Sample records for btu primary consumption

  1. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion CubicConsumption

  2. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  3. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  4. Accurate BTU Measurement

    E-Print Network [OSTI]

    Hosseini, S.; Rusnak, J. J.

    1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

  5. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  6. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    Building Heating Loads (Trillion BTU/yr) Total BuildingCooling Loads (Trillion BTU/yr) Non. Wind Infilt SHGC Wind.Energy Consumption (Trillion BTU/yr) Area, Window Window

  7. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  8. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Total Building Energy Consumption (Trillion BTU/yr) Area,

  9. Reduction of Water Consumption

    E-Print Network [OSTI]

    Adler, J.

    Cooling systems using water evaporation to dissipate waste heat, will require one pound of water per 1,000 Btu. To reduce water consumption, a combination of "DRY" and "WET" cooling elements is the only practical answer. This paper reviews...

  10. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than the national average, but...

  11. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33% higher than the national average...

  12. Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement

    E-Print Network [OSTI]

    Wang, Quanlu; Delucchi, Mark A.

    1991-01-01T23:59:59.000Z

    These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

  13. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    an average of 86 million Btu per year, about 4% less than the U.S. average. * Average electricity consumption and costs are higher for Virginia households than the national...

  14. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consume an average of 103 million Btu per year, 15% more than the U.S. average. * Electricity consumption in New York homes is much lower than the U.S. average, because...

  15. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  16. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that...

  17. "Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total Consumption

  18. Table A33. Total Primary Consumption of Energy for All Purposes by Employment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of ElectricityPrimary

  19. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  20. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  1. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  2. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31T23:59:59.000Z

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  3. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYrCapacityBtuHr

  4. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  5. High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

  6. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYr Jump to:

  7. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR NewBTU

  8. High Btu gas from peat. Existing social and economic conditions

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

  9. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    NONE

    1995-10-05T23:59:59.000Z

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  10. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  11. Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117

    E-Print Network [OSTI]

    Radivojac, Predrag

    .1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

  12. Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmily KnouseEnSys Energy Report on

  13. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15T23:59:59.000Z

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  14. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils...

  15. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  16. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  17. Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259

    E-Print Network [OSTI]

    Moret, Bernard

    Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

  18. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  19. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01T23:59:59.000Z

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  20. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  1. Estimation of Optimal Brachytherapy Utilization Rate in the Treatment of Malignancies of the Uterine Corpus by a Review of Clinical Practice Guidelines and the Primary Evidence

    SciTech Connect (OSTI)

    Thompson, Stephen R. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)], E-mail: stephen.thompson@sesiahs.health.nsw.gov.au; Delaney, Geoff [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Gabriel, Gabriel S.; Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Barton, Michael [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)

    2008-11-01T23:59:59.000Z

    Purpose: Brachytherapy (BT) is an important treatment technique for uterine corpus malignancies. We modeled the optimal proportion of these cases that should be treated with BT-the optimal rate of brachytherapy utilization (BTU). We compared this optimal BTU rate with the actual BTU rate. Methods and Materials: Evidence-based guidelines and the primary evidence were used to construct a decision tree for BTU for malignancies of the uterine corpus. Searches of the literature to ascertain the proportion of patients who fulfilled the criteria for BT were conducted. The robustness of the model was tested by sensitivity analyses and peer review. A retrospective Patterns of Care Study of BT in New South Wales for 2003 was conducted, and the actual BTU for uterine corpus malignancies was determined. The actual BTU in other geographic areas was calculated from published reports. The differences between the optimal and actual rates of BTU were assessed. Results: The optimal uterine corpus BTU rate was estimated to be 40% (range, 36-49%). In New South Wales in 2003, the actual BTU rate was only 14% of the 545 patients with uterine corpus cancer. The actual BTU rate in 2001 was 11% in the Surveillance, Epidemiology, and End Results areas and 30% in Sweden. Conclusion: The results of this study have shown that BT for uterine corpus malignancies is underused in New South Wales and in the Surveillance, Epidemiology, and End Results areas. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which can be measured actual patterns of practice. It can also be used to assist in determining the adequacy of BT resource allocation.

  2. The Building Energy Report Card is used to compare the actual annual energy consumption of buildings to a

    E-Print Network [OSTI]

    Ciocan-Fontanine, Ionut

    's area (Gross Square Feet or GSF). The report card accounts for all forms of energy used in a building.e. kBtu) and is divided by the building's area to proved a unit of energy intensity which is expressedThe Building Energy Report Card is used to compare the actual annual energy consumption

  3. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    SciTech Connect (OSTI)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01T23:59:59.000Z

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings compared to the northern regions, a result possibly due to a small, offsetting increase in household air conditioning usage. (4) Changes in national traffic volume and motor gasoline consumption for passenger vehicles in 2007 were determined to be statistically insignificant and therefore, could not be attributed to Extended Daylight Saving Time.

  4. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  5. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  6. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  7. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU perper

  8. High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

  9. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  10. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  11. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  12. Use of advanced cluster analysis to characterize seafood consumption patterns and methyle mercury exposures among

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the central nervous system (Alessandri et al., 2004). At the same time, fish consumption is also the primary

  13. Factors of material consumption

    E-Print Network [OSTI]

    Silva Díaz, Pamela Cristina

    2012-01-01T23:59:59.000Z

    Historic consumption trends for materials have been studied by many researchers, and, in order to identify the main drivers of consumption, special attention has been given to material intensity, which is the consumption ...

  14. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  15. Window-Related Energy Consumption in the US Residential andCommercial Building Stock

    SciTech Connect (OSTI)

    Apte, Joshua; Arasteh, Dariush

    2006-06-16T23:59:59.000Z

    We present a simple spreadsheet-based tool for estimating window-related energy consumption in the United States. Using available data on the properties of the installed US window stock, we estimate that windows are responsible for 2.15 quadrillion Btu (Quads) of heating energy consumption and 1.48 Quads of cooling energy consumption annually. We develop estimates of average U-factor and SHGC for current window sales. We estimate that a complete replacement of the installed window stock with these products would result in energy savings of approximately 1.2 quads. We demonstrate that future window technologies offer energy savings potentials of up to 3.9 Quads.

  16. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  17. Firewood consumption in a Nepali village

    SciTech Connect (OSTI)

    Fox, J.

    1984-05-01T23:59:59.000Z

    People's dependence on firewood as a primary source of energy is causing serious deforestation problems in many developing countries. Reliable information on firewood consumption rates is needed to develop afforestation plans and to control deforestation. This study compares three methods used to determine firewood consumption in a Nepali village. Cultural and environmental factors that affect firewood consumption in the village are also examined. The weight survey proved to be the most accurate method used. The less precise daily recall and annual recall surveys overestimated actual firewood consumption by factors of 1.76 and 1.95, respectively. Overestimates are attributed to both physical and social factors. In view of the good agreement between daily and annual recall surveys, and the much greater ease of conducting the latter, annual recall surveys are recommended as the most practical method of monitoring firewood consumption rates. Validating the survey with occasional weighted measurements is suggested as a means of improving accuracy.

  18. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  19. Connected Consumption: The hidden networks of consumption

    E-Print Network [OSTI]

    Reed, David P.

    In this paper, we present the Connected Consumption Network (CCN) that allows a community of consumers to collaboratively sense the market from a mobile device, enabling more informed financial decisions in geo-local ...

  20. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of primary energy, not including biomass fuels which areResidential Energy Consumption by Fuel (with Biomass) FigurePrimay Energy Consumption by Fuel (without Biomass) 8 of 17

  1. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0Feet) Decreases

  2. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal ConsumptionThousand CubicfromDryFoot)

  3. Fuel consumption analyses for urban traffic management

    SciTech Connect (OSTI)

    Bowyer, D.P.; Akcelik, R.; Biggs, D.C.

    1986-12-01T23:59:59.000Z

    A primary output from the fuel consumption research conducted by the Australian Road Research Board (ARRB) is the ARRB Special Report, Guide to Fuel Consumption Analyses. This article briefly summarizes the background of the guide, describes its major features, and considers its relevance to urban traffic management decision. The guide was a result of a technical audit of studies relating to energy consumption in traffic and transport systems. A brief summary of the audit process and findings is given. The guide is intended primarily as an aid to effective use of fuel consumption models in the design of traffic management schemes. The forms of four interrelated fuel consumption models of the guide are described and their likely transferability to various situations is indicated. Each traffic and fuel consumption model is appropriate to a particular scale of traffic system. This link is shown for several selected traffic models. As an example, a discussion of the importance of accurate fuel consumption estimates for the case of priority control at a particular intersection is given.

  4. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel Consumption0 0 0Feet) DecadetoYear Jan

  5. Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15EnvironmentalErin

  6. Reduces electric energy consumption

    E-Print Network [OSTI]

    BENEFITS · Reduces electric energy consumption · Reduces peak electric demand · Reduces natural gas consumption · Reduces nonhazardous solid waste and wastewater generation · Potential annual savings products for the automotive industry, electrical equipment, and miscellaneous other uses nationwide. ALCOA

  7. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    LPG is a major energy source, while coal and electricity areoil coal Figure 14 Residential Primary Energy Consumption bytotal primary energy supply in 2000, coal will drop to about

  8. Estimates of US biofuels consumption, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  9. Energy-consumption modelling

    SciTech Connect (OSTI)

    Reiter, E.R.

    1980-01-01T23:59:59.000Z

    A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

  10. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  11. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  12. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  13. High Btu gas from peat. A feasibility study. Part 3. Market analysis. Task 8. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to identify and characterize the market potential for the plant by-products - BTX (mixture of benzene, toluene and xylene), phenol, ammonia, sulfur, and sodium sulfate - and to assign value to them. Although traditionally a growth industry, the chemicals market has been generally weakened by the recession, and is experiencing back to back years of declining production. This is due to bad health of specific end uses, such as fertilizer from ammonia. In the long run, this trend is expected to moderate. It is felt that the proposed peat plant has a favorable position in the markets of each of its by-products. This is due to the synergism with nearby industries which are major consumers of these by-products. In the case of sulfur and ammonia, the Red River agricultural area is a large potential market. For sodium sulfate, phenols and perhaps BTX, the nearby paper and timber products industries are large potential markets. The values for these by-products used in the financial analysis were intentionally conservative. This is because of the uncertainty in the quantity and quality. More tests are needed in an integrated facility in order to determine these factors and the variability of each. This is particularly true of the by-product oils which could vary significantly with operating conditions and may even require alternate processing schemes. 18 references, 9 figures, 14 tables.

  14. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01T23:59:59.000Z

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  15. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type (Quadrillion Btu and Percent of Total)....

  16. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies 12% of the nation's electricity. Hydropower produces more than 90,000 megawatts of electricity, which is enough to meet the needs of 28.3 million consumers. Hydropower accounts for over 90% of all electricity

  17. Table C3. Primary Energy Consumption Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total

  18. Margins up; consumption down

    SciTech Connect (OSTI)

    Mantho, M.

    1983-09-01T23:59:59.000Z

    The results of a survey of dealers in the domestic fuel oil industry are reported. Wholesale prices, reacting to oversupply, decreased as did retail prices; retail prices decreased at a slower rate so profit margins were larger. This trend produced competitive markets as price-cutting became the method for increasing a dealer's share of the profits. Losses to other fuels decreased, when the figures were compared to earlier y; and cash flow was very good for most dealers. In summary, profits per gallon of oil delivered increased, while the consumption of gasoline per customer decreased. 22 tables.

  19. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption The State Energy Data System

  20. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul Aug SepDecadeEnergy Consumption

  1. Evolutionary Tuning of Building Models to Monthly Electrical Consumption

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    % of the world's primary energy and contributes 21% of the world's greenhouse gas emissions (DOE Buildings Data Book 2011). The largest sector of energy consumption is the ~119 million buildings in the US which New, PhD Theodore Chandler Member ASHRAE ABSTRACT Building energy models of existing buildings

  2. Exceeding Energy Consumption Design Expectations

    E-Print Network [OSTI]

    Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

    2013-01-01T23:59:59.000Z

    ) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

  3. Producing Quail for Home Consumption

    E-Print Network [OSTI]

    Thornberry, Fredrick D.

    1998-08-21T23:59:59.000Z

    Hobby and backyard producers are becoming interested in producing quail for home consumption. This publication gives tips on housing and brooding, nutrition, lighting, cannibalism, health and slaughter. It includes three recipes....

  4. Energy consumption of building 39

    E-Print Network [OSTI]

    Hopeman, Lisa Maria

    2007-01-01T23:59:59.000Z

    The MIT community has embarked on an initiative to the reduce energy consumption and in accordance with the Kyoto Protocol. This thesis seeks to further expand our understanding of how the MIT campus consumes energy and ...

  5. Progressive consumption : strategic sustainable excess

    E-Print Network [OSTI]

    Bonham, Daniel J. (Daniel Joseph MacLeod)

    2007-01-01T23:59:59.000Z

    Trends in the marketplace show that urban dwellers are increasingly supporting locally produced foods. This thesis argues for an architecture that responds to our cultures consumptive behaviors. Addressing the effects of ...

  6. The Wealth-Consumption Ratio

    E-Print Network [OSTI]

    Verdelhan, Adrien Frederic

    We derive new estimates of total wealth, the returns on total wealth, and the wealth effect on consumption. We estimate the prices of aggregate risk from bond yields and stock returns using a no-arbitrage model. Using these ...

  7. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  14. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  18. Data Center Power Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Consumption Data Center Power Consumption Presentation covers the FUPWG Fall Meeting, held on November 28-29, 2007 in San Diego, California. fupwgsandiegomainers.pdf More...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  20. New York: Weatherizing Westbeth Reduces Energy Consumption |...

    Energy Savers [EERE]

    New York: Weatherizing Westbeth Reduces Energy Consumption New York: Weatherizing Westbeth Reduces Energy Consumption August 21, 2013 - 12:00am Addthis The New York State Homes and...

  1. Demonstrating Fuel Consumption and Emissions Reductions with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

  2. A work bibliography on native food consumption, demography and lifestyle

    SciTech Connect (OSTI)

    Murray, C.E.; Lee, W.J.

    1992-12-01T23:59:59.000Z

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project's primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  3. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01T23:59:59.000Z

    A C EUIs (cooling, ventilation, and gas heating). The annualCooling kWh/ft Ventilation kWh/ft Heating kBtu/ft CoolingMiscellaneous DOE-2 Ventilation kWh/ft Heating kBtu/ft EDA

  4. Title Goes Here In This PositionMillersville University

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Electricity consumption is responsible for 66% of emissions 0 5,000 10,000 15,000 20,000 25,000 Scope 1 Consumption: 61,734 BTU/GSF UD's Electric Consumption: 59,396 BTU/GSF 0 50,000 100,000 150,000 200,000 250 Consumption & Tech. Rating Total BTU/GSF Fossil Consumption: 29,362 BTU/GSF Electric Consumption: 77,495 BTU

  5. 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

  6. DuPont Energy Innovations

    E-Print Network [OSTI]

    Firestone, Jeremy

    21 1 6 2 9 9 U. S. Primary Energy Consumption by Source and Sector, 2007 (Quadrillion BTU) Source by Energy Type, Indexed to 1970 INDEXEDPRICE Source: Energy Information Administration, website data #12 energy flat with 1990 levels. Progress: · Consumption down 7 percent overall as compared to 1990. · Since

  7. Essays on aggregate and individual consumption fluctuations

    E-Print Network [OSTI]

    Hwang, Youngjin

    2006-01-01T23:59:59.000Z

    This thesis consists of three essays on aggregate and individual consumption fluctuations. Chapter 1 develops a quantitative model to explore aggregate and individual consumption dynamics when the income process exhibits ...

  8. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  9. Energy Consumption ESPRIMO E7935 E80+

    E-Print Network [OSTI]

    Ott, Albrecht

    Computers is also taking significant effort to reduce the energy consumption in data centres by providingEnergy Consumption ESPRIMO E7935 E80+ White Paper Issue: September 2008 In order to strengthen all important energy information about their products. With the publication of energy consumption

  10. Ethanol Consumption by Rat Dams During Gestation,

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Ethanol Consumption by Rat Dams During Gestation, Lactation and Weaning Increases Ethanol examined effects of ethanol consumption in rat dams during gestation, lactation, and weaning on voluntary ethanol consumption by their adolescent young. We found that exposure to an ethanol-ingesting dam

  11. DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic

    E-Print Network [OSTI]

    Simunic, Tajana

    Chapter 1 DYNAMIC MANAGEMENT OF POWER CONSUMPTION Tajana Simunic HP Labs Abstract Power consumption by adapting to changes in environment are proposed: dynamic power management and dynamic voltage scaling. Dynamic power management (DPM) algorithms aim to reduce the power consumption at the system level

  12. Mathematical models of natural gas consumption

    E-Print Network [OSTI]

    Scitovski, Rudolf

    Mathematical models of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan of natural gas consumption Kristian Sabo, Rudolf Scitovski, Ivan Vazler , Marijana Zeki-Susac ksabo of natural gas consumption hourly fore- cast on the basis of hourly movement of temperature and natural gas

  13. Energy Consumption of Personal Computing Including Portable

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Energy Consumption of Personal Computing Including Portable Communication Devices Pavel Somavat1 consumption, questions are being asked about the energy contribution of computing equipment. Al- though studies have documented the share of energy consumption by this type of equipment over the years, research

  14. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  15. Energy consumption of personal computer workstations

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.

    1994-02-01T23:59:59.000Z

    The explosive growth of the information age has had a profound effect on the appearance of today`s office. Although the telephone still remains an important part of the information exchange and processing system within an office, other electronic devices are now considered required equipment within this environment. This office automation equipment includes facsimile machines, photocopiers, personal computers, printers, modems, and other peripherals. A recent estimate of the installed base indicated that 42 million personal computers and 7.3 million printers are in place, consuming 18.2 billion kWh/yr-and this installed base is growing (Luhn 1992). From a productivity standpoint, it can be argued that this equipment greatly improves the efficiency of those working in the office. But of primary concern to energy system designers, building managers, and electric utilities is the fact that this equipment requires electric energy. Although the impact of each incremental piece of equipment is small, installation of thousands of devices per building has resulted in office automation equipment becoming the major contributor to electric consumption and demand growth in commercial buildings. Personal computers and associated equipment are the dominant part of office automation equipment. In some cases, this electric demand growth has caused office buildings electric and cooling systems to overload.

  16. Residential Energy Consumption Survey Results: Total Energy Consumptio...

    Open Energy Info (EERE)

    Residential Energy Consumption Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) The Residential Energy Consumption Survey (RECS) is a national survey...

  17. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    49 3.3.3. Pre-installation electricity consumption of CSIE. Kahn (2011). Electricity Consumption and Durable Housing:on Electricity Consumption .

  18. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    LBNL-pend TV Energy Consumption Trends and Energy-EfficiencyTrends and Energy Consumption ..TV Technology Trends and Energy Consumption. 1.2.3. Factors

  19. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    strategies impact on energy consumption in residentialBEHAVIOUR ON HEAT ENERGY CONSUMPTION Nicola Combe 1 ,2 ,nearly 60% of domestic energy consumption and 27% of total

  20. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inEnergy Consumption ..26 3.1.3. 3D TV Energy Consumption and Efficiency

  1. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

  2. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

  3. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

  4. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  5. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2008-09-02T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K. (Kennewick, WA); Chassin, David P. (Pasco, WA); Dagle, Jeffery E. (Richland, WA); Kintner-Meyer, Michael (Richland, WA); Winiarski, David W. (Kennewick, WA); Pratt, Robert G. (Kennewick, WA); Boberly-Bartis, Anne Marie (Alexandria, VA)

    2006-03-07T23:59:59.000Z

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. Primary enzyme quantitation

    DOE Patents [OSTI]

    Saunders, G.C.

    1982-03-04T23:59:59.000Z

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  9. Built Environment For Complete Set of Factsheets visit css.snre.umich.edu

    E-Print Network [OSTI]

    Edwards, Paul N.

    % of total commercial floor space and 51% of buildings.2 Resource Consumption Energy Use · In 2010, the commercial sector consumed 18.3 quadrillion Btu of primary energy, a 72% increase from 1980.4 · Lighting and indoor climate control consumed 51% of commercial sector primary energy in 2010.4 · Average energy

  10. Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency

    E-Print Network [OSTI]

    Diamond, Richard

    Don't Supersize Me! Toward a Policy of Consumption-Based Energy Efficiency Jeffrey Harris, Rick and elsewhere, we argue that today's primary focus on energy efficiency may not be sufficient to slow (and to return to an earlier emphasis on "conservation," with energy efficiency seen as a means rather than

  11. Evaluation of the Hazard of Microcystis Blooms for Human Health through Fish Consumption

    E-Print Network [OSTI]

    will be harmful to human health. #12;Proposed Work Microcystin Toxicokinetics Experiments Past experimentationEvaluation of the Hazard of Microcystis Blooms for Human Health through Fish Consumption Primary-Investigator: Duane Gossiaux - NOAA GLERL Overview Human exposure to the cyanobacterial toxin Microcystin occurs

  12. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    gross world product, E is global energy consumption, Authorworld GDP, f = F/E is carbon intensity of energy consumption,

  13. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island, NewFirmGreen

  14. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR

  15. Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices

    E-Print Network [OSTI]

    Guvenc, Ali Bilge

    2012-01-01T23:59:59.000Z

    4 Figure 1-3 World energy consumption (in British Thermal5 Figure 1-4 World energy consumption (in Btu) according toforms and (b) world energy consumption (in Btu) according to

  16. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01T23:59:59.000Z

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  17. Trends in Renewable Energy Consumption and Electricity

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Presents a summary of the nation’s renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

  18. Permitting of Consumptive Uses of Water (Florida)

    Broader source: Energy.gov [DOE]

    Local water management districts are required to establish programs and regulations to provide for the permitting of consumptive uses of water. Such permitting programs are subject to the...

  19. Heavy Oil Consumption Reduction Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    This program helps heavy oil consumers move toward sustainable development while improving their competitive position by reducing their consumption. Financial assistance is offered to carry out...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    have the end use, not consumption specifically for that particular end use. HVAC Heating, Ventilation, and Air Conditioning. Due to rounding, data may not sum to...

  1. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  2. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","331...

  3. ,"New York Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Total Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  4. Using Iterative Compilation to Reduce Energy Consumption

    E-Print Network [OSTI]

    Gheorghita, Valentin

    or to re- duce power. Most transformations require loop re- structuring. Although a large number.v.gheorghita,h.corporaal,a.a.basten}@tue.nl Keywords: Iterative Compilation, Program Optimization, Energy Consumption, Program Transformation. Abstract. This is emphasized by new demands added to compilers, like reducing static code size, energy consumption or power

  5. World synthetic rubber consumption is growing

    SciTech Connect (OSTI)

    Not Available

    1987-03-04T23:59:59.000Z

    Worldwide consumption of new rubber, both synthetic and natural, has increased. This report includes a prediction of even more growth in the rubber market which was made by the International Institute of Synthetic Rubber Producers (IISRP), based in Houston. Figures are given for worldwide consumption.

  6. Primary Prevention of Hypertension

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Primary Prevention of Hypertension: Clinical and Public Health Advisory from the National High NIH PUBLICATION NO. 02-5076 NOVEMBER 2002 Primary Prevention of Hypertension: Clinical and Public OF HYPERTENSION CLINICAL AND PUBLIC HEALTH ADVISORY FROM THE NATIONAL HIGH BLOOD PRESSURE EDUCATION PROGRAM

  7. Education research Primary Science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

  8. Master logo Primary version

    E-Print Network [OSTI]

    Bandara, Arosha

    Master logo Primary version The master logo is the most important visual representation practical, this primary version of the logo must be used. Need help with something? Contact: brand logos, trade marks, trade names, photographic and video images, sound recordings, audio tools

  9. Changing patterns of world energy consumption

    SciTech Connect (OSTI)

    Todd, S.H.

    1983-08-01T23:59:59.000Z

    The substantial increases in oil prices since 1973 have had tremendous impacts on world energy, and particularly on oil consumption. These impacts have varied across regions and energy types. As shown in a table, from 1960 through 1973 the real price of internationally traded crude oil, as measured in constant US dollars, changed very little. In this stable oil price environment, Free World energy consumption grew at 5.3% per year and oil use rose at 7.5% per year, increasing its share of Free World energy consumption from 43 to 56%. 6 tables.

  10. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  11. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  12. Research on Building Energy Consumption Situation in Shanghai 

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  13. Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption

    E-Print Network [OSTI]

    Chyba, Monique

    : Autonomous Underwater Vehicle, Minimum Energy Consumption, Optimal Control, Experiments. 1 IntroductionIncreasing Underwater Vehicle Autonomy by Reducing Energy Consumption M. Chybaa , T. Haberkornd , S, we concern ourselves with finding a control strategy that minimizes energy consumption along

  14. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    and Low Power Mode Energy Consumption”, Energy Efficiency inTV Shipments on Energy Consumption.. 22 Figure 3-1.Estimates of Annual Energy Consumption in 3D mode of 3D TVs

  15. Research on Building Energy Consumption Situation in Shanghai

    E-Print Network [OSTI]

    Yang, X.; Tan, H.

    2006-01-01T23:59:59.000Z

    This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between...

  16. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

  17. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    household (2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to...

  18. Energy consumption metrics of MIT buildings

    E-Print Network [OSTI]

    Schmidt, Justin David

    2010-01-01T23:59:59.000Z

    With world energy demand on the rise and greenhouse gas levels breaking new records each year, lowering energy consumption and improving energy efficiency has become vital. MIT, in a mission to help improve the global ...

  19. GIS-based energy consumption mapping 

    E-Print Network [OSTI]

    Balta, Chrysi

    2014-11-27T23:59:59.000Z

    This project aims to provide a methodology to map energy consumption of the housing stock at a city level and visualise and evaluate different retrofitting scenarios. It is based on an engineering, bottom-up approach. It makes use...

  20. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:04:17 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New...

  1. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:01:29 PM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New...

  2. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  3. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:12:03 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NY2" "Date","New York...

  4. ,"New York Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:08:45 AM" "Back to Contents","Data 1: New York Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NY2" "Date","New...

  5. Essays on consumption cycles and corporate finance

    E-Print Network [OSTI]

    Issler, Paulo Floriano

    2013-01-01T23:59:59.000Z

    consumption . . . . . 1.5.3 EIS and the timing of durablefor the CRRA case (? = 2, EIS = 0.5). The right and leftof intertemporal substitution (EIS). When the economy is

  6. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  7. Monitoring and Management of Refinery Energy Consumption

    E-Print Network [OSTI]

    Pelham, R. O.; Moriarty, R. D.; Hudgens, P. D.

    MONITORING AND MANAGEMENT OF REFINERY ENERGY CONSUMPTION Roger O. Pelham Richard D. Moriarty Patrie D. Hudgens Profimatics, Inc. Thousand Oaks, California ABSTRACT Since 1972, the u.s. refining industry has made much progress in reduci... ng energy consumption. Lately, falling energy prices have de-emphasized the need to appropriate new capital for additional energy conservation projects. One area neglected in most refineries is the need to monitor and man age the daily use...

  8. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper “Continuous Improvement Energy Projects Reduce Energy Consumption” by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  9. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle...

  10. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY...

  11. Power to the Plug: An Introduction to Energy, Electricity, Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Power to the Plug: An Introduction to Energy, Electricity, Consumption, and Efficiency Below is...

  12. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Energy Savers [EERE]

    5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

  13. Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Novel Ultra-Low-Energy Consumption Ultrasonic Clothes Dryer Preliminary measured drying time of fabric sample using ultrasonic...

  14. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...

    Energy Savers [EERE]

    1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles...

  15. A work bibliography on native food consumption, demography and lifestyle. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Murray, C.E.; Lee, W.J.

    1992-12-01T23:59:59.000Z

    The purpose of this report is to provide a bibliography for the Native American tribe participants in the Hanford Environmental Dose Reconstruction (HEDR) Project to use. The HEDR Project`s primary objective is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s Hanford Site near Richland, Washington. Eight Native American tribes are responsible for estimating daily and seasonal consumption of traditional foods, demography, and other lifestyle factors that could have affected the radiation dose received by tribal members. This report provides a bibliography of recorded accounts that tribal researchers may use to verify their estimates. The bibliographic citations include references to information on the specific tribes, Columbia River plateau ethnobotany, infant feeding practices and milk consumption, nutritional studies and radiation, tribal economic and demographic characteristics (1940--1970), research methods, primary sources from the National Archives, regional archives, libraries, and museums.

  16. Primary Bilingual logo 02 Primary Unilingual Logo 02

    E-Print Network [OSTI]

    brand Visual identity guidelines #12;logos Primary Bilingual logo 02 Primary Unilingual Logo 02 Logo 08 Athletics 09 Contents brand Colours Primary + Secondary Brand Colour 10 typography 13 friendships. #12;2 logos primary bilingual Crest logo Use the bilingual crest logo for all communications

  17. 4-1-09_Final_Testimony_(Gruenspecht).pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about 1,142 trillion British thermal units (Btu), more than 1 percent of total U.S. energy consumption of 101.9 quadrillion Btu. The components of farm energy consumption are...

  18. EIA - Annual Energy Outlook 2013 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    dataWhile total liquid fuels consumption falls, consumption of domestically produced biofuels increases significantly, from 1.3 quadrillion Btu in 2011 to 2.1 quadrillion Btu in...

  19. EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469DecadeOrigin State GlossaryEnergy ) for

  20. Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 " "

  1. Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 " "2"

  2. Table A1. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "

  3. Table A1. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2" "

  4. Table A14. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1 "2"4.

  5. Table A17. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"1

  6. Table A20. Total First Use (formerly Primary Consumption) of Energy for All P

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.

  7. Table A22. Total First Use (formerly Primary Consumption) of Combustible Ener

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.1. Quantity ofFirst

  8. Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest Virginia"18.1.TotalNonfuel

  9. Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWest

  10. Table A30. Total Primary Consumption of Energy for All Purposes by Value of

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of Electricity Sold to0.

  11. Table A9. Total Primary Consumption of Energy for All Purposes by Census

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota" ,"FullWestQuantity of2" "Total8.7.A9.

  12. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30.2"

  13. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    Tracking adopters and their consumption over time would shed additional light on the dynamics of solar

  14. Understanding energy consumption: Beyond technology and economics

    SciTech Connect (OSTI)

    Wilhite, H.; Shove, E.

    1998-07-01T23:59:59.000Z

    This paper summarizes two years of efforts among a cross-disciplinary group of senior researchers to bring social and cultural perspectives to modeling of household energy consumption. The work has been organized by the Center for Energy Studies of the University of Geneva. The researchers represent both the physical and social sciences, several institutions and a number of countries. The initiative was based on an acknowledgement of the failure of technical and economic models to explain consumption or more importantly, how consumption patterns change. Technical and economic models most often either ignore social and cultural issues or reduce them to parameters of other variables. An important objective for the Geneva Group has been to engage modelers and social scientists in a dialogue which brings social and cultural context to the fore. The process reveals interesting insights into the frictions of cross-disciplinary interaction and the emergence of new perspectives. Various classical modeling approaches have been discussed and rejected. Gradually, a framework has emerged which says something about the appropriate institutions and actors which contribute to consumption patterns; about how they are related; and finally about how the interinstitutional relationships and the consumption patterns themselves change. A key point of convergence is that a complete understanding of energy end-use will not be possible from an analysis directed at the point of end use alone. The analysis must incorporate what happens inside institutions like manufacturers, retailers, and public policy organizations as well as how those organizations interact with consumers, including media and advertising. Progress towards a better understanding of energy consumption requires a greater engagement of social scientists with these heretofore little explored actors an relationships.

  15. Primary and Secondary Three Dimensional Microbatteries

    E-Print Network [OSTI]

    Cirigliano, Nicolas

    2013-01-01T23:59:59.000Z

    Figure 1.4.1: World energy consumption and projected valuesFigure 1.4.1: World energy consumption and projected values

  16. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  17. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    ­ 336 ­ 007 TM 06 ­ 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  18. Public perceptions of energy consumption and savings

    E-Print Network [OSTI]

    Kammen, Daniel M.

    on Environmental Decisions, Columbia University, New York, NY 10027; b Department of Psychology, Ohio StatePublic perceptions of energy consumption and savings Shahzeen Z. Attaria,1 , Michael L. De February 12, 2010) In a national online survey, 505 participants reported their percep- tions of energy

  19. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  20. Study of Air Infiltration Energy Consumption

    E-Print Network [OSTI]

    Liu, Mingsheng

    SYSTEMATIC ERROR DUE TO THE STEADY-STATE COMBINED MODELS 127 SIMULATION AND NUMERICAL RESULTS 141 APPLICATION 150 SUMMARy 157 METHODOLOGy 158 DIFFERENTIAL EQUATION 159 DISCRETIZATION OF THE DIFFERENTIAL EQUATION 161 EXTERNAL NODE EQUATIONS 164... temperature. Clearly, the room heater does not need to heat the air from the outside temperature to the room temperature because it has already captured part of the conduction heat flowing through the wall. To properly estimate house energy consumption...

  1. Fact #839: September 22, 2014 World Petroleum Consumption Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    since 2007, this is offset by increasing consumption from the rest of the world. China has seen a rapid increase in petroleum consumption over the last decade while India...

  2. Evaluating Texas State University Energy Consumption According to Productivity

    E-Print Network [OSTI]

    Carnes, D.; Hunn, B. D.; Jones, J. W.

    1998-01-01T23:59:59.000Z

    The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

  3. The individual contribution of automotive components to vehicle fuel consumption

    E-Print Network [OSTI]

    Napier, Parhys L

    2011-01-01T23:59:59.000Z

    Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

  4. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract--- This paper approaches energy consumption charac­ terization in mobile computing platforms by assessing energy con­ sumption of ''basic'' application

  5. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    real-world thermostat settings and heat energy consumptionto real-world behaviours. The actual energy consumption goesworld data indicates that the houses heated during the night had higher annual heat energy consumption.

  6. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  7. Home, Habits, and Energy: Examining Domestic Interactions and Energy Consumption

    E-Print Network [OSTI]

    Paulos, Eric

    , habitual, and irrational. Implications for the design of energy-conserving interactions with technology investigate the relationships among "normal" domestic interactions with technology, energy consumptionHome, Habits, and Energy: Examining Domestic Interactions and Energy Consumption James Pierce1

  8. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    USA MODELLING THE IMPACT OF USER BEHAVIOUR ON HEAT ENERGY CONSUMPTIONUSA The second point of interest to research was modelling the excess energy consumptionUSA Figure 3. Actual heating and hot water energy consumption

  9. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  10. Federal Energy Consumption and Progress Made toward Requirements

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) tracks Federal agency energy consumption and progress toward achieving energy laws and requirements.

  11. Power Consumption Prediction and Power-Aware Packing in Consolidated

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    prediction and enforcement of appropriate limits on power consumption--power budgets--within the data center-term energy consumption within that level and 2) a sustained budget to capture any restrictions on sustained as the well-being of our environ- ment. Trends from such platforms suggest that the power consumption in data

  12. Getting to Green: Understanding Resource Consumption in the Home

    E-Print Network [OSTI]

    Grinter, Rebecca Elizabeth

    of collecting data on being green. Author Keywords Sustainability, residential resource consumption, domestic energy [19], increasing awareness of resource consumption in the workplace [20] and building homes manage their energy consumption. Next, we outline our methods and findings from a qualitative study of 15

  13. Automated Analysis of Performance and Energy Consumption for Cloud Applications

    E-Print Network [OSTI]

    Schneider, Jean-Guy

    load tests and profile system performance and energy consumption data. Using StressCloud, we have, increasing data storage and computation needs significantly raise the energy consumption of large cloud consumption directly contributes to data centres' operational costs, especially as the energy unit cost

  14. Experimental Measurements of the Power Consumption for Wireless Sensor Networks

    E-Print Network [OSTI]

    Alonso, Javier

    consumption. Therefore, in order to give some recommendations to de- velopers and optimize the energy spent of the energy consumption should be performed for the most common operations in a sensor node. This knowledge common operations: (i) CPU change state and (ii) data transfer radio. CPU change state. The consumption

  15. Minimizing Energy Consumption in Body Sensor Networks via Convex Optimization

    E-Print Network [OSTI]

    Poovendran, Radha

    energy consumption while limiting the latency in data transfer. In this paper, we focus on pollingMinimizing Energy Consumption in Body Sensor Networks via Convex Optimization Sidharth Nabar energy consumption and latency. We show that this problem can be posed as a geometric program, which

  16. Classification of Energy Consumption in Buildings with Outlier Detection

    E-Print Network [OSTI]

    Yao, Xin

    . Then a canonical variate analysis is employed to describe latent variables of daily electricity consumption is used to predict the daily electricity consumption profiles. A case study, based on a mixed use consumption data within a buildings energy management system. Electrical peak load forecasting plays

  17. 2008 Erik Hinterbichler DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR

    E-Print Network [OSTI]

    Karahalios, Karrie G.

    in which HCI can contribute to energy conservation is in interfaces for residential energy consumption on the effects of energy consumption feedback in the home. From this analysis, we created a theoretical framework© 2008 Erik Hinterbichler #12;DESIGNING A BETTER ENERGY CONSUMPTION INDICATOR INTERFACE

  18. FISHERY PRODUCTS SITUATION Consumption of fishery products is ex-

    E-Print Network [OSTI]

    . Per -capita sales likely will be near 11.2 pounds--down from 11.4 pounds in 1970. Consumption had beenFISHERY PRODUCTS SITUATION Consumption of fishery products is ex- pected to be off a little in 1971 to attract more imports in 1971 . Since U.S. fish consumption is about 550/0-de- pendent on imports

  19. Per Capita Annual Utilization and Consumption of Fish and Shellfish

    E-Print Network [OSTI]

    Per Capita Annual Utilization and Consumption of Fish and Shellfish in Hawaii, 1970-77 Table I was 5.82 kg (12.8 pounds). It has been speculated that the per capita consumption of fishery prod- ucts is that the per capita consumption rate in Hawaii for 1977 was about 77 percent higher than the U.S. average

  20. Effects of household dynamics on resource consumption and

    E-Print Network [OSTI]

    Ehrlich, Paul R.

    influence per capita consumption7,8 and thus biodiversity through, for example, consumption of wood for fuel, and resultant higher per capita resource con- sumption in smaller households15­19 pose serious challenges on resource consumption and biodiversity Jianguo Liu*, Gretchen C. Daily, Paul R. Ehrlich & Gary W. Luck

  1. A Realistic Power Consumption Model for Wireless Sensor Network Devices

    E-Print Network [OSTI]

    Hempstead, Mark

    . Recent analyses of WSN energy efficiency have been widely based on a sensor node power consumption model1 A Realistic Power Consumption Model for Wireless Sensor Network Devices Qin Wang, Mark Hempstead}@eecs.harvard.edu Abstract-- A realistic power consumption model of wireless communication subsystems typically used in many

  2. Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    an upper bound on long-term energy consumption within that level and (ii) a sustained budget to capture any-being of our environment. Trends from such platforms suggest that the power consumption in high-performance comProfiling, Prediction, and Capping of Power Consumption in Consolidated Environments Jeonghwan Choi

  3. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    E-Print Network [OSTI]

    rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called evaluated with an independent, quality assured, fuel consumption data set. Furthermore, anecdotal evidenceWildland fire emissions, carbon, and climate: Modeling fuel consumption Roger D. Ottmar U

  4. On the Energy Consumption and Performance of Systems Software

    E-Print Network [OSTI]

    Stoller, Scott

    On the Energy Consumption and Performance of Systems Software Zhichao Li, Radu Grosu, Priya Sehgal {zhicli,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption that can balance out performance and energy use. This paper considers the energy consumption

  5. On the Energy Consumption and Performance of Systems Software

    E-Print Network [OSTI]

    Zadok, Erez

    On the Energy Consumption and Performance of Systems Software Appears in the proceedings of the 4th,grosu,psehgal,sas,stoller,ezk}@cs.stonybrook.edu ABSTRACT Models of energy consumption and performance are necessary to understand and identify system. This paper considers the energy consumption and performance of servers running a relatively simple file

  6. Reducing the Energy Consumption of Mobile Applications Behind the Scenes

    E-Print Network [OSTI]

    Tilevich, Eli

    Reducing the Energy Consumption of Mobile Applications Behind the Scenes Young-Woo Kwon and Eli, an increasing number of perfective maintenance tasks are concerned with optimizing energy consumption. However, optimizing a mobile application to reduce its energy consumption is non-trivial due to the highly volatile

  7. The Impact of Distributed Programming Abstractions on Application Energy Consumption

    E-Print Network [OSTI]

    Tilevich, Eli

    The Impact of Distributed Programming Abstractions on Application Energy Consumption Young-Woo Kwon of their energy consumption patterns. By varying the abstractions with the rest of the functionality fixed, we measure and analyze the impact of distributed programming abstractions on application energy consumption

  8. Energy Consumption in Coded Queues for Wireless Information Exchange

    E-Print Network [OSTI]

    Boucherie, Richard J.

    Energy Consumption in Coded Queues for Wireless Information Exchange Jasper Goseling, Richard J customers. We use this relation to ob- tain bounds on the energy consumption in a wireless information, for example, from the observations in [3] that using network coding can reduce the energy consumption

  9. Optimization of Energy and Water Consumption in Cornbased Ethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Energy and Water Consumption in Corn­based Ethanol Plants Elvis Ahmetovi). First, we review the major alternatives in the optimization of energy consumption and its impact for the water streams. We show that minimizing energy consumption leads to process water networks with minimum

  10. Energy Consumption Characteriation of Heterogeneous Servers School of Computer Science

    E-Print Network [OSTI]

    Qin, Xiao

    Energy Consumption Characteriation of Heterogeneous Servers Xiao Zhang School of Computer Science Machine between servers to save energy. An accurate energy consumption model is the basic of energy management. Most past studies show that energy consumption has linear relation with resource utilization. We

  11. GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques Élie Cartan, Université Henri Poincaré

    GENETIC HEURISTICS FOR REDUCING MEMORY ENERGY CONSUMPTION IN EMBEDDED SYSTEMS Maha IDRISSI AOUAD.loria.fr/zendra Keywords: Energy consumption reduction, Genetic heuristics, memory allocation management, optimizations on heuristic methods for SPMs careful management in order to reduce memory energy consumption. We propose

  12. Modeling energy consumption in cellular networks L. Decreusefond

    E-Print Network [OSTI]

    Boyer, Edmond

    Modeling energy consumption in cellular networks L. Decreusefond Telecom Paristech, LTCI Paris Abstract--In this paper we present a new analysis of energy consumption in cellular networks. We focus on the distribution of energy consumed by a base station for one isolated cell. We first define the energy consumption

  13. Bounds on the Energy Consumption of Computational Andrew Gearhart

    E-Print Network [OSTI]

    California at Berkeley, University of

    Bounds on the Energy Consumption of Computational Kernels Andrew Gearhart Electrical Engineering not necessarily reflect the position or the policy of the sponsors. #12;Bounds on the Energy Consumption Fall 2014 #12;Bounds on the Energy Consumption of Computational Kernels Copyright 2014 by Andrew Scott

  14. Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks

    E-Print Network [OSTI]

    Weigle, Michele

    Optimizing Communication Energy Consumption in Perpetual Wireless Nanosensor Networks Shahram}@cs.odu.edu Abstract--This paper investigates the effect of various param- eters of energy consumption. Finding the optimum combination of parameters to minimize energy consumption while satisfying the Qo

  15. Household activities through various lenses: crossing surveys, diaries and electric consumption

    E-Print Network [OSTI]

    Durand-Daubin, Mathieu

    2013-01-01T23:59:59.000Z

    comparison between electricity consumption and behavioralU.S. residential electricity consumption” Energy Policy, 42(of the residential electricity consumption. ” Energy Policy,

  16. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    estimates of gas and electricity consumption were preparedestimates the gas and electricity consumption in a typicalthat lacked electricity consumption data were discarded for

  17. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andcan be measured using energy consumption per capita values.

  18. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    VII. IMPACTS OF OIL CONSUMPTION . . . . . . .and the location of oil consumption necessitates that crudere?neries. VII. IMPACTS OF OIL CONSUMPTION The combustion of

  19. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  20. Energy for 500 Million Homes: Drivers and Outlook for Residential Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China, 2008,The China Residential Energy Consumption Survey, Human andfor Residential Energy Consumption in China Nan Zhou,

  1. Energy Consumption Scheduling in Smart Grid:A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Kai, Ma; Guoqiang, Hu; Spanos, Costas

    2013-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  2. Window-Related Energy Consumption in the US Residential and Commercial Building Stock

    E-Print Network [OSTI]

    Apte, Joshua; Arasteh, Dariush

    2008-01-01T23:59:59.000Z

    2001). "Residential Energy Consumption Survey." 2006, fromCommercial Building Energy Consumption Survey." from http://Scale window-related energy consumption to account for new

  3. Current Status and Future Scenarios of Residential Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    The China Residential Energy Consumption Survey, Human andof Residential Building Energy Consumption in China Nan ZhouResidential Building Energy Consumption in China Nan Zhou*,

  4. ResPoNSe: modeling the wide variability of residential energy consumption.

    E-Print Network [OSTI]

    Peffer, Therese; Burke, William; Auslander, David

    2010-01-01T23:59:59.000Z

    affect appliance energy consumption. For example, differentStates, 2005 Residential Energy Consumption Survey: HousingModeling of End-Use Energy Consumption in the Residential

  5. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    comparison o f energy consumption i n housing (1998) (Trends i n household energy consumption (Jyukankyo Research4) Average (N=2976) Energy consumption [GJ / household-year

  6. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    the total annual energy consumption. The behavior patternsin total residential energy consumption per home, even whenthe variability in energy consumption can vary by factors of

  7. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F.; Brownstone, David

    2005-01-01T23:59:59.000Z

    Vehicle Usage and Energy Consumption Table 2 Housing Unitsresidential vehicular energy consumption is graphed as aon Vehicle Usage and Energy Consumption with vehicles, but

  8. Energy Consumption Scheduling in Smart Grid: A Non-Cooperative Game Approach

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on Game- Theoretic Energy Consumption Scheduling for theIn this paper, energy consumption scheduling based on non-Energy Consumption Scheduling in Smart Grid: A Non-

  9. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

  10. Electrical energy consumption control apparatuses and electrical energy consumption control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2012-09-04T23:59:59.000Z

    Electrical energy consumption control apparatuses and electrical energy consumption control methods are described. According to one aspect, an electrical energy consumption control apparatus includes processing circuitry configured to receive a signal which is indicative of current of electrical energy which is consumed by a plurality of loads at a site, to compare the signal which is indicative of current of electrical energy which is consumed by the plurality of loads at the site with a desired substantially sinusoidal waveform of current of electrical energy which is received at the site from an electrical power system, and to use the comparison to control an amount of the electrical energy which is consumed by at least one of the loads of the site.

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage Btu Region map map showing electricity regions The chart above compares coal consumption in March 2014 and March 2015 by region and shows that coal consumption for...

  12. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  13. Energy Information Administration - Commercial Energy Consumption Survey-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an Indicator ofEnergy Consumption2003

  14. Energy Preview: Residential Transportation Energy Consumption Survey,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5 15 1 Short-Term5 15t

  15. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS Surveyabout

  16. Energy Information Administration (EIA)- Manufacturing Energy Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS SurveyaboutSurvey

  17. Energy Information Administration - Transportation Energy Consumption by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000Consumption Survey (CBECS) Data 2 CBECS

  18. Illinois Natural Gas Consumption by End Use

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260 74 127

  19. Annual Energy Review, 1995

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This document presents statistics on energy useage for 1995. A reviving domestic economy, generally low energy prices, a heat wave in July and August, and unusually cold weather in November and December all contributed to the fourth consecutive year of growth in U.S. total energy consumption, which rose to an all-time high of almost 91 quadrillion Btu in 1995 (1.3). The increase came as a result of increases in the consumption of natural gas, coal, nuclear electric power, and renewable energy. Petroleum was the primary exception, and its use declined by only 0.3 percent. (Integrating the amount of renewable energy consumed outside the electric utility sector into U.S. total energy consumption boosted the total by about 3.4 quadrillion Btu, but even without that integration, U.S. total energy consumption would have reached a record level in 1995.)

  20. Impact of conservation measures on Pacific Northwest residential energy consumption. Final report

    SciTech Connect (OSTI)

    Moe, R.J.; Owzarski, S.L.; Streit, L.P.

    1983-04-01T23:59:59.000Z

    The objective of this study was to estimate the relationship between residential space conditioning energy use and building conservation programs in the Pacific Northwest. The study was divided into two primary tasks. In the first, the thermal relationship between space conditioning energy consumption under controlled conditions and the physical characteristics of the residence was estimated. In this task, behavioral characteristics such as occupant schedules and thermostat settings were controlled in order to isolate the physical relationships. In the second task, work from the first task was used to calculate the thermal efficiency of a residence's shell. Thermal efficiency was defined as the ability of a shell to prevent escapement of heat generated within a building. The relationship between actual space conditioning energy consumption and the shell thermal efficiency was then estimated. Separate thermal equations for mobile homes, single-family residences, and multi-family residences are presented. Estimates of the relationship between winter electricity consumption for heating and the building's thermal shell efficiency are presented for each of the three building categories.

  1. EIA - Annual Energy Outlook 2012 Early Release

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Btu in 2010 to 15.7 quadrillion Btu in 2025, due to projected increases in the fuel economy of highway vehicles. Projected energy consumption for LDVs increases after 2025, to...

  2. U.S. Energy Information Administration (EIA) - Topics

    Gasoline and Diesel Fuel Update (EIA)

    changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009,...

  3. Optimization of Water Consumption in Second Generation Bioethanol Plants

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Optimization of Water Consumption in Second Generation Bioethanol Plants Mariano Martína optimization of second generation bioethanol production plants from lignocellulosic switchgrass when using

  4. Fact #840: September 29, 2014 World Renewable Electricity Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    Of the selected countriesregions shown, Europe has consistently had the highest consumption of renewable electricity. However, China has shown dramatic growth in the...

  5. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    2011-04-19T23:59:59.000Z

    Problem, Branch-and-Bound, Electrical Vehicle, Energy Consumption. ... Electrical vehicle uses an electrical energy source for its displacement which can.

  6. Strategies for Decreasing Petroleum Consumption in the Federal Fleet (Presentation)

    SciTech Connect (OSTI)

    Putsche, V.

    2006-06-01T23:59:59.000Z

    Presentation offers strategies federal agency fleets can use to reduce petroleum consumption and build or gain access to alternative fuel infrastructure.

  7. Commercial Buildings Energy Consumption Survey 2003 - Detailed Tables

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    The tables contain information about energy consumption and expenditures in U.S. commercial buildings and information about energy-related characteristics of these buildings.

  8. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12015","1151989" ,"Release...

  9. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Environmental Management (EM)

    Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  10. Optimization Online - Electricity markets with flexible consumption as ...

    E-Print Network [OSTI]

    Quentin Louveaux

    2015-06-01T23:59:59.000Z

    Jun 1, 2015 ... Electricity markets with flexible consumption as nonatomic congestion games. Quentin Louveaux (q.louveaux ***at*** ulg.ac.be) Sébastien ...

  11. Long-term energy consumptions of urban transportation: A prospective...

    Open Energy Info (EERE)

    can significantly curb the trajectories of energy consumption and the ensuing carbon dioxide emissions, if and only if they are implemented in the framework of appropriate...

  12. administration gasohol consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chris Wells; Young Mie Kim; Hernando Rojas 2012-01-01 3 Overview of the Electrical Energy Segment of the Energy Information Administration Manufacturing Consumption Report...

  13. Modelling the impact of user behaviour on heat energy consumption

    E-Print Network [OSTI]

    Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

    2011-01-01T23:59:59.000Z

    come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

  14. ,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  15. ,"New York Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2013 ,"Release Date:","2272015"...

  16. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single-unit work vehicle over 8,500 lbs...

  17. On Minimizing the Energy Consumption of an Electrical Vehicle

    E-Print Network [OSTI]

    Abdelkader Merakeb

    2011-04-20T23:59:59.000Z

    Apr 20, 2011 ... The problem that we focus on, is the minimization of the energy consumption of an electrical vehicle achievable on a given driving cycle.

  18. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

  19. assessing cigarette consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin M. Murphy 1994-01-01 5 ASSESSMENT OF DRINKING WATER QUALITY AND DETERMINANTS OF HOUSEHOLD POTABLE WATER CONSUMPTION IN SIMADA Environmental Sciences and Ecology Websites...

  20. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  1. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  2. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  3. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLCBTMBTU

  4. GreenSlot: Scheduling Energy Consumption in Green Datacenters

    E-Print Network [OSTI]

    GreenSlot: Scheduling Energy Consumption in Green Datacenters Íñigo Goiri UPC/BSC and Rutgers Univ grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meet- ing the jobs

  5. Balancing Image Quality and Energy Consumption in Visual Sensor Networks

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    Balancing Image Quality and Energy Consumption in Visual Sensor Networks Kit-Yee Chow, King by hop through the sensor network. To reduce the energy used in transmission, the size of the images studies the tradeoff between image quality and energy consumption. We study the scenario that a number

  6. Characterizing System Level Energy Consumption in Mobile Computing Platforms

    E-Print Network [OSTI]

    Obraczka, Katia

    1 Characterizing System Level Energy Consumption in Mobile Computing Platforms Cintia B. Margi 1156 High Street Santa Cruz, CA 95064 Abstract-- This paper approaches energy consumption charac- terization in mobile computing platforms by assessing energy con- sumption of "basic" application-level tasks

  7. MA STER'S THESIS Optimisation of fresh water consumption

    E-Print Network [OSTI]

    Patriksson, Michael

    MA STER'S THESIS Optimisation of fresh water consumption for Doggy AB using simulation Maja Olsson Göteborg Sweden 2005 #12;Thesis for the Degree of Master of Science Optimisation of fresh water consumption Göteborg 2005 #12;Abstract Doggy AB is the only Swedish producer of tinned pet food. In the food process

  8. Reducing Occupant-Controlled Electricity Consumption in Campus Buildings

    E-Print Network [OSTI]

    Doudna, Jennifer A.

    2010 Reducing Occupant-Controlled Electricity Consumption in Campus Buildings Kill­09 and is expected to spend more than $17.1 million in 2009­10. In an effort to reduce electricity consumption; 1 EXECUTIVE SUMMARY UC Berkeley spent $16.39 million on purchased electricity in 2008

  9. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  10. Managing Power Consumption in Networks on Chips Tajana Simunic

    E-Print Network [OSTI]

    Simunic, Tajana

    Managing Power Consumption in Networks on Chips Tajana Simunic HP Labs & Stanford University 1501 power consumption for NOCs. Power management problem is formulated using closed-loop control concepts, with the estimator tracking changes in the system parameters and recalculating the new power management policy

  11. Energy consumption testing of innovative refrigerator-freezers

    SciTech Connect (OSTI)

    Wong, M.T.; Howell, B.T.; Jones, W.R. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Long, D.L. [Statistical Solutions, Mississauga, Ontario (Canada)

    1995-12-31T23:59:59.000Z

    The high ambient temperature of the Canadian Standards Association (CSA) and the AHAM/DOE Refrigerator-Freezer Energy Consumption Standards is intended to compensate for the lack of door openings and other heat loads. Recently published results by Meier and Jansky (1993) indicate labeled consumption overpredicting typical field consumption by 15%. In-house field studies on conventional models showed labeled consumption overpredicting by about 22%. The Refrigerator-Freezer Technology Assessment (RFTA) test was developed to more accurately predict field consumption. This test has ambient temperature and humidity, door openings, and condensation control set at levels intended to typify Canadian household conditions. It also assesses consumption at exactly defined compartment rating temperatures. Ten conventional and energy-efficient production models were laboratory tested. The RFTA results were about 30% lower than labeled. Similarly, the four innovative refrigerator-freezer models, when field tested, also had an average of 30% lower consumption than labeled. Thus, the results of the limited testing suggest that the RFTA test may be a more accurate predictor of field use. Further testing with a larger sample is recommended. Experimental results also indicated that some innovative models could save up to 50% of the energy consumption compared with similar conventional units. The technologies that contributed to this performance included dual compressors, more efficient compressors and fan motors, off-state refrigerant control valve, fuzzy logic control, and thicker insulation. The larger savings were on limited production models, for which additional production engineering is required for full marketability.

  12. An Energy and Power Consumption Analysis of FPGA Routing Architectures

    E-Print Network [OSTI]

    Wilton, Steve

    An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

  13. MFR PAPER 1012 Increased U.S. fish consumption and

    E-Print Network [OSTI]

    . Figure 1.-Per capita consumption 01 lishery products in the U.S. (pounds per capita, edible weight- after (Figure I). Per capita consumption of fish in the United States also is con istent with levels In the \\\\orld In 1972. con...umer\\ JI\\- po ed of the equl\\alent of ahout n,' Tabl e 1 - Per capita fllh conl

  14. Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    Hybrid Heuristics for Optimizing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD1 , Ren energy reduction becomes crucial for many embed- ded systems designers. In this paper, we propose Hybrid to BEH). Keywords: Energy consumption reduction, Genetic algorithms, hybrid heuristics, memory allocation

  15. Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments

    E-Print Network [OSTI]

    Urgaonkar, Bhuvan

    . Trends from such platforms suggest that the power consumption in data centers accounts for 1Profiling, Prediction, and Capping of Power Consumption in Consolidated Environments Jeonghwan Choi Consolidation of workloads has emerged as a key mech- anism to dampen the rapidly growing energy expenditure

  16. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  17. Statistical Mechanics of Money, Income, Debt, and Energy Consumption

    E-Print Network [OSTI]

    Hill, Wendell T.

    Statistical Mechanics of Money, Income, Debt, and Energy Consumption Physics Colloquium Presented in financial markets. Globally, data analysis of energy consumption per capita around the world shows@american.edu Similarly to the probability distribution of energy in physics, the probability distribution of money among

  18. A Study of Individual Household Water Consumption Borg, Edwards, Kimpel A Study of Individual Household Water Consumption

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    's goal is to investigate the weekly per capita indoor water use of three households in Davis, CaliforniaA Study of Individual Household Water Consumption Borg, Edwards, Kimpel A Study of Individual Household Water Consumption Maisie Borg, Orion Edwards & Sarah Kimpel Abstract Over the past several decades

  19. Where are your BTUs? Watt are you doing about it?

    E-Print Network [OSTI]

    Subramanian, Venkat

    (1015 BTUs) EIA AER 2007 #12;YOUR BTU Consumption Rate USA P C it E C tiUSA Per Capita Energy Consumption 6.2% Drop EIA AER 2007 #12;More People, More Energy 350 USA Population Growth 1949-2007 250 300 #12;OUR BTU Consumption Rate USA E C tiUSA Energy Consumption EIA AER 2007 #12;You vs Your

  20. Primary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 2011 atJohnPrices,2: PricesData33Net

  1. A Glance at China’s Household Consumption

    SciTech Connect (OSTI)

    Shui, Bin

    2009-10-22T23:59:59.000Z

    Known for its scale, China is the most populous country with the world’s third largest economy. In the context of rising living standards, a relatively lower share of household consumption in its GDP, a strong domestic market and globalization, China is witnessing an unavoidable increase in household consumption, related energy consumption and carbon emissions. Chinese policy decision makers and researchers are well aware of these challenges and keen to promote green lifestyles. China has developed a series of energy policies and programs, and launched a wide?range social marketing activities to promote energy conservation.

  2. Lead-free primary explosives

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2010-06-22T23:59:59.000Z

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  3. Primary Health Faculty of Medicine,

    E-Print Network [OSTI]

    Albrecht, David

    School of Primary Health Care Faculty of Medicine, Nursing and Health Sciences Central Clinical Hospital Centre for Inflammatory Diseases School of Public Health & Preventive Medicine Australasian Disability Health Victoria School of Psychology and Psychiatry Centre for Rural Mental Health (in abeyance

  4. Development of Energy Consumption Database Management System of Existing Large Public Buildings 

    E-Print Network [OSTI]

    Li, Y.; Zhang, J.; Sun, D.

    2006-01-01T23:59:59.000Z

    The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

  5. Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

  6. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01T23:59:59.000Z

    4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

  7. A regression approach to infer electricity consumption of legacy telecom equipment

    E-Print Network [OSTI]

    Fisher, Kathleen

    A regression approach to infer electricity consumption of legacy telecom equipment [Extended and communications technology accounts for a significant fraction of worldwide electricity consumption. Given inferring the electricity consumption of different components of the installed base of telecommu- nications

  8. Development of Energy Consumption Database Management System of Existing Large Public Buildings

    E-Print Network [OSTI]

    Li, Y.; Zhang, J.; Sun, D.

    2006-01-01T23:59:59.000Z

    The statistic data of energy consumption are the base of analyzing energy consumption. The scientific management method of energy consumption data and the development of database management system plays an important role in building energy...

  9. Sustainable Development in the Forest Sector: Balancing production and consumption in a

    E-Print Network [OSTI]

    Sustainable Development in the Forest Sector: Balancing production and consumption in a challenging Consumption Workshop, Geneva, 2011 Sustainable development · Management and conservation of the natural;Promoting Sustainable Consumption Workshop, Geneva, 2011 Sustainable development (in the forest sector

  10. Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Buildings Total energy consumption trends for the JapaneseFigure 9. Total energy consumption trends i n the JapaneseFigure 10. Energy consumption intensity trends i n Japanese

  11. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    electricity, oil and coal consumption, offset by increasedsaved in electricity, oil and gas consumption, offset by 2.4energy consumption by fuel type. Natural gas, oil and some

  12. The Impact of Residential Density on Vehicle Usage and Energy Consumption

    E-Print Network [OSTI]

    Golob, Thomas F; Brownstone, David

    2005-01-01T23:59:59.000Z

    on Vehicle Usage and Energy Consumption References Bento,Vehicle Usage and Energy Consumption UCI-ITS-WP-05-1 Thomason Vehicle Usage and Energy Consumption Thomas F. Golob

  13. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    of Commercial Building Energy Consumption in China Nan Zhou,Commercial Building Energy Consumption in China* Nan Zhou, 1whether and how the energy consumption trend can be changed

  14. Distributed Energy Consumption Control via Real-Time Pricing Feedback in Smart Grid

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    on game- theoretic energy consumption scheduling for theK }). We denote the energy consumption of consumers as l kwhere l i k is the energy consumption of consumer i (i ? N )

  15. 2003 Commercial Buildings Energy Consumption - What is an RSE

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    2003 Detailed Tables > What is an RSE? What is an RSE? The estimates in the Commercial Buildings Energy Consumption Survey (CBECS) are based on data reported by representatives of...

  16. TV Energy Consumption Trends and Energy-Efficiency Improvement Options

    E-Print Network [OSTI]

    Park, Won Young

    2011-01-01T23:59:59.000Z

    size on the market, which could also increase average energymarket will somewhat offset the increases in energy consumption that would otherwise be expected from increasing sales and screen sizes.

  17. METHODOLOGY AND APPLICATIONS IN IMPUTATION, FOOD CONSUMPTION AND OBESITY RESEARCH 

    E-Print Network [OSTI]

    Kyureghian, Gayaneh

    2010-07-14T23:59:59.000Z

    Obesity is a rapidly growing public health threat as well as an economic problem in the United States. The recent changes in eating habits, especially the relative increase of food away from home (FAFH) consumption over ...

  18. Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables

    Broader source: Energy.gov [DOE]

    Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

  19. Monitoring and optimization of energy consumption of base transceiver stations

    E-Print Network [OSTI]

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01T23:59:59.000Z

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  20. Power Consumption Characterization of a Graphics Processing Unit

    E-Print Network [OSTI]

    Skadron, Kevin

    .......................................................... 1 ENERGY AMBIGUITY OF MODERN GRAPHICS PROCESSORS ................. 2 POWER CONSUMPTIONPower Consumption Characterization of a Graphics Processing Unit A Thesis in STS 402 Presented.....................................................................................................................VI CHAPTER ONE: THE NEED FOR A POWER CHARACTERIZATION............... 1 HISTORY OF GRAPHICS PROCESSORS

  1. Broad Initiatives/Sharp Focus- Cuts Electricity Consumption 15%

    E-Print Network [OSTI]

    Gialanella, V.

    Analysis of electrical consumption can payout in reduced energy costs. Continuous monitoring of electrical usage coupled with improvements and optimization in system(s) operations can have a favorable impact on annual operating expenditures. Further...

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01T23:59:59.000Z

    renewable energy technologies, solar photovoltaic (PV) technologies hold significant potentialenergy consumption: Potential savings and environmental impact." Renewable andpotential new value stream from NEM solar is monetization of the renewable energy

  3. ,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:38:10 AM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

  4. ,"New York Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:38:09 AM" "Back to Contents","Data 1: New York Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570SNY2"...

  5. Fact #749: October 15, 2012 Petroleum and Natural Gas Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    map below shows the amount of petroleum and natural gas consumed in the transportation sector by state for 2010. The pie charts for each state are scaled based on total consumption...

  6. Smart Meters Help Balance Energy Consumption at Solar Decathlon

    Office of Energy Efficiency and Renewable Energy (EERE)

    Clouds, rain, thunderstorms… at Solar Decathlon Village? Oh my, you may say. But less-than-ideal weather conditions are no match for this year's teams, thanks to smart grid technology that is helping them monitor their energy consumption.

  7. Reducing 3G energy consumption on mobile devices

    E-Print Network [OSTI]

    Deng, Shuo

    2012-01-01T23:59:59.000Z

    The 3G wireless interface is a significant contributor to battery drain on mobile devices. This paper describes the design, implementation, and experimental evaluation of methods to reduce the energy consumption of the 3G ...

  8. Efficiency alone as a solution to increasing energy consumption

    E-Print Network [OSTI]

    Haidorfer, Luke

    2005-01-01T23:59:59.000Z

    A statistical analysis was performed to determine the effect of efficiency on the total US energy consumption of automobiles and refrigerators. Review of literature shows that there are many different opinions regarding ...

  9. Smoothing consumption across households and time : essays in development economics

    E-Print Network [OSTI]

    Kinnan, Cynthia Georgia

    2010-01-01T23:59:59.000Z

    This thesis studies two strategies that households may use to keep their consumption smooth in the face of fluctuations in income and expenses: credit (borrowing and savings) and insurance (state contingent transfers between ...

  10. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    Monitoring of Direct Energy Consumption in Long-Term2007. “Constraining Energy Consumption of China’s LargestProgram: Reducing Energy Consumption of the 1000 Largest

  11. Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium-Size Office Building

    E-Print Network [OSTI]

    Wang, Liping

    2014-01-01T23:59:59.000Z

    Uncertainties in Energy Consumption Introduced by Buildingand actual building energy consumption can be attributed touncertainties in energy consumption due to actual weather

  12. The relationship between alcohol consumption and sexual activity

    E-Print Network [OSTI]

    Theis-Cole, Deborah Elaine

    1992-01-01T23:59:59.000Z

    THE RELATIONSHIP BETWEEN ALCOHOL CONSUMPTION AND SEXUAL ACTIVITY A Thesis By DEBORAH ELAINE THEIS-COLE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1992 Major Subject: Educational Psychology THE RELATIONSHIP BETWEEN ALCOHOL CONSUMPTION AND SEXUAL ACTIVITY A Thesis By Deborah Elaine Theis-Cole Approved as to style and content by: Arthur . Roach (Chair of Committee) Maurice E...

  13. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  14. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  15. The Reality and Future Scenarios of Commercial Building Energy Consumption in China

    E-Print Network [OSTI]

    Zhou, Nan

    2008-01-01T23:59:59.000Z

    whether and how the energy consumption trend can be changedenergy consumption has grown more rapidly than GDP in the last five years. If the recent trend

  16. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

  17. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, J. M.; Fung, J. W.; Mo, G.; Deng, F.; West, T. O.

    2015-01-01T23:59:59.000Z

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO2 observations at 210 stations to infer CO2 fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated usingmore »a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr-1, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr-1. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr-1 because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.« less

  18. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    SciTech Connect (OSTI)

    Chen, J. M. [Nanjing Univ., Jiangsu (China); Univ. of Toronto, ON (Canada); Fung, J. W. [Univ. of Toronto, ON (Canada); Mo, G. [Univ. of Toronto, ON (Canada); Deng, F. [Univ. of Toronto, ON (Canada); West, T. O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01T23:59:59.000Z

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO? observations at 210 stations to infer CO? fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr?¹, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr?¹. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr?¹ because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.

  19. Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world's primary energy consumption and

    E-Print Network [OSTI]

    Toohey, Darin W.

    Biomass Stove Pollution Sam Beck ATOC-3500 Biomass energy accounts for about 15% of the world. Furthermore, biomass often accounts for more than 90% of the total rural energy supplies in developing countries. The traditional stoves in developing countries waste a lot of biomass, mainly because

  20. "Table A3. Total Primary Consumption of Combustible Energy for Nonfuel Purposes by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30.2" "Nonfuel

  1. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01T23:59:59.000Z

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  2. Lifestyle Factors in U.S. Residential Electricity Consumption

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Orr, Heather M.; Shui, Bin; Bittner, Alvah C.

    2012-03-30T23:59:59.000Z

    A multivariate statistical approach to lifestyle analysis of residential electricity consumption is described and illustrated. Factor analysis of selected variables from the 2005 U.S. Residential Energy Consumption Survey (RECS) identified five lifestyle factors reflecting social and behavioral choices associated with air conditioning, laundry usage, personal computer usage, climate zone of residence, and TV use. These factors were also estimated for 2001 RECS data. Multiple regression analysis using the lifestyle factors yields solutions accounting for approximately 40% of the variance in electricity consumption for both years. By adding the associated household and market characteristics of income, local electricity price and access to natural gas, variance accounted for is increased to approximately 54%. Income contributed only {approx}1% unique variance to the 2005 and 2001 models, indicating that lifestyle factors reflecting social and behavioral choices better account for consumption differences than income. This was not surprising given the 4-fold range of energy use at differing income levels. Geographic segmentation of factor scores is illustrated, and shows distinct clusters of consumption and lifestyle factors, particularly in suburban locations. The implications for tailored policy and planning interventions are discussed in relation to lifestyle issues.

  3. Primary Components of Binomial Ideals

    E-Print Network [OSTI]

    Eser, Zekiye

    2014-07-11T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 A band graph with an infinite component . . . . . . . . . . . . . . . . 50 2.5 The band graph G6pMq . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Slice graphs for IpBq #16; xx4z #1; y4, x7z #1; y7y . . . . . . . . . . . . . . 56 2... decomposition in charpkq #16; 0 and the primary components are Ii1,...,ir . The following example illustrates how the operations defined above work. All the computations are performed using the computer algebra system Singular, [16]. Example 1.45. Let D #16; #20...

  4. Energy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta,

    E-Print Network [OSTI]

    Lefèvre, Laurent

    Energy Consumption Library Data Acquisition Tool Data Monitoring Tool Energy Profiler 3 ConclusionsEnergy Consumption Tools Pack Leandro Fontoura Cupertino, Georges DaCosta, Amal Sayah, Jean Consumption Tools Pack 1 / 23 #12;Outline 1 Introduction Motivation Our proposal 2 Energy Consumption Tools

  5. Demonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the sources of consumption. Automated monitoring of the electricity consumption in a house is quite a recent or numbers, but simply alert residents that something relevant to their electricity consumption is chang- ingDemonstration Of A Monitoring Lamp To Visualize The Energy Consumption In Houses Christophe Gisler1

  6. Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials

    E-Print Network [OSTI]

    Revised: 6 November 1991 Trends in the Consumption of Energy-Intensive Basic Materials on the consumption, rather than production, of materials. Earlier analyses of trends in basic materials consumption materials consumption patterns on energy use is the recognition that physical units (kilograms) are more

  7. Optimal and Autonomous Incentive-based Energy Consumption Scheduling Algorithm for Smart Grid

    E-Print Network [OSTI]

    Wong, Vincent

    consumption scheduling (ECS) devices in smart meters for autonomous demand side management within equipment [3]. Load management, also known as demand side manage- ment [4]­[6], has been practiced since consumption management in buildings: reducing consumption and shifting consumption [2]. The former can be done

  8. uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjrling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    uFLIP: Understanding the Energy Consumption of Flash Devices Matias Bjørling IT University Abstract Understanding the energy consumption of flash devices is important for two reasons. First, energy about the energy consumption of flash devices beyond their approximate aggregate consumption (low power

  9. A Measurement-Based Model of Energy Consumption for PLC Modems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Measurement-Based Model of Energy Consumption for PLC Modems Wafae Bakkali(,§), Mohamed Tlich- ysis of the energy consumption of commercial broadband PLC modems is reported. Energy consumption that quantifies the energy consumption associated to Ethernet frames and PLC Physical Blocks (PBs) processing

  10. Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Mixed-Criticality Multiprocessor Real-Time Systems: Energy Consumption vs Deadline Misses Vincent that using the best compromise, the energy consumption can be reduced up to 17% while the percentage the energy consumption of MC systems. The energy consumption of embedded real-time systems is indeed

  11. Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems

    E-Print Network [OSTI]

    Andrew, Lachlan

    Balancing Peer and Server Energy Consumption in Large Peer-to-Peer File Distribution Systems}@swin.edu.au Abstract--Network induced energy consumption is a significant fraction of all ICT energy consumption. It is shown that using peer-to-peer and naively minimizing the transfer time results in energy consumption

  12. Introduction: The California Top Two Primary

    E-Print Network [OSTI]

    Sinclair, Betsy

    2015-01-01T23:59:59.000Z

    with the adoption of the top two primary, and we lookIntroduction: The California Top Two Primary Betsy Sinclairfrequently asserted that the “top-two” would produce more

  13. Scrap-tire consumption in New England and New Jersey

    SciTech Connect (OSTI)

    Barad, A.

    1991-02-01T23:59:59.000Z

    The disposal of scrap tires is one facet of the current solid waste dilemma that is currently receiving an increasing amount of attention in the northeast. Above-ground disposal in tire stockpiles has become a common phenomenon. One way to avoid continued stockpiling of scrap tires, and to reduce the number and size of existing piles, is to find ways to consume the tires. The economics of scrap tire consumption in the region has not yet been examined in great detail. The main goal of the paper is to describe the current pattern of scrap tire use and disposal in New England and New Jersey, and the changes expected in the near future. In the course of this description, various economic, regulatory and other factors emerge as significant forces shaping the consumption and disposal pattern. The concluding sections of the paper highlight some of these factors and identify policy options available to increase scrap tire consumption in the region.

  14. Estimation of food consumption. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01T23:59:59.000Z

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  15. Profiling an application for power consumption during execution on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.

    2012-08-21T23:59:59.000Z

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  16. Profiling an application for power consumption during execution on a compute node

    DOE Patents [OSTI]

    Archer, Charles J; Blocksome, Michael A; Peters, Amanda E; Ratterman, Joseph D; Smith, Brian E

    2013-09-17T23:59:59.000Z

    Methods, apparatus, and products are disclosed for profiling an application for power consumption during execution on a compute node that include: receiving an application for execution on a compute node; identifying a hardware power consumption profile for the compute node, the hardware power consumption profile specifying power consumption for compute node hardware during performance of various processing operations; determining a power consumption profile for the application in dependence upon the application and the hardware power consumption profile for the compute node; and reporting the power consumption profile for the application.

  17. (Data in kilograms of gallium content unless otherwise noted) Domestic Production and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah

    E-Print Network [OSTI]

    58 GALLIUM (Data in kilograms of gallium content unless otherwise noted) Domestic Production 98% of domestic gallium consumption. About 67% of the gallium consumed was used in integrated and Use: No domestic primary gallium recovery was reported in 2009. One company in Utah recovered

  18. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were

    E-Print Network [OSTI]

    and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were temporarily idled. Domestic smelters operated at about 62% of rated or engineered capacity. Imports for consumption increased Smelter Production and Capacity: Production Yearend capacity 2005 2006e 2005 2006e United States 2,481 2

  19. Illinois Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal Consumption

  20. Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal ConsumptionYear

  1. Illinois Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (MillionTotal ConsumptionYearYear

  2. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    all “commercial” primary energy: fossil fuels, nuclear, andintensity of energy embodied in trade fossil fuels Kayafossil fuel inputs (22). We further adjusted regional energy

  3. Annual Energy Outlook 2011: With Projections to 2035

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . ....

  4. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  5. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.378052,1886.589233,1896.617065,1906.307617,1915.627686,1924.664062,1933.551636 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73735809,...

  6. Annual Energy Outlook 2012

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2012 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless...

  7. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.27132416,97.48834229,98.7328186,100.0090332,101.3084106,102.6172562,103.9295502 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  8. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.26745605,97.52584839,98.82666779,100.167244,101.5404816,102.9384232,104.3544464 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  9. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,1876.765991,1887.016235,1897.062622,1906.736938,1916.007446,1924.966064,1933.756714 " Energy Intensity" " (million Btu per household)" " Delivered Energy Consumption",95.73736572,...

  10. Appendix A

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    7. Renewable energy consumption by sector and source (quadrillion Btu) Sector and source Reference case Annual growth 2012-2040 (percent) 2011 2012 2020 2025 2030 2035 2040...

  11. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Major Fuel Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  12. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (trillion Btu) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  13. Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings

    E-Print Network [OSTI]

    Rosenblum, Benjamin Tarr

    2012-01-01T23:59:59.000Z

    item/1pz2528w If energy consumption data are not availablewith both energy consumption data (in kWh or kBtu) andaffects energy consumption, and use occupant data to

  14. Modeling Hard-Disk Power Consumption John Zedlewski

    E-Print Network [OSTI]

    Krishnamurthy, Arvind

    of a note- book computer with a powerful lithium-ion battery, these levels of energy consumption are quite-30% of the overall power drain [4]. In an MP3 player running on AAA batteries, on the other hand, every Joule

  15. Vending Machine Energy Consumption and VendingMiser Evaluation

    E-Print Network [OSTI]

    Ritter, J.; Hugghins, J.

    2000-01-01T23:59:59.000Z

    As an effort to decrease the amount of non-critical energy used on the Texas A&M campus, and to assist Dixie Narco in evaluating the efficiency of their vending machines, the Texas A&M Energy Systems Laboratory investigated the power consumption...

  16. annual energy consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Sample Annual and Monthly Energy...

  17. assess energy consumption: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assess energy consumption First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 The Analysis and Assessment...

  18. Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Visible Inequality, Status Competition and Conspicuous Consumption: Evidence from India Punarjit representative micro data from India. I ...nd that a decrease in the level of visible inequality, ceteris paribus in one's social status due to parallel action of others. From a policy perspective, my ...ndings

  19. Self Control, Revealed Preference and Consumption Choice Wolfgang Pesendorfer

    E-Print Network [OSTI]

    the behavior generated by the time-inconsistency approach but, unlike time-inconsistent models, allows for self-controlSelf Control, Revealed Preference and Consumption Choice Faruk Gul and Wolfgang Pesendorfer Princeton University November 2002 Abstract We provide a time consistent model that addresses the preference

  20. The Impact on Energy Consumption of Daylight Saving Clock Changes

    E-Print Network [OSTI]

    Hill, Simon I.

    The Impact on Energy Consumption of Daylight Saving Clock Changes S. I. Hilla, , F. Desobrya , E. W demonstrating po- tential energy savings which could be obtained were Great Britain to maintain Daylight Savings result from an extension of Daylight Saving Time (DST) over the months currently on Greenwich Mean Time

  1. Energino: a Hardware and Software Solution for Energy Consumption Monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ­aware and energy­efficient protocols and algorithms for wireless networks. However, there is considerable dearth for designing energy efficient network protocols and architectures for broadband wireless access networks efficient protocols and algorithms for wireless networks. Nevertheless, energy consumption models used

  2. Preliminary Analysis of Energy Consumption For Cool Roofing Measures

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    decisions by offering design requirements and establishing building codes. Over the last decade, muchPreliminary Analysis of Energy Consumption For Cool Roofing Measures By Joe Mellott, Joshua New to reduce energy demand by reflecting sunlight away from structures and back into the atmosphere. By use

  3. Survey: Techniques for Efficient energy consumption in Mobile Architectures

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Survey: Techniques for Efficient energy consumption in Mobile Architectures Sean Maloney University@cs.ucsb.edu March 16th, 2012 Abstract As the world becomes more dependent on mobile technologies, battery life battery life is a delicate balance of give and take between longer battery life and more functionality

  4. How Efficient Can We Be?: Bounds on Algorithm Energy Consumption

    E-Print Network [OSTI]

    California at Irvine, University of

    How Efficient Can We Be?: Bounds on Algorithm Energy Consumption Andrew Gearhart #12;Relation design use feedback to "cotune" compute kernel energy efficiency #12;Previous Work: Communication Lower-optimal" algorithms #12;Communication is energy inefficient! · On-chip/Off-chip gap isn't going to improve much Data

  5. BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY

    E-Print Network [OSTI]

    Dukes, Jeffrey

    BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

  6. Constant Sustainable Consumption Rate in Optimal Growth with Exhaustible Resources*

    E-Print Network [OSTI]

    Wan, Frederic Yui-Ming

    's criterion of maximum sustainable consumption rate, previously formulated as a minimum-resource-extraction or not the constant unit resource extraction cost vanishes. The related problem of maximizing the terminal capital appetite for the earth's finite stock of nonrenew- able resources, such as fossil fuel and minerals, have

  7. World Energy Consumption and Carbon Dioxide Emissions: 1950 2050

    E-Print Network [OSTI]

    -U" relation with a within- sample peak between carbon dioxide emissions (and energy use) per capita and perWorld Energy Consumption and Carbon Dioxide Emissions: 1950 Ñ 2050 Richard Schmalensee, Thomas M capita income. Using the income and population growth assumptions of the Intergovernmental Panel

  8. Optimal Allocation of Bandwidth for Minimum Battery Consumption

    E-Print Network [OSTI]

    Cosman, Pamela C.

    properties of the battery under bursty discharge conditions are exploited. In this paper, we exploitOptimal Allocation of Bandwidth for Minimum Battery Consumption Qinghua Zhao, Pamela C. Cosman, a power amplifier utilizes battery energy more efficiently with a higher transmission power. For a given

  9. November 2012 Key Performance Indicator (KPI): Energy Consumption

    E-Print Network [OSTI]

    Evans, Paul

    and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating requirements by combusting municipal waste to produce hot water. The process significantly saves carbon

  10. Patterns and trends: New York State energy profiles, 1983--1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Section 1 presents a comparison of energy consumption, selected energy prices, source of petroleum products, and other factors influencing energy demand and expenditures for the US and NYS. Section 2 provides historic data for primary and net energy consumption by fuel type and sector (residential, commercial, industrial, and transportation). Section 3 presents retail level energy price data. Retail energy prices are provided by fuel type for each sector in nominal dollar costs per physical unit and per million Btu. Section 4 presents the estimated expenditure on net energy consumption by sector and fuel type in nominal dollars and in 1997 constant dollars (excluding inflation). Estimated costs were derived by multiplying consumption quantities by their respective prices. Section 5 details sources of selected New York State energy supplies. Section 6 provides several appendices, such as tables on household end-use energy consumption and expenditures, gasoline consumption by country, degree-day, conversion factors and a glossary of energy terms.

  11. Consistent Query Answering Of Conjunctive Queries Under Primary Key Constraints

    E-Print Network [OSTI]

    Pema, Enela

    2014-01-01T23:59:59.000Z

    Queries and Primary Key Constraints . . . . . . . . . .of Employee w.r.t. the primary key SSN ? {name, salary} . .query answering under primary keys: a characterization of

  12. Reducing power consumption during execution of an application on a plurality of compute nodes

    DOE Patents [OSTI]

    Archer, Charles J. (Rochester, MN); Blocksome, Michael A. (Rochester, MN); Peters, Amanda E. (Rochester, MN); Ratterman, Joseph D. (Rochester, MN); Smith, Brian E. (Rochester, MN)

    2012-06-05T23:59:59.000Z

    Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: executing, by each compute node, an application, the application including power consumption directives corresponding to one or more portions of the application; identifying, by each compute node, the power consumption directives included within the application during execution of the portions of the application corresponding to those identified power consumption directives; and reducing power, by each compute node, to one or more components of that compute node according to the identified power consumption directives during execution of the portions of the application corresponding to those identified power consumption directives.

  13. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect (OSTI)

    Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

    2012-02-15T23:59:59.000Z

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

  14. Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco

    E-Print Network [OSTI]

    in energy consumption. Patterns of Consumption--Historic Trends Electricity & Gas We'll start with historicChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages analysis of consumption patterns of different commodities in the U.S. shed light on the consumption

  15. To appear in: Mobile Networks and Applications 0 (2000) ?{? 1 An Energy-consumption Model for Performance

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    To appear in: Mobile Networks and Applications 0 (2000) ?{? 1 An Energy-consumption Model consumption behavior of a mobile ad hoc network. The model was used to examine the energy consumption of two. Keywords: mobile ad hoc networks, routing, energy consumption 1. Introduction Energy consumption

  16. State energy data report: Consumption estimates, 1960--1987

    SciTech Connect (OSTI)

    Not Available

    1989-04-20T23:59:59.000Z

    The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.

  17. Recirculation of Factory Heat and Air to Reduce Energy Consumption 

    E-Print Network [OSTI]

    Thiel, G. R.

    1983-01-01T23:59:59.000Z

    ---- -- - ------ RECIRCULATION OF FACTORY HEAT AND AIR TO REDUCE ENERGY CONSUMPTION Gregory R. Thiel Eltron Mfg. Inc. Fort Thomas, KY. ABSTRACT Two methods for achieving substantial energy savings through recirculation techniques are discussed... challenging conditions: Because they are constructed to op erate "dripping wet", Eltron' s pro prietary "Conductive Precipitate" models can resume normal air clean ing operation immediately after each water washing cycle. They are the only...

  18. North Carolina Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)Total Consumption (Million

  19. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    impact of 4.1 quadrillion BTU (quads) of primary energy 1 .systems with U-factors of 0.1 Btu/hr-ft²-°F Dynamic windows:for 1 quadrillion (10 15 ) Btu = 1.056 EJ. percent (Apte,

  20. Models for estimation of car fuel consumption in urban traffic

    SciTech Connect (OSTI)

    Biggs, D.C.; Akcelik

    1986-07-01T23:59:59.000Z

    This article describes four fuel-consumption models. The models are interrelated and form part of the same modeling framework. A simpler model is derived from a more complicated model keeping the vehicle characteristic such as mass, drag function, and energy efficiency as explicit parameters at all model levels. Because vehicle characteristics are likely to change over time and from country to country, this is a particularly useful model property. For simplicity here, only the instantaneous fuel-consumption model is described in any detail. However, because of the derivation procedure, many of the features and properties of this model are present in the more aggregate models. Easy-to-use functions and graphs are given for the more aggregate models based on a ''default car'' in urban driving conditions. All parameters related to the speed profile and driving environment were calibrated using on-road data collected in Sydney, Australia. Use of the models is illustrated by estimating the fuel consumption for the microtrip.

  1. Fuel consumption prediction methodology for early stages of naval ship design

    E-Print Network [OSTI]

    Gheriani, Eran (Eran Y.)

    2012-01-01T23:59:59.000Z

    In recent years, fuel consumption has increased in importance as a design parameter in Navy ships. Economical fuel consumption is important not only for operating cost measures but also for ship endurance tankage requirements. ...

  2. Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline...

  3. Experimental study of lube oil characteristics in the PCV system and effects on engine oil consumption

    E-Print Network [OSTI]

    Lopez, Oscar, 1980-

    2004-01-01T23:59:59.000Z

    Engine oil consumption is an important source of hydrocarbon and particulate emissions in modem automobile engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption on ...

  4. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  5. One of These Homes is Not Like the Other: Residential Energy Consumption Variability

    E-Print Network [OSTI]

    Kelsven, Phillip

    2013-01-01T23:59:59.000Z

    behavior patterns in which American households use energy causes wide variations in total residential energy consumption per home,

  6. Relationship between Heavy Vehicle Speed Limit and Fleet Fuel Consumption on Minor Roads

    E-Print Network [OSTI]

    Wilson, G.; Morrison, G.; Midgley, W.; Cebon, D.

    2015-03-12T23:59:59.000Z

    e s/M in ) Link Data Calibrated Model 13 3. Fuel Consumption Model Figure 7 outlines the basic structure of the fuel consumption model. Figure 7: General flow diagram of the fuel consumption model. Energy Consumption Model The energy... flow rates tend to be low. As traffic approaches bound flow (at the top of the chart), vehicle interactions increase and faster fleet vehicles begin to platoon behind the slowest vehicles. The extent to which traffic is slowed depends on the speeds...

  7. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01T23:59:59.000Z

    Energy Consumption Reduction in Machining, Master of Science at the University of California at Berkeley, Berkeley, CA, USA.

  8. A High-Fidelity Energy Monitoring and Feedback Architecture for Reducing Electrical Consumption in Buildings

    E-Print Network [OSTI]

    Jiang, Xiaofan

    2010-01-01T23:59:59.000Z

    consumption, typical load (power) profile, and time spent inby plug-load meters provides detailed power profiles of

  9. Anaerobic Digestion of Primary Sewage Effluent

    E-Print Network [OSTI]

    Anaerobic Digestion of Primary Sewage Effluent: Significant Energy Savings over Traditional Activated Sludge Treatment This report presents results for an anaerobic digestion system operated;Anaerobic Digestion of Primary Sewage Effluent Prepared for the U.S. Department of Energy Office

  10. Impacts of Minnesota's Primary Seat Belt Law

    E-Print Network [OSTI]

    Minnesota, University of

    for Excellence in Rural Safety Humphrey School of Public Affairs #12;CERS's "Safe Six Regardless of Residence Urban/Small City Suburban Rural/Small Town Primary Seat; . . AND IN MINNESOTA #12;Predicted Impact 2009 and 2010 CERS Reports: · Primary Seat Belt Laws

  11. Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada

    E-Print Network [OSTI]

    implemented in Canada, what would be the response of the industrial sector in terms of energy consumptionHybrid modeling of industrial energy consumption and greenhouse gas emissions with an application for modeling industrial energy consumption, among them a series of environmental and security externalities

  12. Power consumption modeling in optical multilayer Ward Van Heddeghem, Filip Idzikowski*

    E-Print Network [OSTI]

    Wichmann, Felix

    , Germany Abstract -- The evaluation and reduction of energy consumption of backbone telecommunication% of power over a non-bypass scenario. Keywords -- Green ICT, energy-efficiency, power consumption, core for policy makers to assess the importance of ICT power consumption in comparison to other sectors

  13. Balancing Energy and Water Consumption in an Urban Desert Environment: A Case

    E-Print Network [OSTI]

    Hall, Sharon J.

    at the Census block group level for 2005 3. Energy consumption data from 2005 Census Mesic Landscaping XericBalancing Energy and Water Consumption in an Urban Desert Environment: A Case Study on Phoenix, AZ effect, water scarcity, and energy consumption. The transformation of native landscapes into built

  14. Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data

    E-Print Network [OSTI]

    1 Input Substitution and Business Energy Consumption: Evidence from ABS Energy Survey Data Kay Cao applies the system of equations approach to energy consumption modelling using the ABS 2008-09 Energy of equations, energy consumption modelling, elasticity of substitution JEL codes: C51, D24 * Please do

  15. Energy Consumption in Data Analysis for On-board and Distributed Applications

    E-Print Network [OSTI]

    Kargupta, Hilol

    Energy Consumption in Data Analysis for On-board and Distributed Applications Ruchita Bhargava Energy consumption is an important issue in the growing number of data mining and machine learning of the energy consumption characteristics of dif- ferent data analysis techniques. The paper com- pares

  16. A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based on Large Datasets

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Parallel Statistical Learning Approach to the Prediction of Building Energy Consumption Based consumption of buildings based on historical performances is an important approach to achieve energy efficiency. A simulation method is here introduced to obtain sufficient clean historical consumption data

  17. Models for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant

    E-Print Network [OSTI]

    Kusiak, Andrew

    ; Energy consumption; Data collection; Neural networks; Dynamic models; Statics; Water treatment plants. Author keywords: Wastewater pump models; Energy consumption; Pump energy; Data mining; Head influenceModels for Optimization of Energy Consumption of Pumps in a Wastewater Processing Plant Zijun Zhang

  18. Modelling Business Energy Consumption using Agent-based Simulation Modelling Jason Wong and Kay Cao1

    E-Print Network [OSTI]

    to develop a prototype agent based simulation model for business energy consumption, using data from the 2008 presents a framework of the model for estimating business energy consumption. Section V discusses the dataModelling Business Energy Consumption using Agent-based Simulation Modelling Jason Wong and Kay Cao

  19. EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies

    E-Print Network [OSTI]

    EnergyBox: A Trace-driven Tool for Data Transmission Energy Consumption Studies Ekhiotz Jon VergaraFi transmissions at the user end. We recognize that the energy consumption of data transmission is highly. EnergyBox enables efficient energy consumption studies using real data, which com- plements the device

  20. Analyzing the Impact of Useless Write-Backs on the Endurance and Energy Consumption of PCM

    E-Print Network [OSTI]

    Zhang, Youtao

    . This can reduce the static power consumption to negligible levels. The energy required to read data fromAnalyzing the Impact of Useless Write-Backs on the Endurance and Energy Consumption of PCM Main-effective and energy-efficient alternative to traditional DRAM main memory. Due to the high energy consumption

  1. MIND: A Black-Box Energy Consumption Model for Disk Arrays

    E-Print Network [OSTI]

    Qin, Xiao

    consumption is becoming a growing concern in data centers. Many energy-conservation techniques have beenMIND: A Black-Box Energy Consumption Model for Disk Arrays Zhuo Liu1,2 , Jian Zhou1 , Weikuan Yu2 with power conservation techniques. Accurate energy consumption and performance statistics are then collected

  2. Research Report Effects of ethanol consumption by adult female rats on subsequent

    E-Print Network [OSTI]

    Galef Jr., Bennett G.

    Research Report Effects of ethanol consumption by adult female rats on subsequent consumption January 2004 Abstract We used a two-bottle choice test to measure voluntary ethanol consumption by adolescent rats that had lived with ethanol-consuming or water-consuming adult conspecifics. We found

  3. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  4. Domestic electricity consumption is con-tinuously increasing and now accounts

    E-Print Network [OSTI]

    Domestic electricity consumption is con- tinuously increasing and now accounts for about one third") enable detailed electricity consumption infor- mation to be captured, processed, and communicated electricity consumption infor- mation in real-time, enabling occupants to better understand their electricity

  5. Prediction of Electric Load using Kohonen Maps -Application to the Polish Electricity Consumption

    E-Print Network [OSTI]

    Verleysen, Michel

    Prediction of Electric Load using Kohonen Maps - Application to the Polish Electricity Consumption on Kohonen maps is proposed. This method is applied to the prediction of the Polish electricity consumption of the electric load is specific. For each day, we have 24 values (or more) of the electricity consumption

  6. Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications

    E-Print Network [OSTI]

    Politécnica de Madrid, Universidad

    Safe Upper-bounds Inference of Energy Consumption for Java Bytecode Applications (Extended Abstract relying on autonomous on-board data analysis. Intermediate Representation Resource Usage Analysis Energy- mize energy consumption. Several approaches have been developed for estimating the en- ergy consumption

  7. The CO2 Content of Consumption Across US Regions: A Multi-Regional

    E-Print Network [OSTI]

    , when attributed on a consumption basis, California's per capita emissions are over 25 percent higherThe CO2 Content of Consumption Across US Regions: A Multi-Regional Input-Output (MRIO) Approach: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;The CO2 Content of Consumption Across US Regions

  8. Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems

    E-Print Network [OSTI]

    Schott, René - Institut de Mathématiques �lie Cartan, Université Henri Poincaré

    Hybrid GA-SA Algorithms for Reducing Energy Consumption in Embedded Systems Maha IDRISSI AOUAD Vandoeuvre-L`es-Nancy, France. Email: Rene.Schott@loria.fr Abstract--Reducing energy consumption in embedded algorithms based on Simulated An- nealing (SA) and Genetic Algorithm (GA) for reducing energy consumption

  9. A First Look at 802.11n Power Consumption in Smartphones

    E-Print Network [OSTI]

    Shihada, Basem

    , dimitrio}@buffalo.edu ABSTRACT We report the first measurement study of 802.11n power consump- tion--Wireless Communication. Keywords 802.11n, smartphones, power consumption, energy consumption, measurement. 1A First Look at 802.11n Power Consumption in Smartphones Ninad Warty, Ramanujan K. Sheshadri, Wei

  10. Capping the Brown Energy Consumption of Internet Services at Low Cost

    E-Print Network [OSTI]

    energy · Trend: Cap the brown energy consumption of large electricity consumers (data centers) · CappingCapping the Brown Energy Consumption of Internet Services at Low Cost Kien T. Le Ricardo Bianchini Energy Consumption · Improving efficiency does not promote green energy or guarantee limits on brown

  11. Mixed Conifer Forest Duff Consumption during Prescribed Fires: Tree Crown Impacts

    E-Print Network [OSTI]

    Stephens, Scott L.

    by the prolonged heat released by smol- dering combustion. Additionally, duff consumption is the largest). In the case of partial consumption of the duff layer, heat tolerance and storage depth of seeds and rhizomes empirical models of duff consumption have been developed from data collected from wildfires or prescribed

  12. Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements

    E-Print Network [OSTI]

    Mellia, Marco

    Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being punt into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

  13. Accounting for the Energy Consumption of Personal Computing Including Portable Devices

    E-Print Network [OSTI]

    Namboodiri, Vinod

    Accounting for the Energy Consumption of Personal Computing Including Portable Devices Pavel.S.A vinod.namboodiri@wichita.edu ABSTRACT In light of the increased awareness of global energy consumption the share of energy consumption due to these equipment over the years, these have rarely characterized

  14. Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking

    E-Print Network [OSTI]

    Sirer, Emin Gun

    Investigating the Energy Consumption of a Wireless Network Interface in an Ad Hoc Networking protocols re- quires knowledge of the energy consumption behavior of actual wireless interfaces. But little practical information is available about the energy consumption behavior of well-known wireless network

  15. Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks

    E-Print Network [OSTI]

    Singh, Suresh

    Energy Consumption of TCP Reno, Newreno, and SACK in Multi-Hop Wireless Networks Harkirat Singh In this paper we compare the energy consumption behavior of three versions of TCP ­ Reno, Newreno, and SACK the lowest overall energy consumption. 1. INTRODUCTION Today, sophisticated wireless devices are gaining

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Elevator Drive Systems Energy Consumption Study Report

    E-Print Network [OSTI]

    Energy Consumption Study Report Benny ChunYin Chan University of British Columbia EECE 492 April 6th the current status of the subject matter of a project/report". #12;Elevator Drive Systems Energy Consumption Study Report April 2012 0 2012 Elevator Drive Systems Energy Consumption Study Report Benny CY Chan UBC

  17. An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An off-line multiprocessor real-time scheduling algorithm to reduce static energy consumption, France laurent.pautet@telecom-paristech.fr Abstract--Energy consumption of highly reliable real dynamic energy consumption. This paper aims to propose a new off-line schedul- ing algorithm to put

  18. CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    CONSUMPTION AND CHANGES IN HOME ENERGY COSTS: HOW PREVALENT IS THE `HEAT OR EAT' DECISION?· Julie how household consumption responds to changes in home energy outlays over the course of the year. We specify Euler equations describing nondurable and food consumption and then rely on changes in energy

  19. IEEE INFOCOM 2001 1 Investigating the Energy Consumption of a Wireless

    E-Print Network [OSTI]

    IEEE INFOCOM 2001 1 Investigating the Energy Consumption of a Wireless Network Interface in an Ad and evaluation of network protocols re­ quires knowledge of the energy consumption behavior of actual wireless interfaces. But little practical information is available about the energy consumption behavior of well

  20. Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements

    E-Print Network [OSTI]

    Mellia, Marco

    Energy-Aware Networks: Reducing Power Consumption By Switching Off Network Elements Luca% of the worldwide energy consumption, and several initiatives are being put into place to reduce the power power consumption, even without taking into account the energy necessary for equipment cooling [4

  1. Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana Rosing, and

    E-Print Network [OSTI]

    Simunic, Tajana

    Fine-grained Energy Consumption Characterization and Modeling Catherine Mills Olschanowsky, Tajana of the applications in the workload affect the energy consumption of the resource. Our experiments confirm that data the performance and energy-efficiency of candidate resources. Predicting the energy consumption of an HPC resource

  2. Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin Nadjm-Tehrani

    E-Print Network [OSTI]

    Mobile Location Sharing: An Energy Consumption Study Ekhiotz Jon Vergara, Mihails Prihodko, Simin- packet interval) highly influences the energy consumption of the mobile device. Our work focuses other clients' location updates (similar to pull behaviour). In order to evaluate the energy consumption and the

  3. Energy management of HEV to optimize fuel consumption and pollutant emissions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AVEC'12 Energy management of HEV to optimize fuel consumption and pollutant emissions Pierre Michel, several energy management strategies are proposed to optimize jointly the fuel consumption and pollutant-line strategy are given. Keywords: Hybrid Electric Vehicle (HEV), energy management, pollution, fuel consumption

  4. Unit Testing of Energy Consumption of Software Libraries Adel Noureddine1,2

    E-Print Network [OSTI]

    Boyer, Edmond

    Unit Testing of Energy Consumption of Software Libraries Adel Noureddine1,2 , Romain Rouvoy1. In this paper, we therefore introduce JalenUnit, a software framework that infers the energy consumption model, and comparing software libraries against their energy consumption. Categories and Subject Descriptors D.2

  5. An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian Jones

    E-Print Network [OSTI]

    Cambridge, University of

    An Analysis of Hard Drive Energy Consumption Anthony Hylick, Ripduman Sohan, Andrew Rice, and Brian consumed by the electronics of a drive is just as important as the mechanical energy consumption; (ii consumption was a concern pri- marily for mobile computing domains. The rising cost of energy and increased

  6. INFLUENCES OF RAKE RECEIVER/TURBO DECODER PARAMETERS ON ENERGY CONSUMPTION AND QUALITY

    E-Print Network [OSTI]

    Al Hanbali, Ahmad

    INFLUENCES OF RAKE RECEIVER/TURBO DECODER PARAMETERS ON ENERGY CONSUMPTION AND QUALITY Lodewijk T are selected and their influences on the energy consumption and quality are investigated by means power hardware is needed to save energy consumption. Furthermore, an adequate quality of the wireless

  7. Cherish every Joule: Maximizing throughput with an eye on network-wide energy consumption

    E-Print Network [OSTI]

    Hou, Y. Thomas

    Cherish every Joule: Maximizing throughput with an eye on network-wide energy consumption Canming: {jcm, yshi, thou, wjlou}@vt.edu Abstract Conserving network-wide energy consumption is becoming of wireless networks, the concern of energy consumption is becoming in- creasingly important for network

  8. Energy consumption in cellular network: ON-OFF model and impact of mobility

    E-Print Network [OSTI]

    Energy consumption in cellular network: ON-OFF model and impact of mobility Thanh Tung Vu Telecom consumption in cellular network and we focus on the distribution of energy consumed by a base station. We first define the energy consumption model, in which the consumed energy is divided into two parts

  9. Measuring the Client Performance and Energy Consumption in Mobile Cloud Gaming

    E-Print Network [OSTI]

    Chen, Sheng-Wei

    Measuring the Client Performance and Energy Consumption in Mobile Cloud Gaming Chun-Ying Huang1, Po-constrained devices may lead to inferior performance and high energy consumption. For example, the gaming frame rate and energy consumption of mobile clients is critical to the success of the new mobile cloud gaming ecosystem

  10. Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy-Performance Tradeoff

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy Consumption Reduction with Low Computational Needs in Multicore Systems with Energy rules) in order to decrease the energy consumption. We proposed in a previous paper a robust control of the energy consumption. I. INTRODUCTION An energy-performance tradeoff is required in many em- bedded

  11. Experimental Study on the Energy Consumption in IaaS Cloud Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Experimental Study on the Energy Consumption in IaaS Cloud Environments Alexandra Carpen.morin@inria.fr Abstract--Energy consumption has always been a major concern in the design and cost of datacenters the energy consumption of a cloud system, the hardware-component level is one of the most intensively studied

  12. Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters

    E-Print Network [OSTI]

    California at Berkeley, University of

    Instrumenting Linear Algebra Energy Consumption via On-chip Energy Counters James Demmel Andrew to lists, requires prior specific permission. #12;Instrumenting linear algebra energy consumption via on consumption is still a prevalent and growing problem within the computing sector. To evaluate energy

  13. China's Top-1000 Energy-Consuming Enterprises Program: Reducing Energy Consumption of the 1000 Largest Industrial Enterprises in China

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    and Projected Trends in Energy Consumption in China, 2000-Energy Consumption (Mtce) 2010 Baseline Target 2010 Current TrendsEnergy Consumption for the Top-1000 Energy-Consuming Enterprises Program Under Baseline, Target, and Current Trends

  14. Constraining Energy Consumption of China's Largest Industrial Enterprises Through the Top-1000 Energy-Consuming Enterprise Program

    E-Print Network [OSTI]

    Price, Lynn; Wang, Xuejun

    2007-01-01T23:59:59.000Z

    Industry Constraining Energy Consumption of China’s Largestone-to-one ratio of energy consumption to GDP – given China’goal of reducing energy consumption per unit of GDP by 20%

  15. Future Air Conditioning Energy Consumption in Developing Countries and what can be done about it: The Potential of Efficiency in the Residential Sector

    E-Print Network [OSTI]

    McNeil, Michael A.; Letschert, Virginie E.

    2008-01-01T23:59:59.000Z

    2004) Survey on Electricity Consumption Characteristics ofof residential electricity consumption in rapidly developingbusiness as usual’ electricity consumption by country/region

  16. Essays on the Impact of Climate Change and Building Codes on Energy Consumption and the Impact of Ozone on Crop Yield

    E-Print Network [OSTI]

    Aroonruengsawat, Anin

    2010-01-01T23:59:59.000Z

    on Residen- iv tial Electricity Consumption 8 Introduction 9Observed residential electricity consumption 2003 to 2006total residential electricity consumption for 2006 by five-

  17. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    China’s Industrial Energy Consumption Trends and Impacts ofChina’s Industrial Energy Consumption Trends and Impacts ofs industrial energy consumption trends from 1996 to 2010

  18. China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    Choices, and Energy Consumption. Praeger Publishers,The decomposition effect of energy consumption in China'sThe challenge of reducing energy consumption of the Top-1000

  19. The Consumption Benefits of Investment In Urban Infastructure: The Evaluation of Sites and Services Programs in Underdeveloped Countries

    E-Print Network [OSTI]

    Kaufmann, Daniel; Quigley, John M.

    1984-01-01T23:59:59.000Z

    mimeo, 1979. Quigley, John M. "The Consumption BenefitsDaniel Kaufmann and John M. Quigley. "The ConsumptionDan Durning and John M. Quigley. "On the Distributional

  20. Analysis of federal incentives used to stimulate energy consumption

    SciTech Connect (OSTI)

    Cole, R.J.; Cone, B.W.; Emery, J.C.; Huelshoff, M.; Lenerz, D.E.; Marcus, A.; Morris, F.A.; Sheppard, W.J.; Sommers, P.

    1981-08-01T23:59:59.000Z

    The purpose of the analysis is to identify and quantify Federal incentives that have increased the consumption of coal, oil, natural gas, and electricity. The introductory chapter is intended as a device for presenting the policy questions about the incentives that can be used to stimulate desired levels of energy development. In the theoretical chapter federal incentives were identified for the consumption of energy as Federal government actions whose major intent or result is to stimulate energy consumption. The stimulus comes through changing values of variables included in energy demand functions, thereby inducing energy consumers to move along the function in the direction of greater quantity of energy demanded, or through inducing a shift of the function to a position where more energy will be demanded at a given price. The demand variables fall into one of six categories: price of the energy form, price of complements, price of substitutes, preferences, income, and technology. The government can provide such incentives using six different policy instruments: taxation, disbursements, requirements, nontraditional services, traditional services, and market activity. The four major energy forms were examined. Six energy-consuming sectors were examined: residential, commercial, industrial, agricultural, transportation, and public. Two types of analyses of incentive actions are presented in this volume. The generic chapter focused on actions taken in 1978 across all energy forms. The subsequent chapters traced the patterns of incentive actions, energy form by energy form, from the beginning of the 20th century, to the present. The summary chapter includes the results of the previous chapters presented by energy form, incentive type, and user group. Finally, the implications of these results for solar policy are presented in the last chapter. (MCW)

  1. Regional overview of Latin American and Caribbean energy production, consumption, and future growth. Report series No. 1

    SciTech Connect (OSTI)

    Wu, K.

    1994-07-01T23:59:59.000Z

    The Latin American and Caribbean region - comprising Mexico, Central and South America, and the Caribbean - is relatively well endowed with energy resources, although the distribution of these resources is uneven across countries. The region produces more energy than it consumes, and the surplus energy, which amounts to 3.6 million barrels of oil equivalent per day (boe/d), is mostly oil. While the region`s total oil (crude and products) exports decreased from 4.4 million barrels per day (b/d) in 1981 to 3.8 million b/d in 1992, its net oil exports increased from about 1.6 million b/d in 1981 to 2.8 million b/d in 1992. In 1993, the surplus oil in Latin America and the Caribbean remained at 2.8 million b/d. This report analyzes the key issues of the Latin American and Caribbean energy industry and presents the future outlook for oil, gas, coal, hydroelectricity, and nuclear power developments in the region. In addition, the status of biomass energy, geothermal, and other noncommercial energy in the region will be briefly discussed in the context of overall energy development. The rest of the report is organized as follows: Section II assesses the current situation of Latin American and Caribbean energy production and consumption, covering primary energy supply, primary energy consumption, downstream petroleum sector development, and natural gas utilization. Section III presents the results of our study of future energy growth in Latin America. Important hydrocarbons policy issues in the region are discussed in Section IV, and a summary and concluding remarks are provided in Section V.

  2. Sample design for the residential energy consumption survey

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  3. Reducing the consumption of anthraquinone disulfonate in stretford solutions

    SciTech Connect (OSTI)

    Fenton, D.M.; Vaell, R.P.

    1982-02-16T23:59:59.000Z

    A process for treating a hydrogen sulfide-containing hydrogenated claus process tail gas to convert the hydrogen sulfide to elemental sulfur in which said gas is contacted with an aqueous alkaline solution containing a water-soluble metal vanadate, a water-soluble anthraquinone disulfonate, and a watersoluble, inorganic fluoride, borate, or phosphate complexing agent to yield an effluent gas to reduced sulfur content. The solution is thereafter regenerated by contact with an oxygencontaining gas, elemental sulfur is recovered from the solution, and the regenerated solution is recycled to the gas-contacting step. The complexing agent contained in the solution reduces the chemical consumption of the anthraquinone disulfonate.

  4. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01T23:59:59.000Z

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  5. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect (OSTI)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01T23:59:59.000Z

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  6. Michigan Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYear Jan FebFuel Consumption

  7. Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet) Price AllFuel Consumption

  8. Tennessee Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.Decade Year-0Fuel Consumption

  9. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel Consumption (Million

  10. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14Sales (BillionFuel Consumption (Million

  11. California Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million Cubic Feet)

  12. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million Cubic

  13. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel Consumption (Million (MillionFuel

  14. California Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14 Dec-14Year

  15. California Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14 Dec-14YearTotal

  16. California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14Feet)Year

  17. California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590Fuel ConsumptionNov-14Feet)YearYear

  18. Colorado Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet) DecadeFuel Consumption

  19. Washington Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58 810 0CubicFeet)Total Consumption

  20. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I E

  1. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I EProjections

  2. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J I

  3. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O J

  4. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX I A O JInformation

  5. Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residential Energy Consumption,

  6. Fact #840: September 29, 2014 World Renewable Electricity Consumption is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment ofDepartmentLast Ten YearsU.S. Consumption in

  7. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar Apr May JunFuel Consumption

  8. Hawaii Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TOTotal Consumption (Million

  9. Hawaii Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TOTotal Consumption

  10. Hawaii Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW TOTotal ConsumptionVehicle Fuel

  11. Idaho Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet) Idaho

  12. Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Decade Year-0

  13. Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Decade

  14. Illinois Natural Gas Industrial Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381 -260Decade Year-0

  15. Illinois Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million381Withdrawals

  16. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million Cubic Feet)Plant Fuel

  17. Illinois Natural Gas Residential Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 TableTotal Consumption (Million CubicRepressuringDecade

  18. Nebraska Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawals (Million CubicTotal Consumption

  19. New Hampshire Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan FebFeet)Total Consumption

  20. New Jersey Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYearWithdrawalsYear Jan1 0.2Total Consumption (Million