Sample records for btu naics residual

  1. Accurate BTU Measurement

    E-Print Network [OSTI]

    Hosseini, S.; Rusnak, J. J.

    1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

  2. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  3. North American Industry Classification System (NAICS) Search Tool

    Broader source: Energy.gov [DOE]

    The North American Industry Classification System (NAICS) is the standard used by Federal statistical agencies in classifying business establishments for the purpose of collecting, analyzing, and...

  4. NAICS Codes @ Headquarters | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your NextHow EMMinutes: EMMissionofofProject NowNAICS

  5. NAICS Codes @ Headquarters Description: NAICS Codes used at Headquarters Procurement Services

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan - Technology ProjectEnergyNAICS Codes @

  6. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  7. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  8. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  9. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  10. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYrCapacityBtuHr

  11. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  12. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYr Jump to:

  13. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR NewBTU

  14. High Btu gas from peat. Existing social and economic conditions

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

  15. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  16. Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117

    E-Print Network [OSTI]

    Radivojac, Predrag

    .1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

  17. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15T23:59:59.000Z

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  18. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  19. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils...

  20. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  1. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  2. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13

  3. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter134

  4. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter1343

  5. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434

  6. Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259

    E-Print Network [OSTI]

    Moret, Bernard

    Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

  7. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  8. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  9. Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAll Manufacturing (NAICS

  10. Manufacturing Energy and Carbon Footprint - Sector: Textiles (NAICS 313-316), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) | DepartmentTextiles (NAICS

  11. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  12. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpectedOtherOffshoreAnnual",2014

  13. ,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+

  14. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated NaturalPrice

  15. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated

  16. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  17. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  18. ,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNet WithdrawalsVolumeHenry

  19. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l dIncreases

  20. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYear JanSales (Billion

  1. Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U BCubic Feet)Appendix E2

  2. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U (Million31 22

  3. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  4. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU perper

  5. High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

  6. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  7. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  8. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  9. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  10. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31T23:59:59.000Z

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  11. Fusion Residues

    E-Print Network [OSTI]

    Kenneth Intriligator

    1991-08-19T23:59:59.000Z

    We discuss when and how the Verlinde dimensions of a rational conformal field theory can be expressed as correlation functions in a topological LG theory. It is seen that a necessary condition is that the RCFT fusion rules must exhibit an extra symmetry. We consider two particular perturbations of the Grassmannian superpotentials. The topological LG residues in one perturbation, introduced by Gepner, are shown to be a twisted version of the $SU(N)_k$ Verlinde dimensions. The residues in the other perturbation are the twisted Verlinde dimensions of another RCFT; these topological LG correlation functions are conjectured to be the correlation functions of the corresponding Grassmannian topological sigma model with a coupling in the action to instanton number.

  12. First Detection of CO in a Low Surface Brightness Galaxy 1 Arecibo Observatory, NAIC/Cornell University, HC3 Box 53995, Arecibo, Puerto Rico 00612

    E-Print Network [OSTI]

    O'Neil, Karen

    /Cornell University, HC3 Box 53995, Arecibo, Puerto Rico 00612 P. Hofner Physics Department, University of Puerto Rico at Rio Piedras, P.O. Box 23343, San Juan, Puerto Rico 00931 and Arecibo Observatory, NAIC/Cornell University, HC3 Box 53995, Arecibo, Puerto Rico 00612 E. Schinnerer California Institute of Technology

  13. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  14. High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

  15. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  16. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool of tomorrow todayEnergyDepartment

  17. NAICS Codes Description:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock, New Mexico |Myriant SuccinicNCodes

  18. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  19. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  20. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  1. REDUCTION OF PHASE RESIDUALS TO TIME UNITS Larry R. D'Addario

    E-Print Network [OSTI]

    Groppi, Christopher

    , the predicted uplink delay was * *bTu, and at the time of downlink reception the predicted downlink delay transmission, and downlink rece* *ption, respectively, as: ug(t)= sin[!u(t + bTu)] (1) us(t)= sin[!u(t + bTu- Tu)] (2

  2. Recovery of flexible polyurethane foam from shredder residue.

    SciTech Connect (OSTI)

    Daniels, E. J.; Jody, b. J.

    1999-06-29T23:59:59.000Z

    Argonne National Laboratory has developed a patented, continuous process for the recovery of flexible polyurethane foam (PUF) from auto shredder residue (ASR). To test the process, Argonne researchers conceived of, designed, and built a continuous foam washing and drying system that was pilot-tested at a shredder facility for six months. Economic analysis of the process, using manufacturers' quotes and operating data from Argonne's pilot plant, indicates a payback of less than two years for a plant producing about 1,000 ton/yr of foam. Samples of clean foam were shipped to three major foam reprocessors; all three indicated that the quality of the PUF recovered by the Argonne process met their requirements. Tests of the recovered foam by an independent testing laboratory showed that the recycled foam met the specifications for several automotive applications, including carpet padding, headliner, and sound-suppression support materials. Recovery of foam reduces the mass and the volume of material going to the landfill by about 5% and 30%, respectively. Annually, recovery will save about 1.2 x 10{sup 12} Btu of energy, cut the amount of solid waste being landfilled by about 150,000 tons, and eliminate the emission of about 250 tons of volatile organic compounds (VOCs) into the air.

  3. Residuals, Sludge, and Composting (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Department of Environmental Protection's Residuals, Sludge, and Composting program regulates the land application and post-processing of organic wastes, including sewage sludge, septage,...

  4. 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

  5. Chemical Characterization of Individual Particles and Residuals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Chemical Characterization of Individual Particles and Residuals of Cloud Droplets...

  6. DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES

    SciTech Connect (OSTI)

    Kyser, E

    2009-01-12T23:59:59.000Z

    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  7. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185 175...

  8. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1998, 2002, and 2006 (Btu per constant 2000 dollar 1 ) MECS Survey Years Iron and Steel Mills (NAICS 2 331111) 1998 3 2002 4 2006 4 Total NA 19,716 12,179 Electricity NA...

  9. file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    b Table 7b. Offsite-Produced Fuel Consumption per Ton of Steel, 1998, 2002, and 2006 (1000 Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 3 2006 3...

  10. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island, NewFirmGreen

  11. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR

  12. Residual activation of accelerator components

    SciTech Connect (OSTI)

    Rakhno, I.L.; Mokhov, N.V.; Striganov, S.I.; /Fermilab

    2008-02-01T23:59:59.000Z

    A method to calculate residual activation of accelerator components is presented. A model for residual dose estimation for thick objects made of arbitrary composite materials for arbitrary irradiation and cooling times is employed in this study. A scaling procedure is described to apply the model to thin objects with linear dimensions less than a fraction of a nuclear interaction length. The scaling has been performed for various materials and corresponding factors have been determined for objects of certain shapes (slab, solid and hollow cylinder) that can serve as models for beam pipes, magnets and collimators. Both contact residual dose and dose attenuation in the air outside irradiated objects are considered. A relation between continuous and impulse irradiation is accounted for as well.

  13. Transforms for prediction residuals in video coding

    E-Print Network [OSTI]

    Kam??l?, Fatih

    2010-01-01T23:59:59.000Z

    Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

  14. Residual Stresses in Weldments by Neutron Diffraction

    E-Print Network [OSTI]

    Bandara, Arosha

    Rectors and Pressurised Water Reactors Source of Problem · Internal Residual Stress · Material propertiesResidual Stresses in Weldments by Neutron Diffraction Shanmukha Rao M, Jon James, Shirley Northover of Residual Stress inside Materials Material: 3 Pass Weld Austenitic Stainless Steel Working Principle

  15. DRAINED RESIDUAL STRENGTH OF COHESIVE SOILSa

    E-Print Network [OSTI]

    that the residual friction angle is independent of the original shear strength, water content, and liquidity indexDRAINED RESIDUAL STRENGTH OF COHESIVE SOILSa Discussion by Robert W. Day,3 Fellow, ASCE The authors have preparcd an important paper on the drained residual shear strength of cohesive soil. The authors

  16. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J. (Chicago, IL); Daniels, Edward J. (Oak Lawn, IL); Bonsignore, Patrick V. (Channahon, IL)

    2001-01-01T23:59:59.000Z

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  17. Particulate residue separators for harvesting devices

    SciTech Connect (OSTI)

    Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.

    2010-06-29T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.

  18. Methods of separating particulate residue streams

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Wright, Christopher T. (Idaho Falls, ID); Hess, J. Richard (Idaho Falls, ID)

    2011-04-05T23:59:59.000Z

    A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.

  19. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10T23:59:59.000Z

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  20. Good-Bye, SIC - Hello, NAICS

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) YearNetper ThousandMar 2,

  1. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1

  2. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace

  3. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace3

  4. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed Floorspace31

  5. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed

  6. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.1 Enclosed

  7. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1. Enclosed9.1

  8. " Row: NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of12.1.S4.1.4 Number468143

  9. Contributions to the development of residual discretizations

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Contributions to the development of residual discretizations for hyperbolic conservation laws with application to shallow water flows Manuscript submitted in fulfillment of the requirements for the obtention;Contents 1 Overview 9 1.1 Residual schemes for hyperbolic conservation laws

  10. Asymptotics for GARCH Squared Residual Correlations

    E-Print Network [OSTI]

    Kokoszka, Piotr

    Asymptotics for GARCH Squared Residual Correlations Istv'an Berkes \\Lambda A. R'enyi Institute a GARCH(p; q) model. Denoting by â?? r n (k); k â?? 1; these autocorrelations computed from a realization words and phrases: GARCH(p; q) sequence, quasi--maximum likelihood esti­ mator, squared residuals

  11. University of Pittsburgh Residual Funds on

    E-Print Network [OSTI]

    Sibille, Etienne

    University of Pittsburgh Residual Funds on FINANCIAL GUIDELINE Subject: Sponsored Projects I by the sponsor. Funds cannot be unilaterally retained by the University. Failure to return residual funds related funds on sponsored grants and contracts on the financial accounting records of the University

  12. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    for direct conversion when interaction with the real analog world is required. We first develop two efficient schemes for direct analog-to-residue conversion. Another efficient scheme for direct residue analogique réel est nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine

  13. Process for treatment of residual gas

    SciTech Connect (OSTI)

    Nolden, K.

    1980-01-01T23:59:59.000Z

    A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

  14. Arabian crude-oil residues evaluated

    SciTech Connect (OSTI)

    Ali, M.F.; Bukhari, A.; Hasan, M.; Saleem, M.

    1985-08-12T23:59:59.000Z

    This article evaluates detailed physical and chemical characteristics for four important Saudi Arabian resids. Petroleum residues are composed of a mixture of large and complex hydrocarbon molecules along with one or more heteroatoms such as sulfur, oxygen, nitrogen, vanadium, and nickel. The amount of residue and its physical and chemical composition depend on the source of the crude oil and methods of processing. Residues from four Saudi Arabian crude oils produced by the Arabian American Oil Co. (Aramco) were evaluated. The crude oils are 38.5 degrees API Arabian Extra Light, 33.8 degrees API Arabian Light, 30.4 degrees Api Arabian Medium, and 28.03 degrees API Arabian Heavy. Results are presented and residue preparation, and physical and chemical characteristics are analyzed.

  15. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover...

  16. Residual stress in nanocrystalline nickel tungsten electrodeposits

    E-Print Network [OSTI]

    Ziebell, Tiffany D. (Tiffany Dawn)

    2011-01-01T23:59:59.000Z

    Characterizing the residual stress of thick nanocrystalline electrodeposits poses several unique challenges due to their fine grain structure, thickness distribution, and matte surface. We employ a three-dimensional ...

  17. Residual Toxicities of Insecticides to Cotton Insects.

    E-Print Network [OSTI]

    Hightower, B. G.; Gaines, J. C.

    1960-01-01T23:59:59.000Z

    Summary Results of experiments conducted to determine leafworm, the salt-marsh caterpillar and the garden the effect of natural or simulated climatic conditions webworm. on the residual toxicities of several chlorinated hydro- carbon... variety of weathering conditions. Based on residual properties alone, toxaphene and dieldrin ranked with endrin and Sevin, but the initial toxicities of dieldrin and endrin to the boll weevil were appreciably greater than those of toxaphene...

  18. Residual Toxicities of Insecticides to Cotton Insects. 

    E-Print Network [OSTI]

    Hightower, B. G.; Gaines, J. C.

    1960-01-01T23:59:59.000Z

    Summary Results of experiments conducted to determine leafworm, the salt-marsh caterpillar and the garden the effect of natural or simulated climatic conditions webworm. on the residual toxicities of several chlorinated hydro- carbon... variety of weathering conditions. Based on residual properties alone, toxaphene and dieldrin ranked with endrin and Sevin, but the initial toxicities of dieldrin and endrin to the boll weevil were appreciably greater than those of toxaphene...

  19. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

  20. Sustainable System for Residual Hazards Management

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01T23:59:59.000Z

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

  1. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  2. BY HOW MUCH CAN RESIDUAL MINIMIZATION ACCELERATE THE CONVERGENCE OF ORTHOGONAL RESIDUAL METHODS?

    E-Print Network [OSTI]

    Gutknecht, Martin H.

    . Examples of such pairs are the conjugate gradient (CG) and the conjugate residual (CR) methods, the full-minimal residual (QMR) methods. Also the pairs consisting of the (bi)conjugate gradient squared (CGS, iterative method, Krylov space method, conjugate gradient method, biconjugate gradient method, CG, CGNE

  3. Residual dust charges in discharge afterglow

    SciTech Connect (OSTI)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A. [GREMI - Groupe de Recherches sur l'Energetique des Milieux Ionises, CNRS/Universite d'Orleans, 14 rue d'Issoudun, 45067 Orleans Cedex 2 (France); School of Physics A28, University of Sydney, NSW 2006 (Australia)

    2006-08-15T23:59:59.000Z

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar.

  4. Residual oil conversion in Ashland FCC Units

    SciTech Connect (OSTI)

    Barger, D.F.; Miller, C.B.

    1983-03-01T23:59:59.000Z

    Ashland Petroleum Company is a production-poor refining and marketing company. A company must have refining flexibility to compete in today's crude and marketing situation. Ashland has adopted a dual approach to achieving the required refining flexibility: development and construction of the RCC process, and development of techniques to practice residual oil conversion in Ashland FCC units. This paper discusses the operating techniques Ashland has used to allow residual oil conversion to be practiced in their present day FCC's and shows some of the yields which have been achieved.

  5. Chemical Stabilization of Hanford Tank Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01T23:59:59.000Z

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  6. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  7. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  8. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLCBTMBTU

  9. Directional wavelet transforms for prediction residuals in video coding

    E-Print Network [OSTI]

    Kamisli, Fatih

    Various directional transforms have been developed recently to improve image compression. In video compression, however, prediction residuals of image intensities, such as the motion compensation residual or the resolution ...

  10. 1-D Transforms for the Motion Compensation Residual

    E-Print Network [OSTI]

    Kamisli, Fatih

    Transforms used in image coding are also commonly used to compress prediction residuals in video coding. Prediction residuals have different spatial characteristics from images, and it is useful to develop transforms that ...

  11. In-Situ Method for Treating Residual Sodium

    DOE Patents [OSTI]

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19T23:59:59.000Z

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  12. Fluidized bed gasification of agricultural residue 

    E-Print Network [OSTI]

    Groves, John David

    1979-01-01T23:59:59.000Z

    is the only energy derived from such a system. The biomass energy project, of' which this re- search into gasification is a part, was designed to investi- gate both combustion and gasification as means to recover energy from agricultural wastes...FLUIDIZED BED GASIFICATION OF AGRICULTURAL RESIDUES A Thesis by JOHN DAVID GROVES Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major...

  13. Thin layer chromatography residue applicator sampler

    DOE Patents [OSTI]

    Nunes, Peter J. (Danville, CA); Kelly, Fredrick R. (Modesto, CA); Haas, Jeffrey S. (San Ramon, CA); Andresen, Brian D. (Livermore, CA)

    2007-07-24T23:59:59.000Z

    A thin layer chromatograph residue applicator sampler. The residue applicator sampler provides for rapid analysis of samples containing high explosives, chemical warfare, and other analyses of interest under field conditions. This satisfied the need for a field-deployable, small, hand-held, all-in-one device for efficient sampling, sample dissolution, and sample application to an analytical technique. The residue applicator sampler includes a sampling sponge that is resistant to most chemicals and is fastened via a plastic handle in a hermetically sealed tube containing a known amount of solvent. Upon use, the wetted sponge is removed from the sealed tube and used as a swiping device across an environmental sample. The sponge is then replaced in the hermetically sealed tube where the sample remains contained and dissolved in the solvent. A small pipette tip is removably contained in the hermetically sealed tube. The sponge is removed and placed into the pipette tip where a squeezing-out of the dissolved sample from the sponge into the pipette tip results in a droplet captured in a vial for later instrumental analysis, or applied directly to a thin layer chromatography plate for immediate analysis.

  14. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected

  15. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of SelectedRefiner

  16. REVIEW ARTICLE Impacts of calcium water treatment residue

    E-Print Network [OSTI]

    Ma, Lena

    REVIEW ARTICLE Impacts of calcium water treatment residue on the soil-water-plant system in citrus of calcium water treatment residue (Ca-WTR) for stabilizing Cu in soil and its subsequent influence on Cu. Keywords Calcium water treatment residue . Citrus production . Copper contamination . Soil pH . Remediation

  17. UNCORRECTEDPROOF Effect of channel bifurcation on residual estuarine circulation

    E-Print Network [OSTI]

    Voulgaris, George

    western channel. This is the result of the fact that the magnitude of residual flow scales with the water throughout the water column of the channel while in the adjacent shoals the residual flow is directedUNCORRECTEDPROOF Effect of channel bifurcation on residual estuarine circulation: Winyah Bay, South

  18. Welding residual stresses in ferritic power plant steels

    E-Print Network [OSTI]

    Cambridge, University of

    REVIEW Welding residual stresses in ferritic power plant steels J. A. Francis*1 , H. K. D. H require therefore, an accounting of residual stresses, which often are introduced during welding. To do in the estimation of welding residual stresses in austenitic stainless steels. The progress has been less convincing

  19. PUFF TOO: a residual stress experiment

    SciTech Connect (OSTI)

    Smith, C.W.

    1980-04-01T23:59:59.000Z

    Following the passage of the dynamic effects in a contained explosive detonation, there remains a strong compressive stress field in the material about the cavity. In this experiment, a 454-kg (1000 lb) sphere of high explosive was detonated in saturated ashfall tuff. Instrumentation measured peak stresses over the range of 0.1 to 6.0 GPa (1 to 6 kbar) and the complete stress-time waveform, including the so-called residual stress, at the 0.1 GPa (1 kbar) peak stress range. Mineback revealed detonation-induced fractures and fractures induced by postevent work.

  20. Harvesting Residuals-Economic Energy Link

    E-Print Network [OSTI]

    Owens, E. T.; Curtis, D. B.

    HARVESTING RESIDUALS-ECONOMIC ENERGY LINK E.T. Owens, R.P.F. Research and Productivity Council, Fredericton, N.B. D.B. Curtis, P.Eng. Dept. Forests, Mines and ABSTRACT A description of systems used in integrated harvesting of quality...-for-energy. economics INTRODUCTION The conventional wisdom in efficient harvesting Was to leave the non-merchantable and marginal trees because they had no economic value in the market place. Current technology and a change in the relative values of energy from...

  1. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01T23:59:59.000Z

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  2. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01T23:59:59.000Z

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  3. Combination process for upgrading residual oils

    SciTech Connect (OSTI)

    Busch, L.E.; Walters, P.W.; Zandona, O.

    1990-01-16T23:59:59.000Z

    This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

  4. Morphing of Geometric Composites via Residual Swelling

    E-Print Network [OSTI]

    Matteo Pezzulla; Steven A. Shillig; Paola Nardinocchi; Douglas P. Holmes

    2015-04-12T23:59:59.000Z

    Understanding and controlling the shape of thin, soft objects has been the focus of significant research efforts among physicists, biologists, and engineers in the last decade. These studies aim to utilize advanced materials in novel, adaptive ways such as fabricating smart actuators or mimicking living tissues. Here, we present the controlled growth-like morphing of 2D sheets into 3D shapes by introducing a new class of geometric composite structures that deform by residual swelling. The morphing of these geometric composites is dictated by both swelling and geometry, with diffusion controlling the swelling-induced actuation, and geometric confinement dictating the structure's deformed shape. Building on a simple mechanical analog, we develop an analytical model that quantitatively describes how the Gaussian and mean curvatures of a thin disk are affected by the interplay among geometry, mechanics, and swelling. This model is in excellent agreement with our experiments and numerics. We show that the dynamics of residual swelling is dictated by a competition between two characteristic diffusive length scales governed by geometry. Our results provide the first 2D analog of Timoshenko's classical formula for the thermal bending of bimetallic beams - our generalization explains how the Gaussian curvature of a 2D geometric composite is affected by geometry and elasticity. The understanding conferred by these results suggests that the controlled shaping of geometric composites may provide a simple complement to traditional manufacturing techniques.

  5. Combustion turbine deposition observations from residual and simulated residual oil studies

    SciTech Connect (OSTI)

    Whitlow, G.A.; Cohn, A.; Lee, S.Y.; Mulik, P.R.; Sherlock, T.P.; Wenglarz, R.A.

    1983-01-01T23:59:59.000Z

    Burning residual oil in utility combustion turbines and the consequent deposition on blades and vanes may adversely affect reliability and operation. Corrosion and deposition data for combustion turbine materials have been obtained through dynamic testing in pressurized passages. The deposition produced by the 1900/sup 0/F (1038/sup 0/C) combustion gases from a simulated and a real residual oil on cooled Udimet 500 surfaces is described. Higher deposition rates for the doped fuel than for the real residual oil raised questions of whether true simulation with this approach can be achieved. Particles 4-8..mu.. m in diameter predominated in the gas stream, with some fraction in the 0.1-12 ..mu.. m range. Deposition rates seemed to be influenced by thermophoretic delivery of small molten particles, tentatively identified as magnesium pyro and metavanadates and free vanadium pentoxide, which may act to bond the larger solid particles arriving by inertial impaction to turbine surfaces. Estimated maintenance intervals for current utility turbines operating with washed and treated residual oil agreed well with field experience.

  6. Method For Characterizing Residual Stress In Metals

    DOE Patents [OSTI]

    Jacobson, Loren A. (Santa Fe, NM); Michel, David J. (Alexandria, VA); Wyatt, Jeffrey R. (Burke, VA)

    2002-12-03T23:59:59.000Z

    A method is provided for measuring the residual stress in metals. The method includes the steps of drilling one or more holes in a metal workpiece to a preselected depth and mounting one or more acoustic sensors on the metal workpiece and connecting the sensors to an electronic detecting and recording device. A liquid metal capable of penetrating into the metal workpiece placed at the bottom of the hole or holes. A recording is made over a period of time (typically within about two hours) of the magnitude and number of noise events which occur as the liquid metal penetrates into the metal workpiece. The magnitude and number of noise events are then correlated to the internal stress in the region of the workpiece at the bottom of the hole.

  7. Recovery of gallium from aluminum industry residues

    SciTech Connect (OSTI)

    Carvalho, M.S.; Neto, K.C.M.; Nobrega, A.W.; Medeiros, J.A.

    2000-01-01T23:59:59.000Z

    A procedure is proposed to recover gallium from flue dust aluminum residues produced in plants by using solid-phase extraction with a commercial polyether-type polyurethane foam (PUF). Gallium can be separated from high concentrations of aluminum, iron, nickel, titanium, vanadium, copper, zinc, sulfate, fluoride, and chloride by extraction with PUF from 3 M sulfuric acid and 3 M sodium chloride concentration medium with at least a 92% efficiency. Gallium backextraction was fast and quantitative with ethanol solution. In all recovery steps commercial-grade reagents could be used, including tap water. The recovered gallium was precipitated with sodium hydroxide solution, purified by dissolution and precipitation, calcinated, and the final oxide was 98.6% pure.

  8. Process converts incineration slag into stabilized residue

    SciTech Connect (OSTI)

    Thauront, J.; Deneux-Mustin, S. (EMC-Services, Paris (France)); Durecu, S. (EMC-Services, Vandoeuvre-Les Nancy (France)); Fraysse, G. (EMC-Services, Saint-Vulbas (France)); Berthelin, J. (Centre de Pedologie Biologique, Vandoeuvre-Les Nancy (France))

    1994-12-01T23:59:59.000Z

    During 1973 and 1974, EMC-Services designed and built a physico-chemical treatment plant in Hombourg, in France's Alsatian region. The plant is still in operation. Since then, EMC-Services has developed substantial experience in environmental projects, becoming one of the top companies internationally with experience and practice in designing, building and operating hazardous waste treatment plants. EMC-Services operates in France in Salaise, Strasbourg, Mitry-Mory, and Saint-Vulbas, where eight incinerators treat solid, liquid, highly halogenated and nonhazardous industrial waste. The incinerators, built or updated by EMC-Services, have a total capacity of about 200,000 tons per year. In the new process, incineration of special industrial wastes produces non-volatilized solid residue or slag, which is sent for disposal, in compliance with regulations, to special disposal plants. Future European regulations will incorporate landfilling criteria requiring such slag to be stabilized.

  9. Bioassays of weathered residues of several organic phosphorus insecticides

    E-Print Network [OSTI]

    Hightower, Billie Gene

    1959-01-01T23:59:59.000Z

    at high temperatures on the residual toxicities of Gut hi on, Sevin, and toxaphene to the boll weevil, Anthonomus grandis Boh........................ . . . . ........ 3^ 3? The effects of simulated wind on the residual toxicities of Guthion, dieldrin..., and toxaphene dusts to the boll weevil, Anthonomus grandis Boh. 36 The effects of high temperatures on the residual toxicities of methyl parathion, malathion, and toxaphene to the boll weevil, Anthonomus grandis Boh...................... 3$ 5. The effects...

  10. Bioassays of weathered residues of several organic phosphorus insecticides 

    E-Print Network [OSTI]

    Hightower, Billie Gene

    1959-01-01T23:59:59.000Z

    at high temperatures on the residual toxicities of Gut hi on, Sevin, and toxaphene to the boll weevil, Anthonomus grandis Boh........................ . . . . ........ 3^ 3? The effects of simulated wind on the residual toxicities of Guthion, dieldrin..., and toxaphene dusts to the boll weevil, Anthonomus grandis Boh. 36 The effects of high temperatures on the residual toxicities of methyl parathion, malathion, and toxaphene to the boll weevil, Anthonomus grandis Boh...................... 3$ 5. The effects...

  11. antimicrobial residue monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The...

  12. acs residual ischemic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The...

  13. acetamido trideoxyhexose residue: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this...

  14. autophosphorylated residues required: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    though no flow is present. The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The...

  15. abradable coating residual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this...

  16. A Practical Model for Mobile, Residual, and Entrapped NAPL in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phase. Residual NAPL is defined as immobile, nonwater entrapped NAPL that does not drain from the pore spaces and is conceptualized as being either continuous or...

  17. Wet Gasification of Ethanol Residue: A Preliminary Assessment

    SciTech Connect (OSTI)

    Brown, Michael D.; Elliott, Douglas C.

    2008-09-22T23:59:59.000Z

    A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

  18. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1997...

  19. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1996...

  20. active site residue: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in human transferrin and Tyr Oksana Lockridge 2008-01-01 140 RESEARCH ARTICLE Benefits of organic residues and chemical fertilizer Biology and Medicine Websites Summary: RESEARCH...

  1. active site residues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in human transferrin and Tyr Oksana Lockridge 2008-01-01 140 RESEARCH ARTICLE Benefits of organic residues and chemical fertilizer Biology and Medicine Websites Summary: RESEARCH...

  2. acid residues determine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tomihiro Takano; Yasuhiro Kojima; Tetsufumi Ohno 2013-01-01 206 EFFECTIVE RESIDUE-TILLAGE-MANURE Biology and Medicine Websites Summary: AS POSSIBLE KEEP RECORDS 12;SPREADER...

  3. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29T23:59:59.000Z

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  4. Residual Stresses for Structural Analysis and Fatigue Life Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stresses for Structural Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual...

  5. RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES

    E-Print Network [OSTI]

    Nairn, John A.

    RESIDUAL STRESS EFFECTS IN FRACTURE OF COMPOSITES AND ADHESIVES JOHN A. NAIRN ABSTRACT Because composites and adhesive joints are made from different phases with different thermal expansion coefficients, they inevitably develop residual thermal stresses. When designing composites or adhesive joints, it is important

  6. Randomized Quantile Residuals Peter K. Dunn and Gordon K. Smyth

    E-Print Network [OSTI]

    Smyth, Gordon K.

    . Keywords: deviance residual; exponential regression; generalized linear model; lo- gistic regression, play a central role in the checking of statistical models. In normal linear regression the residuals are normally distributed and can be standardized to have equal variances. In non-normal regression situations

  7. Minimization of welding residual stress and distortion in large structures

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    1 Minimization of welding residual stress and distortion in large structures P. Michaleris at Champaign Urbana, Urbana, IL Abstract Welding distortion in large structures is usually caused by buckling due to the residual stress. In cases where the design is fixed and minimum weld size requirements

  8. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect (OSTI)

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02T23:59:59.000Z

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  9. Original article Residues in wax and honey after Apilife VAR®

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Residues in wax and honey after Apilife VAR® treatment Stefan Bogdanov Anton and foundation were exposed to the air during storage. © Inra/DIB/AGIB/Elsevier, Paris honey / wax / residue to accumulation of these substances in beeswax and less so in honey [1, 17]. The accumulation in wax depends

  10. Computing Symmetrized Weight Enumerators for Lifted Quadratic Residue Codes

    E-Print Network [OSTI]

    Duursma, Iwan M.

    Computing Symmetrized Weight Enumerators for Lifted Quadratic Residue Codes I. M. Duursma Dept for the computation of structural parameters for ring-linear codes. This article therefore presents a method to eĂ?ciently compute weight enumerators of linear codes over primary integer residue rings. For the lifted QR-codes

  11. Residual Energy-Aware Cooperative Transmission (REACT) in Wireless Networks

    E-Print Network [OSTI]

    Leung, Kin K.

    Residual Energy-Aware Cooperative Transmission (REACT) in Wireless Networks Erwu Liu, Qinqing Zhang the lifetime of the network and we call the selection method a residual energy-aware cooperative transmission- works, where energy efficiency is a critical design consideration. We assume that multiple relay nodes

  12. Parallel FPGA Implementation of RSA with Residue Number Systems

    E-Print Network [OSTI]

    Parallel FPGA Implementation of RSA with Residue Number Systems --- Can side­channel threats Multiplication based on Residue Num­ ber Systems. Thanks to RNS, we develop a design able to perform an RSA signature in parallel on a set of identical and independent copro­ cessors. Of independent interest, we

  13. Parallel FPGA Implementation of RSA with Residue Number Systems

    E-Print Network [OSTI]

    Parallel FPGA Implementation of RSA with Residue Number Systems -- Can side-channel threats Multiplication based on Residue Num- ber Systems. Thanks to RNS, we develop a design able to perform an RSA signature in parallel on a set of identical and independent copro- cessors. Of independent interest, we

  14. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01T23:59:59.000Z

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  15. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect (OSTI)

    J.L. Krumhansl

    2002-04-02T23:59:59.000Z

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

  16. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillate Fuel Oil by

  17. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant StocksPetroleum ProductSales

  18. DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM

    E-Print Network [OSTI]

    DDT RESIDUES IN SEAWATER AND PARTICULATE MATTER IN THE CALIFORNIA CURRENT SYSTEM JAMES L. COX in the California current system were analyzed for DDT residues. DDT residue concentrations in whole seawater are discussed in relation to mechanisms of land-sea DDT residue transfer. DDT residue concentrations

  19. Single-well experimental design for studying residual trapping of superciritcal carbon dioxide

    E-Print Network [OSTI]

    Zhang, Y.

    2010-01-01T23:59:59.000Z

    nonaqueous phase liquid and water residual. Environ. Sci.plume near residual saturation; and (4) water injection intoboth a water-saturated system and a system with residual gas

  20. Evaluation of approaches to quantify total residual oxidants in ballast water management systems employing chlorine for disinfection

    E-Print Network [OSTI]

    Zimmer-Faust, AG; Ambrose, RF; Ambrose, RF; Tamburri, MN

    2014-01-01T23:59:59.000Z

    quantify total residual oxidants in ballast water managementand discharge (residual concentrations) during ballast waterquantifying residual chlorine levels in natural waters (e.g.

  1. Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths

    E-Print Network [OSTI]

    Monreal, P; Sánchez, E; Parra, F I; Bustos, A; Könies, A; Kleiber, R; Görler, T

    2015-01-01T23:59:59.000Z

    In the linear collisionless limit, a zonal potential perturbation in a toroidal plasma relaxes, in general, to a non-zero residual value. Expressions for the residual value in tokamak and stellarator geometries, and for arbitrary wavelengths, are derived. These expressions involve averages over the lowest order particle trajectories, that typically cannot be evaluated analytically. In this work, an efficient numerical method for the evaluation of such expressions is reported. It is shown that this method is faster than direct gyrokinetic simulations. Calculations of the residual value in stellarators are provided for much shorter wavelengths than previously available in the literature. Electrons must be treated kinetically in stellarators because, unlike in tokamaks, kinetic electrons modify the residual value even at long wavelengths. This effect, that had already been predicted theoretically, is confirmed by gyrokinetic simulations.

  2. An urban infill : a residual site in Boston

    E-Print Network [OSTI]

    Savvides, Andreas L. (Andreas Loucas)

    1996-01-01T23:59:59.000Z

    This thesis is concerned with the treatment of residual sites in the context of the urban environment and in particular with the wounds inflicted by the passage of the Massachusetts Turnpike through the city of Boston. The ...

  3. Residual dust charges in an afterglow plasma , M. Mikikian

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    plasma was performed in a rf discharge. An upward thermophoretic force was used to balance]. For the study concerning residual charges, the top electrode was cooled. An upward thermophoretic force

  4. Minimizing High Spatial Frequency Residual in Active Space Telescope Mirrors

    E-Print Network [OSTI]

    . Miller June 2008 SSL # 4-08 #12;#12;Minimizing High Spatial Frequency Residual in Active Space Telescope Mirrors Thomas Gray, David W. Miller June 2008 SSL # 4-08 This work is based on the unaltered text

  5. RetroFILL : residual spaces as urban infill

    E-Print Network [OSTI]

    Kobel, Marika

    2010-01-01T23:59:59.000Z

    In any city there are small slivers and chunks of awkward spaces - in between buildings, occupying edge conditions, not large enough to warrant many forms of traditional use - which can be termed residual. These areas of ...

  6. Residual stress in electrodeposited nanocrystalline nickel-tungsten coatings

    E-Print Network [OSTI]

    Ziebell, Tiffany D.

    Characterizing the residual stress of thick nanocrystalline electrodeposits poses several unique challenges due to their fine grain structure, thickness distribution, and matte surface. We use a three-dimensional ...

  7. Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification 

    E-Print Network [OSTI]

    Georgeson, Adam

    2012-02-14T23:59:59.000Z

    Gasification is a thermo-chemical process which transforms biomass into valuable synthesis gas. Integrated with a biorefinery it can address the facility’s residue handling challenges and input demands. A number of feedstock, technology, oxidizer...

  8. Asphalt landscape after all : residual suburban surface as public infrastructure

    E-Print Network [OSTI]

    O'Connor, Joseph Michael, M. Arch. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    The thesis proposes a hybridized commercial retail strip inserted into a residual suburban condition as a manner of investigating the latent potential of suburban logic, both its constituent elements and its formal rules ...

  9. An investigation of residual stress in welded joints

    E-Print Network [OSTI]

    Moffat, William Hugh

    1951-01-01T23:59:59.000Z

    . flummery and Conclusions VII. '-. &uggested Procedure for I"uture Investigation 18 o i' VIII. ? . Ppendix IX. Bibliography LIST OP EIGURES Ro. Title Page 1. 'welded Plates snd Gptical Gage Used by Soulton and Martin ~ ~ 6 2. Dr. Rao~s Method... AN INVESTIGATION OF RESIDUAL STRESS IN WELDED JOINTS INTRODUCTION The object of the research reported in this paper was to investigate the magnitude of transverse and longi- tudial residual stress in a welded Joint. These are the stresses in a direction...

  10. An investigation of residual stress in welded joints 

    E-Print Network [OSTI]

    Moffat, William Hugh

    1951-01-01T23:59:59.000Z

    . flummery and Conclusions VII. '-. &uggested Procedure for I"uture Investigation 18 o i' VIII. ? . Ppendix IX. Bibliography LIST OP EIGURES Ro. Title Page 1. 'welded Plates snd Gptical Gage Used by Soulton and Martin ~ ~ 6 2. Dr. Rao~s Method... AN INVESTIGATION OF RESIDUAL STRESS IN WELDED JOINTS INTRODUCTION The object of the research reported in this paper was to investigate the magnitude of transverse and longi- tudial residual stress in a welded Joint. These are the stresses in a direction...

  11. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09T23:59:59.000Z

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  12. Residue disposal from waste-to-energy facilities

    SciTech Connect (OSTI)

    Walsh, P.; O'Leary, P.; Cross, F.

    1987-05-01T23:59:59.000Z

    When considering a waste-to-energy project, some local officials believe that waste-to-energy is a complete alternative to landfilling. While these projects can reduce waste volume substantially, the process will still produce residues that must be properly handled in order to protect the environment. All systems produce fly ash and bottom ash, and some systems also produce wastewater. This article discusses alternative methods for addressing these residue control problems.

  13. Residual stresses and stress corrosion cracking in pipe fittings

    SciTech Connect (OSTI)

    Parrington, R.J.; Scott, J.J.; Torres, F.

    1994-06-01T23:59:59.000Z

    Residual stresses can play a key role in the SCC performance of susceptible materials in PWR primary water applications. Residual stresses are stresses stored within the metal that develop during deformation and persist in the absence of external forces or temperature gradients. Sources of residual stresses in pipe fittings include fabrication processes, installation and welding. There are a number of methods to characterize the magnitude and orientation of residual stresses. These include numerical analysis, chemical cracking tests, and measurement (e.g., X-ray diffraction, neutron diffraction, strain gage/hole drilling, strain gage/trepanning, strain gage/section and layer removal, and acoustics). This paper presents 400 C steam SCC test results demonstrating that residual stresses in as-fabricated Alloy 600 pipe fittings are sufficient to induce SCC. Residual stresses present in as-fabricated pipe fittings are characterized by chemical cracking tests (stainless steel fittings tested in boiling magnesium chloride solution) and by the sectioning and layer removal (SLR) technique.

  14. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First4

  15. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First44

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.544.42.4

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability

  18. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for613.1.3.13.1.

  19. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for613.1.3.13.1.1

  20. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy

  1. " Row: NAICS Codes; Column: Electricity Components;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:6

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:66

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy1 Electricity:666

  5. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number of833A6.3.

  6. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number

  7. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number4

  8. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number44

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441. End2.

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4. End1

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3 End

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.312

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.3123

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number441.4.31234

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of Fuel

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182 End Uses of4 End

  5. 07_NAICS_Codes.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are our1pm EST |Department'ProjectAdopted-RFI

  6. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) | Department of Energy -

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number of

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number of1.

  9. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number

  10. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number1

  11. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number12

  12. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number124

  13. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number1241

  14. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1. Number12412

  15. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.

  16. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number

  17. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number1

  18. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4 Number12

  19. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4

  20. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.41

  1. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.412

  2. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.4

  3. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.41

  4. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy182C3.1.2.4122.412

  5. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of

  6. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel

  7. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel2

  8. " Row: NAICS Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of1 Offsite-Produced Fuel24.4

  9. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number of2.4

  10. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number

  11. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.41

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.413

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4 Number4.4133

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.4

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of9

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number of91

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number3

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.5

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47 Number30.57

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.47

  4. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan FebFoot)(Millionper22,445.5.479.1 Enclosed

  5. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fielded in 2015 Table 8.43

  6. Level: National Data; Row: Values of Shipments within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fielded in 2015 Table 8.433

  7. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect (OSTI)

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01T23:59:59.000Z

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  8. DDT residues in human milk samples from Delhi, India

    SciTech Connect (OSTI)

    Zaidi, S.S.A.; Bhatnagar, V.K.; Banerjee, B.D.; Balakrishnan, G.; Shah, M.P.

    1989-03-01T23:59:59.000Z

    The widespread use of DDT in India has resulted in increased levels of the insecticide in the ecosystem and, therefore, the potential possible health hazards has been voiced. DDT-residues excreted in milk have been reported from different parts of the world; however, very few reports did appear from India. In fact, there is no report on DDT-content in human milk from Delhi area where higher levels of DDT and BHC in human adipose tissues and blood have already been reported. Higher bioaccumulation of DDT might reflect the higher excretion of residues in milk. The authors have, therefore, attempted a systematic study to monitor DDT-residues in human milk samples collected from various hospitals of Delhi (India).

  9. Residual strain mapping of Roman styli from Iulia Concordia, Italy

    SciTech Connect (OSTI)

    Salvemini, Filomena, E-mail: floriana.salvemini@fi.isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, FI (Italy); Universitŕ degli Studi di Firenze, Dipartimento di Scienze della Terra (Italy); Grazzi, Francesco [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, FI (Italy); Angelini, Ivana [Universitŕ degli Studi di Padova, Dipartimento di Geoscienze (Italy); Davydov, Vadim; Vontobel, Peter [Paul Scherrer Institut, SINQ Spallation Neutron Source, Villigen (Switzerland); Vigoni, Alberto [Dedalo s.n.c., Vicolo dei Conti 6, I-35122 Padua (Italy); Artioli, Gilberto [Universitŕ degli Studi di Padova, Dipartimento di Geoscienze (Italy); Zoppi, Marco [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, FI (Italy)

    2014-05-01T23:59:59.000Z

    Iulia Concordia is an important Roman settlement known for the production of iron objects and weapons during the Roman Empire. A huge number of well-preserved styli were found in the past century in the bed of an old channel. In order to shed light about the production processes used by Roman for stylus manufacturing, a neutron diffraction residual strain analysis was performed on the POLDI materials science diffractometer at the Paul Scherrer Institut in Switzerland. Here, we present results from our investigation conducted on 11 samples, allowing to define, in a non-invasive way, the residual strain map related to the ancient Roman working techniques. - Highlights: • We examined 11 Roman styli from the settlement of Iulia Concordia, Italy. • We performed a neutron diffraction residual strain analysis on POLDI at PSI (CH). • We identified the production processes used by Roman for stylus manufacturing. • We clarified the way and direction of working applied for different classes of styli.

  10. Wave induced residual pore-water pressures in sandbeds

    E-Print Network [OSTI]

    DeVries, Jack Walter

    1986-01-01T23:59:59.000Z

    Subject: Ocean Engineering WAVE INDUCED RESIDUAL PORE-WATER PRESSURES IN SANDBEDS A Thesis by Jack W. Deyries Approved as to style and content by: J. B. Her bich (Chairman of Committee) Y. K. Lou (Member) W. A. Dunlap (Member) R. O. Reid (Member... on a buried pipel1ne using both analytical and numerical approaches. Also, a few attempts have been made at describing the generation of residual pore-water pressures using numerical methods. These attempts do not have a data base to work from...

  11. The determination of thru-thickness residual bending stresses

    E-Print Network [OSTI]

    Rinehart, Adam James

    2000-01-01T23:59:59.000Z

    by Bidirectional Bending for the Case y?, & y, , 110 5-1 Finite Elemenl, Mesh Used in Study 116 5-2 Comparison ol Percent Deviation of 100 and 200 Element. FE Models from Exact Solution, 800 k-in Released Moment, No Initial Stresses 123 5-3 Comparison of 200... Elcmcnt FE Solution to Exact Solution for Residual Stress Distribution Produced by 800 k-in Released Momem. in an Initially Stress Free Cross Section, . 124 5-4 Residual Stress Distributions for Increasing Levels of Released Moment, Initially Stress...

  12. Wood residuals find big uses in small pieces

    SciTech Connect (OSTI)

    Glenn, J.

    1996-12-01T23:59:59.000Z

    With a history of finding economic uses for leftovers, the wood industry explores sustainable options for creating higher value products. Years ago, companies saw the use - any use - of residues as a sound, economic business practice. Today, many companies are looking to go beyond low value products such as mulch, animal bedding and fuel, and market to higher value end users. Additionally, with so much material from the primary industries already accounted for, consumers of wood residue are in need of additional supply from sources such as secondary mills (furniture manufacturers, etc.), as wells as the C&D and MSW streams. This paper discusses these products and markets.

  13. A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)

    SciTech Connect (OSTI)

    Benjamin Langhorst; Thomas M Lillo; Henry S Chu

    2014-05-01T23:59:59.000Z

    A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

  14. PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY,

    E-Print Network [OSTI]

    Baddeley, Adrian

    PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY, University of Western Australia J. MŘLLER, University of Aalborg A.G. PAKES, University of Western Australia Abstract For any point process & Statistics M019, University of Western Australia, 35 Stirling Highway, Nedlands WA 6009, Australia Postal

  15. AIAA-2001-0025 SPECTRUM FATIGUE LIFETIME AND RESIDUAL STRENGTH

    E-Print Network [OSTI]

    on a typical fiberglass laminate configuration turbine blade fiberglass material has been undertaken under at various fractions of the lifetime turbine blade materials.. are consistent with the residual strength of fiberglass spectrum have been studied. Data have been obtained for materials produce results that may

  16. Prompt optical emission from residual collisions in GRB outflows

    E-Print Network [OSTI]

    Zhuo Li; Eli Waxman

    2008-01-03T23:59:59.000Z

    The prompt gamma-ray emission in gamma-ray bursts is believed to be produced by internal shocks within a relativistic unsteady outflow. The recent detection of prompt optical emission accompanying the prompt gamma-ray emission appears to be inconsistent with this model since the out flowing plasma is expected to be highly optically thick to optical photons. We show here that fluctuations in flow properties on short, ~ 1 ms, time scale, which drive the gamma-ray producing collisions at small radii, are expected to lead to "residual" collisions at much larger radii, where the optical depth to optical photons is low. The late residual collisions naturally account for the relatively bright optical emission. The apparent simultaneity of gamma-ray and optical emission is due to the highly relativistic speed with which the plasma expands. Residual collisions may also account for the X-ray emission during the early "steep decline" phase, where the radius is inferred to be larger than the gamma-ray emission radius. Finally, we point out that inverse-Compton emission from residual collisions at large radii is expected to contribute significantly to the emission at high energy, and may therefore "smear" the pair production spectral cut-off.

  17. RESIDUAL TYPE A POSTERIORI ERROR ESTIMATES FOR ELLIPTIC OBSTACLE PROBLEMS

    E-Print Network [OSTI]

    Nochetto, Ricardo H.

    to double obstacle problems are briefly discussed. Key words. a posteriori error estimates, residual Science Foundation under the grant No.19771080 and China National Key Project ``Large Scale Scientific\\Gamma satisfies / Ÿ 0 on @ and K is the convex set of admissible displacements K := fv 2 H 1 0(\\Omega\\Gamma : v

  18. Computer aided analysis for residual stress measurement using ultrasonic techniques

    E-Print Network [OSTI]

    Kypa, Jagan Mohan

    1999-01-01T23:59:59.000Z

    to detect travel-times with a precision of 0. l nanoseconds and an accuracy of less than 2.5 nanoseconds. A residual stress reference standard developed for previous research was used as the sample to measure travel-times. The sample was designed...

  19. COMMUNICATION Are Residues in a Protein Folding Nucleus

    E-Print Network [OSTI]

    Dai, Yang

    COMMUNICATION Are Residues in a Protein Folding Nucleus Evolutionarily Conserved? Yan Yuan Tseng is the hallmark of life. It is important to understand how protein folding and evolution influence each other in protein folding nucleus as measured by experi- mental f-value and selection pressure as measured by v

  20. A PROBABILISTIC FINITE ELEMENT ANALYSIS OF RESIDUAL STRESS FORMATION

    E-Print Network [OSTI]

    Grujicic, Mica

    A PROBABILISTIC FINITE ELEMENT ANALYSIS OF RESIDUAL STRESS FORMATION IN SHRINK-FIT CERAMIC shrink fitting of the jacket over the lining is studied using a probabilistic finite element analysis structural analysis approach, known as the Advanced Mean Value (AMV) method, is used which enables

  1. FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999

    E-Print Network [OSTI]

    Weston, Ken

    FIXED PRICE RESIDUAL FUNDS POLICY Policy dated March 29, 1999 After completion of all deliverables required under a fixed-price award, after costs in fulfilling the requirements of the award have been of the University. The request will be approved if the project is consistent with broader University priorities

  2. Removal of residual particulate matter from filter media

    DOE Patents [OSTI]

    Almlie, Jay C; Miller, Stanley J

    2014-11-11T23:59:59.000Z

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  3. Residual stresses in weld overlay tubes: A finite element study

    SciTech Connect (OSTI)

    Taljat, B.; Zacharia, T.; Wang, X.L.; Keiser, J.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Feng, Z. [Edison Welding Inst., Columbus, OH (United States); Jirinec, M.J. [Welding Services, Inc., Norcross, GA (United States)

    1997-01-03T23:59:59.000Z

    Residual stresses and strains in a tube with circumferential weld overlay were analyzed by the finite element (FE) method. The objective of this work was to develop and verify a FE model, to determine the magnitude and distribution of residual stresses in the weld overlay tube, and to evaluate the significance of two contributing factors to residual stress: (1) difference in material properties between tube and weld material, and (2) thermal gradients in the weld. An axisymmetric FE model was developed to simulate the circumferential two-layer welding process of alloy 625 overlay on SA210 tube. The first layer was modeled as a gas metal arc welding process with filler metal, whereas the autogenous gas tungsten arc welding process was modeled for the second layer. Neutron diffraction technique was used to experimentally determine residual elastic strains in the weld overlay tube. Comparison with the FE results shows overall good agreement. Both the experimental and FE results show high compressive stresses at the inside tube surface and high tensile stresses in the weld overlay. This suggests that weld overlay may be used to relieve tensile or produce compressive stresses at the inside tube surface, which is significant for applications where crack initiation is found at the root pass of the joining weld.

  4. Ammonia volatilization from soils with surface rice straw residue

    E-Print Network [OSTI]

    Barghassa, Peyam

    1995-01-01T23:59:59.000Z

    rice residue and related factors on NH3 volatilization from an acid Beaumont clay (pH 5.4) and an alkaline Lake Charles clay (pH 7.4). The treatments in the greenhouse and lab consisted of all possible combinations of the following variables: surface...

  5. Modeling, Optimization and Economic Evaluation of Residual Biomass Gasification

    E-Print Network [OSTI]

    Georgeson, Adam

    2012-02-14T23:59:59.000Z

    . .............................................................................. 7 Table 2. Components Used in Simulation. ...................................................................... 20 Table 3. Composition of Biomass Feedstock to Biorefinery. ......................................... 43 Table 4. Operating... for optimizing gasification plant design from an economic perspective. Specifically, the problem addressed in this work is stated as follows: Given are: ? A set of biomass feedstocks {i|i = 1,2,?,I } which includes fresh as well as residue biomass ? A set...

  6. New Techniques for the Construction of Residue Potentials for Protein

    E-Print Network [OSTI]

    Neumaier, Arnold

    New Techniques for the Construction of Residue Potentials for Protein Folding Arnold Neumaier­lattice protein folding studies. Our potential is a function of the amino acid labels and of the distances between­ rium geometries can determine the true effective potential energy function. Keywords. protein folding

  7. CARBON ENRICHMENT IN RESIDUAL AUSTENITE DURING MARTENSITIC TRANSFORMATION

    E-Print Network [OSTI]

    Cambridge, University of

    179 CARBON ENRICHMENT IN RESIDUAL AUSTENITE DURING MARTENSITIC TRANSFORMATION S. W. Ooi1 , Y. R, retained austenite, autotempering and low carbon steel. Abstract Carbon enrichment of austenite and carbide enrich with carbon [9-11] and there has been recent work to exploit this process in the design of `quench

  8. Sorption characteristics of polycyclic aromatic hydrocarbons in aluminum smelter residues

    SciTech Connect (OSTI)

    Gijs D. Breedveld; Emilien Pelletier; Richard St. Louis; Gerard Cornelissen [Norwegian Geotechnical Institute, Oslo (Norway)

    2007-04-01T23:59:59.000Z

    High temperature carbon oxidation in primary aluminum smelters results in the release of polycyclic aromatic hydrocarbons (PAH) into the environment. The main source of PAH are the anodes, which are composed of petroleum coke (black carbon, BC) and coal tar pitch. To elucidate the dominant carbonaceous phase controlling the environmental fate of PAH in aluminum smelter residues (coke BC and/or coal tar), the sorptive behavior of PAHs has been determined, using passive samplers and infinite-sink desorption methods. Samples directly from the wet scrubber were studied as well as ones from an adjacent 20-year old storage lagoon and roof dust from the smelter. Carbon-normalized distribution coefficients of native PAHs were 2 orders of magnitude higher than expected based on amorphous organic carbon (AOC)/water partitioning, which is in the same order of magnitude as reported literature values for soots and charcoals. Sorption isotherms of laboratory-spiked deuterated phenanthrene showed strong (about 100 times stronger than AOC) but nonetheless linear sorption in both fresh and aged aluminum smelter residues. The absence of nonlinear behavior typical for adsorption to BC indicates that PAH sorption in aluminum smelter residues is dominated by absorption into the semi-solid coal tar pitch matrix. Desorption experiments using Tenax showed that fresh smelter residues had a relatively large rapidly desorbing fraction of PAH (35-50%), whereas this fraction was strongly reduced (11-16%) in the lagoon and roof dust material. Weathering of the coal tar residue and/or redistribution of PAH between coal tar and BC phases could explain the reduced availability in aged samples. 38 refs., 5 figs., 1 tab.

  9. VLSI implementation of output convertors for ASIC architectures based on the residual number system: an overview

    E-Print Network [OSTI]

    Godbole, Rajesh

    1992-01-01T23:59:59.000Z

    , . For example, 5 bit residues occupy only 32 locations with a word length equal to [log sM] = 18. The key to this output conversion is a quotient-remainder representation for the summands s?such that 0 & s, & M. If a particular modulus m~ is singled out... Systems 5. Mixed Radix Systems 6. Properties of Weighted and Residual Number Systems B. Algebra of Residue Classes 1. Residue Representation 2. Example: Calculation of Integer Values k Residue Digits 3. Identities Involving Residues and Integer...

  10. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect (OSTI)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14T23:59:59.000Z

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  11. Residual stresses in dielectrics caused by metallization lines and pads

    SciTech Connect (OSTI)

    He, M.Y.; Lipkin, J.; Clarke, D.R. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.] [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Evans, A.G. [Harvard Univ., Cambridge, MA (United States). Div. of Applied Sciences] [Harvard Univ., Cambridge, MA (United States). Div. of Applied Sciences; Tenhover, M. [Carborundum Co., Niagara Falls, NY (United States)] [Carborundum Co., Niagara Falls, NY (United States)

    1996-06-01T23:59:59.000Z

    Residual stresses in dielectrics and semiconductors induced by metal lines, pads and vias can have detrimental effects on the performance of devices and electronic packages. Analytical and numerical calculations of these stresses have been performed for two purposes. (1) To illustrate how these stresses relate to the residual stress in the metallization and its geometry; (2) to calibrate a piezo-spectroscopic method for measuring these stresses with high spatial resolution. The results of the calculations have been presented using non-dimensional parameters that both facilitate scaling and provide connections to the stresses in the metal, with or without yielding. Preliminary experimental results obtained for Au/Ge eutectic pads illustrate the potential of the method and the role of the stress analysis.

  12. Classification of lepton mixing matrices from finite residual symmetries

    E-Print Network [OSTI]

    Renato M. Fonseca; Walter Grimus

    2014-08-19T23:59:59.000Z

    Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.

  13. Structural group analysis of residues from Athabasca bitumen

    SciTech Connect (OSTI)

    Gray, M.R.; Choi, J.H.K.; Egiebor, N.O. (Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering); Kirchen, R.P.; Sanford, E.C. (Syncrude Canada Ltd., Edmonton, AB (Canada))

    1989-01-01T23:59:59.000Z

    Although the processability of bitumen from tar sand is dependent on its chemical composition, the details of this relationship are poorly understood. In this study, residue fractions from Athabasca bitumen (topped at different temperatures) and hydrocracker and coker residues were analyzed in detail. Separated class fractions were subjected to elemental analysis, NMR and IR spectroscopy, and potentiometric titration. These data were combined mathematically to obtain a structural profile of each oil. This analysis defines the structural changes in asphaltene precipitates due to distillation and processing, as well as the quantitative changes in the overall structural composition of the oil. Hydrocarbon structures such as paraffinic chains and naphthenes show definite trends with distillation and processing.

  14. Hydroconversion of heavy oils. [Residue of tar sand bitumen distillation

    SciTech Connect (OSTI)

    Garg, D.

    1986-08-19T23:59:59.000Z

    A method is described for hydroconversion of feedstocks consisting essentially of at least one heavy hydrocarbon oil selected from the group consisting of residue of petroleum oil distillation and the residue of tar sand bitumen distillation to enhance the recovery of 350/sup 0/-650/sup 0/F boiling product fraction. The method comprises treating such feed stock with hydrogen at superatmospheric pressure and in the presence of finely divided active hydrogenation catalyst in consecutive reaction stages. An initial reaction stage is carried out at a temperature in the range of 780/sup 0/-825/sup 0/F, and a subsequent reaction stage is directly carried out after the initial reaction stage at a higher temperature in the range of 800/sup 0/F-860/sup 0/F, the temperature of the subsequent reaction stage being at least 20/sup 0/F higher than that of the initial reaction stage.

  15. THE METHOD OF CONJUGATE RESIDUALS FOR SOLVING THE GALERKIN EQUATIONS ASSOCIATED WITH SYMMETRIC

    E-Print Network [OSTI]

    Plato, Robert

    kind integral equations, conjugate gradient type methods, Galerkin method, regularization schemesTHE METHOD OF CONJUGATE RESIDUALS FOR SOLVING THE GALERKIN EQUATIONS ASSOCIATED WITH SYMMETRIC, the method of conjugate residuals is consid- ered. An a posteriori stopping rule is introduced

  16. Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford and P. Westerhoff

    E-Print Network [OSTI]

    Hall, Sharon J.

    Making Photosynthetic Biofuel Renewable: Recovering Phosphorus from Residual Biomass J. M. Gifford to global warming. Biofuel from phototrophic microbes like algae and bacteria provides a viable substitute improves biofuel sustainability by refining phosphorus recycling. Biomass Production Residual Biomass

  17. The Dissolution of Desicooler Residues in H-Canyon Dissolvers

    SciTech Connect (OSTI)

    Gray, J.H.

    2003-06-23T23:59:59.000Z

    A series of dissolution and characterization studies has been performed to determine if FB-Line residues stored in desicooler containers will dissolve using a modified H-Canyon processing flowsheet. Samples of desicooler materials were used to evaluate dissolving characteristics in the low-molar nitric acid solutions used in H-Canyon dissolvers. The selection for the H-Canyon dissolution of desicooler residues was based on their high-enriched uranium content and trace levels of plutonium. Test results showed that almost all of the enriched uranium will dissolve from the desicooler materials after extended boiling in one molar nitric acid solutions. The residue that contained uranium after completion of the extended boiling cycle consisted of brown solids that had agglomerated into large pieces and were floating on top of the dissolver solution. Addition of tenth molar fluoride to a three molar nitric acid solution containing boron did not dissolve remaining uranium from the brown solids. Only after boiling in an eight molar nitric acid-tenth molar fluoride solution without boron did remaining uranium and aluminum dissolve from the brown solids. The amount of uranium associated with brown solids would be approximately 1.4 percent of the total uranium content of the desicooler materials. The brown solids that remain in the First Uranium Cycle feed will accumulate at the organic/aqueous interface during solvent extraction operations. Most of the undissolved white residue that remained after extended boiling was aluminum oxide containing additional trace quantities of impurities. However, the presence of mercury used in H-Canyon dissolvers should complete the dissolution of these aluminum compounds.

  18. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect (OSTI)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon (France); Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon (France); and others

    2014-03-20T23:59:59.000Z

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the ?m {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  19. Ultrasonic detection of residual stress in a turbine disk 

    E-Print Network [OSTI]

    Pathak, Nitin

    1992-01-01T23:59:59.000Z

    in temperature and stresses during welding. Adapted from [4] . . Cracked steam turbine rotor disk segments. Adapted from [6] . . . . 5 Electrical block diagram of Barkhausen apparatus. Adapted from [11] 10 Snell's Law. 15 Stress field and speeds of plane... International B. Effects in Engineering Design Residual stresses may be introduced into materials in a variety of ways, e. g. , in manu- facturing and repairing processes such as casting, machining, or welding. The casting process has a high probability...

  20. The effect of magnetic flutter on residual flow

    SciTech Connect (OSTI)

    Terry, P. W.; Pueschel, M. J.; Carmody, D. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Nevins, W. M. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2013-11-15T23:59:59.000Z

    The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature gradient turbulence saturation is investigated analytically with a residual flow calculation in the presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an externally imposed, fixed magnetic field perturbation. The short-time electron response from radial charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time and its parametric dependencies are compared with numerical results from a gyrokinetic simulation of residual flow in the presence of magnetic flutter. The numerical and analytical results are in good agreement and support the hypothesis that the high-beta runaway of numerical simulations is a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter.

  1. Residuals in steel products -- Impacts on properties and measures to minimize them

    SciTech Connect (OSTI)

    Emi, Toshihiko [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Wijk, O. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Process Metallurgy

    1996-12-31T23:59:59.000Z

    The effect of major residual elements on the properties of steel products is summarized. Measures to minimize these elements are discussed including the pretreatment of raw materials, innovative refining processes and environmental issues. This paper addresses (1) scrap situation, (2) upper limit of residual concentrations acceptable for processing and product quality, (3) possible means to reduce the residuals, and (4) consideration on the practicable measures to solve the residuals problem in a systematic way. 52 refs.

  2. Single-well experimental design for studying residual trapping of superciritcal carbon dioxide

    E-Print Network [OSTI]

    Zhang, Y.

    2010-01-01T23:59:59.000Z

    Theory and design. J. Can. Petrol. Technol. 30 (3), Tomich,residual oil saturation. J. Petrol. Technol. 25 (2), 211–

  3. Sensitivity study of the residue method for the detection of aerosols from space-borne sensors

    E-Print Network [OSTI]

    Stoffelen, Ad

    Sensitivity study of the residue method for the detection of aerosols from space-borne sensors Martin de Graaf April 2002 #12;Sensitivity study of the residue method for the detection of aerosols from of aerosol parameters on residue 3 2.1 Standard aerosol and atmosphere parameters

  4. A Gaussian-chain model for treating residual chargecharge interactions in the

    E-Print Network [OSTI]

    Weston, Ken

    . According to Coulomb's law, two charged residues fully solvated in water have an interaction energy U0 332 rA Gaussian-chain model for treating residual charge­charge interactions in the unfolded state. Here I present a simple theoretical method for treating residual charge­charge interactions

  5. NOBOB-S: Salinity/Brine Exposure as a Biocide for Application to NOBOB Residuals

    E-Print Network [OSTI]

    , eggs and spores of many taxa within the sediments and residual water of their ballast tanks (Niimi a voluntary "best management practices" approach for residual ballast water and sediment for NOBOB vesselsNOBOB-S: Salinity/Brine Exposure as a Biocide for Application to NOBOB Residuals Primary

  6. Residues, Duality, and the Fundamental Class of a scheme-map

    E-Print Network [OSTI]

    2011-05-15T23:59:59.000Z

    Mar 26, 2011 ... Page 1 ... So don't bother taking notes. Joseph Lipman (Purdue ... 4 Residues, integrals and duality: the Residue Theorem. 5 Closing ..... Now here is the main result, expressing via residues and integrals a canonical ... In what went before, ? was the sheaf of regular differentials, and c f was just the ...

  7. Microstructure, residual stress, and fracture of sputtered TiN films Liqiang Zhang a

    E-Print Network [OSTI]

    Volinsky, Alex A.

    Microstructure, residual stress, and fracture of sputtered TiN films Liqiang Zhang a , Huisheng Keywords: TiN films Residual stress Hardness Fracture toughness Morphology, structure, residual stress, hardness, and fracture toughness of magnetron sputtered titanium nitride (TiN) thin films, deposited at 300

  8. Prediction of Protein Interaction Sites From Sequence Profile and Residue Neighbor List

    E-Print Network [OSTI]

    Weston, Ken

    Prediction of Protein Interaction Sites From Sequence Profile and Residue Neighbor List Huan Protein­protein interaction sites are predicted from a neural network with sequence profiles correctly predicted residues account for 65% of the 11,805 residues making up the 129 interfaces. The main

  9. Lowest Pressure Steam Saves More BTU's Than You Think

    E-Print Network [OSTI]

    Vallery, S. J.

    Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between...

  10. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01T23:59:59.000Z

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  11. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table Home

  12. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear Jan

  13. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear

  14. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousand

  15. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousandYear Jan

  16. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68 4.50

  17. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68 4.50Week

  18. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20Year Jan Feb Mar68

  19. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996)Nov-14Year Jan

  20. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthrough 1996)Nov-14YearYear

  1. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough 1996) inthroughYear Jan Feb Mar Apr

  2. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOW

  3. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearperHOWYear-Month Week 1 Week 2 Week 3

  4. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment Activities Printable80 mPilotDataGlossary AWeek Of

  5. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011 2012

  6. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011

  7. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010 2011Decade

  8. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010

  9. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010Decade Year-0

  10. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough 1996)through2009 2010Decade

  11. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. If youEIA-906 &Stocks

  12. Natural Gas Futures Contract 2 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)

  13. Natural Gas Futures Contract 3 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)Year-Month Week 1 Week 2 WeekYear

  14. Natural Gas Futures Contract 4 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthrough 1996)Year-Month Week 1 Week 2DecadeYear

  15. Submillimeter residual losses in high-{Tc} superconductors

    SciTech Connect (OSTI)

    Miller, D.

    1993-09-01T23:59:59.000Z

    Bolometry was used obtain accurate submillimeter residual loss data for epitaxial films of YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO), Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub 10}, Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8} (TCBCO), and Ba{sub 0.6}K{sub 0.4}BiO{sub 3} (BKBO). We were able to fit the absorptivity measured for Nb films to an Eliashberg strong coupling calculation; excellent agreement resulted between parameters from best fits and measured Residual Resistivity Ratio. Microwave surface resistance measurements made on the same YBCO and TCBCO films are in excellent agreement with submillimeter measurements. Absorptivities for all YBCO films studied are qualitatively similar, increasing smoothly with frequency, with no gap-like features below the well known absorption edge at 450 cm{sup {minus}1}. Losses in YBCO films were fit to a weakly coupled grain model for the a-b plane conductivity. Strong phonon structure was observed in TCBCO films between 60 and 700 cm{sup {minus}1} (2 THz and 23 THz); these losses could not be fitted to the simple weakly coupled grain model, in contrast to the case for other high-{Tc} superconductors where phonon structure observed in ceramics are is absent in epitaxial oriented films and crystals because of electronic screening due to high conductivity of a-b planes. Absorptivity data for the BKBO films all show a strong absorption onset near the BCS tunneling gap of 3.5 k{sub B}{Tc}. Comparison with strong coupling Eliashberg predictions and of a Kramers-Kronig analysis indicate that the absorption onset is consistent with a superconducting energy gap. Effects of magnetic field on residual losses in YBCO films show a resonant absorption feature in vicinity of predicted

  16. Enhanced residual entropy in high-density nanoconfined bilayer ice

    E-Print Network [OSTI]

    Fabiano Corsetti; Jon Zubeltzu; Emilio Artacho

    2015-06-15T23:59:59.000Z

    A novel kind of crystal order in high-density nanoconfined bilayer ice is proposed from molecular dynamics and density-functional theory simulations. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely amongst the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a residual entropy twice that of bulk ice.

  17. Dual-axis hole-drilling ESPI residual stress measurements

    SciTech Connect (OSTI)

    Steinzig, Michael [Los Alamos National Laboratory; Schajer, Gary [UNIV OF BRITISH COLUMBIA

    2008-01-01T23:59:59.000Z

    A novel dual-axis ESPI hole-drilling residual stress measurement method is presented. The method enables the evaluation of all the in-plane normal stress components with similar response to measurement errors, significantly lower than with single-axis measurements. A numerical method is described that takes advantage of, and compactly handles, the additional optical data that are available from the second measurement axis. Experimental tests were conducted on a calibrated specimen to demonstrate the proposed method, and the results supported theoretical expectations.

  18. Alternative cooling resource for removing the residual heat of reactor

    SciTech Connect (OSTI)

    Park, H. C.; Lee, J. H.; Lee, D. S.; Jung, C. Y.; Choi, K. Y. [Korea Hydro and Nuclear Power Co., Ltd., 260 Naa-ri Yangnam-myeon Gyeongju-si, Gyeonasangbuk-do, 780-815 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The Recirculated Cooling Water (RCW) system of a Candu reactor is a closed cooling system which delivers demineralized water to coolers and components in the Service Building, the Reactor Building, and the Turbine Building and the recirculated cooling water is designed to be cooled by the Raw Service Water (RSW). During the period of scheduled outage, the RCW system provides cooling water to the heat exchangers of the Shutdown Cooling System (SDCS) in order to remove the residual heat of the reactor, so the RCW heat exchangers have to operate at all times. This makes it very hard to replace the inlet and outlet valves of the RCW heat exchangers because the replacement work requires the isolation of the RCW. A task force was formed to prepare a plan to substitute the recirculated water with the chilled water system in order to cool the SDCS heat exchangers. A verification test conducted in 2007 proved that alternative cooling was possible for the removal of the residual heat of the reactor and in 2008 the replacement of inlet and outlet valves of the RCW heat exchangers for both Wolsong unit 3 and 4 were successfully completed. (authors)

  19. Quarry residuals RI/FS scoping document. [Weldon Spring quarry

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The purpose of this document is to serve as a planning tool for the implementation of the Quarry Residual Remedial Investigation/Feasibility Study (RI/FS) process and to provide direct input to revising and updating the 1988 Work Plan for the Weldon Spring Site Remedial Action Project (WSSRAP) Remedial Investigation/Feasibility Study-Environmental Impact Statement for the Weldon Spring Site (RI/FS-EIS) (Peterson et al. 1988) for this effort. The scoping process is intended to outline the tasks necessary to develop and implement activities in compliance with the Comprehensive Environmental Response, Compensation and Liability Act-National Environmental Policy Act (CERCLA-NEPA) process from detailed planning through the appropriate decision document. In addition to scoping the entire process, this document will serve as the primary tool for planning and accomplishing all activities to be developed in the Quarry Residual RI/FS Work Plan. Subsequent tasks are difficult to plan at this time. 10 refs., 5 figs., 5 tabs.

  20. Estimating Residual Solids Volume In Underground Storage Tanks

    SciTech Connect (OSTI)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08T23:59:59.000Z

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

  1. A Multi-Factor Analysis of Sustainable Agricultural Residue Removal Potential

    SciTech Connect (OSTI)

    Jared Abodeely; David Muth; Paul Adler; Eleanor Campbell; Kenneth Mark Bryden

    2012-10-01T23:59:59.000Z

    Agricultural residues have significant potential as a near term source of cellulosic biomass for bioenergy production, but sustainable removal of agricultural residues requires consideration of the critical roles that residues play in the agronomic system. Previous work has developed an integrated model to evaluate sustainable agricultural residue removal potential considering soil erosion, soil organic carbon, greenhouse gas emission, and long-term yield impacts of residue removal practices. The integrated model couples the environmental process models WEPS, RUSLE2, SCI, and DAYCENT. This study uses the integrated model to investigate the impact of interval removal practices in Boone County, Iowa, US. Residue removal of 4.5 Mg/ha was performed annually, bi-annually, and tri-annually and were compared to no residue removal. The study is performed at the soil type scale using a national soil survey database assuming a continuous corn rotation with reduced tillage. Results are aggregated across soil types to provide county level estimates of soil organic carbon changes and individual soil type soil organic matter content if interval residue removal were implemented. Results show interval residue removal is possible while improving soil organic matter. Implementation of interval removal practices provide greater increases in soil organic matter while still providing substantial residue for bioenergy production.

  2. Caspase-3 binds diverse P4 residues in peptides as revealed by crystallography and structural modeling.

    SciTech Connect (OSTI)

    Fang, Bin; Fu, Guoxing; Agniswamy, Johnson; Harrison, Robert W.; Weber, Irene T.; (GSU)

    2009-03-31T23:59:59.000Z

    Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9-2.6 {angstrom}. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.

  3. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and. TABLE43.PDF

  4. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and. TABLE43.PDF 1995

  5. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and. TABLE43.PDF 1995

  6. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and. TABLE43.PDF

  7. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and. TABLE43.PDF..........

  8. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.

  9. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and........... 76.4

  10. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and...........

  11. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and........... 1995

  12. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and...........

  13. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  14. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  15. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  16. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  17. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  18. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and..................... |

  19. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  20. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  1. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  2. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  3. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  4. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  5. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  6. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  7. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  8. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  9. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  10. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  11. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and.....................

  12. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke

  13. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke 77.3

  14. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke 77.371.7

  15. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke 77.371.756.1

  16. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke

  17. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.6

  18. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.6 PAD

  19. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.6

  20. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.62003 .........

  1. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.62003 .........2003

  2. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.62003

  3. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.620032003 .........

  4. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.620032003

  5. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.6200320032003

  6. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.62003200320032003

  7. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke4,634.620032003200320032003

  8. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.

  9. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 .......... 23.78

  10. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 .......... 23.782003

  11. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 .......... 23.7820032003

  12. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........

  13. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........2003 ............

  14. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........2003

  15. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........20032004

  16. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........2003200485.5

  17. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003 ..........2003200485.584.6

  18. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.2003

  19. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.3 188.3

  20. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.3

  1. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.8

  2. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878 ............

  3. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878 ............78

  4. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878 ............7878

  5. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878 ............787878

  6. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878

  7. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878171.1

  8. U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu.200388.36.878171.101.3

  9. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect (OSTI)

    Kima, Jong Sung [Sunchon National University, 255 Jungang-ro, Sucheon, Jeonnam (Korea, Republic of); Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae [KEPCO E and C, Co., Ltd., 188, Kumi-ro, Seongnam, Kyounggi (Korea, Republic of)

    2014-10-06T23:59:59.000Z

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  10. Quantification of residual stress from photonic signatures of fused silica

    SciTech Connect (OSTI)

    Cramer, K. Elliott; Yost, William T. [NASA Langley Research Center, Hampton, VA 23681 (United States); Hayward, Maurice [College of William and Mary, Williamsburg, VA 23185 (United States)

    2014-02-18T23:59:59.000Z

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outer-most pane of Space Shuttle windows made from fused silica. A method and apparatus for calibration of the stress-optic coefficient using four-point bending is discussed. The results are validated on known material (acrylic) and are found to agree with literature values to within 6%. The calibration procedure is then applied to fused-silica specimens and the stress-optic coefficient is determined to be 2.43 ± 0.54 × 10{sup ?12} Pa{sup ?1}. Fused silica specimens containing impacts artificially made at NASA’s Hypervelocity Impact Technology Facility (HIT-F), to simulate damage typical during space flight, are examined. The damage sites are cored from fused silica window carcasses and examined with the GFP. The calibrated GFP measurements of residual stress patterns surrounding the damage sites are presented.

  11. Residual energy in magnetohydrodynamic turbulence and in the solar wind

    E-Print Network [OSTI]

    Stanislav Boldyrev; Jean Carlos Perez; Vladimir Zhdankin

    2011-08-30T23:59:59.000Z

    Recent observations indicate that kinetic and magnetic energies are not in equipartition in the solar wind turbulence. Rather, magnetic fluctuations are more energetic and have somewhat steeper energy spectrum compared to the velocity fluctuations. This leads to the presence of the so-called residual energy E_r=E_v-E_b in the inertial interval of turbulence. This puzzling effect is addressed in the present paper in the framework of weak turbulence theory. Using a simple model of weakly colliding Alfv\\'en waves, we demonstrate that the kinetic-magnetic equipartition indeed gets broken as a result of nonlinear interaction of Alfv\\'en waves. We establish that magnetic energy is indeed generated more efficiently as a result of these interactions, which proposes an explanation for the solar wind observations.

  12. Erk phosphorylates threonine 42 residue of ribosomal protein S3

    SciTech Connect (OSTI)

    Kim, Hag Dong [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jae Yung [Department of Biology, Mokpo National University, Chonnam 534-729 (Korea, Republic of); Kim, Joon [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of)]. E-mail: joonkim@korea.ac.kr

    2005-07-22T23:59:59.000Z

    The ribosomal protein S3 (rpS3) is involved in ribosome biogenesis as a member of ribosomal small subunit and also plays a role in the repair of damaged DNA. Extracellular signal-regulated kinase (Erk), a MAP kinase, is known to play important roles in the regulation of cell growth, differentiation, and apoptosis. In this study, the sequence analysis of rpS3 protein revealed that this protein has a putative FXFP motif which is believed to be an Erk binding site. Indeed, the motif was demonstrated as an Erk binding site by co-immunoprecipitation. In addition to this, it was revealed that Erk specifically phosphorylated Thr 42 residue of rpS3 in vitro and in vivo using the various mutants of rpS3. Taken together, rpS3 appears to be phosphorylated by activated Erk in proliferating cells, resulting in the decreased interaction between two proteins.

  13. Description of the prototype diagnostic residual gas analyzer for ITER

    SciTech Connect (OSTI)

    Younkin, T. R., E-mail: tyounkin@gatech.edu [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States); Georgia Institute of Technology, Woodruff School of Mechanical Engineering – Nuclear and Radiological Engineering Program, Atlanta, Georgia 30332 (United States); Biewer, T. M.; Klepper, C. C.; Marcus, C. [Fusion and Materials for Nuclear Systems Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2014-11-15T23:59:59.000Z

    The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.

  14. Evaluation of the residue from microset on various metal surfaces.

    SciTech Connect (OSTI)

    Brumbach, Michael Todd

    2011-04-01T23:59:59.000Z

    Fast-curing impression materials are sometimes used to cast negative-mold replications of physical defects on material surfaces. The negative-mold impressions can then be used for further measurements to record the nature of the defect. These impression materials have been designed to cure quickly, and with very low adhesion, so that they can be easily removed from the surface leaving little residual contamination. Unfortunately, some contaminant is retained by the substrate material. This investigation seeks to identify the composition and quantity of the remaining material upon removal of Microset Synthetic Rubber Replicating Compound from several material surfaces. Coe-Flex was used as a relative comparison to Microset. On fifteen different substrate materials the Microset leaves no visible trace of contaminant, however, X-ray photoelectron spectroscopy shows evidence of a thin silicone-based contaminant film of approximately 2 nm thickness.

  15. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01T23:59:59.000Z

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  16. Estimators and characteristics of logging residue in California. Forest Service research paper

    SciTech Connect (OSTI)

    Howard, J.O.; Bulgrin, J.K.

    1986-03-01T23:59:59.000Z

    Ratios are presented for estimating volume and characteristics of logging residue. The ratios relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue with and without bark, by diameter and length classes, by number of pieces per acre, by softwoods and hardwoods, by percent soundness, and by degree of slope and distance to roads.

  17. Industrial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (NAICS 332) Bulk chemicals Machinery (NAICS 333) Inorganic (NAICS 32512- 32518) Computer and electronic products (NAICS 334) Other agricultural production (NAICS 112, 113,...

  18. E-Print Network 3.0 - acid residues required Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, Columbia University Collection: Engineering ; Biology and Medicine 13 Protein folding with stochastic L-systems Gemma Danks1 Summary: 70 amino acid residues to 1000s...

  19. alters less-conserved residues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The macroscopic stress evolution is connected to a length scale of residual liquefaction displayed by microscopic mean-squared displacements. The theory describes this...

  20. Neutron scattering residual stress measurements on gray cast iron brake discs

    SciTech Connect (OSTI)

    Spooner, S.; Payzant, E.A.; Hubbard, C.R. [and others

    1996-11-01T23:59:59.000Z

    Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

  1. Effect of the Basic Residue on the Energetics, Dynamics and Mechanisms...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface-induced dissociation (SID) of singly protonated peptides with the N-terminal arginine residue and their analogs, in which arginine is replaced with less basic...

  2. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  3. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  4. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1999 441 Table A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) - Continued...

  5. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  6. The effects of drainage and amendments on the physical and chemical properties of bauxite residue 

    E-Print Network [OSTI]

    Thompson, Thomas Lee

    1987-01-01T23:59:59.000Z

    on the properties of the residue were studied. The objective was to improve the properties of the residue before adding it to sandy soils. The CEC increased with pH, as would be expected with variable-charge minerals, and the adsorption of phosphate decreased...), or into the ocean (Baseden, 1976). Baseden (1976) reported that seawater could be mixed with the residue, reducing the pH of the residue by precipitating Ca and Ng carbonates. The resulting supernatant solution was then pumped into the ocean. This method...

  7. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24T23:59:59.000Z

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  8. POST-OPERATIONAL TREATMENT OF RESIDUAL NA COOLLANT IN EBR-2 USING CARBONATION

    SciTech Connect (OSTI)

    Sherman, S.; Knight, C.

    2011-03-08T23:59:59.000Z

    At the end of 2002, the Experimental Breeder Reactor Two (EBR-II) facility became a U.S. Resource Conservation and Recovery Act (RCRA) permitted site, and the RCRA permit1 compelled further treatment of the residual sodium in order to convert it into a less reactive chemical form and remove the by-products from the facility, so that a state of RCRA 'closure' for the facility may be achieved (42 U.S.C. 6901-6992k, 2002). In response to this regulatory driver, and in recognition of project budgetary and safety constraints, it was decided to treat the residual sodium in the EBR-II primary and secondary sodium systems using a process known as 'carbonation.' In early EBR-II post-operation documentation, this process is also called 'passivation.' In the carbonation process (Sherman and Henslee, 2005), the system containing residual sodium is flushed with humidified carbon dioxide (CO{sub 2}). The water vapor in the flush gas reacts with residual sodium to form sodium hydroxide (NaOH), and the CO{sub 2} in the flush gas reacts with the newly formed NaOH to make sodium bicarbonate (NaHCO{sub 3}). Hydrogen gas (H{sub 2}) is produced as a by-product. The chemical reactions occur at the exposed surface of the residual sodium. The NaHCO{sub 3} layer that forms is porous, and humidified carbon dioxide can penetrate the NaHCO{sub 3} layer to continue reacting residual sodium underneath. The rate of reaction is controlled by the thickness of the NaHCO{sub 3} surface layer, the moisture input rate, and the residual sodium exposed surface area. At the end of carbonation, approximately 780 liters of residual sodium in the EBR-II primary tank ({approx}70% of original inventory), and just under 190 liters of residual sodium in the EBR-II secondary sodium system ({approx}50% of original inventory), were converted into NaHCO{sub 3}. No bare surfaces of residual sodium remained after treatment, and all remaining residual sodium deposits are covered by a layer of NaHCO{sub 3}. From a safety standpoint, the inventory of residual sodium in these systems was greatly reduced by using the carbonation process. From a regulatory standpoint, the process was not able to achieve deactivation of all residual sodium, and other more aggressive measures will be needed if the remaining residual sodium must also be deactivated to meet the requirements of the existing environmental permit. This chapter provides a project history and technical summary of the carbonation of EBR-II residual sodium. Options for future treatment are also discussed.

  9. An Integrated Model for Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    SciTech Connect (OSTI)

    D. Muth; K. M. Bryden

    2003-12-01T23:59:59.000Z

    Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these models requires manual interaction and data transfer. As a result, it is currently not feasible to use these computational tools to perform detailed sustainable agricultural residue availability assessments across large spatial domains or to consider a broad range of land management practices. This paper presents an integrated modeling strategy that couples existing datasets with the RUSLE2 water erosion, WEPS wind erosion, and Soil Conditioning Index soil carbon modeling tools to create a single integrated residue removal modeling system. This enables the exploration of the detailed sustainable residue harvest scenarios needed to establish sustainable residue availability. Using this computational tool, an assessment study of residue availability for the state of Iowa was performed. This study included all soil types in the state of Iowa, four representative crop rotation schemes, variable crop yields, three tillage management methods, and five residue removal methods. The key conclusions of this study are that under current management practices and crop yields nearly 26.5 million Mg of agricultural residue are sustainably accessible in the state of Iowa, and that through the adoption of no till practices residue removal could sustainably approach 40 million Mg. However, when considering the economics and logistics of residue harvest, yields below 2.25 Mg ha-1 are generally considered to not be viable for a commercial bioenergy system. Applying this constraint, the total agricultural residue resource available in Iowa under current management practices is 19 million Mg. Previously published results have shown residue availability from 22 million Mg to over 50 million Mg in Iowa.

  10. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    SciTech Connect (OSTI)

    Robinson, J.S., E-mail: jeremy.robinson@ul.ie [Materials and Surface Science Institute, University of Limerick (Ireland); Tanner, D.A. [Materials and Surface Science Institute, University of Limerick (Ireland); Truman, C.E. [Department of Mechanical Engineering, University of Bristol (United Kingdom); Paradowska, A.M. [ISIS Facility, Rutherford Appleton Laboratory, Didcot (United Kingdom); Wimpory, R.C. [Helmholtz Centre Berlin for Materials and Energy, Hahn Meitner Platz 1, Berlin (Germany)

    2012-03-15T23:59:59.000Z

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: Black-Right-Pointing-Pointer Through thickness residual stress measurements made on large Al alloy forgings. Black-Right-Pointing-Pointer Residual stress characterised using neutron diffraction and deep hole drilling. Black-Right-Pointing-Pointer Biaxial compressive surface and triaxial subsurface residual stresses. Black-Right-Pointing-Pointer Quench sensitivity of 7075 promotes significant microstructural differences to 7010. Black-Right-Pointing-Pointer When precipitation is accounted for, residual stress in both forgings are similar.

  11. Hydrodesulfurization and hydrodemetallization of different origin vacuum residues: New modeling approach

    E-Print Network [OSTI]

    Boyer, Edmond

    impurities, such as sulfur or metals. Residue hydrotreatment in fixed beds, under high hydrogen pressure can processes, fixed bed hydrotreatment units are the most frequently used. The residue fixed bed hydrotreatment process, Hyvahl TM developed by IFPEN in 1982 [2], consists of several trickle bed reactors in series

  12. Management of high sulfur coal combustion residues, issues and practices: Proceedings

    SciTech Connect (OSTI)

    Chugh, Y.P.; Beasley, G.A. [eds.

    1994-10-01T23:59:59.000Z

    Papers presented at the following sessions are included in this proceedings: (1) overview topic; (2) characterization of coal combustion residues; (3) environmental impacts of residues management; (4) materials handling and utilization, Part I; and (5) materials handling and utilization, Part II. Selected paper have been processed separately for inclusion in the Energy Science and Technology Database.

  13. Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues

    E-Print Network [OSTI]

    Ma, Lena

    Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current simulating ash slurry stored in ash ponds. Our research should greatly benefit FDEP, the public and utility

  14. Justification of RHIC EBIS vacuum system. 1. Requirements to the pressure of residual gas inside the

    E-Print Network [OSTI]

    volume, the influx and accumulation of residual gas ions reduces the number of working ions in a trap for internal elements, technology of processing and equipment should be adequate. The components of the gasJustification of RHIC EBIS vacuum system. A. Pikin 1. Requirements to the pressure of residual gas

  15. A NEW ON-LINE DETECTING APPARATUS OF THE RESIDUAL CHLORINE IN DISINFECTANT

    E-Print Network [OSTI]

    A NEW ON-LINE DETECTING APPARATUS OF THE RESIDUAL CHLORINE IN DISINFECTANT FOR FRESH-CUT VEGETABLES of residual chlorine is 0~300ppm. Key words: e-government, knowledge management, frameworks, e-governance 1 is chlorine molecule, hypochlorous acid or calcium hypochlorite. Chloric disinfectant hydrolysis in water

  16. Application of conservative residual distribution schemes to the solution of the shallow water equations on

    E-Print Network [OSTI]

    Abgrall, RĂ©mi

    Application of conservative residual distribution schemes to the solution of the shallow water. Keywords: Conservative schemes; Residual distribution; Shallow water equations; Lake at rest solution solution of the shallow water equations on unstructured grids. We focus on flows over wet areas

  17. STANDARD ADDITION METHOD FOR THE DETERMINATION OF1 PHARMACEUTICAL RESIDUES IN DRINKING WATER BY SPE-2

    E-Print Network [OSTI]

    Boyer, Edmond

    STANDARD ADDITION METHOD FOR THE DETERMINATION OF1 PHARMACEUTICAL RESIDUES IN DRINKING WATER BY SPE-MS/MS is a powerful23 analytical tool often used to determine pharmaceutical residues at trace level in water.24 compounds in drinking or waste22 water processes has become very popular in recent years. LC

  18. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

    E-Print Network [OSTI]

    Short, Daniel

    Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues: XAS XANES EXAFS Antimony Particulate matter Brake linings a b s t r a c t Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate

  19. UPTAKE, ASSIMILATION, AND LOSS OF DDT RESIDUES BY Euphausia pacifica, A EUPHAUSIID SHRIMP

    E-Print Network [OSTI]

    UPTAKE, ASSIMILATION, AND LOSS OF DDT RESIDUES BY Euphausia pacifica, A EUPHAUSIID SHRIMP ABSTRACT acquire sufficient DDT residue from its food to account for amounts found in its tissues. Assimilation effii- ciencies for DDT in ingested food are similar to published figures for assimilation of carbon

  20. Measuring the Residual Ferrite Content of Rapidly Solidified Stainless Steel Alloys-

    E-Print Network [OSTI]

    Eagar, Thomas W.

    -Gage and ferrite meters have been developed to measure the amount of residual ferrite in duplex stainless steel) ) Measuring the Residual Ferrite Content of Rapidly Solidified Stainless Steel Alloys. Electron beam welds, laser beam welds and rapidly solidified stainless steel alloys have small physical

  1. Prediction of catalytic residues in proteins using machine-learning techniques

    E-Print Network [OSTI]

    Prediction of catalytic residues in proteins using machine-learning techniques Natalia V. Petrova) and prediction of protein function using various properties of proteins and amino acids (2). Prediction of the functional residues is a challenging and interesting task. The results of such prediction could

  2. Prediction of Interface Residues in ProteinProtein Complexes by a Consensus Neural Network Method: Test

    E-Print Network [OSTI]

    Weston, Ken

    Prediction of Interface Residues in Protein­Protein Complexes by a Consensus Neural Network Method important information for predicting struc- tures of new protein complexes. This motivated us to develop the PPISP method for predicting inter- face residues in protein­protein complexes. In PPISP, sequence

  3. MALATHION RESIDUES IN GREEK HONEY Andreas T. THRASYVOULOU Michael D. IFANTIDIS Nikos L. PAPPAS*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -1982 were analyzed for malathion residues. Residues were extracted with acetonitrile/water solution, parti the north, the south, and some Greek islands as well. Reagents Acetonitrile - Nanograde (Mallinckrodt, Inc. Fifty ml of a 10/90 wa- ter/acetonitrile solution was added and the funnel shaken vigorously until

  4. Application of neutron diffraction to measure residual strains in high temperature composites

    SciTech Connect (OSTI)

    Saigal, A. (Tufts Univ., Medford, MA (USA). Dept. of Mechanical Engineering); Kupperman, D.S. (Argonne National Lab., IL (USA))

    1991-01-01T23:59:59.000Z

    An experimental neutron diffraction technique was used to measure residual thermal strains developed in high temperature composites during postfabrication cooling. Silicon carbide fiber-reinforced titanium aluminide (over the temperature range 20--950{degree}C) and tungsten and saphikon fiber-reinforced nickel aluminide composites (at room temperature) were investigated. As a result of thermal expansion mismatch, compressive residual strains and stresses were generated in the silicon carbide fibers during cooldown. The axial residual strains were tensile in the matrix and were lower in nickel aluminide matrix as compared to those in titanium aluminide matrix. The average transverse residual strains in the matrix were compressive. Liquid-nitrogen dipping and thermal-cycling tend to reduce the fabrication-induced residual strains in silicon carbide fiber-reinforced titanium aluminide matrix composite. However, matrix cracking can occur as a result of these processes. 10 refs., 5 figs., 2 tabs.

  5. Neutron diffraction measurements of residual stresses in friction stir welding: a review

    SciTech Connect (OSTI)

    Woo, Wan Chuck [ORNL; Feng, Zhili [ORNL; Wang, Xun-Li [ORNL; David, Stan A [ORNL

    2011-01-01T23:59:59.000Z

    Significant amounts of residual stresses are often generated during welding and result in critical degradation of the structural integrity and performance of components. Neutron diffraction has become a well established technique for the determination of residual stresses in welds because of the unique deep penetration, three-dimensional mapping capability, and volume averaged bulk measurements characteristic of the scattering neutron beam. Friction stir welding has gained prominence in recent years. The authors reviewed a number of neutron diffraction measurements of residual stresses in friction stir welds and highlighted examples addressing how the microstructures and residual stresses are correlated with each other. An example of in situ neutron diffraction measurement result shows the evolution of the residual stresses during welding.

  6. Structural group analysis of residues from Athabasca bitumen

    SciTech Connect (OSTI)

    Gray, M.R.; Choi, J.H.K.; Egiebor, N.O.; Kirchen, R.P.; Sanford, E.C.

    1988-06-01T23:59:59.000Z

    Non-distillable fractions of hydrocarbons such as bitumen are a challenge for analysis because of their molecular complexity and high heteroatom content. One method for characterizing their composition is by analysis for a relatively small number of structures expected to predominate in the mixture, i.e. for the significant structural groups. Because NMR spectroscopy can give quantitative data on the distribution of hydrogen and carbon types, it is an ideal method for group-based analysis. This study uses a structural group formalism which combines data from several analytical methods into a single profile. Residue fractions derived from Athabasca bitumen were investigated to determine the different chemical structures which could have an impact on subsequent processing. Structural analysis is the identification of key structures from analytical data that characterize a complex mixture. Higher accuracy data, from elemental, /sup 1/H-NMR, IR and titration analyses, are used to construct balance equations which must be satisfied. The spectral envelope of /sup 13/C-NMR is more difficult to resolve quantatitively, and hence /sup 13/C-NMR data are used as constraints to compute the concentrations of structural groups. The mathematical notation and methods have been presented previously. The structural analysis transforms the spectrometric data into a more useable form; the maximum number of groups that can be calculated is limited to the number of useful analytical measurements.

  7. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, Wen Y. (Houston, TX)

    1984-01-01T23:59:59.000Z

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  8. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-30T23:59:59.000Z

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

  9. Auto shredder residue recycling: Mechanical separation and pyrolysis

    SciTech Connect (OSTI)

    Santini, Alessandro [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Passarini, Fabrizio, E-mail: fabrizio.passarini@unibo.it [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Vassura, Ivano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Serrano, David; Dufour, Javier [Department of Chemical and Energy Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Instituto IMDEA Energy, c/Tulipan s/n, 28933 Mostoles, Madrid (Spain); Morselli, Luciano [Department of Industrial Chemistry and Materials, University of Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer In this work, we exploited mechanical separation and pyrolysis to recycle ASR. Black-Right-Pointing-Pointer Pyrolysis of the floating organic fraction is promising in reaching ELV Directive targets. Black-Right-Pointing-Pointer Zeolite catalyst improve pyrolysis oil and gas yield. - Abstract: sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a 'waste-to-chemicals' perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible.

  10. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01T23:59:59.000Z

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  11. Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications

    SciTech Connect (OSTI)

    Dong, P.; Rahman, S.; Wilkowski, G. [and others

    1997-04-01T23:59:59.000Z

    This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.

  12. Microstructure and residual stress evaluation of ductile cast iron using the critically refracted longitudinal (Lcr) wave propagation technique 

    E-Print Network [OSTI]

    Bennett, Robert Jeffrey

    1993-01-01T23:59:59.000Z

    Residual stress and microstructure evaluation of ductile cast iron using a nondestructive method (Critically Refracted Longitudinal Ultrasonic Wave Technique) was approached. Residual stresses, both good and bad graphite nodules, and different...

  13. Injection, flow, and mixing of CO2 in porous media with residual gas.

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Doughty, C.A.

    2010-09-01T23:59:59.000Z

    Geologic structures associated with depleted natural gas reservoirs are desirable targets for geologic carbon sequestration (GCS) as evidenced by numerous pilot and industrial-scale GCS projects in these environments world-wide. One feature of these GCS targets that may affect injection is the presence of residual CH{sub 4}. It is well known that CH{sub 4} drastically alters supercritical CO{sub 2} density and viscosity. Furthermore, residual gas of any kind affects the relative permeability of the liquid and gas phases, with relative permeability of the gas phase strongly dependent on the time-history of imbibition or drainage, i.e., dependent on hysteretic relative permeability. In this study, the effects of residual CH{sub 4} on supercritical CO{sub 2} injection were investigated by numerical simulation in an idealized one-dimensional system under three scenarios: (1) with no residual gas; (2) with residual supercritical CO{sub 2}; and (3) with residual CH{sub 4}. We further compare results of simulations that use non-hysteretic and hysteretic relative permeability functions. The primary effect of residual gas is to decrease injectivity by decreasing liquid-phase relative permeability. Secondary effects arise from injected gas effectively incorporating residual gas and thereby extending the mobile gas plume relative to cases with no residual gas. Third-order effects arise from gas mixing and associated compositional effects on density that effectively create a larger plume per unit mass. Non-hysteretic models of relative permeability can be used to approximate some parts of the behavior of the system, but fully hysteretic formulations are needed to accurately model the entire system.

  14. Community-wide benefits of targeted indoor residual spray for malaria control in the Western Kenya Highland

    E-Print Network [OSTI]

    Zhou, Guofa; Githeko, Andrew K; Minakawa, Noboru; Yan, Guiyun

    2010-01-01T23:59:59.000Z

    ecological settings [4]. Among those control measures, insecticide- treated bed nets (ITNs) and indoor residual-house

  15. The effect of cooking preparations on the residual sulfite concentrations in shrimp

    E-Print Network [OSTI]

    Lally, Audrey Ann

    1987-01-01T23:59:59.000Z

    of this study was, therefore, to determine the effect of various types of cook- ing preparations on the residual sulfite in shrimp. The specific obgectives were: 1. To determine the residual sulfite when shrimp were boiled in water shell-on and shell-off. 2.... (1978). This may be due to the difference in brine concentrations and a possible increase of diffusion rate in shrimp versus beans. The Effect of Processing Procedures on Residual Sulfites in ~Shrim The different cooking procedures affected the rate...

  16. Onsager's symmetry relation and the residual parallel Reynolds stress in a magnetized plasma with electrostatic turbulence

    SciTech Connect (OSTI)

    Zuo, Yang, E-mail: yangzustc@gmail.com; Wang, Shaojie [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-09-15T23:59:59.000Z

    The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. The transport matrix is demonstrated to satisfy the Onsager's symmetry relation.

  17. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    SciTech Connect (OSTI)

    Iman, R.L.; Anderson, D.J. [Sandia National Labs., Albuquerque, NM (United States); Burress, R.V. [SEHO (United States)] [and others

    1995-06-01T23:59:59.000Z

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The test data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.

  18. On the residual entropy of the BlumeEmeryGri#ths Gastao A. Braga and Paulo C. Lima

    E-Print Network [OSTI]

    Lima, Paulo C.

    of residual entropy was pointed out by Linus Pauling [3] to describe water ice, which is an exampleOn the residual entropy of the Blume­Emery­Gri#ths model Gast�ao A. Braga and Paulo C. Lima Abstract By means of a transfer matrix method, we show that the residual entropy S of the two dimensional

  19. Residual Fertilizer Nitrogen in a Flooded Rice Soil1 K. R. REDDY AND W. H. PATRICK, JR. 2

    E-Print Network [OSTI]

    Florida, University of

    in the soil-water-plant system was measured. Approxi- Residual effects of 15 N-labelled fertilizer (ammoniumResidual Fertilizer Nitrogen in a Flooded Rice Soil1 K. R. REDDY AND W. H. PATRICK, JR. 2 ABSTRACT) to majntain jts identity in the soil during the top dressing. The uptake of residual labelled N (that present

  20. E-Print Network 3.0 - acid residues responsible Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King Fahd University of Petroleum and Minerals Collection: Fossil Fuels 4 Protein folding with stochastic L-systems Gemma Danks1 Summary: 70 amino acid residues to 1000s...

  1. US Apple Association Having an Impact Insecticide Residues in Apple Juice

    E-Print Network [OSTI]

    Ginzel, Matthew

    weeks ago we would have said two weeks early, right now we're saying maybe a week early. The cool syrup, soybeans, and milk for residues of a number of different pesticides. While I hate to bore you

  2. A Weighted Residual Framework for Formulation and Analysis of Direct Transcription Methods for Optimal Control 

    E-Print Network [OSTI]

    Singh, Baljeet

    2012-02-14T23:59:59.000Z

    In the past three decades, numerous methods have been proposed to transcribe optimal control problems (OCP) into nonlinear programming problems (NLP). In this dissertation work, a unifying weighted residual framework is developed under which most...

  3. Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols from space reflection and absorption Surface Rayleigh atmosphere #12;TOA Multiple scattering Multiple scattering Aerosol layer satellite Surface reflection and absorption Surface Rayleigh atmosphere Rayleigh atmophere Aerosol

  4. Analysis of one-dimensional transforms in coding motion compensation prediction residuals for video applications

    E-Print Network [OSTI]

    Zhang, Harley (Harley H.)

    2011-01-01T23:59:59.000Z

    In video coding, motion compensation prediction provides significant increases in overall compression efficiency. The prediction residuals are typically treated as images and compressed by applying two-dimensional transforms ...

  5. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  6. Hanford Tank 241-S-112 Residual Waste Composition and Leach Test Data

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Lindberg, Michael J.; Arey, Bruce W.; Schaef, Herbert T.

    2008-08-29T23:59:59.000Z

    This report presents the results of laboratory characterization and testing of two samples (designated 20406 and 20407) of residual waste collected from tank S-112 after final waste retrieval. These studies were completed to characterize the residual waste and assess the leachability of contami¬nants from the solids. This is the first report from this PNNL project to describe the composition and leach test data for residual waste from a salt cake tank. All previous PNNL reports (Cantrell et al. 2008; Deutsch et al. 2006, 2007a, 2007b, 2007c) describing contaminant release models, and characterization and testing results for residual waste in single-shell tanks were based on samples from sludge tanks.

  7. Ultrasonic measurement of residual stress relaxation in welded steel plates using critically refracted longitudinal waves

    E-Print Network [OSTI]

    Chance, Brent Houston

    2000-01-01T23:59:59.000Z

    This study investigates whether or not there is a measurable amount of residual transverse stress relaxation in welded steel. This was determined by using two different methods of stress measurement. These methods involved strain gauges...

  8. Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors

    E-Print Network [OSTI]

    . Smith, David W. Miller September 2010 SSL #12-10 #12;#12;Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors Matthew W. Smith, David W. Miller September 2010 SSL #12

  9. The influence of calcium on the inhibition of arsenic desorption from treatment residuals in extreme environments

    E-Print Network [OSTI]

    Camacho, Julianna G.

    2006-04-12T23:59:59.000Z

    the surface properties of the oxy-hydroxide solid in solution. Results show that calcium enhances the removal by iron oxides and prevents the leaching of arsenic from the residuals. Isotherm experiments show that arsenic adsorption can be described...

  10. Ultrasonic measurement of residual stress relaxation in welded steel plates using critically refracted longitudinal waves 

    E-Print Network [OSTI]

    Chance, Brent Houston

    2000-01-01T23:59:59.000Z

    This study investigates whether or not there is a measurable amount of residual transverse stress relaxation in welded steel. This was determined by using two different methods of stress measurement. These methods involved strain gauges...

  11. Characterization of residual stress relaxation in welded steel plate using TAP-NDE and wavelets 

    E-Print Network [OSTI]

    Jhun, Choon-Sik

    2001-01-01T23:59:59.000Z

    This thesis presents the characterization of residual stress relaxation in a welded ASTM 1018 steel plate by using the Thermo-Acousto-Photonic Nondestructive Evaluation (TAP-NDE) technique and the Gabor Wavelet Transform (GWT) which together produce...

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  13. Table A3. Refiner/Reseller Prices of Distillate and Residual...

    Gasoline and Diesel Fuel Update (EIA)

    A3. RefinerReseller Prices of Distillate and Residual Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2...

  14. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  15. Variation in energy expenditures between growing steers with divergent residual feed intakes 

    E-Print Network [OSTI]

    White, Monte Blaine III

    2006-04-12T23:59:59.000Z

    Objectives of this study were to determine if variation in energy expenditures contributed to differences in feed efficiency between low and high RFI steers. Nine steers with the lowest and highest residual feed intakes ...

  16. Roles of key active-site residues in flavocytochrome P450 BM3

    E-Print Network [OSTI]

    Noble, Michael A.; Miles, Caroline S.; Chapman, Stephen K.; Lysek, Dominikus A.; MacKay, Angela C.; Reid, Graeme A.; Hanzlik, Robert P.; Munro, Andrew W.

    1999-01-01T23:59:59.000Z

    The effects of mutation of key active-site residues (Arg-47, Tyr-51, Phe-42 and Phe-87) in Bacillus megaterium flavocytochrome P450 BM3 were investigated. Kinetic studies on the oxidation of laurate and arachidonate showed ...

  17. Residual stress and self-assembly during deposition and etching of MEMS 

    E-Print Network [OSTI]

    Mani, Sathyanarayanan

    2002-01-01T23:59:59.000Z

    General relations are provided for the work rate and complementary work rate on a body containing evolving boundaries, residual stresses, and stresses due to boundary tractions. Closed-form solutions are provided for three simple examples...

  18. Relationships Between Residual Feed Intake and Performance of Heifers of Diverse Breedtypes and Brahman Cows 

    E-Print Network [OSTI]

    Loyd, Andrea N.

    2010-10-12T23:59:59.000Z

    et al., 1990) and can be manipulated to influence reproductive performance. Residual feed intake reflects differences in how cattle use nutrients for life processes such as maintenance, growth, gestation and lactation (Kennedy et al., 1993). As a...

  19. Evaluation of Residual Stress Levels in Plasma Electrolytic Oxidation Coatings using a Curvature Method

    E-Print Network [OSTI]

    Dean, J.; Gu, T.; Clyne, T. W.

    2014-11-09T23:59:59.000Z

    Experimental estimates have been made of typical levels of residual stress in plasma electrolytic oxidation (PEO) coatings formed on aluminium and magnesium alloy substrates. This has been done via measurement of the curvature exhibited by thin...

  20. Sources of biological variation in residual feed intake in growing and finishing steers 

    E-Print Network [OSTI]

    Brown, Erin Gwen

    2006-04-12T23:59:59.000Z

    Objectives of this research were to characterize residual feed intake (RFI) in growing and finishing steers and examine phenotypic correlations between performance, feed efficiency, carcass, digestib ility, and physiological ...

  1. Control of residual aluminum from conventional treatment to improve reverse osmosis performance

    E-Print Network [OSTI]

    Gabelich, C J; Ishida, K P; Gerringer, F W; Evangelista, R; Kalyan, M; Suffet, I H

    2006-01-01T23:59:59.000Z

    2005. The Role of Dissolved Aluminum in Silica Chemistry forDraft Public Health Goal for Aluminum in Drinking Water .1994. Control of Residual Aluminum in Filtered Water . AWWA,

  2. Root cause analysis of solder flux residue incidence in the manufacture of electronic power modules

    E-Print Network [OSTI]

    Jain, Pranav

    2011-01-01T23:59:59.000Z

    This work investigates the root causes of the incidence of solder flux residue underneath electronic components in the manufacture of power modules. The existing deionized water-based centrifugal cleaning process was ...

  3. A New Analytical Method to Quantify Residual Fluid Cleanup in Hydraulic Fractures

    E-Print Network [OSTI]

    Zarrin, Tahira

    2014-04-17T23:59:59.000Z

    hydraulic fracturing fluid has always been a major issue, and is believed to drastically undermine the performance of hydraulically fractured wells. Several attempts have been made to quantify the damage associated with residual fluid, with varying level...

  4. Growth response of selected vegetable species to plant residue of guar (Cyamopsis tetragonoloba (L.) Taub.)

    E-Print Network [OSTI]

    Reid, Debbie John

    1992-01-01T23:59:59.000Z

    GROWTH RESPONSE OF SELECTED VEGETABLE SPECIES TO PLANT RESIDUE OF GUAR (Cyamopsis tetragonoloba (L. ) Taub. ) A Thesis by DEBBIE JOHN REID Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Horticulture GROWTH RESPONSE OF SELECTED VEGETABLE SPECIES TO PLANT RESIDUE OF GUAR (Cyamopsis tetragonoloba (L. ) Taub. ) A Thesis by DEBBIE JOHN REID Approved as to style...

  5. Experimental study of the residual stress-induced self-assembly of MEMS structures during deposition

    E-Print Network [OSTI]

    Kim, Sang-Hyun

    2005-11-01T23:59:59.000Z

    three layers (b doped Si, Ge, B doped Si) to deform (or ?roll up?) into cylinders with radii of curvature from 0.3 to 2 micrometers. 9 It would be useful if intrinsic stresses could be used to enable a structure to assemble itself during processing... of [29]. 10 II. ANALYTICAL MODELING The possibility of usefully using residual (or intrinsic) stresses as a means of self- assembling MEMS during material deposition is analytically investigated. A. Self-Assembly and Residual Stress Suppose...

  6. Deformations associated with relaxation of residual stresses in the Barre Granite of Vermont

    E-Print Network [OSTI]

    Nichols, Thomas Chester

    1972-01-01T23:59:59.000Z

    DEFORMATIONS ASSOCIATED WITH RELAXATION OF RESIDUAL STRESSES IN THE BARRE GRANITE OF VERMONT A Thesis by THOMAS CHESTER NICHOLS, JR. Submitted to the Graduate College of Texas AfM University in Partial fulfillment of the requirements... for the degree of MASTER QF SCIENCE May, 1972 Major Subject: Geology DEFORMATIONS ASSOCIATED WITH RELAXATION OF RESIDUAL STRESSES IN THE BARRE GRANITE OF VERMONT A Thesis THOMAS CHESTER NICHOLS, JR. Approved as to style and content by: airman o Committee...

  7. Incineration of Residue from Paint Stripping Operations Using Plastic Media Blasting

    E-Print Network [OSTI]

    Helt, J. E.; Mallya, N.

    i INCINERATION OF RESIDUE FROH PAINT STRIPPING OPERATIONS USING PLASTIC MEDIA BLASTING J. E. HELT N. MALLYA Group Leader Chemist Chemical Technology Division Chemical Technology Division Argonne National Laboratory Argonne National... potentially be classified as a hazardous waste. One possible alternative to depositing the waste residue directly into a hazardous waste landfill is inciner ation. Incineration would provide desirable volume reduction. However. the fate of heavy metals...

  8. Pharmacokinetics and tissue residue depletion of fenbendazole in healthy and bronchopneumonic calves

    E-Print Network [OSTI]

    Weise, Dale Wade

    1991-01-01T23:59:59.000Z

    PHARMACOKINETICS AND TISSUE RESIDUE DEPLETION OF FENBENDAZOLE IN HEALTHY AND BRONCHOPNEUMONIC CALVES A Thesis by DALE WADE WEISE Submitted to the Office of Graduate Studies Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1991 Major Subject: Veterinary Physiology PHARMACOKINETICS AND TISSUE RESIDUE DEPLETION OF FENBENDAZOLE IN HEALTHY AND BRONCHOPNEUMONIC CALVES A Thesis by DALE WADE WEISE Approved as to style and content by...

  9. Polymorphisms at amino acid residues 141 and 154 influence conformational variation in ovine PrP

    E-Print Network [OSTI]

    Yang, Sujeong; Thackray, Alana M.; Hopkins, Lee; Monie, Tom P.; Burke, David F.; Bujdoso, Raymond

    2014-07-14T23:59:59.000Z

    of helix-2, and the N- terminal region of helix-3. This central core is bound by an intramolecular disulphide bond between amino acid residues in helix-2 and helix-3. Characterisation of the protein folding events that occur during the conformational change... requirements of the particular protein fold or to particular functions mediated by interactions with other molecules. Crescendo conservation scores associated with every amino acid residue was assigned to the three-dimensional coordi- nate of the atommost...

  10. Residual thermal stresses in an unsymmetrical cross-ply graphite/epoxy laminate 

    E-Print Network [OSTI]

    Harper, Brian Douglas

    1980-01-01T23:59:59.000Z

    RESIDUAL THERMAL STRESSES IN AN UNSYMMETRICAL CROSS-PLY GRAPHITE/EPOXY LAMINATE A Thesis by BRIAN DOUGLAS HARPER Submitted to the Graduate College of Texas A&M University in parrial fulfillment of the requirement for the degree of MASTER... OF SCIENCE August 1980 Major Subject: Mechanical Engineering RESIDUAL THERMAL STRESSES IN AN UNSYMMETRICAL CROSS-PLY GRAPHITE/EPOXY LAMINATE A Thesis by BRIAN DOUGLAS HARPER Approved as to style and content by: r. Y. N itsman (Chair of Committee) Dr...

  11. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01T23:59:59.000Z

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.

  12. Residual stress in laser welded dissimilar steel tube-to-tube joints

    SciTech Connect (OSTI)

    Sun, Zheng (Technical Research Centre of Finland, Espoo (Finland). Lab. of Production Engineering)

    1993-09-01T23:59:59.000Z

    Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.

  13. MODELING OF PLUTONIUM RECOVERY AND DISCARD PROCESSES FOR THE PURPOSE OF SELECTING OPTIMUM (MINIMUM WASTE, COST AND DOSE) RESIDUE DISPOSITIONS

    SciTech Connect (OSTI)

    M. A. ROBINSON; M. B. KINKER; ET AL

    2001-04-01T23:59:59.000Z

    Researchers have developed a quantitative basis for disposition of actinide-bearing process residues. Research included the development of a technical rationale for determining when residues could be considered unattractive for proliferation purposes, and establishing plutonium-concentration-based discard ceilings of unimmobilized residues and richer discard ceilings for immobilized monolithic waste forms. Further quantitative analysis (process modeling) identifies the plutonium (Pu) concentration at which residues should be discarded to immobilization in order to minimize the quantifiable negative consequences of residue processing (cost, waste, dose). Results indicate that optimum disposition paths can be identified by process modeling, and that across-the-board discard decisions maximize negative consequences.

  14. DISPOSAL OF EMPTY CHEMICAL CONTAINERS Empty chemical containers can contain residual amounts of chemicals. In an effort to ensure that this residue is

    E-Print Network [OSTI]

    Maroncelli, Mark

    containers or any plastic containers, plastic tubing, or plastic beakers that do not meet the recyclingDISPOSAL OF EMPTY CHEMICAL CONTAINERS Empty chemical containers can contain residual amounts or properly dispose of these containers, the following procedure has been developed by EHS in conjunction

  15. All auto shredding: evaluation of automotive shredder residue generated by shredding only vehicles.

    SciTech Connect (OSTI)

    Duranceau, C. M.; Spangenberger, J. S. (Energy Systems); (Vehicle Recycling Partnership, LLC); (American Chemistry Counsel, Plastics Division)

    2011-09-26T23:59:59.000Z

    A well developed infrastructure exists for the reuse and recycling of automotive parts and materials. At the end of a vehicle's useful life many parts are removed and sold for reuse and fluids are recovered for recycling or proper disposal. What remains is shredded, along with other metal bearing scrap such as home appliances, demolition debris and process equipment, and the metals are separated out and recycled. The remainder of the vehicle materials is call shredder residue which ends up in the landfill. As energy and natural resources becomes more treasured, increased effort has been afforded to find ways to reduce energy consumption and minimize the use of our limited resources. Many of the materials found in shredder residue could be recovered and help offset the use of energy and material consumption. For example, the energy content of the plastics and rubbers currently landfilled with the shredder residue is equivalent to 16 million barrels of oil per year. However, in the United States, the recovered materials, primarily polymers, cannot be recycled due to current regulatory barriers which preclude the re-introduction into commerce of certain materials because of residual contamination with substances of concern (SOCs) such as polychlorinated biphenyls (PCBs). The source of the PCBs is not well understood. Old transformers, capacitors, white goods and ballasts from lighting fixtures are likely contributing factors. The project was designed to evaluate whether vehicles of varying age and manufacturing origin contribute to the PCB content in shredder residue. Additionally, the project was designed to determine if there are any trends in material composition of the shredder residue from varied age and manufacturing groups. This information would aid in future material recovery facility strategy and design. The test utilized a newly installed shredder plant to shred four categories of automobiles. The categories were defined by vehicle age and the manufacturing company and location. Each category of vehicles was processed individually through the shredder plant and the resulting shredder residue was analyzed for its materials composition and presence of PCBs and leachable metals. The results show that shredder residue from all vehicle categories tested are not significant contributors of PCBs and leachable metals. It was evident that leachable cadmium levels have decreased in newer vehicles. The composition of the shredder residue from each of the four categories is similar to the others. In addition, these compositions are approximately equal to the composition of typical shredder residues, not limited to automotive materials.

  16. Measurement of residual stress in quenched 1045 steel by the nanoindentation method

    SciTech Connect (OSTI)

    Zhu Lina, E-mail: zhulina84@gmail.com [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Xu Binshi; Wang Haidou [National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072 (China); Wang Chengbiao [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China)

    2010-12-15T23:59:59.000Z

    In this paper, the residual stress in quenched AISI 1045 steel was measured by a recently developed nanoindentation technique. Depth control mode was adopted to measure the residual stress. It was found that residual compressive stress was generated in the quenched steel. The material around nanoindents exhibits significant pile-up deformation. A new method was proposed to determine the real contact area for pile-up material on the basis of invariant pile-up morphology of the loaded or unloaded states. The results obtained by the new method were in good agreement with the residual stresses measured by the classical X-ray diffraction (XRD) method. - Research Highlights: {yields} A new method was proposed to measure the real contact area for pile-up materials. {yields} The real contact depth is defined as the sum of h{sub max} and the pile-up height h{sub p}. {yields} The value of residual stress measured by the nanoindentation method was in good agreement with that by the XRD method.

  17. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)] [National Nuclear Laboratory, Springfields, Preston, UK, PR4 0XJ (United Kingdom)

    2013-07-01T23:59:59.000Z

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  18. Diagnosing residual motion via the x-ray self emission from indirectly driven inertial confinement implosions

    SciTech Connect (OSTI)

    Pak, A., E-mail: pak5@llnl.gov; Field, J. E.; Benedetti, L. R.; Caggiano, J.; Hatarik, R.; Izumi, N.; Khan, S. F.; Ma, T.; Spears, B. K.; Town, R. P. J.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15T23:59:59.000Z

    In an indirectly driven implosion, non-radial translational motion of the compressed fusion capsule is a signature of residual kinetic energy not coupled into the compressional heating of the target. A reduction in compression reduces the peak pressure and nuclear performance of the implosion. Measuring and reducing the residual motion of the implosion is therefore necessary to improve performance and isolate other effects that degrade performance. Using the gated x-ray diagnostic, the x-ray Bremsstrahlung emission from the compressed capsule is spatially and temporally resolved at x-ray energies of >8.7 keV, allowing for measurements of the residual velocity. Here details of the x-ray velocity measurement and fitting routine will be discussed and measurements will be compared to the velocities inferred from the neutron time of flight detectors.

  19. Method for using global optimization to the estimation of surface-consistent residual statics

    DOE Patents [OSTI]

    Reister, David B. (Knoxville, TN); Barhen, Jacob (Oak Ridge, TN); Oblow, Edward M. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  20. Heavy Residue Formation in 20 MeV/nucleon 197Au + 90Zr collisions

    E-Print Network [OSTI]

    G. A. Souliotis; W. Loveland; K. Hanold; G. J. Wozniak; D. J. Morrissey

    2001-10-25T23:59:59.000Z

    The yields and velocity distributions of heavy residues and fission fragments from the reaction of 20 MeV/nucleon 197Au + 90Zr have been measured using the MSU A1200 fragment separator. A bimodal distribution of residues is observed, with one group, resulting from peripheral collisions, having fragment mass numbers A=160-200, while the other group, resulting from ``hard'' collisions, has A=120-160. This latter group of residues can be distinguished from fission fragments by their lower velocities. A model combining deep-inelastic transfer and incomplete fusion for the primary interaction stage and a statistical evaporation code for the deexcitation stage has been used to describe the properties of the product distributions.

  1. Speciation, characterization, and mobility of As, Se, and Hg in flue gas desulphurization residues

    SciTech Connect (OSTI)

    Souhail R. Al-Abed; Gautham Jegadeesan; Kirk G. Scheckel; Thabet Tolaymat [United States Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

    2008-03-01T23:59:59.000Z

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobility to understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse. 34 refs., 3 figs., 4 tabs.

  2. Statistical techniques for characterizing residual waste in single-shell and double-shell tanks

    SciTech Connect (OSTI)

    Jensen, L., Fluor Daniel Hanford

    1997-02-13T23:59:59.000Z

    A primary objective of the Hanford Tank Initiative (HTI) project is to develop methods to estimate the inventory of residual waste in single-shell and double-shell tanks. A second objective is to develop methods to determine the boundaries of waste that may be in the waste plume in the vadose zone. This document presents statistical sampling plans that can be used to estimate the inventory of analytes within the residual waste within a tank. Sampling plans for estimating the inventory of analytes within the waste plume in the vadose zone are also presented. Inventory estimates can be used to classify the residual waste with respect to chemical and radiological hazards. Based on these estimates, it will be possible to make decisions regarding the final disposition of the residual waste. Four sampling plans for the residual waste in a tank are presented. The first plan is based on the assumption that, based on some physical characteristic, the residual waste can be divided into disjoint strata, and waste samples obtained from randomly selected locations within each stratum. The second plan is that waste samples are obtained from randomly selected locations within the waste. The third and fourth plans are similar to the first two, except that composite samples are formed from multiple samples. Common to the four plans is that, in the laboratory, replicate analytical measurements are obtained from homogenized waste samples. The statistical sampling plans for the residual waste are similar to the statistical sampling plans developed for the tank waste characterization program. In that program, the statistical sampling plans required multiple core samples of waste, and replicate analytical measurements from homogenized core segments. A statistical analysis of the analytical data, obtained from use of the statistical sampling plans developed for the characterization program or from the HTI project, provide estimates of mean analyte concentrations and confidence intervals on the mean. In addition, the statistical analysis provides estimates of spatial and measurement variabilities. The magnitude of these sources of variability are used to determine how well the inventory of the analytes in the waste have been estimated. This document provides statistical sampling plans that can be used to estimate the inventory of the analytes in the residual waste in single-shell and double-shell tanks and in the waste plume in the vadose zone.

  3. Hanford Site Tank 241-C-108 Residual Waste Contaminant Release Models and Supporting Data

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Krupka, Kenneth M.; Geiszler, Keith N.; Arey, Bruce W.; Schaef, Herbert T.

    2010-06-18T23:59:59.000Z

    This report presents the results of laboratory characterization, testing, and analysis for a composite sample (designated 20578) of residual waste collected from single-shell tank C-108 during the waste retrieval process after modified sluicing. These studies were completed to characterize concentration and form of contaminant of interest in the residual waste; assess the leachability of contaminants from the solids; and develop release models for contaminants of interest. Because modified sluicing did not achieve 99% removal of the waste, it is expected that additional retrieval processing will take place. As a result, the sample analyzed here is not expected to represent final retrieval sample.

  4. Natural Gamma Emitters after a Selective Chemical Separation of a TENORM residue: Preliminary Results

    SciTech Connect (OSTI)

    Alves de Freitas, Antonio; Abrao, Alcidio [Centro de Quimica e do Meio Ambiente (Brazil); Godoy dos Santos, Adir Janete; Pecequilo, Brigitte Roxana Soreanu [Centro de Metrologia das Radiacoes Instituto de Pesquisas Energeticas e Nucleares Av. Prof. Lineu Prestes, 2242-Cidade Universitaria-Zip Code 05508-000 Sao Paulo-SP (Brazil)

    2008-08-07T23:59:59.000Z

    An analytical procedure was established in order to obtain selective fractions containing radium isotopes ({sup 228}Ra), thorium ({sup 232}Th), and rare earths from RETOTER (REsiduo de TOrio e TErras Raras), a solid residue rich in rare earth elements, thorium isotopes and small amount of natural uranium generated from the operation of a thorium pilot plant for purification and production of pure thorium nitrate at IPEN -CNEN/SP. The paper presents preliminary results of {sup 228}Ra, {sup 226}Ra, {sup 238}U, {sup 210}Pb, and {sup 40}K concentrations in the selective fractions and total residue determined by high-resolution gamma spectroscopy, considering radioactive equilibrium of the samples.

  5. An efficient method to compute the residual phase on a Lefschetz thimble

    E-Print Network [OSTI]

    M. Cristoforetti; F. Di Renzo; G. Eruzzi; A. Mukherjee; C. Schmidt; L. Scorzato; C. Torrero

    2014-06-14T23:59:59.000Z

    We propose an efficient method to compute the so-called residual phase that appears when performing Monte Carlo calculations on a Lefschetz thimble. The method is stochastic and its cost scales linearly with the physical volume, linearly with the number of stochastic estimators and quadratically with the length of the extra dimension along the gradient flow. This is a drastic improvement over previous estimates of the cost of computing the residual phase. We also report on basic tests of correctness and scaling of the code.

  6. A survey of DDT residues in fish from the Brazos and Navasota Rivers and Somerville Reservoir

    E-Print Network [OSTI]

    Kramer, Robert Edwin

    1971-01-01T23:59:59.000Z

    can cause significant miscalculation of the quantity of a given residue present in a sample. After calibrating the syringe, a 1 ul volume of clean petrol- eum ether was drawn. The needle was then removed from the clean 18 Anakrom ABS. The analyzer... measured on the gas chromatograph, an error of 0. 2 ul can cause significant miscalculation of the quantity of a given residue present in a sample. After calibrating the syringe, a 1 ul volume of clean petrol- eum ether was drawn. The needle...

  7. Apparatus and method for rapid detection of explosives residue from the deflagration signature thereof

    DOE Patents [OSTI]

    Funsten, H.O.; McComas, D.J.

    1999-06-15T23:59:59.000Z

    Apparatus and method are disclosed for rapid detection of explosives residue from the deflagration signature thereof. A property inherent to most explosives is their stickiness, resulting in a strong tendency of explosive particulate to contaminate the environment of a bulk explosive. An apparatus for collection of residue particulate, burning the collected particulate, and measurement of the ultraviolet emission produced thereby, is described. The present invention can be utilized for real-time screening of personnel, cars, packages, suspected devices, etc., and provides an inexpensive, portable, and noninvasive means for detecting explosives. 4 figs.

  8. A Macro-perspective of Forest and Residuals Resources and Availability in the U.S. South

    E-Print Network [OSTI]

    A Macro-perspective of Forest and Residuals Resources and Availability in the U.S. South Prepared.................................................................................................................19 Alabama Wood Biomass Availability....

  9. Ito-Wiener chaos expansion with exact residual and correlation, variance inequalities

    E-Print Network [OSTI]

    Hu, Yaozhong

    1997-10-01T23:59:59.000Z

    We give a formula of expanding the solution of a stochastic differential equation (abbreviated as SDE) into a finite Ito-Wiener chaos with explicit residual. And then we apply this formula to obtain several inequalities for diffusions such as FKG...

  10. PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY, # University of Western Australia

    E-Print Network [OSTI]

    Baddeley, Adrian

    PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY, # University of Western Australia J. MŘLLER, ## University of Aalborg A.G. PAKES, # University of Western Australia Abstract For any address: School of Mathematics & Statistics M019, University of Western Australia, 35 Stirling Highway

  11. Investigation of residual stresses induced during the selective laser melting process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    jean-claude.boyer@insa-lyon.fr Keywords: Selective laser melting, layer additional method, Residual stresses. Abstract. The selective laser melting process (SLM), belonging to the family of additive manufacturing processes, can create complex geometry parts from a CAD file. Previously, only prototypes were

  12. FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE

    E-Print Network [OSTI]

    FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND effluents, especially for total suspended and settleable solids, and oil and grease. The relationship between chemical oxygen demand and residue was determined on a limited number of samples from four types

  13. Investigating citizens' preferences for recycling Residual Organic Products in agriculture: a choice experiment approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in France (excluding agriculture waste) [1], the recycling of urban organic waste is a strong environmentalInvestigating citizens' preferences for recycling Residual Organic Products in agriculture or mineral fertilizers. The paper addresses in particular 3 environmental effects: the organic waste

  14. Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Lindberg, Michael J.; Cantrell, Kirk J.; Brown, Christopher F.; Schaef, Herbert T.

    2006-09-01T23:59:59.000Z

    The CH2M HILL Hanford Group, Inc. (CH2M HILL) is producing risk/performance assessments to support the closure of single-shell tanks at the U.S. Department of Energy's Hanford Site. As part of this effort, staff at Pacific Northwest National Laboratory were asked to develop release models for contaminants of concern that are present in residual sludge remaining in tank 241-C-106 (C-106) after final retrieval of waste from the tank. Initial work to produce release models was conducted on residual tank sludge using pure water as the leaching agent. The results were reported in an earlier report. The decision has now been made to close the tanks after waste retrieval with a cementitious grout to minimize infiltration and maintain the physical integrity of the tanks. This report describes testing of the residual waste with a leaching solution that simulates the composition of water passing through the grout and contacting the residual waste at the bottom of the tank.

  15. Nuclear reactor with makeup water assist from residual heat removal system

    DOE Patents [OSTI]

    Corletti, M.M.; Schulz, T.L.

    1993-12-07T23:59:59.000Z

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path. 2 figures.

  16. Estimation of residual MSW heating value as a function of waste component recycling

    SciTech Connect (OSTI)

    Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)], E-mail: ViriatoSemiao@ist.utl.pt

    2008-12-15T23:59:59.000Z

    Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.

  17. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    SciTech Connect (OSTI)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-01-01T23:59:59.000Z

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

  18. RCS pressure under reduced inventory conditions following a loss of residual heat removal

    SciTech Connect (OSTI)

    Palmrose, D.E.; Hughes, E.D.; Johnsen, G.W.

    1992-08-01T23:59:59.000Z

    The thermal-hydraulic response of a closed-reactor coolant system to loss of residual heat removal (RHR) cooling is investigated. The processes examined include: core coolant boiling and steam generator reflux condensation, pressure increase on the primary side, heat transfer mechanisms on the steam generator primary and secondary sides, and effects of noncondensible gas on heat transfer processes.

  19. Residual eye-movements in macaque and their effects on visual responses of neurons

    E-Print Network [OSTI]

    Nottingham, University of

    Residual eye-movements in macaque and their effects on visual responses of neurons JASON FORTE, with high precision, the positions of the eyes in anesthetized macaque monkeys prepared for physiological recording. Most recordings were made after the infusion of muscle relaxant to immobilize the eyes; in some

  20. Ultrasonic measurement of the residual stresses in patch welded steel plates

    E-Print Network [OSTI]

    Junghans, Paul Gerard

    1994-01-01T23:59:59.000Z

    , structural steel plates. The two 1.2 in (48 in.) square plates were patch welded in the center to create a residual stress field; and subsequently, one of the plates was stress relieved. The LCR travel-time measurements on the plates not only differentiated...