne transmission of respiratory illnesses was used to extend the limited data relating ventilation rate with illness and sick leave. An energy simulation model calculated ventilation rates and energy use versus time for an office building in Washington, D.C. with fixed minimum outdoor air supply rates, with and without an economizer. Sick leave rates were estimated with the disease transmission model. In the modeled 72-person office building, our analyses indicate that the economizer reduces energy costs by approximately $2000 and, in addition, reduces sick leave. The annual financial benefit of the decrease in sick leave is estimated to be between $6,000 and $16,000. This modeling suggests that economizers are much more cost effective than currently recognized.

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  4. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "SIC"," ","

  5. Table 2.2 Nonfuel (Feedstock) Use of Combustible Energy, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Nonfuel (Feedstock) Use of Combustible Energy, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,"RSE" "NAICS"," ","

  6. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and

  7. Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," ","

  8. Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," ","

  9. Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent

  10. Table N1.3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    .3. First Use of Energy for All Purposes (Fuel and Nonfuel), 1998;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  11. Table A11. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  12. Table A37. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    2" " (Estimates in Trillion Btu)" ,,,,,,,"Coal" ,,,,"Distillate",,,"(excluding" ,,,,"Fuel Oil",,,"Coal Coke",,"RSE" ,,"Net","Residual","and Diesel",,,"and",,"Row" "End-Use Categories","Total","Electricity(a)","Fuel Oil","Fuel(b)","Natural

  13. Table A41. Total Inputs of Energy for Heat, Power, and Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and

  14. Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and

  15. Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under

  16. Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;" " Level: National Data; " " Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources;" " Column: First Use per Energy Sources and Shipments;" " Unit: Trillion Btu." " "," "," " " "," ","RSE" ,"Total","Row" "Energy Source","First

  17. table7.7_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Purchased Electricity, Natural Gas, and Steam, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Physical Units or Btu. Electricity Components Natural Gas Components Steam Components Electricity Natural Gas Steam Electricity from Sources Natural Gas from Sources Steam from Sources Electricity from Local Other than Natural Gas from Local Other than Steam from Local Other than RSE NAICS Total

  18. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  19. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12...

  20. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.001 1.720 2.433 2.463 2.231 2.376 2000's 4.304 4.105 3.441 5.497 6.417 9.186 7.399 7.359 9.014 4.428 2010's 4.471 4.090 2.926 3.775 4.236 2.684

  1. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836

  2. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.113 01/21 2.159 01/28 2.233 1994-Feb 02/04 2.303 02/11 2.230 02/18 2.223 02/25 2.197 1994-Mar 03/04 2.144 03/11 2.150 03/18 2.148 03/25 2.095 1994-Apr 04/01 2.076 04/08 2.101 04/15 2.137 04/22 2.171 04/29 2.133 1994-May 05/06 2.056 05/13 2.017 05/20 1.987 05/27 1.938 1994-Jun 06/03 2.023 06/10 2.122 06/17 2.173 06/24 2.118 1994-Jul 07/01 2.182 07/08 2.119

  3. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.039 1.739 2.350 2.418 2.290 2.406 2000's 4.217 4.069 3.499 5.466 6.522 9.307 7.852 7.601 9.141 4.669 2010's 4.564 4.160 3.020 3.822 4.227 2.739

  4. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977

  5. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/21 2.055 01/28 2.133 1994-Feb 02/04 2.189 02/11 2.159 02/18 2.174 02/25 2.163 1994-Mar 03/04 2.127 03/11 2.136 03/18 2.141 03/25 2.103 1994-Apr 04/01 2.085 04/08 2.105 04/15 2.131 04/22 2.175 04/29 2.149 1994-May 05/06 2.076 05/13 2.045 05/20 2.034 05/27 1.994 1994-Jun 06/03 2.078 06/10 2.149 06/17 2.172 06/24 2.142 1994-Jul 07/01 2.187 07/08 2.143 07/15 2.079

  6. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.906 2.054 1.746 2.270 2.363 2.332 2.418 2000's 4.045 4.103 3.539 5.401 6.534 9.185 8.238 7.811 9.254 4.882 2010's 4.658 4.227 3.109 3.854 4.218 2.792

  7. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1993 1.906 1994 2.012 2.140 2.120 2.150 2.081 2.189 2.186 2.168 2.079 1.991 1.843 1.672 1995 1.519 1.541 1.672 1.752 1.810 1.763 1.727 1.826 1.886 1.827 1.770 1.844 1996 1.877 1.985 2.040 2.245 2.275 2.561 2.503 2.293 2.296 2.436 2.317 2.419 1997 2.227 1.999 1.987 2.084 2.249 2.194 2.274 2.689 2.997 2.873 2.532 2.204 1998 2.124 2.324 2.333 2.533 2.289 2.291 2.428 2.419 2.537 2.453 2.294 1.940 1999 1.880 1.850 1.886 2.214 2.331 2.429 2.539

  8. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187

  9. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 03 NATURAL GAS; COMBUSTION; EFFICIENCY; FEEDBACK; ...

  10. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177...

  11. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.934 1.692 2.502 2.475 2.156 2.319 2000's 4.311 4.053 3.366 5.493 6.178 9.014 6.976 7.114 8.899 4.159 2010's 4.382 4.026 2.827 3.731 4.262 2.627

  12. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1994-Jan 01/14 2.231 01/21 2.297 01/28 2.404 1994-Feb 02/04 2.506 02/11 2.369 02/18 2.330 02/25 2.267 1994-Mar 03/04 2.178 03/11 2.146 03/18 2.108 03/25 2.058 1994-Apr 04/01 2.065 04/08 2.092 04/15 2.127 04/22 2.126 04/29 2.097 1994-May 05/06 2.025 05/13 1.959 05/20 1.933 05/27 1.855 1994-Jun 06/03 1.938 06/10 2.052 06/17 2.128 06/24 2.065 1994-Jul 07/01 2.183 07/08 2.087

  13. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18

  14. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25

  15. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to

  16. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,018 1,034 1,019 2010's 1,019 1,020 1,022 1,020 1,021...

  17. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050

  18. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Daily","3212016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  19. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","22016" ,"Release Date:","3232016" ,"Next Release Date:","3302016" ,"Excel File Name:","rngwhhdm.xls" ,"Available from Web Page:","http:tonto.eia.govdnavnghist...

  20. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  1. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to ...

  2. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 0110 3.79 0117 4.19 0124 2.98 0131 2.91 ...

  3. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.49 2.09 2.27 2000's 4.31 3.96 3.38 5.47 5.89 8.69 6.73 6.97 8.86 3.94 2010's 4.37 4.00 2.75 ...

  4. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 ...

  5. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494...

  6. Part_3_Minority_Economic_Impact.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part_3_Minority_Economic_Impact.pdf Part_3_Minority_Economic_Impact.pdf PDF icon Part_3_Minority_Economic_Impact.pdf More Documents & Publications RFA-14-0002 - In the Matter of Highway Oil, Inc. Declaration Of Trust Founding Legislation - Office of Minority Economic Impact

  7. spurring_local_economic_development_clean_energy_programs.doc...

    Broader source: Energy.gov (indexed) [DOE]

    spurringlocaleconomicdevelopmentcleanenergyprograms.doc spurringlocaleconomicdevelopmentcleanenergyprograms.doc More Documents & Publications Spurring Local Economic...

  8. Environmentally and Economically Beneficial Practices on Federal Landscaped

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grounds | Department of Energy Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds This Environmental Protection Agency report contains recommendations for a series of environmental actions, including those to increase environmental and economically beneficial landscaping practices at Federal facilities and federally funded projects. PDF icon Environmentally and Economically

  9. Southwest Alaska Economic Summit and Business Meeting

    Broader source: Energy.gov [DOE]

    The Southwest Alaska Economic Summit and Business Meeting (SWAMC) highlights the need for Alaska communities to pull together and make a way through challenging fiscal times. Panels and discussion will focus on providing conference attendees with the knowledge they need to pursue new opportunities.

  10. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  11. Economic Analysis of Alternative Fuel School Buses

    SciTech Connect (OSTI)

    Laughlin, M.

    2004-04-01

    This Clean Cities final report provides a general idea of the potential economic impacts of choosing alternative fuels for school bus fleets. It provides information on different school bus types, as well as analysis of the three main types of alternative fuel used in school bus fleets today (natural gas, propane, and biodiesel).

  12. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    SciTech Connect (OSTI)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    2013-01-01

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

  13. Jobs and Economic Impacts Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Technical Publications » Jobs and Economic Impacts Reports Jobs and Economic Impacts Reports Find analysis reports about jobs and other economic impacts resulting from fuel cell deployment in transportation and early market applications. Economic Impacts Associated with Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model (Argonne National Laboratory, December 2014) Economic Impact of Fuel Cell

  14. Economic Impact Analysis for EGS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impact Analysis for EGS Economic Impact Analysis for EGS Project objective: To conduct an economic impact study for EGS and to develop a Geothermal Economics Calculator (GEC) tool to quantify (in economic terms) the potential job, energy and environmental impacts associated with electric power production from geothermal resources. PDF icon analysis_low_t_resources_peer2013.pdf More Documents & Publications Analysis of Low-Temperature Utilization of Geothermal Resources Canby

  15. Offshore Wind Market and Economic Analysis Report 2013 | Department of

    Energy Savers [EERE]

    Energy Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Offshore Wind Market and Economic Analysis Report 2013 Analysis of the U.S. wind market, including analysis of developments in wind technology, changes in policy, and effect on economic impact, regional development, and job creation. Published in October 2013. PDF icon offshore_wind_market_and_economic_analysis_10_2013.pdf More Documents & Publications 2014 Offshore Wind

  16. 2016 Tribal Energy and Economic Development January Webinar: Energy

    Energy Savers [EERE]

    Planning for Tribal Economic Development | Department of Energy January Webinar: Energy Planning for Tribal Economic Development 2016 Tribal Energy and Economic Development January Webinar: Energy Planning for Tribal Economic Development The Office of Indian Energy, in partnership with Western Area Power Administration, hosted a webinar on Energy Planning for Tribal Economic Development on Wednesday, Jan. 27, 2016, about tools and resources available to establish a clean, diverse, and

  17. Studies Conclude Significant Economic Impact of OREM | Department of Energy

    Energy Savers [EERE]

    Studies Conclude Significant Economic Impact of OREM Studies Conclude Significant Economic Impact of OREM February 12, 2016 - 11:00am Addthis Cover of the summary document exploring OREM's economic impact. Cover of the summary document exploring OREM's economic impact. OAK RIDGE, Tenn., February 12, 2016 - The Howard H. Baker Jr. Center for Public Policy has published two reports highlighting the economic impacts of the Department of Energy's (DOE's) Oak Ridge Office of Environmental Management

  18. Founding Legislation - Office of Minority Economic Impact | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Founding Legislation - Office of Minority Economic Impact Founding Legislation - Office of Minority Economic Impact The Office of Minority Economic Impact, now titled the Office of Economic Impact and Diversity, was established in Fiscal Year 1979 pursuant to Section 641, Title VI, Part 3 of the National Energy Conservation Policy Act of 1978. The following document is a copy of the legislative mandate of the Office of Minority Economic Impact. It includes: Establishing a Director

  19. NISAC Agent Based Laboratory for Economics

    Energy Science and Technology Software Center (OSTI)

    2006-10-11

    The software provides large-scale microeconomic simulation of complex economic and social systems (such as supply chain and market dynamics of businesses in the US economy) and their dependence on physical infrastructure systems. The system is based on Agent simulation, where each entity of inteest in the system to be modeled (for example, a Bank, individual firms, Consumer households, etc.) is specified in a data-driven sense to be individually repreented by an Agent. The Agents interactmore » using rules of interaction appropriate to their roles, and through those interactions complex economic and social dynamics emerge. The software is implemented in three tiers, a Java-based visualization client, a C++ control mid-tier, and a C++ computational tier.« less

  20. NISAC Agent Based Laboratory for Economics

    SciTech Connect (OSTI)

    2006-10-11

    The software provides large-scale microeconomic simulation of complex economic and social systems (such as supply chain and market dynamics of businesses in the US economy) and their dependence on physical infrastructure systems. The system is based on Agent simulation, where each entity of inteest in the system to be modeled (for example, a Bank, individual firms, Consumer households, etc.) is specified in a data-driven sense to be individually repreented by an Agent. The Agents interact using rules of interaction appropriate to their roles, and through those interactions complex economic and social dynamics emerge. The software is implemented in three tiers, a Java-based visualization client, a C++ control mid-tier, and a C++ computational tier.

  1. Economic evolutions and their resilience: a model

    SciTech Connect (OSTI)

    Breitenecker, M.; Gruemm, H.

    1981-04-01

    The report designs a highly aggregated macroeconomic model that can be formulated in terms of a system of ordinary differential equations. The report consists of two parts supplementing each other in a sort of symbiosis. One part is the abstract structure of the equations - that is, the individual dependence of the time variations of the state variables (which span the state space) on the variables themselves (which in this model are E, K, and L). The other part is the parameter space, each point of which is a set of parameter values that have a well-defined economic meaning and thereby endow the system with economic content. (Copyright (c) 1981, International Institute for Applied Systems Analysis.)

  2. Techno-Economic Modeling, Analysis, and Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techno-Economic Modeling, Analysis, and Support - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  3. Assessing the Economic Potential of Advanced Biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Economic Potential of Advanced Biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  4. Alan Farquharson, SVP Reservoir Engineering Economics! Upstream

    Gasoline and Diesel Fuel Update (EIA)

    June 16, 2015 Alan Farquharson, SVP - Reservoir Engineering & Economics! Upstream Developments Generate Growing Hydrocarbon Gas Liquids Supply! 2 Forward-Looking Statements Certain statements and information in this presentation may constitute "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. The words "anticipate," "believe," "estimate," "expect," "forecast," "plan,"

  5. Economic Analysis of Policy Effects Analysis Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Analysis of Policy Effects Analysis Platform March 24, 2015 Jason Hansen, PhD Idaho National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 4.1.2.20 2 | Bioenergy Technologies Office * The goal of this project is to 1) identify risk factors in the biofuel supply system, 2) translate risk factors to implications, and 3) identify strategies and polices to

  6. Department of Energy Analysis of Economic Impact

    National Nuclear Security Administration (NNSA)

    Department of Energy Analysis of Economic Impact Final Rule, 10 CFR 810 February 3, 2015 1 Executive Summary The Department of Energy (DOE) published a Notice of Proposed Rulemaking (NOPR) for part 810 of the Code of Federal Regulations (CFR) on Sept 7, 2011 and a Supplemental Notice of Proposed Rulemaking (SNOPR) on August 2, 2013. This regulation governs the process of export control review and approval for nuclear technology exports from the United States. After careful consideration of all

  7. Table A20. Components of Onsite Electricity Generation by Census Region and

    U.S. Energy Information Administration (EIA) Indexed Site

    Components of Onsite Electricity Generation by Census Region and" " Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,,"RSE" " "," "," "," "," ","Row" "Economic Characteristics(a)","Total","Cogeneration","Renewables","Other(b)","Factors" ,"Total United States" "RSE Column

  8. New DOE Modeling Tool Estimates Economic Benefits of Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Tool Estimates Economic Benefits of Offshore Wind Plants New DOE Modeling Tool Estimates Economic Benefits of Offshore Wind Plants October 1, 2013 - 3:28pm Addthis To help ...

  9. Economic Impact of Recovery Act Investments in the Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available April 25, 2013 ...

  10. Tribal Renewable Energy Webinar: Energy and Economic Success...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Economic Success Studies Tribal Renewable Energy Webinar: Energy and Economic Success Studies November 30, 2016 11:00AM to 12:30PM MST The DOE Office of Indian Energy ...

  11. 2016 Tribal Webinar Series: Energy Planning for Tribal Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Planning for Tribal Economic Development January 27, 2016 11:00 am - 12:30 PM MST ... Markets 224 Transmission and Grid Basics for Tribal Economic and Energy Development 330

  12. Webinar: DOE Updates JOBS and Economic Impacts of Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Webinar: DOE Updates JOBS and Economic Impacts of Fuel Cells (JOBS FC1.1) Model Above is the video recording for ...

  13. THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO ...

  14. Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Below is the text ...

  15. File:Wind-turbine-economics-student.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-student.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-student.pdf Size of this preview: 463 599...

  16. File:Wind-turbine-economics-teacher.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-teacher.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-teacher.pdf Size of this preview: 463 599...

  17. File:Wind-turbine-economics-lp.pdf | Open Energy Information

    Open Energy Info (EERE)

    Wind-turbine-economics-lp.pdf Jump to: navigation, search File File history File usage Metadata File:Wind-turbine-economics-lp.pdf Size of this preview: 463 599 pixels. Other...

  18. Tribal Renewable Energy Webinar: Energy Planning for Tribal Economic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning for Tribal Economic Development Tribal Renewable Energy Webinar: Energy Planning for Tribal Economic Development January 27, 2016 11:00AM to 12:30PM MST Tribal governments ...

  19. London School of Economics and Political Science | Open Energy...

    Open Energy Info (EERE)

    Economics and Political Science Jump to: navigation, search Name: London School of Economics and Political Science Place: United Kingdom Zip: WC2A 2AE Product: Centre for research...

  20. Regional Economic Accounting (REAcct). A software tool for rapidly approximating economic impacts

    SciTech Connect (OSTI)

    Ehlen, Mark Andrew; Vargas, Vanessa N.; Loose, Verne William; Starks, Shirley J.; Ellebracht, Lory A.

    2011-07-01

    This paper describes the Regional Economic Accounting (REAcct) analysis tool that has been in use for the last 5 years to rapidly estimate approximate economic impacts for disruptions due to natural or manmade events. It is based on and derived from the well-known and extensively documented input-output modeling technique initially presented by Leontief and more recently further developed by numerous contributors. REAcct provides county-level economic impact estimates in terms of gross domestic product (GDP) and employment for any area in the United States. The process for using REAcct incorporates geospatial computational tools and site-specific economic data, permitting the identification of geographic impact zones that allow differential magnitude and duration estimates to be specified for regions affected by a simulated or actual event. Using these data as input to REAcct, the number of employees for 39 directly affected economic sectors (including 37 industry production sectors and 2 government sectors) are calculated and aggregated to provide direct impact estimates. Indirect estimates are then calculated using Regional Input-Output Modeling System (RIMS II) multipliers. The interdependent relationships between critical infrastructures, industries, and markets are captured by the relationships embedded in the inputoutput modeling structure.

  1. Biomass and Biofuels: Technology and Economic Overview (Presentation)

    SciTech Connect (OSTI)

    Aden, A

    2007-05-23

    Presentation on biomass and biofuels technology and economics presented at Pacific Northwest National Laboratory, May 23, 2007.

  2. Great Lakes Water Scarcity and Regional Economic Development

    ScienceCinema (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2013-06-06

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  3. Secretary Chu's Remarks at Detroit Economic Club -- As Prepared for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery | Department of Energy Detroit Economic Club -- As Prepared for Delivery Secretary Chu's Remarks at Detroit Economic Club -- As Prepared for Delivery January 11, 2012 - 9:30am Addthis Thank you, President Simon, for the introduction. I also want to thank the Detroit Economic Club for hosting me. For more than 75 years, the Detroit Economic Club has promoted thoughtful conversation on the important issues facing Michigan and our country, and I am pleased to be a part of that

  4. Jobs and Economic Development from New Transmission and Generation...

    Wind Powering America (EERE)

    Construction- and Operations-related Economic Activity from 1,800 MW of New Natural Gas Generation ......

  5. New Report: Renewable Power Economic Potential Has More Than Tripled |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report: Renewable Power Economic Potential Has More Than Tripled New Report: Renewable Power Economic Potential Has More Than Tripled November 19, 2015 - 3:05pm Addthis The economic potential for renewable power technologies, particularly wind and solar, has more than tripled as a result of cost reductions since 2010, according to a new NREL report. The economic potential for renewable power technologies, particularly wind and solar, has more than tripled as a result of

  6. Great Lakes Water Scarcity and Regional Economic Development

    SciTech Connect (OSTI)

    Cameron Davis; Tim Eder; David Ulrich; David Naftzger; Donald J. Wuebbles; Mark C. Petri

    2012-10-10

    Great Lakes Water Scarcity and Regional Economic Development panel at Northwestern University on 10/10/2012

  7. CMI Course Inventory: Mineral Economics and Business | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Mineral Economics and Business Mineral Economics and Business Of the six CMI Team members that are educational institutions, two offer courses in Mineral Economics and Business. These are Colorado School of Mines and Brown University. The following links go to the class list on the CMI page for that school. Colorado School of Mines offers a major in these areas At Brown University, the Institute of Environment and Society offers several courses on economics and policy CMI Education

  8. Economic Analysis of Commercial Idling Reduction Technologies: Which idling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduction system is most economical for truck owners? | Department of Energy Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners? Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners? Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck

  9. Office of Indian Energy and Economic Development Renewable Energy Program

    Energy Savers [EERE]

    ASSISTANT SECRETARY INDIAN AFFAIRS OFFICE OF INDIAN ENERGY AND ECONOMIC DEVELOPMENT RENEWABLE ENERGY PROGRAM OFFICE OF INDIAN ENERGY AND ECONOMIC DEVELOPMENT (OIEED) Office of Indian Energy and Economic Development (IEED) seeks to spur job growth and sustainable economies on American Indian reservations. OFFICE OF INDIAN ENERGY AND ECONOMIC DEVELOPMENT (OIEED) OIEED BUSINESS MODEL INDIAN TRUST LANDS RENEWABLE ENERGY POTENTIAL Resource Number of Reservations Wind 60 Woody Biomass 179 Waste to

  10. 10th Annual Native American Economic Development Conference | Department of

    Energy Savers [EERE]

    Energy 10th Annual Native American Economic Development Conference 10th Annual Native American Economic Development Conference June 6, 2016 7:30AM PDT to June 7, 2016 4:00PM PDT Anaheim, California Disney's Grand Californian Hotel & Spa 1600 Disneyland Dr. Anaheim, CA 92802 The 10th Annual Native American Economic Development Conference is hosting renewable energy sessions, including Tribal Renewable Energy Projects Roundtable: Creating Sovereignty, Energy Independence, Economic

  11. EERE Webinar: The Economic Potential of Renewable Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EERE Webinar: The Economic Potential of Renewable Power EERE Webinar: The Economic Potential of Renewable Power September 1, 2015 11:00AM to 12:00PM MDT Please join the Office of Energy Efficiency and Renewable Energy for a webinar discussing their recent report analyzing the economic potential of renewable power in the United States. Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results describes a geospatial analysis method to estimate

  12. Governor Haslam touts Oak Ridge's economic possibilities | Department of

    Office of Environmental Management (EM)

    Energy Governor Haslam touts Oak Ridge's economic possibilities Governor Haslam touts Oak Ridge's economic possibilities March 24, 2014 - 12:00pm Addthis Tennessee Governor Bill Haslam, at ETTP's fire station, discusses economic opportunities in Oak Ridge. Tennessee Governor Bill Haslam, at ETTP's fire station, discusses economic opportunities in Oak Ridge. On March 21, Tennessee Governor Bill Haslam visited the Energy Department's East Tennessee Technology Park in Oak Ridge. During his

  13. Minority Business and Economic Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business and Economic Development Minority Business and Economic Development The Office of Minority Business and Economic Development is responsible for contract assistance, energy research, development, outreach and technical assistance for minority businesses. The Office was established in November 2013. Karen Atkinson serves as Acting Deputy Director of the Office of Minority Business and Economic Development. Get in touch: Email us at diversity@hq.doe.gov or call (202) 586-8383. Stay in

  14. Path to Economic Sovereignty: Arctic Opportunities

    Energy Savers [EERE]

    Path to Economic Sovereignty: Arctic Opportunities Presented by Kip Knudson Office of Alaska Governor Bill Walker Slide Deck prepared by Sean Skaling, Director, Alaska Energy Authority Photo by Chuck Berray 200 remote microgrids spread over large area  Population: 735,000  Area: 660,000 sq. miles  1.2 people/sq. mile  New Jersey has 1,000 times the density  About 200 stand-alone microgrid communities 3 Alaska Electrical Generation Railbelt 72% of Pop 76% of Energy Natural Gas*

  15. Advanced Small Modular Reactor Economics Status Report

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic and nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.

  16. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  17. Revoked - Environmentally and Economically Beneficial Practices on Federal

    Energy Savers [EERE]

    Landscaped Grounds | Department of Energy Revoked - Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds Revoked - Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds This Memorandum and EPA guidance contains recommendations for a series of environmental actions, including those to increase environmental and economically beneficial landscaping practices at Federal facilities and federally funded projects. This Memorandum was

  18. Survey of the Economics of Hydrogen Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey of the Economics of Hydrogen Technologies Survey of the Economics of Hydrogen Technologies Survey of the Economics of Hydrogen Technologies PDF icon 27079.pdf More Documents & Publications Proceedings of the 2000 U.S. DOE Hydrogen Program Review Costs of Storing and Transporting Hydrogen FTA - SunLine Transit Agency - Final Report

  19. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  20. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    Gasoline and Diesel Fuel Update (EIA)

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  1. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  2. Gas engine driven chiller development and economics

    SciTech Connect (OSTI)

    Koplow, M.D.; Searight, E.F.; Panora, R.

    1986-03-01

    The TECOGEN Division of Thermo Electron Corporation has developed a nominal 150 ton engine driven chiller system under the sponsorship of the Gas Research Institute. The system incorporates an engine directly driving a screw compressor to produce about 130 tons of cooling capacity and a single effect absorption chiller driven by hot water recovered from engine heat to produce another 30 tons of cooling capacity. An economic analysis shows that it will be possible to recover the cost premium of engine driven chiller systems in most US cities in 3 years or less with the O and M savings of these systems when this cost premium is $30 per ton. 4 references, 13 figures, 5 tables.

  3. Laser-isotope-separation technology. [Review; economics

    SciTech Connect (OSTI)

    Jensen, R.J.; Blair, L.S.

    1981-01-01

    The Molecular Laser Isotope Separation (MLIS) process currently under development is discussed as an operative example of the use of lasers for material processing. The MLIS process, which uses infrared and ultraviolet lasers to process uranium hexafluoride (UF/sub 6/) resulting in enriched uranium fuel to be used in electrical-power-producing nuclear reactor, is reviewed. The economics of the MLIS enrichment process is compared with conventional enrichment technique, and the projected availability of MLIS enrichment capability is related to estimated demands for U.S. enrichment service. The lasers required in the Los Alamos MLIS program are discussed in detail, and their performance and operational characteristics are summarized. Finally, the timely development of low-cost, highly efficient ultraviolet and infrared lasers is shownd to be the critical element controlling the ultimate deployment of MLIS uranium enrichment. 8 figures, 7 tables.

  4. 1-2-3 - Economic Indicators.123

    National Nuclear Security Administration (NNSA)

    Economic Indicators Indicator Date Latest Period Previous Period Year Ago Change Month Ago Change Year Ago New Residents (Drivers License Count) December 2009 4,311 4,031 4,656 6.9% -7.4% Active Residential Electric Meter Count January 2010 725,094 724,986 727,892 0.0% -0.4% Total Employment December 2009 833,000 842,800 899,700 -1.2% -7.4% Unemployment Rate December 2009 13.1% 12.1% 8.7% 8.3% 50.6% New Home Sales* January 2010 240 477 284 -49.7% -15.5% New Home Permits January 2010 380 355 179

  5. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  6. Travois Indian Country Affordable Housing & Economic Development Conference

    Energy Savers [EERE]

    | Department of Energy Travois Indian Country Affordable Housing & Economic Development Conference Travois Indian Country Affordable Housing & Economic Development Conference April 4, 2016 8:00AM CDT to April 6, 2016 5:00PM CDT Nashville, Tennessee Renaissance Nashville Hotel 611 Commerce St. Nashville, TN 37203 The 16th Annual Travois Indian Country Affordable Housing & Economic Development Conference is a free three-day conference to learn about housing programs, hear stories

  7. Behavioral Economics Applied to Energy Demand Analysis: A Foundation -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Appendix A Behavioral Economics Applied to Energy Demand Analysis: A Foundation Release date: October 15, 2014 Neoclassical economics has shaped our understanding of human behavior for several decades. While still an important starting point for economic studies, neoclassical frameworks have generally imposed strong assumptions, for example regarding utility maximization, information, and foresight, while treating consumer preferences as given or external to

  8. Economic impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

  9. Study Shows Significant Economic Impact from Recovery Act | Department of

    Office of Environmental Management (EM)

    Energy Study Shows Significant Economic Impact from Recovery Act Study Shows Significant Economic Impact from Recovery Act A study recently released shows the $1.6 billion the Savannah River Site (SRS) received from the American Recovery and Reinvestment Act has had a positive economic impact on the adjacent five-county region. The study's findings were presented at the University of South Carolina Aiken's (USC Aiken) Convocation Center. More than 75 people attended the meeting, where

  10. Economic Dispatch of Electric Generation Capacity | Department of Energy

    Energy Savers [EERE]

    Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the Energy Polict Act of 2005. PDF icon Economic Dispatch of Electric Generation Capacity More Documents & Publications THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 Transmission Constraints and Congestion in the Western and Eastern Interconnections, 2009-2012

  11. NREL: Jobs and Economic Development Impact (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Models The Jobs and Economic Development Impact (JEDI) models are user-friendly screening tools that estimate the economic impacts of constructing and operating power plants, fuel production facilities, and other projects at the local (usually state) level. JEDI results are intended to be estimates, not precise predictions. Based on user-entered project-specific data or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area

  12. NREL: Jobs and Economic Development Impact (JEDI) Models - Interpreting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Results Interpreting Results Sample Results from JEDI. Download a text-version (MS Excel 44 KB) The Jobs and Economic Development Impact (JEDI) models estimate the number of jobs and economic impacts associated with power generation, fuel production, and other projects. Economic activity in input-output models is typically assessed in three categories. NREL's JEDI models classify the first category of results-on-site labor and professional services results-as dollars spent on labor from

  13. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conventional Hydro Model Conventional Hydro Model The Jobs and Economic Development Impact (JEDI) Conventional Hydro model was developed to demonstrate the economic benefits associated with conventional hydro power plants in the United States. The primary goal in developing the state level model was to provide a tool for developers, renewable energy advocates, government officials, decision makers and other potential users, to easily identify the local economic impacts associated with

  14. NREL: Jobs and Economic Development Impacts (JEDI) Models - About JEDI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Model Geothermal Model The Jobs and Economic Development Impact (JEDI) Geothermal model allows users to estimate project costs and direct economic impacts for both hydrothermal and Enhanced Geothermal Systems (EGS) power generation projects based on exploration and drilling activities, power plant construction, and ongoing operations. By determining the regional economic impacts and job creation for a proposed power facility, the geothermal JEDI model can be used to answer

  15. NREL: Transmission Grid Integration - NREL Study Indicates Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential for Wyoming Wind Transmission to California Study Indicates Economic Potential for Wyoming Wind Transmission to California March 24, 2014 A new study from the Energy Department's National Renewable Energy Laboratory (NREL) finds that the economic benefit of transmitting wind energy from Wyoming to the California energy market are likely to exceed the cost. The study, "California-Wyoming Grid Integration Study, Phase 1-Economic Analysis" was conducted by NREL for the

  16. NREL: Water Power Research - Economic and Power System Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Economic and Power System Modeling and Analysis NREL has a long history of successful research to understand and improve the cost of renewable energy technologies, their possible deployment scenarios, and the economic impacts of this deployment. As a research laboratory, NREL is a neutral third party and can provide an unbiased perspective of methodologies and approaches used to estimate direct and indirect economic impacts of offshore renewable energy projects. Deployment and

  17. NREL: Water Power Research - Economic and Power System Modeling and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Economic and Power System Modeling and Analysis NREL's Economic Analysis and power system modeling integrates data from device deployment and programmatic research into deployment and scenario models to quantify the economic and societal benefits of developing cost-competitive marine and hydrokinetic systems. It also identifies policy mechanisms, market designs, and supply chain needs to support various deployment scenarios, provide information and training to potential members of

  18. Before the Subcommittee on Economic Growth, Job Creation and Regulatory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affairs - House Committee on Oversight and Governmant Reform | Department of Energy Economic Growth, Job Creation and Regulatory Affairs - House Committee on Oversight and Governmant Reform Before the Subcommittee on Economic Growth, Job Creation and Regulatory Affairs - House Committee on Oversight and Governmant Reform Written statement of Nicholas Whitcombe, Former Acting Director, Advanced Technology Vehicles Manufacturing Loan Program Submitted to the Subcommittee on Economic Growth,

  19. CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 | Department of Energy CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 CHP: A Technical & Economic Compliance Strategy - SEE Action Webinar, January 2012 This presentation, "Industrial/Commercial/Institutional Boiler MACT - Combined Heat and Power: A Technical & Economic Compliance Strategy," by John Cuttica, Midwest Clean Energy Application Center, and Bruce Hedman, ICF International, is from the January 17, 2012, SEE

  20. 2016 Navajo Nation Economic Summit & Business Opportunity Day | Department

    Energy Savers [EERE]

    of Energy Navajo Nation Economic Summit & Business Opportunity Day 2016 Navajo Nation Economic Summit & Business Opportunity Day April 11, 2016 2:00PM MST to April 13, 2016 4:45PM MST Twin Arrows, Arizona Twin Arrows Navajo Casino Resort 22181 Resort Blvd. Flagstaff, AZ 86004 The 2016 Navajo Nation Economic Summit and Business Opportunity Day will include contract opportunities, matchmaking, one-on-one with buyers and purchasing agencies, network and evening banquet, and over 24

  1. Energy Storage Systems 2007 Peer Review - Economics Presentations |

    Office of Environmental Management (EM)

    Department of Energy Economics Presentations Energy Storage Systems 2007 Peer Review - Economics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to economics (benefit studies and environmental benefit studies) are below. Other presentation categories were: Utility & Commercial Applications of Advanced Energy Storage Systems

  2. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover | Department of Energy Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover This report is an update of NREL's ongoing process design and economic analyses of

  3. Comments of the Joint Center for Political and Economic Studies |

    Office of Environmental Management (EM)

    Department of Energy Joint Center for Political and Economic Studies Comments of the Joint Center for Political and Economic Studies The Media and Technology Institute and the Climate Change Initiative at the Joint Center for Political and Economic Studies ("Joint Center")1 respectfully submit these comments in response to the United States Department of Energy's ("DoE") Request for Information regarding its implementation of the Smart Grid provisions of Federal

  4. 2013 Economic Dispatch and Technological Change - Report to Congress (March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014) | Department of Energy Economic Dispatch and Technological Change - Report to Congress (March 2014) 2013 Economic Dispatch and Technological Change - Report to Congress (March 2014) In this report, the Department of Energy is responding to Sections 1234 and 1832 of the Energy Policy Act of 2005, which directed the Secretary of Energy to conduct an annual study of economic dispatch and potential ways to improve such dispatch to benefit American electricity consumers. In this 2013

  5. Savings and Economic Impacts of the Better Buildings Neighborhood Program,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Evaluation Volume 2 | Department of Energy Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2 Final Report: Savings and Economic Impacts of the Better Buildings Neighborhood Program, Final Evaluation Volume 2, American Recovery and Reinvestment Act of 2009, June 2015. Prepared for U.S. Department of Energy Office of Energy Efficiency and

  6. Tribal Energy and Economic Development Webinar Series | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Training » Tribal Energy and Economic Development Webinar Series Tribal Energy and Economic Development Webinar Series The DOE Office of Indian Energy Policy and Programs, in partnership with Western Area Power Administration (Western), is pleased to continue its sponsorship of the DOE Tribal Energy and Economic Development Webinar Series for 2016. The series is intended for tribal leaders and staff who are interested in developing facility- and community-scale energy projects,

  7. Alternative Fuels Data Center: Mesa Unified School District Reaps Economic

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Environmental Benefits with Propane Buses Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses to someone by E-mail Share Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with Propane Buses on Twitter Bookmark Alternative Fuels Data Center: Mesa Unified

  8. Office of Economic Impact and Diversity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Economic Impact and Diversity Minorities in Energy Initiative: Our Ambassadors Minorities in Energy Initiative: Our Ambassadors The Minorities in Energy Initiative, guided by the U.S. Department of Energy's Office of Economic Impact and Diversity, seeks to create a substantive, sustainable model that connects diverse stakeholders together to address challenges and opportunities for minority engagement in energy economic participation, STEM education, and climate change. Read more

  9. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  10. Center for Chinese Energy Economics Research | Open Energy Information

    Open Energy Info (EERE)

    Energy Economics Research Place: Xiamen, Fujian Province, PRC Website: ice.xmu.edu.cnenglishshowlet References: http:ice.xmu.edu.cnenglishshowletter.aspx?newsid2637 This...

  11. Indonesia-GTZ Mini-Hydropower Schemes for Sustainable Economic...

    Open Energy Info (EERE)

    "Energy supplies generated by mini-hydropower to selected rural areas in Sulawesi, Java and Sumatra are improved. Local economic cycles triggered by this are able to generate...

  12. UNEP-Risoe-Economics of GHG Limitations: Country Study Series...

    Open Energy Info (EERE)

    Econo References Economics of Greenhouse Gas Limitations1 Country study series: Argentina, Ecuador, Estonia, Hungary, Indonesia, Mauritius, Senegal, Vietnam Parallel country...

  13. Process Design and Economics for Biochemical Conversion of Lignocellul...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and Economics for Biochemical ...

  14. Carbon Cycling, Environmental & Rural Economic Impacts from Collecting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review March 24, 2015 Technology Area Review Steve Kelley, NCSU Rick Gustafson, U of WA Elaine Oneil, CORRIM Carbon Cycling, Environmental & Rural Economic Impacts from Collecting ...

  15. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Scientific and Technical Information (OSTI)

    As such, the analysis does not reflect the current state of commercially-available ... purpose of this study is to quantify the economic impact of individual conversion targets ...

  16. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Design and Economics for the Conversion of Lignocellulosic Biomass to ... The process design converts biomass to a hydrocarbon intermediate, a free fatty acid, ...

  17. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia ... Energy Storage Components and Systems Batteries Electric Drive Systems Hydrogen Materials ...

  18. Spurring Local Economic Development with Clean Energy Investments

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assistance Program (TAP), provides information on Spurring Local Economic Development with Clean Energy Investments.

  19. Offshore Wind Market and Economic Analysis Report 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Economic Analysis Page 16 Document Number DE-EE0005360 by combining an excellent wind source and efficient large capacity turbines with the design, fabrication, and...

  20. Impact of Utility Rates on PV Economics - Digital Appendix |...

    Open Energy Info (EERE)

    for The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. This digital appendix contains supplement material for the NREL technical...

  1. Webinar: Lessons From Iowa: The Economic, Market, and Organizational...

    Energy Savers [EERE]

    Lessons From Iowa: The Economic, Market, and Organizational Issues in Making Bulk Energy Storage Work - February 9, 2012 (new date) Webinar: Lessons From Iowa: The...

  2. NREL's Economic Impact Tops $872 Million - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to clean energy June 4, 2015 The economic impact of the Energy Department's National Renewable Energy Laboratory (NREL) was 872.3 million nationwide in fiscal year 2014,...

  3. Lignocellulosic Biomass to Ethanol Process Design and Economics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis For Corn Stover Lignocellulosic Biomass to ...

  4. JEDI: Jobs and Economic Development Impacts Model, National Renewable...

    Wind Powering America (EERE)

    project owners, and others interested in the economic impacts from new electricity generation projects. JEDI's user-friendly design allows novices to explore the statewide...

  5. Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy...

    Open Energy Info (EERE)

    Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap AgencyCompany Organization:...

  6. The Economics of Climate Change in Mexico | Open Energy Information

    Open Energy Info (EERE)

    Climate Change in Mexico Jump to: navigation, search Name The Economics of Climate Change in Mexico AgencyCompany Organization Government of Mexico Sector Energy Topics Policies...

  7. Economic Evaluation of Climate Change Adaptation Projects: Approaches...

    Open Energy Info (EERE)

    Evaluation of Climate Change Adaptation Projects: Approaches for the Agricultural Sector and Beyond Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Economic Evaluation...

  8. NREL's Economic Impact Tops $872 Million | Awards and Honors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The economic impact of the Energy Department's National Renewable Energy Laboratory (NREL) was 872.3 million nationwide in fiscal year 2014, according to a study by the...

  9. NPR's Science Friday discussed lighting economics with Sandia...

    Office of Science (SC) Website

    September 20, 2010 :: Jerry Simmons, director of the EFRC for Solid-State Lighting Science at Sandia National Laboratory, discussed the economics of LED lighting on the September ...

  10. United Nations Economic Commission for Africa | Open Energy Informatio...

    Open Energy Info (EERE)

    for Economic Co-operation and Development (OECD) Ministerial Consultation known as "The Big Table" . Started in 2000, a small group of African Ministers of Finance gather with...

  11. Wind Energy Economic Development and Impacts | Open Energy Information

    Open Energy Info (EERE)

    a particular utility-scale wind configuration project that has been referred to as the "Big Wind" project. Lantz, E.; Tegen, S. (April 2009). Economic Development Impacts of...

  12. Long Term Environment and Economic Impacts of Coal Liquefaction...

    Office of Scientific and Technical Information (OSTI)

    Long Term Environment and Economic Impacts of Coal Liquefaction in China Fletcher, Jerald 01 COAL, LIGNITE, AND PEAT The project currently is composed of six specific tasks - three...

  13. Africa-Economic Development Report 2010 | Open Energy Information

    Open Energy Info (EERE)

    this property. Africa-Economic Development Report 2010 Screenshot References: African Economy1 "The key questions addressed in the report are as follows: What are the...

  14. The Relative Economic Merits of Storage and Combustion Turbines...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Relative Economic Merits of Storage and Combustion Turbines for Meeting Peak Capacity Requirements under Increased Penetration of Solar Photovoltaics Paul Denholm, Victor...

  15. Grid Renewable Energy-Economic and Financial Analysis | Open...

    Open Energy Info (EERE)

    and Financial Analysis Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid Renewable Energy-Economic and Financial Analysis AgencyCompany Organization: World Bank...

  16. Renewable Energy Economic and Financial Analysis Terms of Reference...

    Open Energy Info (EERE)

    Analysis Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Economic and Financial Analysis Terms of Reference AgencyCompany...

  17. Community Wind Handbook/Research Project Economics & Financing...

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Research Project Economics & Financing Generally defined as the amount of time it...

  18. Socio-economic impact analysis in the NEPA process

    SciTech Connect (OSTI)

    Karnovitz, A.; McQueen, S.

    1997-08-01

    National Environmental Policy Act (NEPA) regulations require environmental impact statements to assess direct and indirect effects on a number of different environmental resource categories, including economic and social effects. However, NEPA regulations do not dictate the scope of the socio-economic analyses or specify which analytical procedures must be employed. As a result, socio-economic impact analyses vary considerably across NEPA documents in both the methodology of analysis and in the models used to quantify impacts. The purpose of this paper is to provide an overview of socio-economic analyses in NEPA documents and present strategies for ensuring that the socio-economic analyses are focused on the most relevant socio-economic indicators, while still conforming to the full intent of NEPA. This paper will provide guidance on what factors should be considered when identifying the economic indicators to be assessed. The paper will also describe and discuss various types of models currently used to quantify economic impacts in NEPA documents, and the comparative advantages and disadvantages of these models. In addition, the definition of the appropriate Return On Investment in relation to the model used and the analysis performed will be discussed. The offices of the Department of Energy, the Department of Defense, and the Food and Drug Administration present real world examples of innovative approaches to socio-economic impact analysis.

  19. Microsoft Word - REPORT Jefferson Lab Economic Impact FY2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these contractors and visitors also spend money in the immediate area for accommodations, food and transportation. The estimation of economic impact is an analytic process that...

  20. Southwest Alaska Economic Summit and Business Meetup | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Southwest Alaska Economic Summit and Business Meeting (SWAMC) highlights the need for ... providing conference attendees with the knowledge they need to pursue new opportunities.

  1. Experts Meeting: Behavioral Economics as Applied to Energy Demand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... from the Existing Economic Methodology used in the NEMS Demand Models - ... the UK?" Science and Technology Policy Research Unit (SPRU), Freeman Centre, University ...

  2. Stand-alone Renewable Energy-Economic and Financial Analysis...

    Open Energy Info (EERE)

    and Financial Analysis1 Background Economic Analysis of Solar Home Systems: A Case Study for the Philippines, Peter Meier, Prepared for The World Bank, Washington, D.C....

  3. Estimating the Impact (Energy, Emissions and Economics) of the...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry Citation Details In-Document Search Title: Estimating the Impact (Energy, ...

  4. Wiki-based Techno Economic Analysis of a Lignocellulosic Biorefinery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated Prototype Available - Non-commercial users can download the JBEI Techno Economic Model here: http:econ.jbei.org 09082010 09172010 Contact LBL About This Technology...

  5. NREL: Jobs and Economic Development Impact (JEDI) Models - Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology The intent of the Jobs and Economic Development Impact (JEDI) models is to construct a reasonable profile of investments (e.g., solar plant construction and operating...

  6. Green Economic Development Partnership to Boost Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Economic Development Partnership to Boost Clean Energy Startups in Colorado June 17, 2011 Through a collaborative partnership to expand cleantech entrepreneurship in ...

  7. Regional Economic Models, Inc. (REMI) Model | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: REMI AgencyCompany Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Resource Type: Softwaremodeling tools User Interface:...

  8. OSIRIS and the Collaborative Modeling Initiative on REDD Economics...

    Open Energy Info (EERE)

    RelatedTo: Open Source Impacts of REDD Incentives Spreadsheet (OSIRIS) Cost: Free Language: English OSIRIS and the Collaborative Modeling Initiative on REDD Economics...

  9. TAP Webinar - Partnering For Success: How to Work with Economic...

    Broader source: Energy.gov (indexed) [DOE]

    Topics include examples of successful partnerships with public finance institutions or economic development authorities for clean energy financing, how to lay the groundwork for a ...

  10. Economic Analysis Case Studies of Battery Energy Storage with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Analysis Case Studies of Battery Energy Storage with SAM Nicholas DiOrio, Aron Dobos, and Steven Janzou National Renewable Energy Laboratory Technical Report NREL...

  11. Economic performance of the SCE Stirling dish

    SciTech Connect (OSTI)

    Stone, K.W.; Lopez, C.W.; McAlister, R.E.

    1995-08-01

    In 1982 McDonnell Douglas Aerospace (MDA) and United Stirling AB (USAB) of Sweden formed a joint venture to develop and market a solar Stirling dish system. Eight modules were built and extensively tested from 1984 to 1988. Power production and daily energy-conversion efficiency as determined by field testing were characterized and modeled into a computer program. Included in this simulation are models of mirror soiling rate, wind spillage loss, mirror washing, and other maintenance outage time, operation and maintenance (O and M) costs, and equipment purchase cost. An economic model of a hybrid (combustion) receiver has been included in the simulation for illustrating the value of using solar energy when available and other fuels such as methane, natural gas, hydrogen, etc. when solar energy is not available or adequate. This paper describes the simulation and presents comparisons of the simulation to test data. The simulation also estimates both the O and M expenses and levelized energy costs for different production volumes.

  12. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-12-01

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  13. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  14. Travois Indian Country Affordable Housing & Economic Development Conference

    Broader source: Energy.gov [DOE]

    The Travois Indian Country Affordable Housing and Economic Development Conference is a three-day event that will cover new and rehabilitated homes of tribal members and economic development projects that have provided jobs and services in Indian Country. Attendees will hear from veteran developers and learn from industry leaders.

  15. Advanced Small Modular Reactor Economics Model Development

    SciTech Connect (OSTI)

    Harrison, Thomas J.

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the analysis shows that the propagation of error method introduces essentially negligible error, especially when compared to the uncertainty associated with some of the estimates themselves. The results of these uncertainty analyses generally quantify and identify the sources of uncertainty in the overall cost estimation. The obvious generalization—that capital cost uncertainty is the main driver—can be shown to be an accurate generalization for the current state of reactor cost analysis. However, the detailed analysis on a component-by-component basis helps to demonstrate which components would benefit most from research and development to decrease the uncertainty, as well as which components would benefit from research and development to decrease the absolute cost.

  16. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume I. Economic impacts

    SciTech Connect (OSTI)

    1981-12-22

    This analysis identifies the economic impacts associated with OTEC development and quantifies them at the national, regional, and industry levels. It focuses on the effects on the United States' economy of the domestic development and utilization of twenty-five and fifty 400 MWe OTEC power plants by the year 2000. The methodology employed was characteristic of economic impact analysis. After conducting a literature review, a likely future OTEC scenario was developed on the basis of technological, siting, and materials requirements parameters. These parameters were used to identify the industries affected by OTEC development; an economic profile was constructed for each of these industries. These profiles established an industrial baseline from which the direct, indirect, and induced economic impacts of OTEC implementation could be estimated. Each stage of this analysis is summarized; and the economic impacts are addressed. The methodology employed in estimating the impacts is described.

  17. "RSE Table N1.3. Relative Standard Errors for Table N1.3;...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Coal ",3 "Natural Gas",1 "Net Electricity",1 " Purchases",1 " Transfers In",9 " Onsite Generation from Noncombustible Renewable Energy",15 " Sales and Transfers Offsite",3 "Coke ...

  18. RSE Table 1.1 Relative Standard Errors for Table 1.1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 1.1;" " Unit: Percents." " "," " " "," "," ",," "," ",," ",,," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural ","LPG and"," ","Coke and"," ","of Energy Sources" "Code(a)","Subsector and

  19. RSE Table 1.2 Relative Standard Errors for Table 1.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 1.2;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," "," " " "," "," ",," "," ",," "," ",," ","Shipments" "NAICS"," ",,"Net","Residual","Distillate","Natural","LPG

  20. RSE Table 10.10 Relative Standard Errors for Table 10.10

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Relative Standard Errors for Table 10.10;" " Unit: Percents." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel

  1. RSE Table 10.11 Relative Standard Errors for Table 10.11

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 10.11;" " Unit: Percents." ,,"Coal(b)",,,"Alternative Energy Sources(c)" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel

  2. RSE Table 10.12 Relative Standard Errors for Table 10.12

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 10.12;" " Unit: Percents." ,,"LPG",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and

  3. RSE Table 10.13 Relative Standard Errors for Table 10.13

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 10.13;" " Unit: Percents." ,,"LPG(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate","Residual",,"and" "Code(a)","Subsector and

  4. RSE Table 2.1 Relative Standard Errors for Table 2.1

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1 Relative Standard Errors for Table 2.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ","Residual","Distillate","Natural ","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Fuel Oil","Fuel Oil(b)","Gas(c)","NGL(d)","Coal","and

  5. RSE Table 3.1 Relative Standard Errors for Table 3.1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 3.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel

  6. RSE Table 3.2 Relative Standard Errors for Table 3.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 3.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ","Net","Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and

  7. RSE Table 3.5 Relative Standard Errors for Table 3.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," ","

  8. RSE Table 4.1 Relative Standard Errors for Table 4.1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 4.1;" " Unit: Percents." " "," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Total","Electricity(b)","Fuel Oil","Fuel

  9. RSE Table 4.2 Relative Standard Errors for Table 4.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 4.2;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," " "NAICS"," "," ",,"Residual","Distillate","Natural","LPG and",,"Coke"," " "Code(a)","Subsector and

  10. RSE Table 5.1 Relative Standard Errors for Table 5.1

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Relative Standard Errors for Table 5.1;" " Unit: Percents." " "," " " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," "

  11. RSE Table 5.2 Relative Standard Errors for Table 5.2

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." " "," "," ",," ","Distillate"," "," ",," " " "," ",,,,"Fuel Oil",,,"Coal" "NAICS"," "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," " "Code(a)","End

  12. RSE Table 5.4 Relative Standard Errors for Table 5.4

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel

  13. RSE Table 5.5 Relative Standard Errors for Table 5.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 5.5;" " Unit: Percents." " "," ",," ",," "," ",," " " ",,,,"Distillate" " "," ",,,"Fuel Oil",,,"Coal"," " " ",,"Net","Residual","and","Natural","LPG and","(excluding Coal" "End Use","Total","Electricity(a)","Fuel

  14. RSE Table 5.6 Relative Standard Errors for Table 5.6

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural","LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel

  15. RSE Table 5.7 Relative Standard Errors for Table 5.7

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." " ",,,"Distillate" " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)"

  16. RSE Table 5.8 Relative Standard Errors for Table 5.8

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." " ",," ","Distillate"," "," " " ","Net Demand",,"Fuel Oil",,,"Coal" " ","for ","Residual","and","Natural ","LPG and","(excluding Coal" "End Use","Electricity(a)","Fuel Oil","Diesel

  17. RSE Table 7.10 Relative Standard Errors for Table 7.10

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Relative Standard Errors for Table 7.10;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from

  18. RSE Table 7.3 Relative Standard Errors for Table 7.3

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 7.3;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural Gas",,,"Steam",," " " "," ",,"Electricity","from Sources",,"Natural Gas","from Sources",,"Steam","from

  19. RSE Table 7.6 Relative Standard Errors for Table 7.6

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 7.6;" " Unit: Percents." " "," " " "," ",,,,,,,,," " "NAICS"," "," ",,"Residual","Distillate","Natural ","LPG and",,"Coke" "Code(a)","Subsector and Industry","Total","Electricity","Fuel Oil","Fuel

  20. RSE Table 7.7 Relative Standard Errors for Table 7.7

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 7.7;" " Unit: Percents." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,,,,,,,,," " " "," ",,,"Electricity",,,"Natural Gas",,,"Steam" " "," ",,"Electricity","from Sources",,"Natural Gas","from