Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Manufacturing Energy Consumption Survey (MECS) - Residential - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report.

2

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 1 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 1 (Estimates in Btu or Physical Units) XLS Total Primary Consumption of Energy for All Purposes by Census Region, Industry Group, and Selected Industries, 1991: Part 2 (Estimates in Trillion Btu) XLS Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel Oil for Selected Purposes by Census Region, Industry Group, and Selected Industries, 1991 (Estimates in Barrels per Day) XLS Total Primary Consumption of Energy for All Purposes by Census Region and Economic Characteristics of the Establishment, 1991 (Estimates in Btu or Physical Units) XLS

3

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. About the MECS. Survey forms. Maps. MECS Terminology. Archives ...

4

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

5

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 10 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF Table 2.3 By Value of Shipments & Employment Size Category XLS PDF Energy Consumption as a Fuel Table 3.1 By Mfg. Industry & Region (physical units) XLS PDF

6

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 8 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values SIC RSE Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu XLS XLS XLS First Use of Energy for All Purposes (Fuel and Nonfuel), 1998; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu XLS XLS

7

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 2 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF Table 1.4 Number of Establishments Using Energy Consumed for All Purpose XLSPDF Table 1.5 By Further Classification of "Other" Energy Sources XLS PDF Energy Used as a Nonfuel (Feedstock) Values RSE Table 2.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 2.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 2.3 By Value of Shipments & Employment Size Category XLS PDF

8

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

2002 Manufacturing Energy Consumption Survey Methodology and ... where Op,MECS is the MECS estimate of the amount of petroleum product p produced offsite and ...

9

Manufacturing Energy Consumption Survey (MECS) - Data - U.S. Energy  

U.S. Energy Information Administration (EIA) Indexed Site

6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive 6 MECS Survey Data 2010 | 2006 | 2002 | 1998 | 1994 | 1991 | Archive Data Methodology & Forms 2006 Data Tables Revision notice (November 2009): Tables 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.5, 4.1 and 4.2 have been slightly revised due to further editing. The revisions in XLS are indicated with a value of "R" in an adjacent column. In the PDF versions, the revised values are superscripted with an "R". No further revisions are anticipated for these tables. all tables + EXPAND ALL Consumption of Energy for All Purposes (First Use) Values RSE Table 1.1 By Mfg. Industry & Region (physical units) XLS PDF XLS Table 1.2 By Mfg. Industry & Region (trillion Btu) XLS PDF XLS Table 1.3 By Value of Shipments & Employment Size Category & Region XLS PDF XLS

10

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

11

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy...  

Annual Energy Outlook 2012 (EIA)

U. S. Census Regions and Divisions: census map About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use...

12

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

U.S. States. State energy information, detailed and ... 2010 MECS Survey Data 2010 | 2006 ... Table 5.7 By Region with Total Consumption of Electricity (physical ...

13

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

U.S. Energy Information Administration (EIA) Indexed Site

About the MECS About the MECS Survey forms Maps MECS Terminology Archives Features First 2010 Data Press Release 2010 Data Brief Other End Use Surveys Commercial Buildings - CBECS Residential - RECS Transportation DOE Uses MECS Data Manufacturing Energy and Carbon Footprints Associated Analysis Cost of Natural Gas Used in Manufacturing Sector Has Fallen MECS 2010 - Release date: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers as well as other consumers. The 36% decrease in the average natural gas price paid by manufacturers

14

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Manufacturing Energy Consumption Survey (MECS) Glossary ...

15

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Survey (MECS) 1998-2010, September 6, 2013. New 2010 Manufacturing Energy Consumption Survey (MECS) Data Released › Graph showing total U.S. manufacturing energy consumption for all purposes has declined 17 percent from 2002 to 2010. Source: U.S. Energy Information Administration, Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010, March 19, 2013. First Estimates from 2010 Manufacturing Energy Consumption Survey (MECS) Released ›

16

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

17

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

18

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - Release date: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17 percent from 2002 to 2010 (Figure 1), according to data from the U.S. Energy Information Administration's (EIA) Manufacturing Energy Consumption Survey (MECS). line chart:air conditioning in U.S. Manufacturing gross output decreased by only 3 percent over the same period. Taken together, these data indicate a significant decline in the amount of energy used per unit of gross manufacturing output. The significant decline in energy intensity reflects both improvements in energy efficiency and changes in

19

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, ...

20

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Units & Calculators ... 2012. Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, ...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or suggestions (optional).

22

Customer Feedback during Development of 1998 MECS: Mail/Electronic Survey  

U.S. Energy Information Administration (EIA) Indexed Site

1998 MECS User Needs 1998 MECS User Needs Mail/Electronic Survey Results A mail/electronic survey was conducted as part of the process to collect information on the data needs of MECS customers. The collection time frame was May 1 through July 31, 1998. The survey portion has been completed, and the total results are now available. During this three-month period, the electronic user-needs survey received about 207 hits. Yet, only 15 of those hits resulted in the transmission of a completed survey. Exactly 239 surveys were mailed to customers on the mailing list of the MECS publication. A total of 50 completed surveys (21% response rate) were returned, 32 of which resulted from a follow-up mail request. Only two surveys were returned by the 11 trade associations that were identified as MECS users. Where appropriate, the replies of those two TRADE

23

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Residential - RECS. Transportation. DOE Uses MECS Data. Manufacturing Energy and Carbon Footprints Associated Analysis. Thank You. We welcome your comments or ...

24

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Cost of Natural Gas Used in Manufacturing Sector ... Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased ...

25

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: March 28, 2012.

26

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

27

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010. Release Date: ...

28

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

MECS Terminology MECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ B Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers. Breeze: The fine screenings from crushed coke. Usually breeze will pass

29

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

30

Mitigation Efforts Calculator (MEC)  

Science Conference Proceedings (OSTI)

The Mitigation Efforts Calculator (MEC) has been developed by the International Institute for Applied Systems Analysis (IIASA) as an online tool to compare greenhouse gas (GHG) mitigation proposals by various countries for the year 2020. In this paper, ... Keywords: Business intelligence, Cost curves, Decision model, Interactive system, Optimisation

Thanh Binh Nguyen; Lena Hoeglund-Isaksson; Fabian Wagner; Wolfgang Schoepp

2013-04-01T23:59:59.000Z

31

Summary of the MECS 2002 User Needs Questionnaire  

U.S. Energy Information Administration (EIA) Indexed Site

View 2002 User Needs Survey !! View 2002 User Needs Survey !! Summary of the MECS 2002 User Needs Questionnaire CLASSIFICATION Question 1: "The MECS is now required to classify manufacturing establishments according to the North American Industry Classification System (NAICS). This listing shows the 1998 MECS classifications, which does not include every manufacturing classification. Are there any other manufacturing types that would be of interest to you regarding MECS data. The corresponding NAICS code is not necessary, but please provide it, if known. For a full list of all manufacturing classifications, see www.census.gov/epcd/naics02/naicod02.htm#N31 (opens a new window)." Of the 37 user responses, 17 did not answer this question, 3 answered the question "sufficient," and 2 answered "no." .

32

The Btu tax is dead, long live the Btu tax  

SciTech Connect

The energy industry is powerful. That is the only explanation for its ability to jettison a cornerstone of the Clinton Administration's proposed deficit reduction package, the Btu tax plan, expected to raise about $71.5 billion over a five-year period. Clinton had proposed a broad-based energy tax of 25.7 cents per million Btus, and a surcharge of 34.2 cents on petroleum products, to be phased in over three years starting July 1, 1994. House Democrats went along, agreeing to impose a tax of 26.8 cents per million Btus, along with the 34.2-cent petroleum surcharge, both effective July 1, 1994. But something happened on the way to the Senate. Their version of the deficit reduction package contains no broad-based energy tax. It does, however, include a 4.3 cents/gallon fuel tax. Clinton had backed down, and House Democrats were left feeling abandoned and angry. What happened has as much to do with politics-particularly the fourth branch of government, lobbyists-as with a President who wants to try to please everyone. It turns out that almost every lawmaker or lobbyist who sought an exemption from the Btu tax, in areas as diverse as farming or ship and jet fuel used in international commercial transportation, managed to get it without giving up much in return. In the end, the Btu tax was so riddled with exemptions that its effectiveness as a revenue-raiser was in doubt. Meanwhile, it turns out that the Btu tax is not dead. According to Budget Director Leon Panetta, the Administration has not given up on the Btu tax and will fight for it when the reconciliation bill goes to a joint House-Senate conference.

Burkhart, L.A.

1993-07-15T23:59:59.000Z

33

Transportation and Handling of Medium Btu Gas in Pipelines  

Science Conference Proceedings (OSTI)

Coal-derived medium btu gas can be safely transported by pipeline over moderate distances, according to this survey of current industrial pipeline practices. Although pipeline design criteria will be more stringent than for natural gas pipelines, the necessary technology is readily available.

1984-03-01T23:59:59.000Z

34

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

35

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Table 2: Natural gas prices incurred by manufacturers, 2010, by region and establishment employment size (dollars per thousand cubic feet) Employment Size

36

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... regardless of where the energy was produced. 2 Energy used as feedstock is the use of energy sources for raw material input or for ...

37

Diagram 5. Electricity Flow, 2007 (Quadrillion Btu)  

E-Print Network (OSTI)

generation. f Transmission and distribution losses (electricity losses that occur between the pointDiagram 5. Electricity Flow, 2007 (Quadrillion Btu) Energy Information Administration / Annual Energy Review 2007 221 Coal 20.99 Nuclear Electric Power 8.41 Energy Consumed To Generate Electricity 42

Bensel, Terrence G.

38

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

39

Utah Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

40

Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Gasoline and Diesel Fuel Update (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

42

Texas Heat Content of Natural Gas Deliveries to Consumers (BTU...  

Annual Energy Outlook 2012 (EIA)

Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2...

43

MECS 1991 Publications and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Publication and Tables Publication and Tables Publication and Tables Figure showing the Largest Energy Consumers in the Manufacturing Sector You have the option of downloading the entire report or selected sections of the report. Full Report - Manufacturing Consumption of Energy 1991 (file size 17.2 MB) pages:566 Selected Sections Main Text (file size 380,153 bytes) pages: 33, includes the following: Contacts Contents Executive Summary Introduction Energy Consumption in the Manufacturing Sector: An Overview Energy Consumption in the Manufacturing Sector, 1991 Manufacturing Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C. Quality of the Data (file size 135,511 bytes) pages: 8.

44

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 3 Table 1.1 Primary Energy Overview (Quadrillion Btu) Production Trade

45

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 23 Table 2.1 Energy Consumption by Sector (Trillion Btu) End-Use Sectors Electric

46

Table 2.4 Industrial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 29 Table 2.4 Industrial Sector Energy Consumption (Trillion Btu) Primary Consumptiona

47

Building Energy Software Tools Directory: BTU Analysis Plus  

NLE Websites -- All DOE Office Websites (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

48

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Figure 10.1 Renewable Energy Consumption (Quadrillion Btu) Total and Major Sources, 1949–2012 By Source, 2012 By Sector, 2012 Compared With Other Resources, 1949–2012

49

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

50

Building Energy Software Tools Directory: BTU Analysis REG  

NLE Websites -- All DOE Office Websites (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

51

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

52

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

All Reports & Publications All Reports & Publications Search By: Go Pick a date range: From: To: Go ManufacturingAvailable formats Cost of Natural Gas Used in Manufacturing Sector Has Fallen Released: September 6, 2013 Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers. Production of natural gas in the United States increased rapidly beginning in 2007 as a result of resources found in shale formations. That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17

53

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, ... Manufacturing Energy and Carbon Footprints Associated Analysis.

54

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Features Cost of Natural Gas Used in Manufacturing Sector Has Fallen. Release Date: September 6, 2013. Natural gas has been an important exception to ...

55

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The major energy sources in the United States are petroleum (oil), natural ... To compare or aggregate energy consumption across different energy sources like oil, ...

56

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, ...

57

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

58

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How can we compare or add up our energy consumption? To compare or aggregate energy consumption across different energy sources like oil, natural gas, and electricity ...

59

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... storage, imports and exports, production, prices, sales.

60

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

A-Z Index A B C D E F G H I J K L M ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity of ...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Industry Analysis Briefs Steel Industry Analysis. The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of ...

62

Manufacturing Energy Consumption Survey (MECS) - U.S ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

63

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, ...

64

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Privacy/Security Copyright & Reuse Accessibility. Related Sites U.S. Department of Energy USA.gov FedStats. Stay Connected Facebook Twitter YouTube Email Updates

65

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Chemical Industry Analysis. The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, ...

66

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency. Energy use in homes, commercial buildings, ...

67

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... electric power plant emissions. Highlights ... This is similar to calculating your food energy intake by adding up the calories in whatever you eat.

68

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... Manufacturing energy consumption data show large reductions in both manufacturing energy use and the energy intensity ...

69

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency ... automobiles, and appliances. ...

70

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Cost of Natural Gas Used in Manufacturing Sector Has Fallen.

71

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... The major users are residential and commercial buildings, industry, transportation, and electric power generators.

72

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Comprehensive data summaries, comparisons, analysis, and projections integrated across all energy sources. Highlights This Week in Petroleum ...

73

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

74

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The steel industry is critical to the U ... That increase in supply has in turn lowered the price of natural gas to ...

75

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, ...

76

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... The chemical industries are a cornerstone of the U.S. economy, ...

77

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, ... Environment. Greenhouse gas data, ... Privacy/Security Copyright & Reuse Accessibility.

78

Manufacturing Energy Consumption Survey (MECS) - Data - U.S....  

U.S. Energy Information Administration (EIA) Indexed Site

| 1998 | 1994 | 1991 | Archive Data Methodology & Forms + EXPAND ALL Consumption of Energy for All Purposes (First Use) Total First Use (formerly Primary Consumption) of Energy...

79

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Biofuels: Ethanol & Biodiesel ... converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products.

80

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants ... commercial buildings, industry, transportation, and electric power ... exception to the trend of rising prices for ...

82

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile ...

83

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol.

84

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural ...

85

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Natural gas has been an important exception to the trend of rising prices for energy sources used by manufacturers.

86

Manufacturing Energy Consumption Survey (MECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... fuel switching capabilities, general energy-saving technologies, energy management activities, square footage, ...

87

BTU convergence spawning gas market opportunities in North America  

Science Conference Proceedings (OSTI)

The so-called BTU convergence of US electric power and natural gas sectors is spawning a boom in market opportunities in the US Northeast that ensures the region will be North America`s fastest growing gas market. That`s the view of Catherine Good Abbott, CEO of Columbia Gas Transmission Corp., who told a Ziff Energy conference in Calgary that US Northeast gas demand is expected to increase to almost 10 bcfd in 2000 and more than 12 bcfd in 2010 from about 8 bcfd in 1995 and only 3 bcfd in 1985. The fastest growth will be in the US Northeast`s electrical sector, where demand for gas is expected to double to 4 bcfd in 2010 from about 2 bcfd in 1995. In other presentations at the Ziff Energy conference, speakers voiced concerns about the complexity and speed of the BTU convergence phenomenon and offered assurances about the adequacy of gas supplies in North American to meet demand growth propelled by the BTU convergence boom. The paper discusses the gas demand being driven by power utilities, the BTU convergence outlook, electric power demand, Canadian production and supply, and the US overview.

NONE

1998-06-29T23:59:59.000Z

88

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oklahoma, 1960 - 2011 1960 33.9 902.0 1,118.9 0.0 NA 17.8 17.8 2,072.6 1961 26.1 976.9 1,119.9 0.0 NA 20.2 20 ...

89

Table PT2. Energy Production Estimates in Trillion Btu, California ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, California, 1960 - 2011 1960 0.0 589.7 1,771.0 (s) NA 270.2 270.2 2,630.9 1961 0.0 633.8 1,737.7 0.1 NA 248.2 ...

90

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

91

Table PT2. Energy Production Estimates in Trillion Btu, Texas ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Texas, 1960 - 2011 1960 26.4 6,610.7 5,379.4 0.0 NA 50.2 50.2 12,066.6 1961 26.5 6,690.2 5,447.3 0.0 NA 52.0 ...

92

Table PT2. Energy Production Estimates in Trillion Btu, Indiana ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Indiana, 1960 - 2011 1960 346.3 0.3 69.9 0.0 NA 24.6 24.6 441.1 1961 336.7 0.4 66.7 0.0 NA 24.2 24.2 428.0

93

Table PT2. Energy Production Estimates in Trillion Btu, Oregon ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Oregon, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 190.5 190.5 190.5 1961 0.0 0.0 0.0 0.0 NA 188.9 188.9 188.9

94

Table PT2. Energy Production Estimates in Trillion Btu, Arizona ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Arizona, 1960 - 2011 1960 0.1 0.0 0.4 0.0 NA 36.2 36.2 36.7 1961 0.0 0.0 0.4 0.0 NA 35.1 35.1 35.5

95

Environmental Permitting of a Low-BTU Coal Gasification Facility  

E-Print Network (OSTI)

The high price of natural gas and fuel oil for steam/power generation has alerted industry's decision makers to potentially more economical ways to provide the needed energy. Low-Btu fuel gas produced from coal appears to be an attractive alternate that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification facility needs to address those items that are not only unique to the gasification process itself, but also items generic to conventional firing of coal. This paper will discuss the environmental data necessary for permitting a low-Btu gasification facility located in the State of Louisiana. An actual case study for a 500,000 lb/hr natural gas-fired process steam plant being converted to low Btu gas will be presented. Typical air, water and solid waste effluents that must be considered will also be described.

Murawczyk, C.; Stewart, J. T.

1983-01-01T23:59:59.000Z

96

2002 Manufacturing Energy Consumption Survey - User Needs Survey  

U.S. Energy Information Administration (EIA) Indexed Site

2002 Manufacturing Energy Consumption Survey: User-Needs Survey 2002 Manufacturing Energy Consumption Survey: User-Needs Survey View current results. We need your help in designing the next “ Energy Consumption Survey” (MECS)! As our valued customer, you are in an important position to tell us what kinds of data are most useful in helping you understand energy consumption in the U.S. manufacturing sector. Below is a short electronic survey with just a few questions. We will stop collecting responses for user feedback on May 17, 2002. This deadline serves to meet our intended release date of April/May 2003 for fielding MECS2002. The MECS is designed to produce estimates of energy consumption and other energy-related activities in manufacturing. The survey also collects information on energy expenditures, average prices, onsite generation of

97

Microsoft PowerPoint - MEC3_FINAL_FEELEY.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 rd International Experts' Workshop - Mercury Emissions from Coal June 5-7, 2006 Katowice, Poland Thomas J. Feeley, III thomas.feeley@netl.doe.gov National Energy Technology Laboratory MEC3 Katowice June 2006 Outline * Background * Phase II project update/Phase III project descriptions * BOP and related technical issues * Preliminary economic assessment * Byproduct-Hg issues/potential economic impacts * Conclusion MEC3 Katowice June 2006 Mercury Control Technology Program Performance/Cost Objectives * Have technologies ready for commercial demonstration by: * 2007 that can reduce "uncontrolled" Hg emissions by 50-70% * 2010 for all coals that can reduce "uncontrolled" Hg emissions by +90% * Reduce cost by 25-50% compared to baseline cost estimates

98

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

99

An experiment using Mec: Eurotri, Physical Layer Protocol Implemented Version  

E-Print Network (OSTI)

This work describes a part of a cooperation between LaBRI and Schlumberger Industries for developping eletricity meters. This part deals with the design and the conception of communication protocols to provide a distributed kernel with safe rendezvous primitives. The implemented version of the protocol is detailed and its safety proven using Mec. Contents 1 Industrial Environment 2 2 Hardware and Inter-Processor Communication 2 2.1 Physical Aspects : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2.2 Potential Problems and Solutions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2.2.1 Loss of data due to polling rate : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2.2.2 Loss or spontaneous creation of data on the line : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3 2.2.3 Transmission errors : : : : : : : : : : : : : : : : : : : : :...

Didier Egay Paul; Alain Griffault; Jean-pierre Radoux

1994-01-01T23:59:59.000Z

100

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu)

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table 1.2 Primary Energy Production by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review August 2013 5 Table 1.2 Primary Energy Production by Source (Quadrillion Btu) Fossil Fuels

102

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review November 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

103

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Table 1.1 Primary Energy Overview, 1949-2011 (Quadrillion Btu) Year: Production: Trade: Stock Change and Other 8: Consumption: Fossil Fuels 2

104

Table 1.4a Primary Energy Imports by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

10 U.S. Energy Information Administration / Monthly Energy Review October 2013 Table 1.4a Primary Energy Imports by Source (Quadrillion Btu) Imports

105

Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Monthly Energy Review October 2013 7 Table 1.3 Primary Energy Consumption by Source (Quadrillion Btu)

106

Sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

Vogt, Robert L. (Schenectady, NY)

1980-01-01T23:59:59.000Z

107

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

108

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

109

Microbial Electrolysis Cells (MECs) for High Yield Hydrogen (H2) Production from Biodegradable Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbial Electrolysis Cells (MECs) for High Yield H Microbial Electrolysis Cells (MECs) for High Yield H 2 Production from Biodegradable Materials Zhiyong "Jason" Ren, Ph.D Associate Professor, Environmental and Sustainability Engineering University of Colorado Boulder Jason.Ren@colorado.edu (303) 492-4137 http://spot.colorado.edu/~zhre0706/ MxC or Microbial Electrochemical System (MES) is a platform technology for energy and resource recovery Main type of MXC Products Microbial Fuel Cell (MFC) Electricity Microbial Electrolysis Cell (MEC) H 2 , H 2 O 2 , NaOH, Struvite Microbial Chemical Cell (MCC) CH 4 , C 2 H 4 O 2 , Organics Microbial Remediation Cell (MRC) Reduced/non-toxic chemicals Microbial Desalination Cell (MDC) Desalinated water >90% H 2 MEC for H 2 Recovery PS e - e - Wang and Ren, Biotechnol. Adv. 2013

110

SOLAR-MEC development program. Project 61019 quarterly progress report, September 1-December 31, 1978  

DOE Green Energy (OSTI)

The SOLAR-MEC unit employs a molecular sieve desiccant wheel to achieve the drying of an amount of ambient air precool and dried air in the heat-exchange wheel and further condition the precooled air by an evaporative cooling process to produce tempered air and deliver it to the space to be conditioned. The development of a dynamic model capable of simulating the cooling performance of the SOLAR-MEC heating-cooling system over an entire cooling season is detailed. More specifically, the model is based on the performance of the early laboratory and field heating/cooling units (SOLAR-MEC I) which employed single stage desiccant wheel reactivation and balanced flow heat exchanger operation. In addition, the model can describe the seasonal performance of a higher efficiency system, one using staged desiccant wheel reactivation (SOLAR-MEC II), and of an advanced system (SOLAR-MEC III), one which utilizes staged reactivation and incorporates the capability of unbalanced heat exchanger operation (or third stream design). A preliminary steady-state model of auxiliary power requirements for the various residential-size SOLAR-MEC systems is also presented. The model covers mainly the power requirements for the movement of air through the unit, the driving of the desiccant and heat exchange wheels, and the water pumps of the evaporator pad assembly.

Kinast, J.A.; Rush, W.F.; Wurm, J.; Macriss, R.A.

1979-08-01T23:59:59.000Z

111

1991 Tables and Spreadsheets and Answers to Frequently Asked MECS Questions  

U.S. Energy Information Administration (EIA) Indexed Site

Tables and Spreadsheets Tables and Spreadsheets 1991 Tables and Spreadsheets Answers to Frequently Asked MECS Questions ( All tables are accessible in PDF and/or Lotus Format) Energy Consumption Q: In 1991, how much energy did manufactures consume for fuel or non-fuel purposes? A: If you would like to review national and regional statistics by SIC in physical units, please click Table A1 (part 1); for common units, please click Table A1 (part 2); and for review by manufacturing economic characteristics, such as employment and value of shipments, please click onTable A9; Table A30 or Table A33. mecs01a.xls (Table A1, Part 1) mecs01b.xls (Table A1, Part 2) mecs09.xls (Table A9) mecs30.xls (Table A30) mecs33.xls (Table A33) Q: In 1991, how much energy did manufactures consume for fuel purposes (i.e., to produce heat, power, and generate electricity)?

112

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network (OSTI)

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils, the inability to utilize caking coals, and the inability to accept coal fines. Mansfield Carbon Products, Inc., a subsidiary of A.T. Massey Coal Company, has developed an atmospheric pressure, two-stage process that eliminates these three problems.

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

113

Analysis of the market and product costs for coal-derived high Btu gas  

Science Conference Proceedings (OSTI)

DOE analyzed the market potential and economics of coal-derived high-Btu gas using supply and demand projections that reflect the effects of natural gas deregulation, recent large oil-price rises, and new or pending legislation designed to reduce oil imports. The results indicate that an increasingly large market for supplemental gas should open up by 1990 and that SNG from advanced technology will probably be as cheap as gas imports over a wide range of assumptions. Although several studies suggest that a considerable market for intermediate-Btu gas will also exist, the potential supplemental gas demand is large enough to support both intermediate - and high-Btu gas from coal. Advanced SNG-production technology will be particularly important for processing the US's abundant, moderately to highly caking Eastern coals, which current technology cannot handle economically.

Not Available

1980-12-01T23:59:59.000Z

114

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

115

Solar-MEC development program. Project 9103 semiannual progress report, September 1, 1977-February 28, 1978  

DOE Green Energy (OSTI)

Progress on the development of the Solar-MEC desiccant cooling system is reported. Specifically, the dynamic performance of a supported molecular-sieve, regenerative, heat and mass exchanger is reported, under input conditions typical of the operation of a solar-powered open desiccant cooling system. Comparisons of the above experimental data with a computer model describing the dynamic processes of air drying and desiccant regeneration of the Solar-MEC desiccant cooling system are reported. An account of the test setup, of the experimental program, and the results of diagnostic steps to evaluate air leakage rates within the Solar-MEC system and actions to minimize such leakage are reported. The test design and experimental approach to verify the performance of the rotary regenerative (sensible) heat exchanger are reported.

Wurm, J.; Weil, S.A.; Wright, L.R.

1979-01-01T23:59:59.000Z

116

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

117

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU)  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Liquid Composite Price (Dollars per Million BTU) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 12.91: 15.20 ...

118

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Ohio, 1960 - 2011 1960 796.6 36.9 31.3 0.0 NA 37.0 37.0 901.9 1961 756.0 37.3 32.7 0.0 NA 36.4 36.4 862.4

119

Parametric Analysis of a 6500-Btu/kWh Heat Rate Dispersed Generator  

Science Conference Proceedings (OSTI)

Cost and performance assessments of two alternative system designs for a 2-MW molten carbonate fuel cell power plant yielded encouraging results: a 6500-Btu/kWh heat rate and a total plant investment of $1200-$1300/kW. Differences between the two designs establish a permissible range of operating conditions for the fuel cell that will help guide its development.

1985-08-14T23:59:59.000Z

120

Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs)  

E-Print Network (OSTI)

for the first time. Bioelectrochemical treatability was evaluated relative to oxygen demand. MECs were-oiled refinery wastewater sample from one site (DOW1) produced the best results, with 2.1 ± 0.2 A/m2 (maximum current density), 79% chemical oxygen demand removal, and 82% headspace biological oxygen demand removal

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technical support document for proposed 1994 revision of the MEC thermal envelope requirements  

Science Conference Proceedings (OSTI)

This report documents the development of the proposed revision of the Council of American Building Officials` (CABO) 1994 supplement to the 1993 Model Energy Code (MEC) building thermal envelope requirements for maximum component U{sub 0}-value. The 1994 amendments to the 1993 MEC were established in last year`s code change cycle and did not change the envelope requirements. The research underlying the proposed MEC revision was conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Building Energy Standards program. The goal of this research was to develop revised guidelines based on an objective methodology that determines the most cost-effective (least total cost) combination of energy conservation measures (ECMs) (insulation levels and window types) for residential buildings. This least-cost set of ECMs was used as a basis for proposing revised MEC maximum U{sub 0}-values (thermal transmittances). ECMs include window types (for example, double-pane vinyl) and insulation levels (for example, R-19) for ceilings, walls, and floors.

Conner, C.C.; Lucas, R.G.

1994-03-01T23:59:59.000Z

122

file://C:\\Documents and Settings\\bh5\\My Documents\\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185...

123

Process designs and cost estimates for a medium Btu gasification plant using a wood feedstock  

DOE Green Energy (OSTI)

A gasification plant to effect the conversion of wood to medium-Btu gas has been designed. The Purox gasifier and associated equipment were selected as a prototype, since this system is nearer to commercialization than others considered. The object was to determine the cost of those processing steps common to all gasification schemes and to identify specific research areas. A detailed flowsheet and mass-balance are presented. Capital investment statements for three plant sizes (400, 800, 1,600 oven-dry tons per day) are included along with manufacturing costs for each of these plants at three feedstock prices: $10, $20, $30 per green ton (or $20, $40, $60 per dry ton). The design incorporates a front-end handling system, package cryogenic oxygen plant, the Purox gasifier, a gas-cleaning train consisting of a spray scrubber, ionizing wet scrubber, and condenser, and a wastewater treatment facility including a cooling tower and a package activated sludge unit. Cost figures for package units were obtained from suppliers and used for the oxygen and wastewater treatment plants. The gasifier is fed with wood chips at 20% moisture (wet basis). For each pound of wood, 0.32 lb of oxygen are required, and 1.11 lb of gas are produced. The heating value of the gas product is 300 Btu/scf. For each Btu of energy input (feed + process energy) to the plant, 0.91 Btu exists with the product gas. Total capital investments required for the plants considered are $9, $15, and $24 million (1978) respectively. In each case, the oxygen plant represents about 50% of the total investment. For feedstock prices from $10 to $30 per green ton ($1.11 to $3.33 per MM Btu), break-even costs of fuel gas range from $3 to $7 per MM Btu. At $30/ton, the feedstock cost represents approximately 72% of the total product cost for the largest plant size; at $10/ton, it represents only 47% of product cost.

Desrosiers, R. E.

1979-02-01T23:59:59.000Z

124

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

125

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

126

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

127

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

128

Production of Medium BTU Gas by In Situ Gasification of Texas Lignite  

E-Print Network (OSTI)

The necessity of providing clean, combustible fuels for use in Gulf Coast industries is well established; one possible source of such a fuel is to perform in situ gasification of Texas lignite which lies below stripping depths. If oxygen (rather than air) is used for gasification, the resulting medium Btu gas could be economically transported by pipeline from the gasification sites to the Gulf coast. Technical, environmental, and economic aspects of implementing this technology are discussed.

Edgar, T. F.

1979-01-01T23:59:59.000Z

129

Development and testing of low-Btu fuel gas turbine combustors  

SciTech Connect

The integrated gasification combined cycle (IGCC) concept represents a highly efficient and environmentally compatible advanced coal fueled power generation technology. When IGCC is coupled with high temperature desulfurization, or hot gas cleanup (HGCU), the efficiency and cost advantage of IGCC is further improved with respect to systems based on conventional low temperature gas cleanup. Commercialization of the IGCC/HGCU concept requires successful development of combustion systems for high temperature low Btu fuel in gas turbines. Toward this goal, a turbine combustion system simulator has been designed, constructed, and fired with high temperature low Btu fuel. Fuel is supplied by a pilot scale fixed bed gasifier and hot gas desulfurization system. The primary objectives of this project are: (1) demonstration of long term operability of the turbine simulator with high temperature low Btu fuel; (2) characterization of particulates and other contaminants in the fuel as well as deposits in the fuel nozzle, combustor, and first stage nozzle; and (3) measurement of NO{sub x}, CO, unburned hydrocarbons, trace element, and particulate emissions.

Bevan, S.; Abuaf, N.; Feitelberg, A.S.; Hung, S.L.; Samuels, M.S.; Tolpadi, A.K.

1994-10-01T23:59:59.000Z

130

An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters  

E-Print Network (OSTI)

As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown gasifiers could potentially replace the natural gas now used in process heaters. The technology is well established and requires less capital than the higher-btu process heaters. Low-btu gas has sufficient heating value and flame temperature to be acceptable fuel for most process heaters. Economics for gas production appear promising, but somewhat uncertain. Rough evaluations indicate rates of return of as much as 30-40%. However, the economics are very dependent on a number of site- specific considerations including: coal vs. natural gas prices, economic life of the gas-consuming facility, quantity of gas required, need for desulfurization, location of gasifiers in relation to gas users, existence of coal unloading and storage facilities, etc. Two of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis.

Nebeker, C. J.

1982-01-01T23:59:59.000Z

131

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

132

Shielding Calculations for the Hard X-Rays Generated by LCLS Mec Laser System  

Science Conference Proceedings (OSTI)

Linac Coherent Light Source (LCLS) Matter in Extreme Conditions (MEC) Instrument is an X-ray instrument that will be able to create and diagnose High Energy Density (HED) matter. The MEC laser system can generate hard X-ray due to the interaction of the laser and the plasma. This paper summarizes results of the shielding calculations performed to evaluate the radiation hazards induced by this hard X-ray source with Monte Carlo code FLUKA. The dose rates and photon spectra due to this X-ray source are calculated at different locations with different shielding. The influence of the electron temperature on the source terms and the shielding effectiveness was also investigated.

Not Available

2011-06-02T23:59:59.000Z

133

Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities  

SciTech Connect

The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

Not Available

1980-12-01T23:59:59.000Z

134

Design and Performance of a Low Btu Fuel Rich-Quench-Lean Gas Turbine Combustor  

SciTech Connect

General Electric Company is developing gas turbines and a high temperature desulfurization system for use in integrated gasification combined cycle (IGCC) power plants. High temperature desulfurization, or hot gas cleanup (HGCU), offers many advantages over conventional low temperature desulfurization processes, but does not reduce the relatively high concentrations of fuel bound nitrogen (FBN) that are typically found in low Btu fuel. When fuels containing bound nitrogen are burned in conventional gas turbine combustors, a significant portion of the FBN is converted to NO{sub x}. Methods of reducing the NO{sub x} emissions from IGCC power plants equipped with HGCU are needed. Rich-quench-lean (RQL) combustion can decrease the conversion of FBN to NO{sub x} because a large fraction of the FBN is converted into non-reactive N{sub 2} in a fuel rich stage. Additional air, required for complete combustion, is added in a quench stage. A lean stage provides sufficient residence time for complete combustion. Objectives General Electric has developed and tested a rich-quench-lean gas turbine combustor for use with low Btu fuels containing FBN. The objective of this work has been to design an RQL combustor that has a lower conversion of FBN to N{sub x} than a conventional low Btu combustor and is suitable for use in a GE heavy duty gas turbine. Such a combustor must be of appropriate size and scale, configuration (can-annular), and capable of reaching ``F`` class firing conditions (combustor exit temperature = 2550{degrees}F).

Feitelberg, A.S.; Jackson, M.R.; Lacey, M.A.; Manning, K.S.; Ritter, A.M.

1996-12-31T23:59:59.000Z

135

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

This paper is intended to give the reader knowledge into utility marketing strategies, rates, and services. Although water is a utility service, this paper will concern itself with the energy utilities, gas and electric. Commonality and diversity exist in the strategies and rates of the gas and electric utilities. Both provide services at no charge which make energy operation for their customers easier, safer and more economical. It is important to become familiar with utility strategies, rates, and services because energy knowledge helps your business operate at the lowest energy cost ($/BTU).

Phillips, J. N.

1993-03-01T23:59:59.000Z

136

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

137

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

138

High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report  

SciTech Connect

In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

Not Available

1984-01-01T23:59:59.000Z

139

Solar-MEC Development Program. Project 61019 final report, September 1, 1977-March 9, 1982  

DOE Green Energy (OSTI)

The Solar-MEC is an open-cycle, solid-desiccant solar-powered, heating/cooling system. Its development has been under way since 1974 under sponsorship of the National Science Foundation, the American Gas Association, and several private companies within the gas industry. The results, conclusions, and recommendations of the program are presented. All laboratory testing and evaluations carried out in support of the conceptual and engineering design and fabrication of an ''improved'' Solar-MEC (System III) unit are described. The performance of the ''improved'' Solar-MEC (System III) unit was evaluated in detail in the laboratory, under full-, part-, and overload conditions of weather; the results were used to develop a characteristic model and computer program for the System III unit. This model was subsequently used to carry out seasonal performance simulations for heating and cooling in six US cities to develop optimized operating control strategies for maximum efficiency with reasonable controls system complexity and, therefore, reasonable costs. The demonstrated improved performance of this new unit (System III) includes: cooling thermal COP of 0.50 under ARI conditions; unit cooling capacity of 2.6 tons under ARI conditions; average Energy Efficiency Ratio (EER) under ARI conditions of 26.5; electric parasitic power requirements (as percent of thermal power input requirements) of only 6.2; and tolerable capacity degradation. On the basis of the results of seasonal performance simulations with the new unit (System III), it was concluded that, for most climates, in order to maximize the system's efficiency for solar cooling at reasonable system complexity, the unit must be designed to operate in the ventilating mode and must be provided with sensing capability to respond to ambient high humidities. The unit must be capable of operating most of the time with combined solar-gas firing and part of the time (only in very humid climates) as a gas-only fired unit.

Kinast, J.A.; Wurm, J.; Zawacki, T.S.; Macriss, R.A.

1985-03-01T23:59:59.000Z

140

Cofiring of coal and dairy biomass in a 100,000 btu/hr furnace  

E-Print Network (OSTI)

Dairy biomass (DB) is evaluated as a possible co-firing fuel with coal. Cofiring of DB offers a technique of utilizing dairy manure for power/steam generation, reducing greenhouse gas concerns, and increasing financial returns to dairy operators. The effects of cofiring coal and DB have been studied in a 30 kW (100,000 BTU/hr) burner boiler facility. Experiments were performed with Texas Lignite coal (TXL) as a base line fuel. The combustion efficiency from co-firing is also addressed in the present work. Two forms of partially composted DB fuels were investigated: low ash separated solids and high ash soil surface. Two types of coal were investigated: TXL and Wyoming Powder River Basin coal (WYO). Proximate and ultimate analyses were performed on coal and DB. DB fuels have much higher nitrogen (kg/GJ) and ash content (kg/GJ) than coal. The HHV of TXL and WYO coal as received were 14,000 and 18,000 kJ/kg, while the HHV of the LA-PC-DBSepS and the HA-PC-DB-SoilS were 13,000 and 4,000 kJ/kg. The HHV based on stoichiometric air were 3,000 kJ/kg for both coals and LA-PC-DB-SepS and 2,900 kJ/kg for HA-PC-DB-SoilS. The nitrogen and sulfur loading for TXL and WYO ranged from 0.15 to 0.48 kg/GJ and from 0.33 to 2.67 for the DB fuels. TXL began pyrolysis at 640 K and the WYO at 660 K. The HA-PC-DB-SoilSs began pyrolysis at 530 K and the LA-PC-DB-SepS at 510 K. The maximum rate of volatile release occurred at 700 K for both coals and HA-PC-DB-SoilS and 750K for LA-PC-DB-SepS. The NOx emissions for equivalence ratio (?) varying from 0.9 to 1.2 ranged from 0.34 to 0.90 kg/GJ (0.79 to 0.16 lb/mmBTU) for pure TXL. They ranged from 0.35 to 0.7 kg/GJ (0.82 to 0.16 lb/mmBTU) for a 90:10 TXL:LA-PC-DB-SepS blend and from 0.32 to 0.5 kg/GJ (0.74 to 0.12 lb/mmBTU) for a 80:20 TXL:LA-PC-DB-SepS blend over the same range of ?. In a rich environment, DB:coal cofiring produced less NOx and CO than pure coal. This result is probably due to the fuel bound nitrogen in DB is mostly in the form of urea which reduces NOx to non-polluting gases such as nitrogen (N2).

Lawrence, Benjamin Daniel

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Combined compressed air storage-low BTU coal gasification power plant  

DOE Patents (OSTI)

An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

Kartsounes, George T. (Naperville, IL); Sather, Norman F. (Naperville, IL)

1979-01-01T23:59:59.000Z

142

Materials exposure test facilities for varying low-Btu coal-derived gas  

SciTech Connect

As a part of the United States Department of Energy's High Temperature Turbine Technology Readiness Program, the Morgantown Energy Technology Center is participating in the Ceramics Corrosion/Erosion Materials Study. The objective is to create a technology base for ceramic materials which could be used by stationary gas power turbines operating in a high-temperature, coal-derived, low-Btu gas products of combustion environment. Two METC facilities have been designed, fabricated and will be operated simultaneously exposing ceramic materials dynamically and statically to products of combustion of a coal-derived gas. The current studies will identify the degradation of ceramics due to their exposure to a coal-derived gas combustion environment.

Nakaishi, C.V.; Carpenter, L.K.

1980-01-01T23:59:59.000Z

143

Analysis of industrial markets for low and medium Btu coal gasification. [Forecasting  

SciTech Connect

Low- and medium-Btu gases (LBG and MBG) can be produced from coal with a variety of 13 existing and 25 emerging processes. Historical experience and previous studies indicate a large potential market for LBG and MBG coal gasification in the manufacturing industries for fuel and feedstocks. However, present use in the US is limited, and industry has not been making substantial moves to invest in the technology. Near-term (1979-1985) market activity for LBG and MBG is highly uncertain and is complicated by a myriad of pressures on industry for energy-related investments. To assist in planning its program to accelerate the commercialization of LBG and MBG, the Department of Energy (DOE) contracted with Booz, Allen and Hamilton to characterize and forecast the 1985 industrial market for LBG and MBG coal gasification. The study draws five major conclusions: (1) There is a large technically feasible market potential in industry for commercially available equipment - exceeding 3 quadrillion Btu per year. (2) Early adopters will be principally steel, chemical, and brick companies in described areas. (3) With no additional Federal initiatives, industry commitments to LBG and MBG will increase only moderately. (4) The major barriers to further market penetration are lack of economic advantage, absence of significant operating experience in the US, uncertainty on government environmental policy, and limited credible engineering data for retrofitting industrial plants. (5) Within the context of generally accepted energy supply and price forecasts, selected government action can be a principal factor in accelerating market penetration. Each major conclusion is discussed briefly and key implications for DOE planning are identified.

1979-07-30T23:59:59.000Z

144

Solar-MEC Development Program. Project 61019 annual report, September 1, 1977-September 30, 1978  

DOE Green Energy (OSTI)

The SOLAR-MEC is the most advanced open-cycle, solid-desiccant heating/cooling system being considered for solar applications. Based on the results of field tests with several residential-size units, begun in early 1975, a 2-year program has been under way. Details of the accomplishments during the first year of the project (FY 1978) are presented which include: (1) development of data necessary to model the dynamic performance of the desiccation process of the SOLAR-MEC system; (2) mathematical description (modeling and computer programs) of the component processes of the system namely, desiccation, heat exchange, and evaporative cooling; (3) development and evaluation of several design improvements to increase seasonal cooling efficiency and capacity (namely, staged regeneration of the desiccant wheel and unbalanced-flow design of the heat exchanger wheel); (4) investigation and redesign of air-seals, wheel support, and drive mechanisms, and of air distribution (including the selection of high efficiency fans) to reduce parasitic power consumption of motor-blower assemblies; (5) investigation of the long-term stability of the rotary heat exchanger wheel performance including the selection of a low-cost alternative matrix; and (6) investigation and liaison activity for the selection of a practical non-asbestos molecular-sieve support matrix for the desiccant. (WHK)

Wurm, J.; Kinast, J.A.; Rush, W.F. Jr., Zawacki, T.S.; Macriss, R.A.

1979-10-01T23:59:59.000Z

145

U.S. Energy Information Administration (EIA) - Residential  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Glossary › FAQS › Overview Industrial Commercial Industrial Transportation Manufacturing Energy Consumption Survey Data 2006 Analysis & Reports Early-release estimates from the 2010 MECS show that energy consumption in the manufacturing sector decreased between 2006 and 2010 MECS 2006-2010 - Release date: March 28, 2012 Energy consumption in the U.S. manufacturing sector fell from 21,098 trillion Btu (tBtu) in 2006 to 19,062 tBtu in 2010, a decline of almost 10 percent, based on preliminary estimates released from the 2010 Manufacturing Energy Consumption Survey (MECS). This decline continues the downward trend in manufacturing energy use since the 1998 MECS report. figure data The decrease in energy consumption in the manufacturing sector was also

146

Solar-MEC development program. Project 9103 quarterly progress report, September 1--November 30, 1977  

DOE Green Energy (OSTI)

Arrangements for desiccant wheel performance tests, initial work on the computer model of dynamic behavior of the desiccant wheel, and the laboratory program are discussed. Formal arrangements are underway for a subcontract to Cargocaire Engineering Corp. to measure the drying performance of the Solar-MEC molecular sieve desiccant wheel. After negotiations for more detailed testing, it was decided that tests of the type originally proposed to the Solar Heating and Cooling Research Branch of DOE would be most suitable. Evaluation of an earlier computer model of the desiccant wheel, developed by AB Carl Munters, Sweden, indicated that it will be most effective to modify that program for use in this project, rather than use one that had been developed earlier at IGT. Both programs are based on essentially the same physical model of the drying and regeneration processes. The equipment needed for characterizing air-leak rates and identifying leakage paths has been designed and assembled. Tests will start soon.

Staats, W.R.; Wurm, J.

1977-12-01T23:59:59.000Z

147

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO{sub x}, CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if ``logical`` refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO{sub x}; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-12-31T23:59:59.000Z

148

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

DOE Green Energy (OSTI)

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

149

Heavy duty gas turbine combustion tests with simulated low BTU coal gas  

SciTech Connect

There is an increasing industry interest in integrated gas turbine combined cycle plants in which coal gasifiers provide the fuel for the gas turbines. Some gasifier plant designs, including the air-blown processes, some integrated oxygen blown processes and some oxygen-blown processes followed by heavy moisturization, produce fuel gases which have lower heating values ranging from 130 to below 100 BTU/scf for which there is little gas turbine combustion experience. This program has the objectives to: Parametrically determine the effects of moisture, nitrogen and carbon dioxide as diluents so that the combustion characteristics of many varieties of gasification product gases can be reasonably predicted without physically testing each specific gas composition; determine emissions characteristics including NO[sub x], CO, levels etc. associated with each of the diluents; operate with two syngas compositions; DOE chosen air-blown and integrated oxygen-blown, to confirm that the combustion characteristics are in line with predictions; determine if logical'' refinements to the fuel nozzle will yield improved performance for LBTU fuels; determine the conversion rate of ammonia to NO[sub x]; determine the effects of methane inclusion in the fuel.

Ekstrom, T.E.; Battista, R.A.; Maxwell, G.P.

1992-01-01T23:59:59.000Z

150

Analysis of medium-BTU gasification condensates, June 1985-June 1986  

DOE Green Energy (OSTI)

This report provides the final results of chemical and physical analysis of condensates from biomass gasification systems which are part of the US Department of Energy Biomass Thermochemical Conversion Program. The work described in detail in this report involves extensive analysis of condensates from four medium-BTU gasifiers. The analyses include elemental analysis, ash, moisture, heating value, density, specific chemical analysis, ash, moisture, heating value, density, specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, Carbon-13 nuclear magnetic resonance spectrometry) and Ames Assay. This work was an extension of a broader study earlier completed of the condensates of all the gasifers and pyrolyzers in the Biomass Thermochemical Conversion Program. The analytical data demonstrates the wide range of chemical composition of the organics recoverd in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. Future studies of the time/temperature relationship to tar composition and the effect of processing atmosphere should be undertaken. Further processing of the condensates either as wastewater treatment or upgrading of the organics to useful products is also recommended. 15 refs., 4 figs., 4 tabs.

Elliott, D.C.

1987-05-01T23:59:59.000Z

151

High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report  

Science Conference Proceedings (OSTI)

The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

Not Available

1982-01-01T23:59:59.000Z

152

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... An Assessment of EIA's Building Consumption Data. ... Commercial Buildings - CBECS. Manufacturing - MECS.

153

Coal Survey Frequently Asked Questions  

U.S. Energy Information Administration (EIA) Indexed Site

Survey FAQ Survey FAQ Available FAQ: Q. Whom do I contact if I need assistance completing a survey form? Q. Whom do I contact if I require assistance with the registration process, log-in process, instructions pertaining to JavaScript or cookies? Q. What unit of measurement should be used to calculate Btu? Q. How do I update the information that appears under Item I on IDC? Q. Under "Item II: Coal Receipts, Consumption and Stocks," can a value be negative? Q. How do I convert between short tons and metric tons? Vice Versa. Q. How do I convert between pounds to short tons? Vice Versa. Q. How do I correct a mistake on the Survey Form once I have submitted the data? Q. How do I log in if forgot my password? Q. If I accidently deleted the registration letters, how can I get my Mail ID and Code?

154

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

304 304 Survey of Large Combustors: Report on Alternative- Fuel Burning Capabilities of Large Boilers in 1979 U.S. Department of Energy Energy information Administration Office of Energy Markets and End Use Energy End Use Division Introduction During recent years, total annual industrial energy consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).^- Manufacturin g is by far the largest components totaling 12.9 quadrillion Btu of purchased fuels and electricity for heat and power during 1979.2 QJ this amount, 10.5 quadrillion Btu was accounted for by purchased fuels alone (e.g., fuel oil, coal, natural gas, etc.). Other than fuel consumption by type and industrial classificati on, very little information existed on specific fuel consumption characterist

155

COMPCOAL{trademark}: A profitable process for production of a stable high-Btu fuel from Powder River Basin coal  

SciTech Connect

Western Research Institute (WRI) is developing a process to produce a stable, clean-burning, premium fuel from Powder River Basin (PRB) coal and other low-rank coals. This process is designed to overcome the problems of spontaneous combustion, dust formation, and readsorption of moisture that are experienced with PRB coal and with processed PRB coal. This process, called COMPCOAL{trademark}, results in high-Btu product that is intended for burning in boilers designed for midwestern coals or for blending with other coals. In the COMPCOAL process, sized coal is dried to zero moisture content and additional oxygen is removed from the coal by partial decarboxylation as the coal is contacted by a stream of hot fluidizing gas in the dryer. The hot, dried coal particles flow into the pyrolyzer where they are contacted by a very small flow of air. The oxygen in the air reacts with active sites on the surface of the coal particles causing the temperature of the coal to be raised to about 700{degrees}F (371{degrees}C) and oxidizing the most reactive sites on the particles. This ``instant aging`` contributes to the stability of the product while only reducing the heating value of the product by about 50 Btu/lb. Less than 1 scf of air per pound of dried coal is used to avoid removing any of the condensible liquid or vapors from the coal particles. The pyrolyzed coal particles are mixed with fines from the dryer cyclone and dust filter and the resulting mixture at about 600{degrees}F (316{degrees}C) is fed into a briquettor. Briquettes are cooled to about 250{degrees}F (121{degrees}C) by contact with a mist of water in a gas-tight mixing conveyor. The cooled briquettes are transferred to a storage bin where they are accumulated for shipment.

Smith, V.E.; Merriam, N.W.

1994-10-01T23:59:59.000Z

156

~A four carbon alcohol. It has double the amount of carbon of ethanol, which equates to a substantial increase in harvestable energy (Btu's).  

E-Print Network (OSTI)

to a substantial increase in harvestable energy (Btu's). ~Butanol is safer to handle with a Reid Value of 0.33 psi is easily recovered, increasing the energy yield of a bushel of corn by an additional 18 percent over the energy yield of ethanol produced from the same quantity of corn. ~Current butanol prices as a chemical

Toohey, Darin W.

157

Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995  

SciTech Connect

Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

1995-08-01T23:59:59.000Z

158

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

What's new in our home energy use? What's new in our home energy use? RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from over 12,000 U.S. households. This report highlights findings from the survey, with details presented in the Household Energy Characteristics tables. How we use energy in our homes has changed substantially over the past three decades. Over this period U.S. homes on average have become larger, have fewer occupants, and are more energy-efficient. In 2005, energy use per household was 95 million British thermal units (Btu) of energy compared with 138 million Btu per household in 1978, a drop of 31 percent. Did You Know? Over 50 million U.S. homes have three or more televisions.

159

The Impact of Codes, Regulations, and Standards on Split-Unitary Air Conditioners and Heat Pumps, 65,000 Btu/hr and Under  

Science Conference Proceedings (OSTI)

This document establishes a framework for understanding the technology and regulation of split-unitary air conditioners and heat pumps 65,000 Btu/hr and under. The reporting framework is structured so that it can be added to in the future. This study is broken into six chapters:The basic components, refrigeration cycle, operation, and efficiency ratings of split-unitary air conditioners and heat pumps are covered for background information.Equipment efficiency ...

2012-09-21T23:59:59.000Z

160

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

Scheffer, K.D.

1984-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents (OSTI)

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

162

Estudo de propriedades mecÃnicas e morfolÃgicas de hemÃcias em indivÃduos portadores de anemia falciforme por microscopia de forÃa atÃmica.  

E-Print Network (OSTI)

??Nesse trabalho, propomos o uso da Microscopia de ForÃa AtÃmica para a investigaÃÃo das propriedades mecÃnicas e morfolÃgicas dos eritrÃcitos de pacientes com anemia falciforme,… (more)

Thiago de Melo Santiago

2012-01-01T23:59:59.000Z

163

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) Note: The Btu conversion factors used for primary electricity are 10,197 Btu/KWh, 10,173 Btu/KWh, and 9,919 Btu/KWh for 1998, 2002, and 2006, respectively. Sources: Energy Information Administration, Form EIA-846, Manufacturing Energy Consumption Surveys, 1998, 2002, and 2006. and Monthly Energy Review November 2005, and September 2009 DOE/EIA-0035(2005, 2009),Table A6. MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14

164

Comparison of coal-based systems: marketability of medium-Btu gas and SNG (substitute natural gas) for industrial applications. Final report, July 1979-March 1982  

Science Conference Proceedings (OSTI)

In assessing the marketability of synthetic fuel gases from coal, this report emphasizes the determination of the relative attractiveness of substitute natural gas (SNG) and medium-Btu gas (MBG) for serving market needs in eight industrial market areas. The crucial issue in predicting the marketability of coal-based synthetic gas is the future price level of competing conventional alternatives, particularly oil. Under a low oil-price scenario, the market outlook for synthetic gases is not promising, but higher oil prices would encourage coal gasification.

Olsen, D.L.; Trexel, C.A.; Teater, N.R.

1982-05-01T23:59:59.000Z

165

Solar-MEC development program. Project 9103 third quarter progress report, March 1--May 31, 1978. [Desiccant wheel and regenerative heat exchange wheel performance  

DOE Green Energy (OSTI)

During the third quarter of the Solar-MEC program, work continued on developing the computer model simulating the desiccant wheel behavior (Task 1) and assessing the performance of the regenerative heat exchange wheel (Task 3). This report specifically presents the results obtained using the computer model as an analytical tool to evaluate design and operating conditions to optimize the wheel's performance. It also contains evaluations of two different available heat transfer matrixes: the currently used aluminum honeycomb and a new product, a potentially less-expensive, corrugated aluminum material. The mathematical modeling and diagnostic evaluations and ways of improving the component and machine performance were identified and are described for both tasks.

Wurm, J.; Weil, S.A.; Zawacki, T.S.; Kinast, J.A.; Macriss, R.A.

1978-12-01T23:59:59.000Z

166

restructuring_mecs94  

U.S. Energy Information Administration (EIA) Indexed Site

Changing Energy Markets Affect Manufacturing Changing Energy Markets Affect Manufacturing (Reprint from Manufacturing Consumption of Energy 1994) blueball.gif (210 bytes) Natural Gas Markets blueball.gif (210 bytes) Impetus for Change blueball.gif (210 bytes) Change in the Natural Gas Market blueball.gif (210 bytes) Natural Gas Usage blueball.gif (210 bytes) Electricity Market blueball.gif (210 bytes) Impetus for Change blueball.gif (210 bytes) Change in the Electricity Market blueball.gif (210 bytes) Electricity Usage blueball.gif (210 bytes) How Electricity Restructuring Might Affect Manufacturing blueball.gif (210 bytes) Lessons From Natural Gas Restructuring blueball.gif (210 bytes) End Notes Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline.

167

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

About the RECS About the RECS RECS Survey Forms RECS Maps RECS Terminology Archived Reports State fact sheets Arizona household graph See state fact sheets › graph of U.S. electricity end use, as explained in the article text U.S. electricity sales have decreased in four of the past five years December 20, 2013 Gas furnace efficiency has large implications for residential natural gas use December 5, 2013 EIA publishes state fact sheets on residential energy consumption and characteristics August 19, 2013 All 48 related articles › Other End Use Surveys Commercial Buildings - CBECS Manufacturing - MECS Transportation About the RECS EIA administers the Residential Energy Consumption Survey (RECS) to a nationally representative sample of housing units. Specially trained interviewers collect energy characteristics on the housing unit, usage

168

Ethernet Topology Discovery: A Survey  

E-Print Network (OSTI)

Ethernet networks have undergone impressive growth since the past few decades. This growth can be appreciated in terms of the equipment, such as switches and links, that have been added, as well as in the number of users that it supports. In parallel to this expansion, over the past decade the networking research community has shown a growing interest in discovering and analyzing the Ethernet topology. Research in this area has concentrated on the theoretical analysis of Ethernet topology as well as developing tools and methods for mapping the network layout. These efforts have brought us to a crucial juncture for Ethernet topology measurement infrastructures: while, previously, these were both small (in terms of number of measurement points), we are starting to see the deployment of large-scale distributed systems composed of hundreds or thousands of monitors. As we look forward to this next generation of systems, we take stock of what has been achieved so far. In this survey, we discuss past and current mec...

Ahmat, Kamal

2009-01-01T23:59:59.000Z

169

Automated on-line determination of PPB levels of sodium and potassium in low-Btu coal gas and fluidized bed combustor exhaust by atomic emission spectrometry  

SciTech Connect

The Morgantown Energy Technology Center (METC), US Department of Energy, is involved in the development of processes and equipment for production of low-Btu gas from coal and for fluidized bed combustion of coal. The ultimate objective is large scale production of electricity using high temperature gas turbines. Such turbines, however, are susceptible to accelerated corrosion and self-destruction when relatively low concentrations of sodium and potassium are present in the driving gas streams. Knowledge and control of the concentrations of those elements, at part per billion levels, are critical to the success of both the gas cleanup procedures that are being investigated and the overall energy conversion processes. This presentation describes instrumentation and procedures developed at the Ames Laboratory for application to the problems outlined above and results that have been obtained so far at METC. The first Ames instruments, which feature an automated, dual channel flame atomic emission spectrometer, perform the sodium and potassium determinations simultaneously, repetitively, and automatically every two to three minutes by atomizing and exciting a fraction of the subject gas sample stream in either an oxyhydrogen flame or a nitrous oxide-acetylene flame. The analytical results are printed and can be transmitted simultaneously to a process control center.

Haas, W.J. Jr.; Eckels, D.E.; Kniseley, R.N.; Fassel, V.A.

1981-01-01T23:59:59.000Z

170

Survey Expectations  

E-Print Network (OSTI)

of Michigan and is known as the Michigan survey, with many other similar surveys conducted across OECD countries so as to provide up to date information on consumer expectations. Questions on expectations are also sometimes included in panel surveys... be formed, do of course make it possible to assess whether, or how far, such expectations are well-founded by comparing the experiences of individual households with their prior expectations. A key aspect of the Michigan survey, and of many other more recent...

Pesaran, M Hashem; Weale, Martin

2006-03-14T23:59:59.000Z

171

Survey Statisticians  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Statisticians Survey Statisticians The U.S.Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Survey Statistician, who measures the amounts of energy produced and consumed in the United States. Responsibilities: Survey Statisticians perform or participate in one or more of the following important functions: * Design energy surveys by writing questions, creating layouts and testing questions for clarity and accuracy. * Conduct energy surveys to include sending out and tracking survey responses, editing and analyzing data submis- sions and communicating with respondents to verify data.

172

Digital Surveying Directional Surveying Specialists | Open Energy  

Open Energy Info (EERE)

Digital Surveying Directional Surveying Specialists Digital Surveying Directional Surveying Specialists Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Digital Surveying Directional Surveying Specialists Author Directional Surveying Specialists Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Digital Surveying Directional Surveying Specialists Citation Directional Surveying Specialists. Digital Surveying Directional Surveying Specialists [Internet]. 2012. [cited 2013/10/08]. Available from: http://www.digitalsurveying.co.za/services/geophysical-borehole-surveying/overview/optical-televiewer/ Retrieved from "http://en.openei.org/w/index.php?title=Digital_Surveying_Directional_Surveying_Specialists&oldid=690244"

173

SCO Survey  

Science Conference Proceedings (OSTI)

Survey on Future of NIST's Standards Information Services. June 5, 2013. *. Bookmark and Share. Contact: Clare Allocca 301-975-4359. ...

2013-06-05T23:59:59.000Z

174

Survey Consumption  

Gasoline and Diesel Fuel Update (EIA)

fsidentoi fsidentoi Survey Consumption and 'Expenditures, April 1981 March 1982 Energy Information Administration Wasningtoa D '" N """"*"""*"Nlwr. . *'.;***** -. Mik>. I This publication is available from ihe your COr : 20585 Residential Energy Consumption Survey: Consum ption and Expendi tures, April 1981 Through March 1982 Part 2: Regional Data Prepared by: Bruce Egan This report was prepared by the Energy Information Administra tion, the independent statistical

175

Climate Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Employee Operations Employee Climate Survey March 2009 Acknowledgements The Berkeley Lab Survey Team consisted of the following: Jim Krupnick, Sponsor Vera Potapenko, Project Lead Karen Ramorino, Project Manager Chris Paquette, MOR Associates Alexis Bywater, MOR Associates MOR Associates, an external consulting firm, acted as project manager for this effort, analyzing the data and preparing this report. MOR Associates specializes in continuous improve- ment, strategic thinking and leadership development. MOR Associates has conducted a number of large-scale surveys for organizations in higher education, including MIT, Stanford, the University of Chicago, and others. MOR Associates, Inc. 462 Main Street, Suite 300 Watertown, MA 02472 tel: 617.924.4501

176

VLBI surveys  

E-Print Network (OSTI)

Systematic surveys of astronomical objects often lead to discoveries, but always provide invaluable information for statistical studies of well-defined samples. They also promote follow-up investigations of individual objects or classes. Surveys using a yet unexplored observing wavelength, a novel technique or a new instrument are of special importance. Significantly improved observing parameters (e.g. sensitivity, angular resolution, monitoring capability) provide new insight into the morphological and physical properties of the objects studied. I give a brief overview of the important Very Long Baseline Interferometry (VLBI) imaging surveys conducted in the past. A list of surveys guides us through the developments up until the present days. I also attempt to show directions for the near future.

S. Frey

2006-11-08T23:59:59.000Z

177

JOM Salary Survey - TMS  

Science Conference Proceedings (OSTI)

JOM Salary Survey. This survey is currently closed. Please contact the author of this survey for further assistance. Javascript is required for this site to function, ...

178

2012 NERSC User Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Results 2012 User Survey Text 2012 NERSC User Survey Text The 2012 NERSC User Survey is closed. The following is the text of the survey. Section 1: Overall Satisfaction with...

179

Robotic Surveying  

SciTech Connect

ZAPATA ENGINEERING challenged our engineers and scientists, which included robotics expertise from Carnegie Mellon University, to design a solution to meet our client's requirements for rapid digital geophysical and radiological data collection of a munitions test range with no down-range personnel. A prime concern of the project was to minimize exposure of personnel to unexploded ordnance and radiation. The field season was limited by extreme heat, cold and snow. Geographical Information System (GIS) tools were used throughout this project to accurately define the limits of mapped areas, build a common mapping platform from various client products, track production progress, allocate resources and relate subsurface geophysical information to geographical features for use in rapidly reacquiring targets for investigation. We were hopeful that our platform could meet the proposed 35 acres per day, towing both a geophysical package and a radiological monitoring trailer. We held our breath and crossed our fingers as the autonomous Speedrower began to crawl across the playa lakebed. We met our proposed production rate, and we averaged just less than 50 acres per 12-hour day using the autonomous platform with a path tracking error of less than +/- 4 inches. Our project team mapped over 1,800 acres in an 8-week (4 days per week) timeframe. The expertise of our partner, Carnegie Mellon University, was recently demonstrated when their two autonomous vehicle entries finished second and third at the 2005 Defense Advanced Research Projects Agency (DARPA) Grand Challenge. 'The Grand Challenge program was established to help foster the development of autonomous vehicle technology that will some day help save the lives of Americans who are protecting our country on the battlefield', said DARPA Grand Challenge Program Manager, Ron Kurjanowicz. Our autonomous remote-controlled vehicle (ARCV) was a modified New Holland 2550 Speedrower retrofitted to allow the machine-actuated functions to be controlled by an onboard computer. The computer-controlled Speedrower was developed at Carnegie Mellon University to automate agricultural harvesting. Harvesting tasks require the vehicle to cover a field using minimally overlapping rows at slow speeds in a similar manner to geophysical data acquisition. The Speedrower had demonstrated its ability to perform as it had already logged hundreds of acres of autonomous harvesting. This project is the first use of autonomous robotic technology on a large-scale for geophysical surveying.

Suzy Cantor-McKinney; Michael Kruzic

2007-03-01T23:59:59.000Z

180

1998 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

8 User Survey Results 1998 User Survey Results Respondent Summary NERSC has completed its first user survey since its move to Lawrence Berkeley National Laboratory. The survey is...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Information Administration - Energy Efficiency-Table 5b. Consumption  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal.

182

Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8  

SciTech Connect

This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

Arora, J.L.; Tsaros, C.L.

1980-02-01T23:59:59.000Z

183

User_LaunchSurvey  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Completing Assigned Survey and Completing Assigned Survey © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Launching and Completing Assigned Survey Purpose The purpose of this job aid is to guide users through the step-by-step process of launching and completing assigned surveys. Task A. Launch and Complete Assigned Survey From the Home page, filter the To-Do List to show only Surveys. Hover over the course evaluation title. Click Open. 1 2 3 3 2 1 Launch and Complete Assigned Survey 6 Steps Task A SuccessFactors Learning v 6.4 User Job Aid Launching and Completing Assigned Survey © 2011 SuccessFactors, Inc. - 2 - SuccessFactors Learning Complete the survey by selecting the radio button for the appropriate rating

184

ORISE: Characterization surveys  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization surveys Characterization surveys An ORISE technicians performs a characterization survey The Oak Ridge Institute for Science and Education (ORISE) performs independent, objective characterization surveys to define the extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental aspect of all D&D projects, characterization surveys provide guidance to determine the best remediation procedures and are a cost-effective method of ensuring a site meets preliminary regulatory standards. ORISE designs characterization surveys using the data quality objectives process. This approach focuses on the particular objective of characterization, and ensures that only the data needed to address the characterization decisions are collected. Data collection efforts are

185

Manufacturing fuel-switching capability, 1988  

SciTech Connect

Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

1991-09-01T23:59:59.000Z

186

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Acronyms Acronyms List of Acronyms AEO Annual Energy Outlook LDV Light-duty vehicle AEO2013 Annual Energy Outlook 2013 LED Light emitting diode AEO20014 Annual Energy Outlook 2014 LNG Liquefied natural gas ATRA American Taxpayer Relief Act of 2012 LPG Liquefied petroleum gases bbl Barrels LRG Liquefied refinery gases Btu British thermal units MATS Mercury and Air Toxics Standards CAFE Corporate Average Fuel Economy MECS Manufacturing Energy Consumption Survey CAIR Clean Air Interstate Rule MMbbl/d Million barrels per day CO2 Carbon dioxide MMBtu Million Btu CTL Coal-to-liquids MMst Million short tons DOE U.S. Department of Energy NEMS National Energy Modeling System E85 Motor fuel containing up to 85% ethanol NGL Natural gas liquids

187

INFRASTRUCTURE SURVEY 2011  

E-Print Network (OSTI)

10 Appendices Appendix 1. Glossary of Terminology and Definitions 11 Appendix 2. Survey Definitions. There is a Glossary of Terminology and Definitions (Appendix 1). The survey form is Appendix 3 of this Report

188

Environmental Survey preliminary report  

SciTech Connect

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Sandia National Laboratories conducted August 17 through September 4, 1987. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Sandia National Laboratories-Albuquerque (SNLA). The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at SNLA, and interviews with site personnel. 85 refs., 49 figs., 48 tabs.

Not Available

1988-04-01T23:59:59.000Z

189

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Smith, H E

2002-01-01T23:59:59.000Z

190

Infrared Surveys for AGN  

E-Print Network (OSTI)

From the earliest extragalactic infrared studies AGN have shown themselves to be strong infrared sources and IR surveys have revealed new populations of AGN. I briefly review current motivations for AGN surveys in the infrared and results from previous IR surveys. The Luminous Infrared Galaxies, which in some cases house dust-enshrouded AGN, submillimeter surveys, and recent studies of the cosmic x-ray and infrared backgrounds suggest that there is a population of highly-obscured AGN at high redshift. ISO Surveys have begun to resolve the infrared background and may have detected this obscured AGN population. New infrared surveys, particularly the SIRTF Wide-area Infrared Extragalactic Legacy Survey (SWIRE), will detect this population and provide a platform for understanding the evolution of AGN, Starbursts and passively evolving galaxies in the context of large-scale structure and environment.

Harding E. Smith

2002-03-06T23:59:59.000Z

191

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 C3. Consumption and Gross Energy Intensity for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) per Worker (million Btu) All Buildings* ............................... 4,645 64,783 13.9 5,820 1,253 89.8 79.9 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 672 263 98.9 67.6 5,001 to 10,000 .............................. 889 6,585 7.4 516 580 78.3 68.7 10,001 to 25,000 ............................ 738 11,535 15.6 776 1,052 67.3 72.0 25,001 to 50,000 ............................ 241 8,668 35.9 673 2,790 77.6 75.8

192

Berkeley Lab Postdoc Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Founded in 1983, MOR Associates has led dozens of major survey efforts on behalf of higher education, such as UC Berkeley, MIT, Stanford University, University of Washington,...

193

ORISE: Characterization surveys  

NLE Websites -- All DOE Office Websites (Extended Search)

extent of radiological contamination at sites scheduled for decontamination and decommissioning (D&D). A fundamental aspect of all D&D projects, characterization surveys provide...

194

The Dark Energy Survey  

Science Conference Proceedings (OSTI)

A new proposed optical?near infrared survey of 5000 square degrees of the South Galactic Cap is presented. To perform it

E. Sánchez; Dark Energy Survey Collaboration

2006-01-01T23:59:59.000Z

195

DOE/EIA-0304 Survey of Large Combustors:  

U.S. Energy Information Administration (EIA) Indexed Site

consumption in the United States has been approximated at 25 to 26 quadrillion British thermal units (Btu).- Manufacturin g is by far the largest components totaling 12.9...

196

SURVEY OF THE LITERATURE ON THE CARBON-HYDROGEN SYSTEM  

E-Print Network (OSTI)

Kinetics of Carbon Gasifications," Ind. and Eng. Chern. , ~,Kinetics of Carbon Gasification," Ind. and Eng. Chern. ! I,for cheap BTU gases by gasification of the car150ns with a

Krakowski, R.A.

2010-01-01T23:59:59.000Z

197

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network (OSTI)

REMOTE SENSING IN GEOLOGICAL SURVEY OF BRAZIL August/2010 Mônica Mazzini Perrotta Remote Sensing Division Head #12;SUMMARY The Geological Survey of Brazil mission The Remote Sensing Division Main remote, Paleontology, Remote Sensing Director of Hydrology and Land Management But Remote Sensing Division gives

198

Utility Baghouse Survey 2009  

Science Conference Proceedings (OSTI)

EPRI conducted comprehensive surveys of utility baghouse installations in 1981, 1991, and 2005 to summarize the state of the technology. The current survey focuses on nine selected pulse-jet baghouses to provide a better understanding of the design, performance, and operation of recent installations.

2009-12-14T23:59:59.000Z

199

NASA Customer Satisfaction Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Satisfaction Survey Customer Satisfaction Survey NASA's Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) would like to encourage you to participate in the NASA ESDIS 2013 American Customer Satisfaction Survey. The ORNL DAAC is one of twelve data centers sponsored by NASA's Earth Science Data and Information System (ESDIS) project. The ESDIS project uses the results of this survey to evaluate our success and to determine where improvements are needed. Invitations will be sent to you, our users, from CFI Group [CFI Group on behalf of NASA (NASA@jangomail.com)] during the week of August 20, 2013. Each invitation will reference us as "ORNL DAAC / FLUXNET", and contain a unique secure link to this Web-based anonymous survey. We encourage you to participate!

200

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar energy industry survey  

SciTech Connect

This report describes the results of a survey of companies in the solar energy industry. The general objective of the survey was to provide information to help evaluate the effectiveness of technology transfer mechanisms for the development of the solar industry. The specific objectives of the survey included: (1) determination of the needs of the solar industry; (2) identification of special concerns of the solar industry; and (3) determination of the types of technology transfer mechanisms that would be most helpful to the solar industry in addressing these needs and concerns. The major focus was on technical problems and developments, but institutional and marketing considerations were also treated. The majority of the sample was devoted to the solar heating and cooling (SHAC) component of the industry. However, a small number of photovoltaic (PV), wind, and power generation system manufacturers were also surveyed. Part I discusses the methodology used in the selection, performance, and data reduction stages of the survey, comments on the nature of the responses, and describes the conclusions drawn from the survey. The latter include both general conclusions concerning the entire solar industry, and specific conclusions concerning component groups, such as manufacturers, architects, installers, or dealers. Part II consists of tabulated responses and non-attributed verbatim comments that summarize and illustrate the survey results.

1979-08-06T23:59:59.000Z

202

Consumption & Efficiency - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, manufacturing, and transportation. Coal. ... New 2010 Manufacturing Energy Consumption Survey (MECS) ...

203

Generalized survey propagation  

Science Conference Proceedings (OSTI)

Survey propagation (SP) has recently been discovered as an efficient algorithm in solving classes of hard constraint-satisfaction problems (CSP). Powerful as it is, SP is still a heuristic algorithm, and further understanding its algorithmic nature, ...

Ronghui Tu / Yongyi Mao, Jiying Zhao

2011-01-01T23:59:59.000Z

204

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

n tal Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope oc:c:urs, Project Lead must submit a new NEPA Compliance Survey and contact the Technical...

205

Site Energy Surveys  

E-Print Network (OSTI)

Operating improvements and selected investments have already improved US refining and petrochemical energy utilization efficiency by about 20%, compared to 1972 operating efficiencies. This is equivalent to saving well over 250,000 B/D of crude; which is equal to the output of several major synthetic fuels projects! Site Energy Surveys can be an important technique for achieving the next major increment (1520%) in energy savings, even when using existing technology. These surveys encompass the total site, all associated plants, and investigate all aspects of energy requirements, heat integration configurations, steam/power cogeneration possibilities and inefficient practices. After potential energy conservation opportunities have been identified, screening is conducted to develop their economic attractiveness. This presentation reviews factors leading to the need for Site Energy Surveys, the objectives for conducting surveys, the approach utilized, considerations given to values of energy and concludes with overall improvements achieved.

Lockett, W., Jr.; Guide, J. J.

1981-01-01T23:59:59.000Z

206

Evaluating Our Instruction: Surveys  

E-Print Network (OSTI)

you put in; and as the grandest mill in the world will not extract wheat flour from peascod, so pagesEvaluating Our Instruction: Surveys Mathematics may be compared to a mill of exquisite workmanship

Maryland at College Park, University of

207

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C13. Total Electricity Consumption and Expenditures for Non-Mall Buildings, 2003 All Buildings* Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Primary Site Total (million dollars) Total (trillion Btu) Total (trillion Btu) Total (billion kWh) All Buildings* ............................... 4,404 63,307 14.4 9,168 3,037 890 69,032 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,384 6,346 2.7 1,164 386 113 10,348 5,001 to 10,000 .............................. 834 6,197 7.4 790 262 77 7,296 10,001 to 25,000 ............................ 727 11,370 15.6 1,229 407 119 10,001

208

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 8A. District Heat Consumption and Expenditure Intensities for All Buildings, 2003 District Heat Consumption District Heat Expenditures per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings ................................ 9,470 113.98 108.4 1.31 11.45 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ Q Q Q Q Q 25,001 to 50,000 ............................ Q Q Q Q Q 50,001 to 100,000 .......................... Q Q Q Q Q 100,001 to 200,000 ........................ 17,452 118.10 Q Q Q

209

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 C3A. Consumption and Gross Energy Intensity for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Consumption Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) All Buildings ................................ 4,859 71,658 14.7 6,523 1,342 91.0 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 685 265 99.0 5,001 to 10,000 .............................. 948 7,033 7.4 563 594 80.0 10,001 to 25,000 ............................ 810 12,659 15.6 899 1,110 71.0 25,001 to 50,000 ............................ 261 9,382 36.0 742 2,843 79.0

210

Operations Improvement Surveys  

E-Print Network (OSTI)

Exxon Chemical Company developed unique site-wide energy optimization technology in the mid1970's. This technology was applied by means of site energy surveys which were carried out at every major Exxon facility throughout the world during the 1976-1981 timeframe. The first 20% of energy savings, versus the 1972 reference, had already been captured or was in progress via conventional energy conservation methods. The site energy surveys identified attractive investments to save a second 20% of energy use. In early 1982, Exxon Corp. started to apply this same technology to its major facilities to define attractive NO INVESTMENT and LOW INVESTMENT operational improvement savings which could be implemented quickly. This presentation covers Exxon's approach to site energy optimization and the Operations Improvement Survey Program. The Program has identified at many sites, an average of 5% reduction in today's energy costs at No/Low investment plus additional savings in the feedstock and energy supply areas.

Guide, J. J.; O'Brien, W. J.

1984-01-01T23:59:59.000Z

211

AERIAL RADIOLOGICAL SURVEYS  

SciTech Connect

Measuring terrestrial gamma radiation from airborne platforms has proved to be a useful method for characterizing radiation levels over large areas. Over 300 aerial radiological surveys have been carried out over the past 25 years including U.S. Department of Energy (DOE) sites, commercial nuclear power plants, Formerly Utilized Sites Remedial Action Program/Uranium Mine Tailing Remedial Action Program (FUSRAP/UMTRAP) sites, nuclear weapons test sites, contaminated industrial areas, and nuclear accident sites. This paper describes the aerial measurement technology currently in use by the Remote Sensing Laboratory (RSL) for routine environmental surveys and emergency response activities. Equipment, data-collection and -analysis methods, and examples of survey results are described.

Proctor, A.E.

1997-06-09T23:59:59.000Z

212

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Range Management Survey Date: Range Management Survey Date: 12/6/10 DOE Code: 6730.020.0000 Contractor 8067-788 Code: Project Lead: I Anthony Bowler Project Overview We will use a backhoe to get samples for our range management survey. At each site. one or 1. Brief project descnptlon [include anything that two holes will be excavated, and the samples will be taken from 0-1' and 1-2' deep. After could 1mpad the environment] excavating and the samples taken. the remaining soli Will be replaced and tamped back into 2. Legal location place. 3. Duratfon of tile project See attached NPR-3 Maps for preliminary locations : N~ area well 6-A-2\ NVV SW Section 21 . 4. Major equipment to be used f Township 39N, Range 78E) Middle area well 48-1 -Sh (SE SW 34 Township 39N, Range 4 WU-LSIT£5

213

Wireless sensor network survey  

Science Conference Proceedings (OSTI)

A wireless sensor network (WSN) has important applications such as remote environmental monitoring and target tracking. This has been enabled by the availability, particularly in recent years, of sensors that are smaller, cheaper, and intelligent. These ... Keywords: Protocols, Sensor network deployment, Sensor network services, Survey, Wireless sensor network

Jennifer Yick; Biswanath Mukherjee; Dipak Ghosal

2008-08-01T23:59:59.000Z

214

Neural Network Based Approaches, Solving Haplotype Reconstruction in MEC and MEC/GI Models  

Science Conference Proceedings (OSTI)

SNPs (Single Nucleotide Polymorphism) are different variant positions (1% of DNA sequence) of human genomes which their mutation is associated with complex genetic diseases. As a consequence, obtaining all SNPs from human populations is one of the primary ... Keywords: Bioinformatics, biology and genomics, haplotype reconstruction, SNP fragments, clustering, genotype information, haplotype, reconstruction rate, unsupervised neural network

M-Hossein Moeinzadeh; Ehsan Asgarian; Sara Sharifian-R; Amir Najafi-Ardabili; Javad Mohammadzadeh

2008-05-01T23:59:59.000Z

215

2010 Federal Employee Viewpoint Survey  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Employee Viewpoint Survey Federal Employee Viewpoint Survey Page 1 of 20 ________________________________________________________________________________________________________________________________________________________________________________________________________________ Department of Energy 2010 Federal Employee Viewpoint Survey: Trend Report (2006 and 2008 results have been recalculated to exclude Do Not Know/No Basis to Judge responses) Response Summary Surveys Completed 2010 Governmentwide 263,475 2010 Department of Energy 6,648 2008 Department of Energy 6,093 2006 Department of Energy 7,742 This 2010 Federal Employee Viewpoint Survey Report provides summary results for your department or agency. The results include Positive, Neutral, and Negative response percentages for each survey item. For each of the

216

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

217

Sloan digital sky survey  

SciTech Connect

The Sloan Digital Sky Survey will produce a detailed digital photometric map of half the northern sky to about 23 magnitude using a special purpose wide field 2.5 meter telescope. From this map we will select {approximately} 10{sup 6} galaxies and 10{sup 5} quasars, and obtain high resolution spectra using the same telescope. The imaging catalog will contain 10{sup 8} galaxies, a similar number of stars, and 10{sup 6} quasar candidates.

Kent, S.M.; Stoughton, C.; Newberg, H.; Loveday, J.; Petravick, D.; Gurbani, V.; Berman, E.; Sergey, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Lupton, R. [Princeton Univ., NJ (United States)

1994-04-01T23:59:59.000Z

218

Magma Source Location Survey  

DOE Green Energy (OSTI)

A survey of Industry/University geophysicists was conducted to obtain their opinions on the existence of shallow (less than 10 km from surface) magma bodies in the western conterminous United States and methods for locating and defining them. Inputs from 35 individuals were received and are included. Responses were that shallow magma bodies exist and that existing geophysical sensing systems are adequate to locate them.

Hardee, H.C.; Dunn, J.C.; Colp, J.L.

1982-03-01T23:59:59.000Z

219

Survey of solar homeowners  

SciTech Connect

Some key results are presented of a national mail survey of 3800 solar homeowners. The solar owners expressed their perceptions about performance, cost, problem areas, and their own motivations and degree of satisfaction. Various types of residential solar installations are represented, including active and passive water heating, space heating, and wind energy systems. After each question put to the respondents, the breakdown of answers is listed and a brief interpretation of the findings is presented. (LEW)

1981-09-01T23:59:59.000Z

220

2006 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

6 User Survey Results 6 User Survey Results Show All | 1 2 3 4 5 ... 15 | Next » 2006 User Survey Results Table of Contents Survey Results Users are invited to provide overall comments about NERSC: Here are the survey results: Respondent Demographics Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness Ratings All Usefulness Topics Hardware Resources Software Visualization and Data Analysis HPC Consulting Services and Communications Web Interfaces Training Comments about NERSC Survey Results Many thanks to the 256 users who responded to this year's User Survey. This represents a response rate of about 13 percent of the active NERSC users. The respondents represent all six DOE Science Offices and a variety of home institutions: see Respondent Demographics. The survey responses provide feedback about every aspect of NERSC's

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Definition: Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Jump to: navigation, search Dictionary.png Airborne Gravity Survey Airborne gravity gradiometry (AGG) surveys provide information regarding the mass distribution of the...

222

2010 State Laboratory Program Workload Survey  

Science Conference Proceedings (OSTI)

Page 1. 2010 State Laboratory Program Workload Survey 2010 SLP Survey v.1.00 August 17, 2011 Page 2. SLP Survey 2010 - Page 2 of 122 ...

2011-08-24T23:59:59.000Z

223

ENERGY CONSUMPTION SURVEY  

U.S. Energy Information Administration (EIA) Indexed Site

5 RESIDENTIAL TRANSPORTATION 5 RESIDENTIAL TRANSPORTATION ENERGY CONSUMPTION SURVEY Prepared for: UNITED STATES DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION OFFICE OF ENERGY MARKETS AND END USE ENERGY END USE DIVISION RESIDENTIAL AND COMMERCIAL BRANCH WASHINGTON, DC 20585 Prepared by: THE ORKAND CORPORATION 8484 GEORGIA AVENUE SILVER SPRING, MD 20910 October 1986 Contract Number DE-AC01-84EI19658 TABLE OF CONTENTS FRONT MATTER Index to Program Descriptions........................................... vi List of Exhibits ....................................................... viii Acronyms and Abbreviations ............................................. ix SECTION 1: GENERAL INFORMATION ........................................ 1-1 1.1. Summary ....................................................... 1-1

224

Laundered protective clothing survey  

SciTech Connect

It is considered appropriate occasionally to make independent checks on the effectiveness of the plant laundry in removing radioactive contamination from plant-issue protective clothing. Previous surveys have offered constructive criticism resulting in improved handling of high level and soft beta contaminated clothing and incorporation in new designs of ventilating and air sampling recommendations. Recurrently the adequacy of laundry reject limits is questioned, and only recently an accurate, special study resulted in relaxed limits for Metal Preparation area clothing. A current question concerns the advisability of determining the reject level on the beta-gamma monitor more frequently than once a day. 2 tabs.

Clukey, H.V.

1952-10-15T23:59:59.000Z

225

Survey of solar thermal energy storage subsystems for thermal/electric applications  

SciTech Connect

A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

Segaser, C. L.

1978-08-01T23:59:59.000Z

226

Derived Annual Estimates - Table 4.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

227

Derived Annual Estimates - Table 7.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

228

Derived Annual Estimates - Table 5.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

229

Derived Annual Estimates - Table 9.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

230

Derived Annual Estimates - Table 2.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

231

Derived Annual Estimates - Table 3.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

232

Derived Annual Estimates - Table 6.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

233

Derived Annual Estimates - Table 1.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

234

Derived Annual Estimates - Table 8.  

U.S. Energy Information Administration (EIA) Indexed Site

Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures...

235

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

236

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA COMPLIANCE SURVEY NEPA COMPLIANCE SURVEY # 350 8 Revised 8/2/10 mjt Attachment 1 Written by Dan Smallwood Production Enhancement Project-5 T-2-34 to T-1-33 MIT all wells in this area to determine which are producing wells. There are 15 wells shut in this area because of no tank or shipping line. According to the old test sheet these wells make 24bbls oil and 120bbls of water. Two of these wells have leaks in the flow lines that will be fixed. One is 33-S-34 which could be run to 34-AX-34, about 400' .6 bbl/pd and the other is 35 shx 34 which could be run to 35-AX-34 which is about 200'.5bbl/pd. 42-AX-34 could be ran to 32-AX-34 and then to 33-SX-34 to 34-AX-34. There are two manifolds at T-2-34, one with 10 wells and the other with 12. None of the flow lines have valves or checks in the lines. I propose we flush, disconnect, and plug all wells that

237

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Project Information Project Title: Survey Centralizer Design Date: 2-10-2010 DOE Code: 6730.020.71091 Contractor Code: 8067-762 Project Lead: Frank Ingham Project Overview 1. What are the environmental No environmental impacts. impacts? Run a logging tool through existing wells at : 2. What is the /ega/location? 67-LBT-3, SW SE sec 3, T38N , R78W 86-1 -X-10 , NE SE Sec 10, T38N , R78W 3. What is the duration of the project? 22-2-X-10H , NW NW Sec 10, T38N , R78W 4. What major equipment will be used if any (work over rig , drilling rig, 4 Days etc.)? Stinger truck or crane . The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

238

2005 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

5 User Survey Results 5 User Survey Results Show All | 1 2 3 4 5 ... 10 | Next » 2005 User Survey Results Table of Contents Response Summary Respondent Demographics All Satisfaction, Importance and Usefulness Ratings Hardware Resources Software Visualization and Data Analysis Services and Communications Web Interfaces Training Comments about NERSC Response Summary Many thanks to the 201 users who responded to this year's User Survey. The respondents represent all six DOE Science Offices and a variety of home institutions: see Respondent Demographics. The survey responses provide feedback about every aspect of NERSC's operation, help us judge the quality of our services, give DOE information on how well NERSC is doing, and point us to areas we can improve. The survey results are listed below.

239

2000 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

0 User Survey Results 0 User Survey Results Show All | 1 2 3 4 5 ... 10 | Next » 2000 User Survey Results Table of Contents Response Summary User Information Overall Satisfaction and Importance All Satisfaction Questions and FY 1999 to FY 2000 Changes Consulting and Account Support Web and Communications Hardware Resources Software Resources Training User Comments Response Summary NERSC extends its thanks to all the users who participated in this year's survey. Your responses provide feedback about every aspect of NERSC's operation, help us judge the quality of our services, give DOE information on how well NERSC is doing, and point us to areas we can improve. Every year we institute changes based on the survey; the FY 1999 survey resulted in the following changes: We created a long-running queue (12 hours maximum) for jobs using up

240

2002 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2 User Survey Results 2 User Survey Results Show All | 1 2 3 4 5 ... 11 | Next » 2002 User Survey Results Table of Contents Response Summary User Information Overall Satisfaction and Importance All Satisfaction Questions and Changes from Previous Years Visualization and Grid Computing Web, NIM, and Communications Hardware Resources Software Training User Services Comments about NERSC Response Summary Many thanks to the 300 users who responded to this year's User Survey -- this represents the highest response level in the five years we have conducted the survey. The respondents represent all five DOE Science Offices and a variety of home institutions: see User Information. You can see the FY 2002 User Survey text, in which users rated us on a 7-point satisfaction scale. Some areas were also rated on a 3-point

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Project lnfonnation Project Title: Change out down guy on power pole Date: 2-8-10 DOE Code : Contractor Code: Project Lead: Mike Preston Project Overview 1 What are the environmental No impact to the environment impacts? Power pole east of B-1 -33 2. What is the legal location? 3. What is the duration of the project? 3Hr 4. What major equipment will be used if any (worl< over rig, drilling rig, Backhoe and operator for equ1 pment etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE; If ChiingSurvey alld contact Ut TlrCh.,lcal Assunlnce DepartmenL Impacts If YES, then complete below

242

Fermilab Prairie Plant Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Crack the Quadrat* Code! Crack the Quadrat* Code! compass plasnt * What is a Quadrat? It's a one-meter square plot. Plants in the quadrat are identified and counted. Fermilab quadrat specialists can! Attention Citizen Scientists Are you a prairie enthusiast? Learn scientific plant monitoring techniques while enjoying our beautiful prairie. Join a unique science program open to the public, adult groups, families, scouts and more Â…. Become a prairie quadrat specialist and do real science at Fermilab! In the Fermilab Prairie Plant Survey you will learn how to identify prairie plants, map a prairie plot and track restoration progress along with our experts. Use our Website to contribute data you collect. Come once or come back two or three times to see how the prairie changes. Keep an eye on this prairie for years to come!

243

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Project lnfonnation Project Title: New Drilling Location in Section 29 Date: 12-10-2009 DOE Code: 6730.020.78002 Contractor Code: 8067-371 Project Lead: Mark Duletsky Project Overview The project will involve excavating 3-4 backhoe pits to a depth of about 8 feet to observe soil characteristics 1. What are the environmental impacts? in the vicinity of our planned reserve pit excavation area. 2. What is the legal location? NE 1/4, SE 1/4, Sec. 29. T39N. R78W. Natrona County, Wyoming 3. What is the duration of the project? 4. What major equipment will be used 1 day if any (work over rig, drilling rig, etc.)? Backhoe The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

244

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Project lnfonnation Project Title: C-EAG. Maintenance I grading of existing roads Date: 8/4/2011 and road drainages (barrow ditches): ex 81.3 DOE Code: Contractor Code: Project Lead: Michael J. Taylor [NCO] Project Overview 1. Brief project description [include C-EA 6. Maintenance I grading of existing roads and road drai nages anything that could impact the (barrow ditches) : ex 81.3 environment] Existing roads defined as per May 2010 Aerial Photos. (Changing out culverts, grading I modifying embankments, etc., that has potential to impact wetlands, requires a NCS.) The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

245

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Project lnfonnation Project Title: Restoration of 77 -13-SX-3 Date: 2-8-1 0 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview We will be restoring 77-SX-3 per procedure. 1. What are the environmental impacts? The duration of this project will be 3-4 days. 2. What is the leg al location? 3. What is the duration of the project? The equipment to be used will be Backhoe, welder, tiller dump truck. 4. What major equipment will be used if any (work over rig , drilling rig , We will take oil contaminated dirt to the Eastside landfarm and backfill with d ean fill dirt from sec. 20. etc.)? The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

246

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Project lnfonnation Project Title: e-EA5. Reclamation of well sites Date: 8/4/2011 DOE Code: Contractor Code: Project Lead: Michael J. Taylor [NCO] Project Overview e-EA 5. Reclamation of wellsites : ex 81.3 and ex 86.1 1. Brief project description [include anything that could impact the Small-scale, short-term cleanup actions including excavation and environment] consolidation of contaminated soils, removal of underground piping, removal of rig anchors or T-bars, drainage control , transport and backfilling of clean soil I fill dirt, and reseeding . The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

247

SURVEY OF FALLOUT OPERATIONS  

SciTech Connect

A survey was made of fall-out operations in the various countries of the world, These operations are outlined by country. The source of information has largely been the reports submitted to UNSCEAR forwarding data for their consideration. In addition, some material has been received directly in exchange for HASL Quarterlies and other publications of the Laboratory. In many cases, responsible scientists from the country concerned have reviewed the sheets and have made corrections. All of the programs that are shown have been and are subject to modification as time goes on, thus, the data indicate the status of the program as of 1961. No attempt has been made to list re search projects or special fall-out measurements and only programs of a continuing nature have been covered. (auth)

1962-07-01T23:59:59.000Z

248

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Project l nfonnation Project Title: Reclamation ofT-2-14 Date: 11/2412009 DOE Code: Contractor Code: Project Lead: Jeff Jones Project Overview We will be removing old piping from the treater@ T-2-14. We will also remove the berm and grade and 1. What are the environmental impacts? reclamate location. The duration of this project will be approx. 2 days. Equipment that will be used is as follows backhoe. dumptruck, blade,and a tiller so we can seed with native grasses. 2. What is the legal location? 3. What is the duration of the project? 4. What major equipment will be used if any (woO< over rig, drilling rig, etc.)? The table below Is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

249

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 0 Project lnfonnation Project Title: Replace electrical line from well to power pole Date: 3/10/2010 DOE Code: Contractor Code: Project Lead: Mike Preston Project Overview No impact to the environment. 1. What are the environmental impacts? Dig up old electrical line from pumping unit on 61-S-34 to power pole east of well , {approximately 75 feet 2. What is the legal location? from unit) and replace with new line. 3. What is the duration of the project? 4. What major equipment will be used 1 day if any (work over rig , drilling rig , etc.)? Electrician, ditch witch and operator for equipment The table below is to be completed by the Project Lead and reviewed by the Environmental Specialist and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey and

250

2001 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey ... Office of Management and Budget, Washington, DC 20503. Form EIA-457A (2001) Form Approval: OMB No. 1905-0092 ...

251

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997  

U.S. Energy Information Administration (EIA)

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997. OVERVIEW: MOST POPULOUS STATES ... Homes with air-conditioning: 95%... with a central air-conditioning system: 83%

252

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings* ............................. 1,488 2,794 1,539 17,685 29,205 17,893 84.1 95.7 86.0 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 191 290 190 2,146 2,805 1,838 89.1 103.5 103.5 5,001 to 10,000 ............................ 131 231 154 1,972 2,917 1,696 66.2 79.2 91.0 10,001 to 25,000 .......................... 235 351 191 3,213 4,976 3,346 73.1 70.5 57.0

253

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 C8. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings* ............................... 436 1,064 309 5,485 12,258 3,393 79.5 86.8 91.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 116 36 922 1,207 538 64.9 96.5 67.8 5,001 to 10,000 .............................. 44 103 Q 722 1,387 393 60.5 74.0 Q

254

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings* ............................. 1,188 2,208 2,425 13,374 29,260 22,149 88.8 75.5 109.5 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7

255

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 . Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for Non-Mall Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings* ............................... 575 381 530 7,837 3,675 7,635 73.4 103.8 69.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 464 871 110.9 94.7 73.0 5,001 to 10,000 .............................. 60 36 76 879 418 820 68.2 86.7 92.9 10,001 to 25,000 ............................ 53 76 73 1,329 831 1,256 40.2 91.7 58.4

256

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Table C8A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 2 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West North Central South Atlantic East South Central West North Central South Atlantic East South Central West North Central South Atlantic East South Central All Buildings ................................ 456 1,241 340 5,680 13,999 3,719 80.2 88.7 91.4 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 60 123 37 922 1,283 547 64.9 96.2 67.6 5,001 to 10,000 .............................. 45 111 27 738 1,468 420 61.6 75.4 63.2

257

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................. 1,271 1,690 1,948 911 12,905 17,080 23,489 11,310 98.5 98.9 82.9 80.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 118 206 240 108 1,025 1,895 2,533 1,336 115.1 108.5 94.9 80.6 5,001 to 10,000 ............................ 102 117 185 112 1,123 1,565 2,658 1,239 90.7 74.7 69.5 90.8

258

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 3 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) West South Central Moun- tain Pacific West South Central Moun- tain Pacific West South Central Moun- tain Pacific All Buildings ................................ 684 446 617 9,022 4,207 8,613 75.8 106.1 71.6 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 87 44 64 788 466 871 110.9 94.8 73.0 5,001 to 10,000 .............................. 67 39 84 957 465 878 69.7 84.8 95.1 10,001 to 25,000 ............................ 77 91 89 1,555 933 1,429 49.4 97.2 62.4

259

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 C7A. Consumption and Gross Energy Intensity by Census Division for Sum of Major Fuels for All Buildings, 2003: Part 1 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) New England Middle Atlantic East North Central New England Middle Atlantic East North Central New England Middle Atlantic East North Central All Buildings ................................ 345 1,052 1,343 3,452 10,543 12,424 99.8 99.7 108.1 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 37 86 147 383 676 986 95.9 127.9 148.9 5,001 to 10,000 .............................. 39 68 83 369 800 939 106.0 85.4 88.2 10,001 to 25,000 ............................ Q 121 187 674 1,448 2,113 Q 83.4 88.4

260

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/square foot) 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 1959 or Before 1960 to 1989 1990 to 2003 All Buildings ............................... 1,522 3,228 1,772 18,031 33,384 20,243 84.4 96.7 87.6 Building Floorspace (Square Feet) 1,001 to 5,000 .............................. 193 300 193 2,168 2,904 1,850 89.0 103.2 104.2 5,001 to 10,000 ............................ 134 263 165 2,032 3,217 1,784 66.0 81.9 92.5 10,001 to 25,000 .......................... 241 432 226 3,273 5,679 3,707 73.6 76.1 60.9

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings ............................ 1,086 1,929 1,243 1,386 879 11,529 18,808 12,503 17,630 11,189 94.2 102.6 99.4 78.6 78.6 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

262

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 A. Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet 1,001 to 10,000 Square Feet 10,001 to 100,000 Square Feet Over 100,000 Square Feet All Buildings ............................... 1,248 2,553 2,721 13,955 32,332 25,371 89.4 79.0 107.3 Principal Building Activity Education ...................................... 63 423 334 808 5,378 3,687 78.3 78.6 90.7 Food Sales ................................... 144 Q Q 765 467 Q 188.5 Q Q

263

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 0. Consumption and Gross Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 All Buildings* ........................... 990 1,761 1,134 1,213 724 10,622 17,335 11,504 15,739 9,584 93.2 101.6 98.5 77.0 75.5 Building Floorspace (Square Feet) 1,001 to 5,000 ............................ 143 187 90 170 95 1,313 1,709 1,010 1,915 975 108.7 109.6 88.8 89.0 97.9 5,001 to 10,000 .......................... 110 137 91 156 69 1,248 1,725 1,077 2,024 959 88.1 79.3 84.6 77.1 71.7

264

Radiological Habits Survey: Bradwell, 2007  

E-Print Network (OSTI)

.2 Comparisons with previous surveys 55 Table A Comparison between 1999 and 2007 aquatic internal exposure 56 3. METHODS FOR DATA ANALYSIS 19 3.1 Data recording 19 3.2 Data analysis 21 4. AQUATIC RADIATION RADIATION PATHWAYS 41 5.1 Terrestrial survey area 41 5.2 Unusual pathways 42 5.3 Retailers 43 5.4 Food

265

Radiological Habits Survey: Wylfa, 2004  

E-Print Network (OSTI)

.7 Internal exposure 28 4.8 External exposure 31 4.9 Water based activities 33 5. TERRESTRIAL RADIATION PATHWAYS 34 5.1 Terrestrial survey area 34 5.2 Wholesalers and retailers 36 5.3 Internal exposure 36 6 analysis 21 4. AQUATIC RADIATION PATHWAYS 23 4.1 Aquatic survey area 23 4.2 Commercial fisheries 25 4

266

Radiological Habits Survey: Winfrith, 2003  

E-Print Network (OSTI)

.7 Internal exposure 26 4.8 External exposure 30 4.9 Water based activities 31 5 TERRESTRIAL RADIATION exposure 37 6 DIRECT RADIATION PATHWAYS 40 6.1 Direct radiation survey area 40 6.2 Residential activities analysis 19 4 AQUATIC RADIATION PATHWAYS 21 4.1 Aquatic survey area 21 4.2 Commercial fisheries 23 4

267

Multidimensional Pattern Matching: A Survey  

E-Print Network (OSTI)

for this survey is the problem of searching aerial photographs. The (ambitious) practical goal of this applicationMultidimensional Pattern Matching: A Survey Amihood Amir \\Lambda GIT--CC--92/29 July 1992 Abstract is that of searching an aerial photograph for all ap­ pearances of some object. The issues we discuss are local errors

Amir, Amihood

268

Residential Energy Consumption Survey:  

Gasoline and Diesel Fuel Update (EIA)

E/EIA-0262/2 E/EIA-0262/2 Residential Energy Consumption Survey: 1978-1980 Consumption and Expenditures Part II: Regional Data May 1981 U.S. Department of Energy Energy Information Administration Assistant Administrator for Program Development Office of the Consumption Data System Residential and Commercial Data Systems Division -T8-aa * N uojssaooy 'SOS^-m (£03) ao£ 5925 'uofSfAfQ s^onpojj aa^ndmoo - aojAaag T BU T3gN am rcoj? aig^IT^^ '(adBx Q-naugBH) TOO/T8-JQ/30Q 30^703 OQ ' d jo :moaj ajqBfT^A^ 3J^ sjaodaa aAoqe aqa jo 's-TZTOO-eoo-Tgo 'ON ^ois odo 'g^zo-via/aoQ 'TBST Sujpjjng rXaAang uojidmnsuoo XSaaug sSu-ppjprig ON ^oo^s OdO '^/ZOZO-Via/aOQ *086T aunr '6L6I ?sn§ny og aunf ' jo suja^Bd uoj^dmnsuoo :XaAjng uo^^dmnsuoQ XSaaug OS '9$ '6-ieTOO- 00-T90 OdD 'S/ZOZO-Via/aOa C

269

NEPA COMPLIANCE SURVEY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. NEPA COMPLIANCE SURVEY Project lnfonnation Project Title: Reclamation of Pits and Boxes Date: Nov. 3, 2010 DOE Code: 6740.010.00000 Contractor Code: 8067-451 Project Lead: Anthony Bowler Project Overview Reclamation of QD.]y the following Pits and Boxes : 1. Brief project description [include 1. B-2-1 0 Skim Box anything that could impact the 2. B-1-14 Skim Box environment 3. Near66-1-STX-14 Pit 2. Legal location 4. T-5-10 Skim Box 3. Duration of the project 5. WDFUpperPit 6. WDFLowerPit 4. Major equipment to be used 7. WDFSkimBox 8. B-1-3 Pit 9. B-1 -3 Skim Box 10. T-2-34 Pit 11 . B-1-10 Pit 12. B-1 -10 Skim Box 13. SE of SG3 & Welding Shop Skim Box 14. 58.Q4-1-SX-3 Skim Box 15. Near Tank 126 Skim Box 16. 77-1-SX-3 NW of Well Pit 17. T-5-3 Pit

270

BOREAS Survey On-Line  

NLE Websites -- All DOE Office Websites (Extended Search)

FF33"> FF33"> BOREAS Survey On-Line To improve the BOREAS and BOREAS Follow-On data sets and to meet users' needs, we are conducting a survey. The BOREAS and BOREAS Follow-On data sets continue to be important products at the ORNL DAAC. To date we have provided over 8,000 data products from these projects to nearly 1,500 users. We invite you to fill out this survey, identifying any problems you had with the data and documentation or any difficulties you experienced in finding and acquiring the data sets. Information you provide will enable us to address problems that need attention. It will also help us determine which aspects of the BOREAS and BOREAS Follow-On information need to be expanded. You can complete the survey at the BOREAS Home Page. After you complete the on-line survey, submit your answers to the ORNL

271

2004 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

4 User Survey Results 4 User Survey Results Show All | 1 2 3 4 5 ... 13 | Next » 2004 User Survey Results Table of Contents Response Summary Respondent Demographics Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness Ratings Hardware Resources Software Security and One Time Passwords Visualization and Data Analysis HPC Consulting Services and Communications Web Interfaces Training Comments about NERSC Response Summary Many thanks to the 209 users who responded to this year's User Survey. The respondents represent all six DOE Science Offices and a variety of home institutions: see Respondent Demographics. The survey responses provide feedback about every aspect of NERSC's operation, help us judge the quality of our services, give DOE information on how well NERSC is doing, and point us to areas we can improve. The

272

1999 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 User Survey Results 9 User Survey Results Show All | 1 2 3 4 5 ... 11 | Next » 1999 User Survey Results Table of Contents Respondent Summary Overall Satisfaction User Information Visualization Consulting and Account Support Information Technology and Communication Hardware Resources Software Training Comments about NERSC All Satisfaction Questions and FY 1998 to FY 1999 Changes Respondent Summary NERSC would like to thank all the users who participated in this year's survey. Your responses provide feedback about every aspect of NERSC's operation, help us judge the quality of our services, give DOE information on how well NERSC is doing, point us to areas we can improve, and show how we compare to similar facilities. This year 177 users responded to our survey, compared with 138 last year.

273

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1997-Jan 01/10 3.79 01/17 4.19 01/24 2.98 01/31 2.91 1997-Feb 02/07 2.53 02/14 2.30 02/21 1.91 02/28 1.82 1997-Mar 03/07 1.86 03/14 1.96 03/21 1.91 03/28 1.84 1997-Apr 04/04 1.88 04/11 1.98 04/18 2.04 04/25 2.14 1997-May 05/02 2.15 05/09 2.29 05/16 2.22 05/23 2.22 05/30 2.28 1997-Jun 06/06 2.17 06/13 2.16 06/20 2.22 06/27 2.27 1997-Jul 07/04 2.15 07/11 2.15 07/18 2.24 07/25 2.20 1997-Aug 08/01 2.22 08/08 2.37 08/15 2.53 08/22 2.54 08/29 2.58

274

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.194 2.268 1994 Jan-17 to Jan-21 2.360 2.318 2.252 2.250 2.305 1994 Jan-24 to Jan-28 2.470 2.246 2.359 2.417 2.528 1994 Jan-31 to Feb- 4 2.554 2.639 2.585 2.383 2.369 1994 Feb- 7 to Feb-11 2.347 2.411 2.358 2.374 2.356 1994 Feb-14 to Feb-18 2.252 2.253 2.345 2.385 2.418 1994 Feb-21 to Feb-25 2.296 2.232 2.248 2.292 1994 Feb-28 to Mar- 4 2.208 2.180 2.171 2.146 2.188 1994 Mar- 7 to Mar-11 2.167 2.196 2.156 2.116 2.096 1994 Mar-14 to Mar-18 2.050 2.104 2.163 2.124 2.103 1994 Mar-21 to Mar-25 2.055 2.107 2.077 1.981 2.072 1994 Mar-28 to Apr- 1 2.066 2.062 2.058 2.075 1994 Apr- 4 to Apr- 8 2.144 2.069 2.097 2.085 2.066 1994 Apr-11 to Apr-15 2.068 2.089 2.131 2.163 2.187

275

Natural Gas Futures Contract 1 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.347 2.355 2.109 2.111 1.941 2.080 1.963 1.693 1.619 1.721 1.771 1.700 1995 1.426 1.439 1.534 1.660 1.707 1.634 1.494 1.557 1.674 1.790 1.961 2.459 1996 2.483 2.458 2.353 2.309 2.283 2.544 2.521 2.049 1.933 2.481 3.023 3.645 1997 3.067 2.065 1.899 2.005 2.253 2.161 2.134 2.462 2.873 3.243 3.092 2.406 1998 2.101 2.263 2.253 2.465 2.160 2.168 2.147 1.855 2.040 2.201 2.321 1.927 1999 1.831 1.761 1.801 2.153 2.272 2.346 2.307 2.802 2.636 2.883 2.549 2.423 2000 2.385 2.614 2.828 3.028 3.596 4.303 3.972 4.460 5.130 5.079 5.740 8.618 2001 7.825 5.675 5.189 5.189 4.244 3.782 3.167 2.935 2.213 2.618 2.786 2.686

276

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-17 to Jan-21 2.019 2.043 2.103 1994 Jan-24 to Jan-28 2.162 2.071 2.119 2.128 2.185 1994 Jan-31 to Feb- 4 2.217 2.258 2.227 2.127 2.118 1994 Feb- 7 to Feb-11 2.137 2.175 2.162 2.160 2.165 1994 Feb-14 to Feb-18 2.140 2.145 2.205 2.190 2.190 1994 Feb-21 to Feb-25 2.180 2.140 2.148 2.186 1994 Feb-28 to Mar- 4 2.148 2.134 2.122 2.110 2.124 1994 Mar- 7 to Mar-11 2.129 2.148 2.143 2.135 2.125 1994 Mar-14 to Mar-18 2.111 2.137 2.177 2.152 2.130 1994 Mar-21 to Mar-25 2.112 2.131 2.117 2.068 2.087 1994 Mar-28 to Apr- 1 2.086 2.082 2.083 2.092 1994 Apr- 4 to Apr- 8 2.124 2.100 2.116 2.100 2.086 1994 Apr-11 to Apr-15 2.095 2.099 2.123 2.155 2.183 1994 Apr-18 to Apr-22 2.187 2.167 2.174 2.181 2.169

277

Natural Gas Futures Contract 3 (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.116 2.168 2.118 2.139 2.038 2.150 2.083 2.031 2.066 2.037 1.873 1.694 1995 1.490 1.492 1.639 1.745 1.801 1.719 1.605 1.745 1.883 1.889 1.858 1.995 1996 1.964 2.056 2.100 2.277 2.307 2.572 2.485 2.222 2.272 2.572 2.571 2.817 1997 2.393 1.995 1.978 2.073 2.263 2.168 2.140 2.589 3.043 3.236 2.803 2.286 1998 2.110 2.312 2.312 2.524 2.249 2.234 2.220 2.168 2.479 2.548 2.380 1.954 1999 1.860 1.820 1.857 2.201 2.315 2.393 2.378 2.948 2.977 3.055 2.586 2.403 2000 2.396 2.591 2.868 3.058 3.612 4.258 3.981 4.526 5.335 5.151 5.455 7.337 2001 6.027 5.441 5.287 5.294 4.384 3.918 3.309 3.219 2.891 3.065 3.022 2.750

278

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2.188 2.232 2.123 2.136 1.999 2.130 2.021 1.831 1.881 1.961 1.890 1.709 1995 1.457 1.448 1.595 1.718 1.770 1.685 1.525 1.630 1.805 1.870 1.936 2.200 1996 2.177 2.175 2.205 2.297 2.317 2.582 2.506 2.120 2.134 2.601 2.862 3.260 1997 2.729 2.016 1.954 2.053 2.268 2.171 2.118 2.484 2.970 3.321 3.076 2.361 1998 2.104 2.293 2.288 2.500 2.199 2.205 2.164 1.913 2.277 2.451 2.438 1.953 1999 1.851 1.788 1.829 2.184 2.293 2.373 2.335 2.836 2.836 3.046 2.649 2.429 2000 2.392 2.596 2.852 3.045 3.604 4.279 3.974 4.467 5.246 5.179 5.754 8.267 2001 7.374 5.556 5.245 5.239 4.315 3.867 3.223 2.982 2.558 2.898 2.981 2.748

279

Table 2.1 Energy Consumption by Sector (Trillion Btu)  

U.S. Energy Information Administration (EIA)

c Electricity-only and combined-heat-and-power (CHP) ... and electrical system energy losses. ... • Geographic coverage is the 50 states and the Distr ...

280

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1997-Jan : 01/10 : 3.79 : ...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Figure 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Web Page: http://www.eia.gov/totalenergy/data/monthly/#summary. Source: Table 1.1. 2 U.S. Energy Information Administration / Monthly Energy Review October 2013

282

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

283

Table PT2. Energy Production Estimates in Trillion Btu, Minnesota ...  

U.S. Energy Information Administration (EIA)

... includes refuse recovery. sources except biofuels. ... Coal a Natural Gas b Crude Oil c Biofuels d Other e Production U.S. Energy Information Administration

284

Table E4. Electricity Consumption (Btu) Intensities by End Use ...  

U.S. Energy Information Administration (EIA)

Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters Other All Buildings* ..... ...

285

Table E4A. Electricity Consumption (Btu) Intensities by End ...  

U.S. Energy Information Administration (EIA)

Released: September, 2008 Total Space Heat-ing Cool-ing Venti-lation Water Heat-ing Light-ing Cook-ing Refrig-eration Office Equip-ment Com-puters ...

286

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network (OSTI)

Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between the high and low steam pressures. The discussion below shows how the savings in using low pressure steam can be above 25%! The key to the savings is not in the heat exchanger equipment or the steam trap, but is back at the powerhouse - the sensible heat requirement of the boiler feed water. Chart III shows potential steam energy savings and will be useful in estimating the steam energy savings of high pressure processes.

Vallery, S. J.

1985-05-01T23:59:59.000Z

287

British Thermal Units (Btu) - Energy Explained, Your Guide To ...  

U.S. Energy Information Administration (EIA)

Landfill Gas and Biogas; Biomass & the Environment See also: Biofuels. Biofuels: Ethanol & Biodiesel. Ethanol; Use of Ethanol; Ethanol & the Environment; Biodiesel;

288

ENERGY STAR Challenge for Industry: BTU QuickConverter | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program...

289

Table PT2. Energy Production Estimates in Trillion Btu ...  

U.S. Energy Information Administration (EIA)

1963 54.3 228.1 837.6 0.0 na 10.6 10.6 1,130.6 ... 1976 562.9 339.4 778.1 0.0 na 12.5 12.5 1,692.9 ... 2010 7,658.3 2,521.3 r 308.8 r 0.0 0.9 43.5 r ...

290

Table 1.1 Primary Energy Overview (Quadrillion Btu)  

U.S. Energy Information Administration (EIA)

Fossil Fuelsa Nuclear Electric Power Renew-able Energyb Total Imports Exports Net Importsc ... fuel ethanol stock change; and biodiesel stock change and balancing item.

291

POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL  

Science Conference Proceedings (OSTI)

It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

Booz, Allen, and Hamilton, Inc.,

1980-04-01T23:59:59.000Z

292

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

Gasoline and Diesel Fuel Update (EIA)

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

293

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1997 Jan- 6 to Jan-10 3.82 3.80 3.61 3.92 1997 Jan-13 to Jan-17 4.00 4.01 4.34 4.71 3.91 1997 Jan-20 to Jan-24 3.26 2.99 3.05 2.96 2.62 1997 Jan-27 to Jan-31 2.98 3.05 2.91 2.86 2.77 1997 Feb- 3 to Feb- 7 2.49 2.59 2.65 2.51 2.39 1997 Feb-10 to Feb-14 2.42 2.34 2.42 2.22 2.12 1997 Feb-17 to Feb-21 1.84 1.95 1.92 1.92 1997 Feb-24 to Feb-28 1.92 1.77 1.81 1.80 1.78 1997 Mar- 3 to Mar- 7 1.80 1.87 1.92 1.82 1.89 1997 Mar-10 to Mar-14 1.95 1.92 1.96 1.98 1.97 1997 Mar-17 to Mar-21 2.01 1.91 1.88 1.88 1.87 1997 Mar-24 to Mar-28 1.80 1.85 1.85 1.84 1997 Mar-31 to Apr- 4 1.84 1.95 1.85 1.87 1.91 1997 Apr- 7 to Apr-11 1.99 2.01 1.96 1.97 1.98 1997 Apr-14 to Apr-18 2.00 2.00 2.02 2.08 2.10

294

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 3.45 2.15 1.89 2.03 2.25 2.20 2.19 2.49 2.88 3.07 3.01 2.35 1998 2.09 2.23 2.24 2.43 2.14 2.17 2.17 1.85 2.02 1.91 2.12 1.72 1999 1.85 1.77 1.79 2.15 2.26 2.30 2.31 2.80 2.55 2.73 2.37 2.36 2000 2.42 2.66 2.79 3.04 3.59 4.29 3.99 4.43 5.06 5.02 5.52 8.90 2001 8.17 5.61 5.23 5.19 4.19 3.72 3.11 2.97 2.19 2.46 2.34 2.30 2002 2.32 2.32 3.03 3.43 3.50 3.26 2.99 3.09 3.55 4.13 4.04 4.74 2003 5.43 7.71 5.93 5.26 5.81 5.82 5.03 4.99 4.62 4.63 4.47 6.13 2004 6.14 5.37 5.39 5.71 6.33 6.27 5.93 5.41 5.15 6.35 6.17 6.58 2005 6.15 6.14 6.96 7.16 6.47 7.18 7.63 9.53 11.75 13.42 10.30 13.05

295

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/24 1.869 12/31 1.943 1994-Jan 01/07 1.935 01/14 1.992 01/21 2.006 01/28 2.088 1994-Feb 02/04 2.133 02/11 2.135 02/18 2.148 02/25 2.149 1994-Mar 03/04 2.118 03/11 2.125 03/18 2.139 03/25 2.113 1994-Apr 04/01 2.107 04/08 2.120 04/15 2.140 04/22 2.180 04/29 2.165 1994-May 05/06 2.103 05/13 2.081 05/20 2.076 05/27 2.061 1994-Jun 06/03 2.134 06/10 2.180 06/17 2.187 06/24 2.176 1994-Jul 07/01 2.256 07/08 2.221 07/15 2.172 07/22 2.137 07/29 2.207

296

Table 2.3 Commercial Sector Energy Consumption (Trillion Btu)  

U.S. Energy Information Administration (EIA)

e Conventional hydroelectric power. f Electricity retail sales to ultimate customers reported by electric utilities and, beginning in 1996, other energy service ...

297

Natural Gas Futures Contract 4 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1993 Dec-20 to Dec-24 1.894 1.830 1.859 1.895 1993 Dec-27 to Dec-31 1.965 1.965 1.943 1.901 1994 Jan- 3 to Jan- 7 1.883 1.896 1.962 1.955 1.980 1994 Jan-10 to Jan-14 1.972 2.005 2.008 1.966 2.010 1994 Jan-17 to Jan-21 2.006 1.991 1.982 2.000 2.053 1994 Jan-24 to Jan-28 2.095 2.044 2.087 2.088 2.130 1994 Jan-31 to Feb- 4 2.157 2.185 2.157 2.075 2.095 1994 Feb- 7 to Feb-11 2.115 2.145 2.142 2.135 2.140 1994 Feb-14 to Feb-18 2.128 2.125 2.175 2.160 2.155 1994 Feb-21 to Feb-25 2.160 2.130 2.138 2.171 1994 Feb-28 to Mar- 4 2.140 2.128 2.112 2.103 2.111 1994 Mar- 7 to Mar-11 2.116 2.133 2.130 2.130 2.120 1994 Mar-14 to Mar-18 2.114 2.137 2.170 2.146 2.130 1994 Mar-21 to Mar-25 2.117 2.134 2.120 2.086 2.112

298

Natural Gas Futures Contract 2 (Dollars per Million Btu)  

U.S. Energy Information Administration (EIA) Indexed Site

Week Of Mon Tue Wed Thu Fri Week Of Mon Tue Wed Thu Fri 1994 Jan-10 to Jan-14 2.130 2.072 2.139 1994 Jan-17 to Jan-21 2.196 2.131 2.115 2.148 2.206 1994 Jan-24 to Jan-28 2.283 2.134 2.209 2.236 2.305 1994 Jan-31 to Feb- 4 2.329 2.388 2.352 2.252 2.198 1994 Feb- 7 to Feb-11 2.207 2.256 2.220 2.231 2.236 1994 Feb-14 to Feb-18 2.180 2.189 2.253 2.240 2.254 1994 Feb-21 to Feb-25 2.220 2.168 2.179 2.221 1994 Feb-28 to Mar- 4 2.165 2.146 2.139 2.126 2.144 1994 Mar- 7 to Mar-11 2.149 2.168 2.160 2.144 2.132 1994 Mar-14 to Mar-18 2.109 2.142 2.192 2.164 2.136 1994 Mar-21 to Mar-25 2.107 2.129 2.115 2.050 2.077 1994 Mar-28 to Apr- 1 2.076 2.072 2.070 2.087 1994 Apr- 4 to Apr- 8 2.134 2.090 2.109 2.093 2.081 1994 Apr-11 to Apr-15 2.090 2.099 2.128 2.175 2.196

299

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

a a Table 7a. Offsite-Produced Fuel Consumption per Value Of Production 1998, 2002, and 2006 (Btu per constant 2000 dollar 1 ) MECS Survey Years Iron and Steel Mills (NAICS 2 331111) 1998 3 2002 4 2006 4 Total NA 19,716 12,179 Electricity NA 3,839 2,846 Natural Gas NA 8,052 5,301 Coal NA 747 228 Residual Fuel NA 21 309 Coke and Breeze NA 6,496 3,025 Notes: 1. Value of production is deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. 1998 data unavailable due to disclosure avoidance procedures in place at the time.

300

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Information Administration - Energy Efficiency-table 7b.  

Gasoline and Diesel Fuel Update (EIA)

b b Table 7b. Offsite-Produced Fuel Consumption per Ton of Steel, 1998, 2002, and 2006 (1000 Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1331111) 1998 2 2002 3 20063 Total NA 11,886 9,210 Electricity NA 2,315 2,152 Natural Gas NA 4,855 4,009 Coal NA 450 172 Residual Fuel NA 13 234 Coke and Breeze NA 3,916 2,287 Notes:1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 1998 data unavailable due to disclosure avoidance procedures in place at the time.

302

EIA Energy Efficiency-Table 1d. Nonfuel Consumption (Site Energy) for  

Gasoline and Diesel Fuel Update (EIA)

d d Page Last Modified: May 2010 Table 1d. Nonfuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1 8 3 312 Beverage and Tobacco Products * 1 * 313 Textile Mills 2 1 0 314 Textile Product Mills 1 * 0 315 Apparel * 0 0 316 Leather and Allied Products * * 0 321 Wood Products 6 4 0 322 Paper 2 1 1 323 Printing and Related Support * * * 324 Petroleum and Coal Products 3,748 3,689 3,572 325 Chemicals 2,772 3,750 2,812 326 Plastics and Rubber Products * Q Q 327 Nonmetallic Mineral Products 10 7 12 331 Primary Metals 758 646 529 332 Fabricated Metal Products 3 1 1 333 Machinery Q 2 * 334 Computer and Electronic Products * 1 1 335 Electrical Equip., Appliances, and Components 27 69 21 336 Transportation Equipment

303

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

5a 5a Page Last Modified: June 2010 Table 5a. Consumption of Energy for All Purposes (First Use) per Value of Production, 1998, 2002, and 2006 (1000 Btu per constant 2000 dollar 1 ) MECS Survey Years Iron and Steel Mills (NAICS 2 331111) 1998 3 2002 3 2006 3 Total 4 30 27 17 Net Electricity 5 3 4 3 Natural Gas 9 9 6 Coal 13 10 6 Notes:1. Value of production is deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. Denominators represent the value of production for the entire iron and still mills (NAICS 331111), not those based

304

Energy Information Administration - Energy Efficiency, Table 6b-End Uses of  

Gasoline and Diesel Fuel Update (EIA)

and 2002 > Table 6b and 2002 > Table 6b Table 6b. End Uses of Energy per Ton of Steel, 1998, 2002, and 2006 (thousand Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 19982 20022 20062 Total3 16,957 15,884 17,796 Net Electricity 4 1,602 2,009 4,673 Natural Gas 4,625 4,236 5,969 Coal 487 393 214 Boiler Fuel -- -- -- Coal 81 W 10 Residual Fuel Oil 101 W 266 Natural Gas 527 426 276 Process Heating -- -- -- Net Electricity 751 862 830 Residual Fuel Oil 193 W 112 Natural Gas 3,742 3,592 2,776 Machine Drive -- -- -- Net Electricity 690 939 786 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

305

Energy Information Administration - Energy Efficiency-Table 5a. Consumption  

Gasoline and Diesel Fuel Update (EIA)

5a 5a Page Last Modified: June 2010 Table 5a. Consumption of Energy for All Purposes (First Use) per Value of Production, 1998, 2002, and 2006 (1000 Btu per constant 2000 dollar 1) MECS Survey Years Iron and Steel Mills (NAICS2 331111) 1998 3 2002 3 2006 3 Total 4 30 27 17 Net Electricity5 3 4 3 Natural Gas 9 9 6 Coal 13 10 6 Notes:1. Value of production is deflated by the chain-type price indices for iron and steel mills shipments. 2. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 3. Denominators represent the value of production for the entire iron and still mills (NAICS 331111), not those based mainly on electric, natural gas or coal.

306

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

3 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2002 2006 Total 2 NA 950 749 Net Electricity 3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2.'Total' includes all energy sources listed below and all other energy that was purchased or transferred in. 3.'Electricity' consists of quantities of electricity that were purchased or transferred in, and is equivalent

307

Energy Information Administration - Energy Efficiency-Table 3.  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total2 NA 950 749 Net Electricity3 NA 185 175 Natural Gas NA 388 326 Coal NA 36 14 Residual Fuel NA 1 19 Coke and Breeze NA 313 186 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills.

308

EIA Energy Efficiency-Table 2a. First Use for All Purposes (Primary a  

Gasoline and Diesel Fuel Update (EIA)

a a Page Last Modified: May 2010 Table 2a. Consumption of Energy (Primary 1 Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,579 1,665 312 Beverage and Tobacco Products 156 157 164 313 Textile Mills 459 377 304 314 Textile Product Mills 86 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 652 520 625 322 Paper 3,224 2,805 2,825 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 7,571 7,051 7,125 325 Chemicals 7,211 7,499 6,135 326 Plastics and Rubber Products 692 710 684 327 Nonmetallic Mineral Products 1,245 1,338 1,394

309

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Table 7b. Offsite-Produced Fuel Consumption per Ton of Steel, 1998, 2002, and 2006 (1000 Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 3 2006 3 Total NA 11,886 9,210 Electricity NA 2,315 2,152 Natural Gas NA 4,855 4,009 Coal NA 450 172 Residual Fuel NA 13 234 Coke and Breeze NA 3,916 2,287 Notes:1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 1998 data unavailable due to disclosure avoidance procedures in place at the time. 3. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil, coal or coke.

310

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: June 2010 Table 5b. Consumption of Energy for All Purposes (First Use) per Ton of Steel, 1998, 2002, and 2006 (Million Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 2 2006 2 Total 3 17 16 13 Net Electricity 4 2 2 2 Natural Gas 5 5 4 Coal 7 6 4 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. Denominators represent the entire steel industry, not those based mainly on electric, natural gas, residual fuel oil or coal. 3. 'Total' is the sum of all of the listed energy sources, including 'Other,' minus the shipments of energy sources

311

file://C:\Documents and Settings\bh5\My Documents\Energy Effici  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensities, 1998 and 2002 > Energy Intensities, 1998 and 2002 > Table 6b Table 6b. End Uses of Energy per Ton of Steel, 1998, 2002, and 2006 (thousand Btu per ton) MECS Survey Years Iron and Steel Mills (NAICS 1 331111) 1998 2 2002 2 2006 2 Total 3 16,957 15,884 17,796 Net Electricity 4 1,602 2,009 4,673 Natural Gas 4,625 4,236 5,969 Coal 487 393 214 Boiler Fuel -- -- -- Coal 81 W 10 Residual Fuel Oil 101 W 266 Natural Gas 527 426 276 Process Heating -- -- -- Net Electricity 751 862 830 Residual Fuel Oil 193 W 112 Natural Gas 3,742 3,592 2,776 Machine Drive -- -- -- Net Electricity 690 939 786 Notes: 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS

312

Building Energy Codes Survey Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Program Codes Program Building Energy Codes Survey Tool The following surveys are available: No available surveys Please contact ( webmaster@energycode.pnl.gov ) for further assistance. English Albanian Arabic Basque Belarusian Bosnian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional; Hong Kong) Chinese (Traditional; Taiwan) Croatian Czech Danish Dutch Dutch Informal English Estonian Finnish French Galician German German informal Greek Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Italian (formal) Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian (Bokmal) Norwegian (Nynorsk) Persian Polish Portuguese Portuguese (Brazilian) Punjabi Romanian Russian Serbian Sinhala Slovak Slovenian Spanish Spanish (Mexico) Swedish Thai Turkish Urdu Vietnamese Welsh

313

Telluric Survey | Open Energy Information  

Open Energy Info (EERE)

Telluric Survey Telluric Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Telluric Survey Details Activities (3) Areas (3) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Cost Information Low-End Estimate (USD): 522.2252,222 centUSD

314

2008/2009 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

13.4%. The MPP hours used by the survey respondents represents 70.2 percent of total NERSC MPP usage as of the end of the survey period. The PDSF hours used by the PDSF survey...

315

2011 NERSC User Survey (Read Only)  

NLE Websites -- All DOE Office Websites (Extended Search)

Results Survey Text 2011 NERSC User Survey (Read Only) The survey is closed. Section 1: Overall Satisfaction with NERSC When you are finished with this page click "Save & Go to...

316

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

317

2012 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

operation, help us judge the quality of our services, give DOE information on how well NERSC is doing, and point us to areas we can improve. The survey strives to be...

318

2001 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 User Survey Results 1 User Survey Results Show All | 1 2 3 4 5 ... 11 | Next » 2001 User Survey Results Table of Contents Response Summary User Information Overall Satisfaction and Importance All Satisfaction Questions and Changes from Previous Years NERSC Information Management (NIM) System Web and Communications Hardware Resources Software Training User Services Comments about NERSC Response Summary NERSC extends its thanks to the 237 users who participated in this year's survey; this compares with 134 respondents last year. The respondents represent all five DOE Science Offices and a variety of home institutions: see User Information. Your responses provide feedback about every aspect of NERSC's operation, help us judge the quality of our services, give DOE information on how well

319

Radiological Habits Survey: Amersham, 2004  

E-Print Network (OSTI)

.4 Wholesalers and retailers 29 4.5 Internal exposure 29 4.6 External exposure 30 4.7 Water based activities 32 5. TERRESTRIAL RADIATION PATHWAYS 35 5.1 Terrestrial survey area 35 5.2 Wholesalers and retailers 39 5.3 Internal exposure 39 6. DIRECT RADIATION PATHWAYS 43 6.1 Direct radiation survey area 43 6.2 Residential activities

320

Radiological Habits Survey, Dounreay, 2003  

E-Print Network (OSTI)

.5 Internal exposure 25 4.6 External exposure 28 5. TERRESTRIAL RADIATION PATHWAYS 32 5.1 Terrestrial survey area and local produce 32 5.2 Novel radiation pathways 33 5.3 Land cover 33 5.4 Internal exposure 34 5 conversion 14 3.2 Determination of critical groups 14 4. AQUATIC RADIATION PATHWAYS 18 4.1 Aquatic survey

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 7A. Total District Heat Consumption and Expenditures for All Buildings, 2003 All Buildings Using District Heat District Heat Consumption District Heat Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million dollars) All Buildings ................................ 67 5,576 83 636 7,279 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ Q Q Q Q Q 5,001 to 10,000 .............................. Q Q Q Q Q 10,001 to 25,000 ............................ 18 289 16 Q Q 25,001 to 50,000 ............................ 10 369 35 Q Q 50,001 to 100,000 .......................... 8 574 70 Q Q 100,001 to 200,000 ........................ 9 1,399 148 165 Q

322

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 3A. Total Natural Gas Consumption and Expenditures in All Buildings, 2003 All Buildings Using Natural Gas Natural Gas Consumption Natural Gas Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (billion cubic feet) Total (million dollars) All Buildings ................................ 2,538 48,473 19.1 2,100 2,037 16,010 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 1,134 3,175 2.8 257 249 2,227 5,001 to 10,000 .............................. 531 3,969 7.5 224 218 1,830 10,001 to 25,000 ............................ 500 7,824 15.6 353 343 2,897 25,001 to 50,000 ............................ 185 6,604 35.8 278 270 2,054

323

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (trillion Btu) Total (million gallons) Total (million dollars) All Buildings ................................ 465 16,265 35 228 1,644 1,826 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 211 606 3 34 249 292 5,001 to 10,000 .............................. 102 736 7 36 262 307 10,001 to 25,000 ............................ 66 1,043 16 28 201 238 25,001 to 50,000 ............................ 24 895 38 17 124 134 50,001 to 100,000 .......................... 25 1,852 76 29 209 229

324

The Bolocam Galactic Plane Survey: Survey Description and Data Reduction  

E-Print Network (OSTI)

We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33" effective resolution of 170 square degrees of the Galactic Plane visible from the northern hemisphere. The survey is contiguous over the range -10.5 90%) and the linear scale at which the attenuation re aches 50% is 3.8'. Comparison with other millimeter-wave data sets implies a possible systematic offset in flux calibration, for which no cause has been discovered. This presentation serves as a companion and guide to the public data release through NASA's Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA). New data releases will be provided through IPAC IRSA with any future improvements in the reduction.

Aguirre, James E; Dunham, Miranda K; Drosback, Meredith M; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Evans, Neal J; Glenn, Jason; Harvey, Paul; Rosolowsky, Erik; Stringfellow, Guy S; Walawender, Josh; Williams, Jonathan P

2010-01-01T23:59:59.000Z

325

Zigzag Survey Designs in Line Transect Sampling  

E-Print Network (OSTI)

survey lines are frequently used in shipboard and aerial line transect surveys of animal populations; Systematic designs; Zigzag designs. 1. INTRODUCTION Shipboard and aerial line transect surveys are widelyZigzag Survey Designs in Line Transect Sampling Samantha STRINDBERG and Stephen T. BUCKLAND Zigzag

Buckland, Steve

326

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

327

Residential Energy Consumption Survey: Quality Profile  

SciTech Connect

The Residential Energy Consumption Survey (RECS) is a periodic national survey that provides timely information about energy consumption and expenditures of U.S. households and about energy-related characteristics of housing units. The survey was first conducted in 1978 as the National Interim Energy Consumption Survey (NIECS), and the 1979 survey was called the Household Screener Survey. From 1980 through 1982 RECS was conducted annually. The next RECS was fielded in 1984, and since then, the survey has been undertaken at 3-year intervals. The most recent RECS was conducted in 1993.

NONE

1996-03-01T23:59:59.000Z

328

Status report on survey of alternative heat pumping technologies  

SciTech Connect

The Department of Energy is studying alternative heat pumping technologies to identify possible cost effective alternatives to electric driven vapor compression heat pumps, air conditioners, and chillers that could help reduce CO{sub 2} emissions. Over thirty different technologies are being considered including: engine driven systems, fuel cell powered systems, and alternative cycles. Results presented include theoretical efficiencies for all systems as well as measured performance of some commercial, prototype, or experimental systems. Theoretical efficiencies show that the alternative electric-driven technologies would have HSPFs between 4 and 8 Btu/Wh (1.2 to 2.3 W/W) and SEERs between 3 and 9.5 Btu/Wh (0.9 and 2.8 W/W). Gas-fired heat pump technologies have theoretical seasonal heating gCOPs from 1.1 to 1.7 and cooling gCOPs from 0.95 to 1.6 (a SEER 12 Btu/Wh electric air conditioner has a primary energy efficiency of approximately 1.4 W/W).

Fischer, S.

1998-07-01T23:59:59.000Z

329

Refraction Survey | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey Refraction Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Refraction Survey Details Activities (16) Areas (13) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Can provide information on crustal thickness, depth to basement. Hydrological: Thermal: Cost Information Low-End Estimate (USD): 6,206.80620,680 centUSD 6.207 kUSD 0.00621 MUSD 6.2068e-6 TUSD / mile Median Estimate (USD): 10,877.331,087,733 centUSD 10.877 kUSD 0.0109 MUSD 1.087733e-5 TUSD / mile

330

The UKIDSS Galactic Plane Survey  

E-Print Network (OSTI)

The UKIDSS Galactic Plane Survey (GPS) is one of the five near infrared Public Legacy Surveys that are being undertaken by the UKIDSS consortium, using the Wide Field Camera on the United Kingdom Infrared Telescope. It is surveying 1868 sq.deg. of the northern and equatorial Galactic plane at Galactic latitudes -5Science results from DR2 and from the Science Verification programme. These results illustrate how GPS data will frequently be combined with data taken in other wavebands to produce scientific results. The Demonstration Science includes studies of: (i) the star formation region G28.983-0.603, cross matching with Spitzer-GLIMPSE data to identify YSOs; (ii) the M17 nebula; (iii) H_2 emission in the rho Ophiuchi dark cloud; (iv) X-ray sources in the Galactic Centre; (v) external galaxies in the Zone of Avoidance; (vi) IPHAS-GPS optical-infrared spectrophotometric typing. (abridged).

P. W. Lucas; M. G. Hoare; A. Longmore; A. C. Schroder; C. J. Davis; A. Adamson; R. M. Bandyopadhyay; R. de Grijs; M. Smith; A. Gosling; S. Mitchison; A. Gaspar; M. Coe; M. Tamura; Q. Parker; M. Irwin; N. Hambly; J. Bryant; R. S. Collins; N. Cross; D. W. Evans; E. Gonzalez-Solares; S. Hodgkin; J. Lewis; M. Read; M. Riello; E. T. W. Sutorius; A. Lawrence; J. E. Drew; S. Dye; M. A. Thompson

2007-12-01T23:59:59.000Z

331

Geodetic Survey | Open Energy Information  

Open Energy Info (EERE)

Geodetic Survey Geodetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geodetic Survey Details Activities (17) Areas (10) Regions (5) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Map regional strain rates Hydrological: Thermal: Cost Information Low-End Estimate (USD): 250.0025,000 centUSD 0.25 kUSD 2.5e-4 MUSD 2.5e-7 TUSD / point Median Estimate (USD): 600.0060,000 centUSD 0.6 kUSD 6.0e-4 MUSD 6.0e-7 TUSD / point High-End Estimate (USD): 1,500.00150,000 centUSD 1.5 kUSD 0.0015 MUSD 1.5e-6 TUSD / point Time Required Low-End Estimate: 5 days0.0137 years

332

Aeromagnetic Survey | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Aeromagnetic Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Aeromagnetic Survey Details Activities (26) Areas (19) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: map structure, basin fill thickness, and magnetic mineral concentrations in ore bodies Hydrological: Thermal: Cost Information Low-End Estimate (USD): 22.532,253 centUSD

333

Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Reflection Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Reflection Survey Details Activities (35) Areas (22) Regions (2) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Active Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

334

Department of Energy: 2011 Federal Employee Viewpoint Survey...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy 2011 Federal Employee Viewpoint Survey: Trend Report Response Summary Surveys...

335

Biomedical question answering: A survey  

Science Conference Proceedings (OSTI)

Objectives: In this survey, we reviewed the current state of the art in biomedical QA (Question Answering), within a broader framework of semantic knowledge-based QA approaches, and projected directions for the future research development in this critical ... Keywords: Answer/reason extraction, Biomedical question answering, Semantic information extraction

Sofia J. Athenikos; Hyoil Han

2010-07-01T23:59:59.000Z

336

Quantum Gravity An introductory survey  

E-Print Network (OSTI)

Quantum Gravity An introductory survey Hermann Nicolai Max-Planck-Institut f¨ur Gravitationsphysik (Albert­Einstein­Institut, Potsdam) . ­ p.1/25 #12;Why Quantum Gravity? . ­ p.2/25 #12;Why Quantum Gravity theories: . ­ p.2/25 #12;Why Quantum Gravity? General Relativity and Quantum Theory: not only very

Rossak, Wilhelm R.

337

Automotive Powertrain Control - A Survey  

E-Print Network (OSTI)

This paper surveys recent and historical publications on automotive powertrain control. Controloriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided. 1

Jeffrey A. Cook; Jing Sun; Julia H. Buckl; Ilya V. Kolmanovsky; Huei Peng; Jessy W. Grizzle

2006-01-01T23:59:59.000Z

338

The NRC planetary decadal survey  

Science Conference Proceedings (OSTI)

Once every ten years, the National Research Council carries out a "decadal survey" in planetary science. The objective is to recommend a decade-long national strategy for solar system exploration for NASA and the NSF. The most recent planetary decadal ...

Steven W. Squyres

2011-03-01T23:59:59.000Z

339

Body Area Networks: A Survey  

Science Conference Proceedings (OSTI)

Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of ... Keywords: body area networks, survey, wireless sensor networks

Min Chen; Sergio Gonzalez; Athanasios Vasilakos; Huasong Cao; Victor C. Leung

2011-04-01T23:59:59.000Z

340

The ESSENCE Supernova Survey: Survey Optimization, Observations, and Supernova Photometry  

Science Conference Proceedings (OSTI)

We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the equation of state parameter of the dark energy. We present a method for optimizing the survey exposure times and cadence to maximize our sensitivity to the dark energy equation of state parameter w = P/{rho}c{sup 2} for a given fixed amount of telescope time. For our survey on the CTIO 4m telescope, measuring the luminosity distances and redshifts for supernovae at modest redshifts (z {approx} 0.5 {+-} 0.2) is optimal for determining w. We describe the data analysis pipeline based on using reliable and robust image subtraction to find supernovae automatically and in near real-time. Since making cosmological inferences with supernovae relies crucially on accurate measurement of their brightnesses, we describe our efforts to establish a thorough calibration of the CTIO 4m natural photometric system. In its first four years, ESSENCE has discovered and spectroscopically confirmed 102 type Ia SNe, at redshifts from 0.10 to 0.78, identified through an impartial, effective methodology for spectroscopic classification and redshift determination. We present the resulting light curves for the all type Ia supernovae found by ESSENCE and used in our measurement of w, presented in Wood-Vasey et al. (2007).

Miknaitis, Gajus; Pignata, G.; Rest, A.; Wood-Vasey, W.M.; Blondin, S.; Challis, P.; Smith, R.C.; Stubbs, C.W.; Suntzeff, N.B.; Foley, R.J.; Matheson, T.; Tonry, J.L.; Aguilera, C.; Blackman, J.W.; Becker, A.C.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Garg, A.; Garnavich, P.M.; /Fermilab /Chile U., Catolica /Cerro-Tololo InterAmerican Obs. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /UC, Berkeley, Astron. Dept. /NOAO, Tucson /Inst. Astron., Honolulu /Res. Sch. Astron. Astrophys., Weston Creek /Washington U., Seattle, Astron. Dept. /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Stockholm U.

2007-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MEC  

E-Print Network (OSTI)

'ul Antonino Feij'oo Co­orientador: Prof. Dr. Hans Ingo Weber Curso: Engenharia Mecâ??anica ' Area de Concentra¸c~ao: Mecâ??anica dos S'olidos Trabalho apresentado `a Comiss~ao de P'os­Gradua¸c~ao da Faculdade de Engenharia Mecâ??anica, como parte dos requisitos para obten¸c~ao do t'itulo de Doutor em Engenharia Mecâ??anica

342

THE BOLOCAM GALACTIC PLANE SURVEY: SURVEY DESCRIPTION AND DATA REDUCTION  

SciTech Connect

We present the Bolocam Galactic Plane Survey (BGPS), a 1.1 mm continuum survey at 33'' effective resolution of 170 deg{sup 2} of the Galactic Plane visible from the northern hemisphere. The BGPS is one of the first large area, systematic surveys of the Galactic Plane in the millimeter continuum without pre-selected targets. The survey is contiguous over the range -10.5 {<=} l {<=} 90.5, |b| {<=} 0.5. Toward the Cygnus X spiral arm, the coverage was flared to |b| {<=} 1.5 for 75.5 {<=} l {<=} 87.5. In addition, cross-cuts to |b| {<=} 1.5 were made at l= 3, 15, 30, and 31. The total area of this section is 133 deg{sup 2}. With the exception of the increase in latitude, no pre-selection criteria were applied to the coverage in this region. In addition to the contiguous region, four targeted regions in the outer Galaxy were observed: IC1396 (9 deg{sup 2}, 97.5 {<=} l {<=} 100.5, 2.25 {<=} b {<=} 5.25), a region toward the Perseus Arm (4 deg{sup 2} centered on l = 111, b = 0 near NGC 7538), W3/4/5 (18 deg{sup 2}, 132.5 {<=} l {<=} 138.5), and Gem OB1 (6 deg{sup 2}, 187.5 {<=} l {<=} 193.5). The survey has detected approximately 8400 clumps over the entire area to a limiting non-uniform 1{sigma} noise level in the range 11-53 mJy beam{sup -1} in the inner Galaxy. The BGPS source catalog is presented in a previously published companion paper. This paper details the survey observations and data reduction methods for the images. We discuss in detail the determination of astrometric and flux density calibration uncertainties and compare our results to the literature. Data processing algorithms that separate astronomical signals from time-variable atmospheric fluctuations in the data timestream are presented. These algorithms reproduce the structure of the astronomical sky over a limited range of angular scales and produce artifacts in the vicinity of bright sources. Based on simulations, we find that extended emission on scales larger than about 5.'9 is nearly completely attenuated (>90%) and the linear scale at which the attenuation reaches 50% is 3.'8. Comparison with other millimeter-wave data sets implies a possible systematic offset in flux calibration, for which no cause has been discovered. This presentation serves as a companion and guide to the public data release (http://irsa.ipac.caltech.edu/Missions/bolocam.html) through NASA's Infrared Processing and Analysis Center (IPAC) Infrared Science Archive (IRSA). New data releases will be provided through IPAC-IRSA with any future improvements in the reduction. The BGPS provides a complementary long-wavelength spectral band for the ongoing ATLASGAL and Herschel-SPIRE surveys, and an important database and context for imminent observations with SCUBA-2 and ALMA.

Aguirre, James E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Ginsburg, Adam G.; Bally, John; Battersby, Cara; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S. [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Dunham, Miranda K.; Evans, Neal J. II [Department of Astronomy, University of Texas, 1 University Station C1400, Austin, TX 78712 (United States); Drosback, Meredith M. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Bradley, Eric Todd [Department of Physics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2385 (United States); Cyganowski, Claudia [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dowell, Darren [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Rosolowsky, Erik [Department of Physics and Astronomy, University of British Columbia, Okanagan (Canada); Walawender, Josh [Institute for Astronomy, University of Hawaii, 640 North Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P., E-mail: jaguirre@sas.upenn.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2011-01-15T23:59:59.000Z

343

PRELIMINARY SURVEY OF VITRO CORPORATION  

Office of Legacy Management (LM)

PRELIMINARY SURVEY OF VITRO CORPORATION (VITRO LABORATORIES) WEST ORANGE, NEW JERSEY Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Actton Program VITRO CORPORATION (VITRO LABORATORIES) WEST ORANGE, NEW JERSEY At the request of the Department of Energy (DOE), a preliminary survey was performed at the former Vitro Corporation Laboratory in West Orange, New Jersey (see Fig 1), on November 30, 1977, to assess the radiological status of those facilities utilized under Atomic Energy Commission (AEC) contract during the late 1950s and early 1960s. This

344

NERSC-8 Vendor Market Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Antypas! Antypas! NERSC-8 Project Lead NERSC-8 Market Survey --- 1 --- November 15, 2012 * Seek v endor i nput t o o p6mize 6 ming, r equirements and business prac6ces * Opportunity f or v endors t o p rovide i nput p rior t o formal p rocurement p rocess We are starting our next procurement, NERSC-8, with a round of market surveys Vendor B riefing --- 2 --- NERSC's mission is to enable science NERSC Mission: To accelerate the pace of scientific discovery by providing high-performance computing, data systems and services to the DOE Office of Science community. NERSC has over 4500 users in 650 projects that produce about 1500 publications per year! --- 3 --- Vendor B riefing NERSC's Long Term Strategy * New s ystem e very ~ 3 y ears, r un f or 5 ---6 y ears - Maximizes s tability r ather t han p eak / m achine

345

Simulator for Microlens Planet Surveys  

E-Print Network (OSTI)

We summarize the status of a computer simulator for microlens planet surveys. The simulator generates synthetic light curves of microlensing events observed with specified networks of telescopes over specified periods of time. Particular attention is paid to models for sky brightness and seeing, calibrated by fitting to data from the OGLE survey and RoboNet observations in 2011. Time intervals during which events are observable are identified by accounting for positions of the Sun and the Moon, and other restrictions on telescope pointing. Simulated observations are then generated for an algorithm that adjusts target priorities in real time with the aim of maximizing planet detection zone area summed over all the available events. The exoplanet detection capability of observations was compared for several telescopes.

Ipatov, Sergei I; Alsubai, Khalid A; Bramich, Daniel M; Dominik, Martin; Hundertmark, Markus P G; Liebig, Christine; Snodgrass, Colin D B; Street, Rachel A; Tsapras, Yiannis

2013-01-01T23:59:59.000Z

346

Rural electric cooperatives IRP survey  

Science Conference Proceedings (OSTI)

This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

Garrick, C. [Garrick and Associates, Morrison, CO (United States)

1995-11-01T23:59:59.000Z

347

I COMPREHENSIVE RADIOLOGICAL SURVEY I  

Office of Legacy Management (LM)

im im I COMPREHENSIVE RADIOLOGICAL SURVEY I Prepared by Oak Ridge Associated Universities Prprd* OFF-SITE PROPERTY H' | Prepared for Office of Operational FORMER LAKE ONTARIO ORDNANCE WORKS SITE Safety U.S. Department LEWISTON, NEW YORK I of Energy i J.D. BERGER i Radiological Site Assessment Program Manpower Education, Research, and Training Division I l*~~~~~~ ~~~~DRAFT REPORT January 1983 I I I ------- COMPREHENSIVE RADIOLOGICAL SURVEY OFF-SITE PROPERTY H' FORMER LAKE ONTARIO ORDNANCE WORKS SITE LEWISTON, NEW YORK Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -- Remedial Action Program J. D. Berger Project Staff L.W. Cole W.O. Helton R.D. Condra T.J. Sowell P.R. Cotten C.F. Weaver G.R. Foltz T.S. Yoo R.C. Gosslee Prepared by Radiological Site Assessment Program

348

Federal Buildings Supplemental Survey 1993  

Reports and Publications (EIA)

The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE's Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP's specifications; therefore, these data do not statistically represent all Federal buildings in the country .

Information Center

1995-11-01T23:59:59.000Z

349

Radiological Habits Survey: Hartlepool, 2002  

E-Print Network (OSTI)

.4 Seafood wholesalers and retailers 27 4.5 Wildfowl 28 4.6 Other food pathways 28 4.7 Internal exposure 29 4.8 External exposure 32 4.9 Water based activities 35 5. TERRESTRIAL RADIATION PATHWAYS 36 5.1 Terrestrial survey area 36 5.2 Terrestrial food wholesalers and retailers 38 5.3 Internal exposure 38 6. DIRECT

350

Radiological Habits Survey: Cardiff, 2003  

E-Print Network (OSTI)

.4 Seafood wholesalers and retailers 26 4.5 Wildfowl 26 4.6 Internal exposure 27 4.7 External exposure 29 4.2 Terrestrial food wholesalers and retailers 37 5.3 Internal exposure 37 6. COMBINED PATHWAYS 41 7. CONCLUSIONS of the survey 15 3. METHODS FOR DATA ANALYSIS 18 3.1 Data recording 18 3.2 Data analysis 20 4. AQUATIC RADIATION

351

Radiological Habits Survey, Faslane, 2006  

E-Print Network (OSTI)

.3 Land cover 24 5.4 Internal exposure 25 6. DIRECT RADIATION 26 7. COMBINED PATHWAYS 28 8. CONCLUSIONS.5 Wildfowling 18 4.6 Internal exposure 19 4.7 External exposure 21 4.8 Water based activities 22 5. TERRESTRIAL.2 Determination of critical groups 11 3.3 Data analysis 11 4. AQUATIC RADIATION PATHWAYS 15 4.1 Aquatic survey

352

Radiological Habits Survey: Devonport, 2004  

E-Print Network (OSTI)

36 5.2 Wholesalers and retailers 38 5.3 Internal exposure 38 6. DIRECT RADIATION PATHWAYS 42 6.4 Wholesalers and retailers 28 4.5 Wildfowl 28 4.6 Other pathways 28 4.7 Internal exposure 29 4.8 External exposure 31 4.9 Water based activities 34 5. TERRESTRIAL RADIATION PATHWAYS 36 5.1 Terrestrial survey area

353

Radiological Habits Survey: Dungeness, 2005  

E-Print Network (OSTI)

44 5.2 Wholesalers and retailers 47 5.3 Internal exposure 47 6. DIRECT RADIATION PATHWAYS 50 6.4 Wholesalers and retailers 34 4.5 Wildfowl 35 4.6 Other pathways 35 4.7 Internal exposure 36 4.8 External exposure 39 4.9 Water based activities 42 5. TERRESTRIAL RADIATION PATHWAYS 44 5.1 Terrestrial survey area

354

Radiological Habits Survey: Trawsfynydd, 2005  

E-Print Network (OSTI)

5.2 Wholesalers and retailers 36 5.3 Internal exposure 36 6. DIRECT RADIATION PATHWAYS 40 6.1 Direct.3 Angling 28 4.4 Wholesalers and retailers 28 4.5 Wildfowl 28 4.6 Internal exposure 29 4.7 External exposure analysis 22 4. AQUATIC RADIATION PATHWAYS 25 4.1 Aquatic survey area 25 4.2 Commercial fisheries 27 4

355

Radiological Habits Survey, Chapelcross, 2005  

E-Print Network (OSTI)

and local produce 25 5.2 Novel radiation pathways 26 5.3 Land cover 26 5.4 Internal exposure 27 6. DIRECT fisheries 18 4.3 Angling 19 4.4 Seafood wholesalers and retailers 19 4.5 Internal exposure 20 4.6 External exposure 22 4.7 Water based activities 23 5. TERRESTRIAL RADIATION PATHWAYS 25 5.1 Terrestrial survey area

356

Radiological Habits Survey, Hunterston 2001  

E-Print Network (OSTI)

and local produce 25 5.2 Novel radiation pathways 26 5.3 Land cover 26 5.4 Internal exposure 27 5.5 External fisheries 18 4.3 Angling and hobby fishing 19 4.4 Seafood wholesalers and retailers 19 4.5 Internal exposure 19 4.6 External exposure 23 5. TERRESTRIAL RADIATION PATHWAYS 25 5.1 Terrestrial survey area

357

Radiological Habits Survey: Sizewell, 2005  

E-Print Network (OSTI)

.1 Terrestrial survey area 38 5.2 Wholesalers and retailers 40 5.3 Internal exposure 40 6. DIRECT RADIATION fishing 29 4.4 Wholesalers and retailers 30 4.5 Wildfowl 30 4.6 Other pathways 30 4.7 Internal exposure 31 4.8 External exposure 34 4.9 Water based activities 36 5. TERRESTRIAL RADIATION PATHWAYS 38 5

358

Radiological Habits Survey: Sellafield, 2003  

E-Print Network (OSTI)

.4 Seafood wholesalers and retailers 28 4.5 Wildfowl 28 4.6 Other pathways 29 4.7 Internal exposure 29 4.8 External exposure 33 4.9 Water based activities 36 5. TERRESTRIAL RADIATION PATHWAYS 38 5.1 Terrestrial survey area 38 5.2 Terrestrial food wholesalers and retailers 41 5.3 Internal exposure 41 6. DIRECT

359

NEPA Litigation Surveys | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Litigation Surveys NEPA Litigation Surveys NEPA Litigation Surveys CEQ publishes surveys on NEPA litigation on an annual basis. These surveys identify the number of cases involving a NEPA based cause of action, Federal agencies that were identified as a lead defendant, general information on plaintiffs, general information on why litigation was pursued, and the outcomes of the cases decided during the year. Each year, Federal agencies conduct hundreds of EISs, tens of thousands of EAs and hundreds of thousands of CEs. The amount of litigation on these NEPA analyses is comparatively small. Since 2001, fewer than 175 NEPA cases were filed each year - with less than 100 filed in 2007, 2009, 2010, and 2011. The annual surveys are provided below: 2011 Litigation Survey 2010 Litigation Survey

360

NEPA Litigation Surveys | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEPA Litigation Surveys NEPA Litigation Surveys NEPA Litigation Surveys CEQ publishes surveys on NEPA litigation on an annual basis. These surveys identify the number of cases involving a NEPA based cause of action, Federal agencies that were identified as a lead defendant, general information on plaintiffs, general information on why litigation was pursued, and the outcomes of the cases decided during the year. Each year, Federal agencies conduct hundreds of EISs, tens of thousands of EAs and hundreds of thousands of CEs. The amount of litigation on these NEPA analyses is comparatively small. Since 2001, fewer than 175 NEPA cases were filed each year - with less than 100 filed in 2007, 2009, 2010, and 2011. The annual surveys are provided below: 2011 Litigation Survey 2010 Litigation Survey

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2008/2009 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

8/2009 User Survey Results 8/2009 User Survey Results Show All | 1 2 3 4 5 ... 9 | Next » 2008/2009 User Survey Results Table of Contents Response Survey Respondent Demographics Overall Satisfaction and Importance All Satisfaction and Importance Ratings Hardware Resources Software HPC Consulting Services and Communications Comments Response Survey Many thanks to the 421 users who responded to this year's User Survey. The response rate is comparable to last year's and both are significantly increased from previous years: 77.4 percent of users who had used more than 250,000 XT4-based hours when the survey opened responded 36.6 percent of users who had used between 10,000 and 250,000 XT4-based hours responded The overall response rate for the 3,134 authorized users during the survey period was 13.4%.

362

TECHNICAL DOCUMENTATION Commercial Buildings Energy Consumption Survey  

Reports and Publications (EIA)

This is the technical documentation for the public use data set based on the 1992 Commercial Buildings Energy Consumption Survey (CBECS), the national sample survey of commercial buildings and their energy suppliers conducted by the Energy Information Administration.

Information Center

1996-07-01T23:59:59.000Z

363

Hybrid heuristic algorithm for GPS surveying problem  

Science Conference Proceedings (OSTI)

This paper introduces several approaches based on ant colony optimization for efficient scheduling the surveying activities of designing satellite surveying networks. These proposed approaches use a set of agents called ants that cooperate to iteratively ...

Stefka Fidanova

2006-08-01T23:59:59.000Z

364

A Survey of Information Retrieval Vendors  

Science Conference Proceedings (OSTI)

This report is a survey of vendors that develop and market information retrieval technology. The objective of this survey is to provide information for those who want an overview of text retrieval and document management companies, their products, and ...

Robert J. Kuhns

1996-10-01T23:59:59.000Z

365

Survey of innovative rates, 1991  

SciTech Connect

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

366

Survey of innovative rates, 1991  

Science Conference Proceedings (OSTI)

Current innovative rate data from 135 major utilities throughout the United States were gathered and analyzed. Over 1000 innovative rates that were in use by the utilities in 1990 and 1991 were identified, abstracted and entered into a database. Survey results indicate that over 616 million MWh were sold to the nearly five million customers using the innovative rates offered. From an annual sales perspective, the most widely used rates are demand-side management rates -- rates intended to change customer energy use -- and rates that are market-driven.'' The survey identified 525 demand-side management rates serving our four million customers with reported sales of approximately 520 million MWh. These rates serve over 80% of the total innovative rate customers and account for 84% of the total MWh sales. Also important in terms of the MWh sales they represent are market-driven rates, which accounted for sales of 48 million MWh in 1990. Both demand-side management and market-driven rates show a 20% customer growth rate between 1988 and 1990. Other innovative rates examined in the survey included: prepaid service; load retention incentive rates; technology specific rates; and those rates related expressly to non-utility generators -- namely buy-back and standby rates.

White, L.J.; Wakefield, R.A.; McVicker, C.M.

1992-04-01T23:59:59.000Z

367

Residential Energy Consumption Survey Data Tables  

U.S. Energy Information Administration (EIA)

Below are historical data tables from the Residential Energy Consumption Survey (RECS). These tables cover the total number of households ...

368

Survey of renewable chemicals produced from ...  

RESEARCH Open Access Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment Patanjali Varanasi1,2, ...

369

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne...

370

Electric/hybrid vehicle Delphi survey  

DOE Green Energy (OSTI)

This document presents the methodology and results of the Delphi survey. The viewgraphs depict the surveyed population in detail and the surveyed vehicles attributes such as range, recharging time, velocity, acceleration, etc. These opinions are given for forecast years 2000, 2010, and 2020.

Ng, H.K.; Anderson, J.L.; Santini, D.J.

1995-08-08T23:59:59.000Z

371

Christopher U.S. Geological Survey  

E-Print Network (OSTI)

Christopher Magirl U.S. Geological Survey 934 Broadway Suite 300 Tacoma, Washington 98402 Phone; Hydraulic modeling; Computer programming (C/C++, Fortran, Perl), Field survey; Geographic information Research Hydrologist U.S. Geological Survey, Tacoma, Washington. September 2009 ­ present · Analyzing

372

HERRING SPAWNING SURVEYS IN SOUTHEASTERN ALASKA  

E-Print Network (OSTI)

--Fisheries No. 321 Washington, D. C. December 1959 #12;CONTENTS Page Introduction 1 Methods of aerial survey and Wildlife Service Galveston, Texas ABSTRACT Aerial surveys to observe milt herring in Southeastern Alaska that intensive ground surveys to assess spawn deposition are not feasible. There- fore, a method of aerial

373

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

374

Survey Design Surveys were conducted using an Aero Commander 690A at a speed of 110  

E-Print Network (OSTI)

and exploratory tracklines. (see Rone et al. aerial survey poster) Sonobuoy deployments were incorporated whale detections. After considering limitations encountered during the aerial survey that year (iSurvey Design Surveys were conducted using an Aero Commander 690A at a speed of 110 knots and 1000

375

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Total Energy Consumption by Major Fuel for All Buildings, 2003 A. Total Energy Consumption by Major Fuel for All Buildings, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings ................................ 4,859 71,658 6,523 10,746 3,559 2,100 228 636 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 685 1,185 392 257 34 Q 5,001 to 10,000 .............................. 948 7,033 563 883 293 224 36 Q 10,001 to 25,000 ............................ 810 12,659 899 1,464 485 353 28 Q 25,001 to 50,000 ............................ 261 9,382 742 1,199 397 278 17 Q 50,001 to 100,000 .......................... 147 10,291 913 1,579 523 277 29 Q

376

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Expenditures for Sum of Major Fuels for Non-Mall Buildings, 2003 . Expenditures for Sum of Major Fuels for Non-Mall Buildings, 2003 All Buildings* Sum of Major Fuel Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings* ............................... 4,645 64,783 13.9 92,577 19.9 1.43 15.91 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 2.7 12,812 5.0 1.89 19.08 5,001 to 10,000 .............................. 889 6,585 7.4 9,398 10.6 1.43 18.22 10,001 to 25,000 ............................ 738 11,535 15.6 13,140 17.8 1.14 16.93 25,001 to 50,000 ............................ 241 8,668 35.9 10,392 43.1 1.20 15.44

377

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Expenditures by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 . Expenditures by Census Region for Sum of Major Fuels for Non-Mall Buildings, 2003 Sum of Major Fuel Expenditures (million dollars) Sum of Major Fuel Expenditures (dollars) per Million Btu per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings* ............................ 21,344 21,521 31,595 18,118 16.79 12.74 16.22 19.88 1.65 1.26 1.35 1.60 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 2,298 3,235 4,752 2,526 19.47 15.74 19.77 23.48 2.24 1.71 1.88 1.89 5,001 to 10,000 ........................... 1,806 1,694 3,368 2,529 17.72 14.50 18.24 22.49 1.61 1.08 1.27 2.04 10,001 to 25,000 ......................... 2,606 3,157 4,530 2,846 17.56 13.85 18.09 19.03 1.32 1.02 1.03 1.36

378

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Expenditures for Sum of Major Fuels for All Buildings, 2003 A. Expenditures for Sum of Major Fuels for All Buildings, 2003 All Buildings Sum of Major Fuel Expenditures Number of Buildings (thousand) Floorspace (million square feet) Floorspace per Building (thousand square feet) Total (million dollars) per Building (thousand dollars) per Square Foot (dollars) per Million Btu (dollars) All Buildings ................................ 4,859 71,658 14.7 107,897 22.2 1.51 16.54 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,586 6,922 2.7 13,083 5.1 1.89 19.08 5,001 to 10,000 .............................. 948 7,033 7.4 10,443 11.0 1.48 18.56 10,001 to 25,000 ............................ 810 12,659 15.6 15,689 19.4 1.24 17.46 25,001 to 50,000 ............................ 261 9,382 36.0 11,898 45.6 1.27 16.04

379

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

A. Expenditures by Census Region for Sum of Major Fuels for All Buildings, 2003 A. Expenditures by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Expenditures (million dollars) Sum of Major Fuel Expenditures (dollars) per Million Btu per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west South West All Buildings .............................. 24,395 23,398 38,398 21,706 17.47 13.01 16.95 20.42 1.74 1.29 1.44 1.69 Building Floorspace (Square Feet) 1,001 to 5,000 ............................. 2,398 3,255 4,899 2,530 19.47 15.75 19.77 23.46 2.26 1.71 1.87 1.89 5,001 to 10,000 ........................... 1,978 1,887 3,761 2,816 18.42 14.71 18.44 22.90 1.69 1.13 1.32 2.10 10,001 to 25,000 ......................... 3,015 3,667 5,526 3,482 18.15 14.22 18.72 19.37 1.42 1.11 1.14 1.47

380

Energy Information Administration - Commercial Energy Consumption Survey-  

Gasoline and Diesel Fuel Update (EIA)

. Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003 All Buildings* Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Floorspace (million square feet) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat Primary Site All Buildings* ............................... 4,645 64,783 5,820 9,168 3,037 1,928 222 634 Building Floorspace (Square Feet) 1,001 to 5,000 ................................ 2,552 6,789 672 1,164 386 250 34 Q 5,001 to 10,000 .............................. 889 6,585 516 790 262 209 36 Q 10,001 to 25,000 ............................ 738 11,535 776 1,229 407 309 27 Q 25,001 to 50,000 ............................ 241 8,668 673 1,058 350 258 16 Q 50,001 to 100,000 .......................... 129 9,057 759 1,223 405 244 26 Q

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Aeromagnetic Survey (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Aeromagnetic Survey (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Aeromagnetic Survey Activity Date 1986 Usefulness could be useful with more improvements DOE-funding Unknown Notes Detection and quantitative assessment of such intrusive events can be facilitated by magnetic surveys (ground or aerial magnetic field measurements). These surveys are based on the magnetic susceptibility contrast between magmatic rocks at depth and the sedimentary formations above. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic Areas Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_(Nannini,_1986)&oldid=592438"

382

Helicopter magnetic survey conducted to locate wells  

Science Conference Proceedings (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

383

Site survey method and apparatus  

SciTech Connect

The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment.

Oldham, James G. (Albuquerque, NM); Spencer, Charles R. (Boise, ID); Begley, Carl L. (Albuquerque, NM); Meyer, H. Robert (Albuquerque, NM)

1991-06-18T23:59:59.000Z

384

Site survey method and apparatus  

DOE Patents (OSTI)

The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment. 19 figures.

Oldham, J.G.; Spencer, C.R.; Begley, C.L.; Meyer, H.R.

1991-06-18T23:59:59.000Z

385

Survey of Climate Data Mining  

E-Print Network (OSTI)

Global climate change has been a discussion topic for years, finally culminating as a significant problem and a national defense issue according to the 2010 Quadrennial Defense Review. From weather to ecological data, the planet is continuously being monitored by researchers collecting spatio-temporal climate data. With the immense amount of data collected, the challenge is making sense of the data by building models and studying the climatic events that deviate and correlate to the models. Data mining is now being used for this research and has four related problems: preprocessing data, applying data mining techniques to build models and outlier/anomaly detection, evaluation techniques and methods, and data visualization. This survey paper will present a broad survey of these issues by first discussing preprocessing techniques to remove variation and other data quality issues, including a discussion on the two types of outliers: undesirable outliers and outliers that represent interesting climate events. Next this paper will discuss common data mining techniques for building models, including association analysis, clustering, and ICA, and discovering interesting outlier/anomalies using techniques including classification, clustering, and wavelet analysis. Third, evaluation techniques will be covered through descriptions and examples. Finally, issues and techniques for climate data visualization will be discussed including

Jason W. Powell

2010-01-01T23:59:59.000Z

386

Wellbore inertial directional surveying system  

DOE Patents (OSTI)

A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

1982-09-08T23:59:59.000Z

387

Wellbore inertial directional surveying system  

DOE Patents (OSTI)

A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

Andreas, Ronald D. (Albuquerque, NM); Heck, G. Michael (Albuquerque, NM); Kohler, Stewart M. (Albuquerque, NM); Watts, Alfred C. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

388

West Coast Aerial Sardine Survey Application for Exempted Fishing Permit  

E-Print Network (OSTI)

West Coast Aerial Sardine Survey 2010 Application for Exempted Fishing Permit Applicants ........................................................................................5 A. Coastwide Summer Aerial Sardine Survey (July-August, 2010) ....................6 I. Survey Design ­ Coastwide Summer Aerial Sardine Survey ...............................6 Stage 1: Aerial Transect

389

WIPP Subsidence Monument Leveling Survey - 2005  

Science Conference Proceedings (OSTI)

Sections 2 through 7 of this report define the result of the 2005 leveling survey through the subsidence monuments at the WIPP site. Approximately 15 miles of leveling was completed through nine vertical control loops. The 2005 survey includes the determination of elevation on each of the 48 existing subsidence monuments and the WIPP baseline survey, and 14 of the National Geodetic Survey’s (NGS) vertical control points. The field observations were completed during September through November of 2005 by personnel from the Washington TRU Solutions (WTS) Surveying Group, Mine Engineering Department. Additional rod personnel were provided by the Geotechnical Engineering Department. Digital leveling techniques were utilized to achieve better than Second Order Class II loop closures as outlined by the Federal Geodetic Control Subcommittee (FGCS). Because it is important to perform the subsidence survey in exactly the same manner each year, WIPP procedure (WP 09-ES4001) details each step of the survey. Starting with the 2002 survey this procedure has been used to perform the subsidence survey. Starting with the survey of the year 2001, Loop 1 and redundant survey connections among the various loops were removed from the survey and report. This resulted in a reduction of fieldwork with no loss of accuracy or precision. The redundant connections caused multiple elevations for the same stations. The differences were so slight that they were not used in elevation adjustments for the loops. The redundancy was used to spot gross errors in the field. After several years of surveying these loops it is evident that no gross errors occur that are not also evident in the loop closures. Finally, Section 8 contains Table F, which summarizes the elevations for all surveys from 1987 through 2005, inclusive. A detailed listing of the 1986 through 1997 surveys is contained in the report, WIPP Subsidence Monument Leveling Surveys 1986-1997, DOE/WIPP 98-2293. A reference to the summary reports for each year after 1997 is listed in the reference section of this document.

Washington TRU Solutions LLC

2005-12-01T23:59:59.000Z

390

Federal Employee Viewpoint Survey | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Guidance » Human Capital Management » Federal Employee Policy and Guidance » Human Capital Management » Federal Employee Viewpoint Survey Federal Employee Viewpoint Survey The Federal Employee Viewpoint Survey (FedView survey) is a tool that measures employees' perceptions of whether, and to what extent, conditions characterizing successful organizations are present in their agencies. Survey results provide valuable insight into the challenges agency leaders face in ensuring the Federal Government has an effective civilian workforce and how well they are responding. Documents Available For Download October 31, 2013 2013 - Federal Viewpoint Survey Reports The following highlight report focuses on the Department of Energy's areas of strengths and challenges, identifies areas of progress and opportunities for improvement. The Departments 2013 results are compared

391

Design Code Survey Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Code Survey Form Design Code Survey Form Design Code Survey Form Survey of Safety Software Used in Design of Structures, Systems, and Components 1. Introduction The Department's Implementation Plan for Software Quality Assurance (SQA) that was developed in response to Defense Nuclear Facilities Safety Board Recommendation 2002-01, Quality Assurance for Safety-Related Software, includes a commitment (4.2.1.5) to conduct a survey of design codes currently in use to determine if any should be included as part of the toolbox codes. Design Code Survey Form September 11, 2003 More Documents & Publications Technical Standards, Safety Analysis Toolbox Codes - November 2003 DOE G 414.1-4, Safety Software Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance

392

2007/2008 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

7/2008 User Survey Results 7/2008 User Survey Results Show All | 1 2 3 4 5 ... 10 | Next » 2007/2008 User Survey Results Table of Contents Response Summary Overall Satisfaction and Importance All Satisfaction, Importance and Usefulness Ratings Hardware Resources Software Visualization and Data Analysis HPC Consulting Services and Communications Web Interfaces Comments about NERSC Response Summary Many thanks to the 467 users who responded to this year's User Survey. The response rate has significantly increased from previous years: 70 percent of users who had used more than 1 million MPP hours when the survey opened responded 43 percent of users who had used between 10,000 and 1 million MPP hours responded The overall response rate for the 2,804 authorized users during the survey period was 16.3%.

393

BNL | Baryonic Oscillation Spectroscopic Survey (BOSS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Baryonic Oscillation Spectroscopic Survey (BOSS) Baryonic Oscillation Spectroscopic Survey (BOSS) sloan telescope The 2.5-meter Sloan telescope in New Mexico Mapping the Luminous Universe How are galaxies clustered together? What is fueling the accelerating expansion of the universe? Just what is dark energy? These are the big questions that scientists working at the Baryon Oscillation Spectroscopic Survey (BOSS) are asking. Brookhaven National Lab is a member of BOSS, the largest of the four surveys that make up the Sloan Digital Sky Survey III, which maps the sky over the Northern Hemisphere with New Mexico's 2.5-meter Sloan telescope in an attempt to define dark energy and measure its effects. Building on the legacy of the Sloan Digital Sky Survey (SDSS) and SDSS-II, the SDSS-III collaboration is working to map the Milky Way, search

394

Definition: Geodetic Survey | Open Energy Information  

Open Energy Info (EERE)

Geodetic Survey Geodetic Survey Jump to: navigation, search Dictionary.png Geodetic Survey Geodetic surveys study Earth's geodynamical phenomena (e.g., crustal motion, gravitational field) using a satellite-borne global positioning system (GPS) in conjunction with terrestrial base stations. Geodetic surveys measure three-dimensional changes in crustal motion at the mm-scale. Measurements are typically made over very large areas (1010 km2) spanning years.[1] View on Wikipedia Wikipedia Definition Also Known As Geodesy References ↑ GPS and Space-Based Geodetic Methods (Blewitt 2007) from the book Treatise on Geophysics Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Geodetic_Survey&oldid=401158

395

1980 Active-Solar Installations Survey  

SciTech Connect

The survey covers active solar installations made during and prior to calendar year 1980. As the first survey of active solar installations in the United States, the objective was to establish a national baseline information system that could provide current data on residential and commercial active solar installations as well as a listing of firms involved in the active solar industry, including installers. Potential respondents were identified from regional lists of solar equipment dealers and installers compiled by each Regional Solar Energy Center (RSEC). The RSEC lists were computerized and combined into a mailing list of 5466 company names and addresses. An additional 1619 referrals, were provided by survey respondents from the RSEC list. However, because of resource constraints, 981 of these referrals were not included in the survey. To substantiate that the results of this survey represent accurate statistics on the number of active solar installations in the United States, a comparison was made to the Solar Collector Manufacturing Survey installations. (PSB)

1982-10-01T23:59:59.000Z

396

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

D (2005) - Household Propane (Bottled Gas or LPG) Usage Form D (2005) - Household Propane (Bottled Gas or LPG) Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Propane (Bottled Gas or LPG) Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality

397

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

F (2005) - Household Natural Gas Usage Form F (2005) - Household Natural Gas Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Natural Gas Usage Form Service Address: If the customer account number is not shown above, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and provide the requested information for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions. Use the enclosed self-addressed envelope and return the completed form to:

398

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

G (2005) - Household Fuel Oil or Kerosene Usage Form G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions.

399

Survey of hydrogen monitoring devices  

DOE Green Energy (OSTI)

Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.

Lai, W.

1981-01-01T23:59:59.000Z

400

Massive Variability Surveys from Venezuela  

E-Print Network (OSTI)

At the Venezuela National Astronomical Observatory we are carrying out variability surveys spanning many hundreds of square degrees near the celestial equator, using an 8k x 8k CCD Mosaic Camera optimized for drift-scanning on a 1m Schmidt telescope. Among the initial efforts was a project to obtain the first moderately deep, homogeneous sample of young stars over an area of ? 180sqr.deg. encompassing the entire Orion OB1 association, one of the nearest and most active regions of star formation. The results show that variability is a powerful technique to identify pre-main sequence populations, specially in sparse areas devoid of gas and dust. We are currently developing a massive database, equipped with web-based data mining tools, that will make our data and results available to the astronomical community. 1.

C. D. Impey; C. E. Petry; César Briceño

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Massive Variability Surveys from Venezuela  

E-Print Network (OSTI)

At the Venezuela National Astronomical Observatory we are carrying out variability surveys spanning many hundreds of square degrees near the celestial equator, using an 8k x 8k CCD Mosaic Camera optimized for drift-scanning on a 1m Schmidt telescope. Among the initial efforts was a project to obtain the first moderately deep, homogeneous sample of young stars over an area of ~180sqr.deg. encompassing the entire Orion OB1 association, one of the nearest and most active regions of star formation. The results show that variability is a powerful technique to identify pre-main sequence populations, specially in sparse areas devoid of gas and dust. We are currently developing a massive database, equipped with web-based data mining tools, that will make our data and results available to the astronomical community.

Briceño, C

2003-01-01T23:59:59.000Z

402

Massive Variability Surveys from Venezuela  

E-Print Network (OSTI)

At the Venezuela National Astronomical Observatory we are carrying out variability surveys spanning many hundreds of square degrees near the celestial equator, using an 8k x 8k CCD Mosaic Camera optimized for drift-scanning on a 1m Schmidt telescope. Among the initial efforts was a project to obtain the first moderately deep, homogeneous sample of young stars over an area of ~180sqr.deg. encompassing the entire Orion OB1 association, one of the nearest and most active regions of star formation. The results show that variability is a powerful technique to identify pre-main sequence populations, specially in sparse areas devoid of gas and dust. We are currently developing a massive database, equipped with web-based data mining tools, that will make our data and results available to the astronomical community.

Cesar Briceno

2003-04-03T23:59:59.000Z

403

Nuclear Engineering Academic Programs Survey, 2002 Data  

SciTech Connect

The survey includes degrees granted between July 1, 2001 and June 30, 2002. Enrollment information refers to the fall term 2002. Thirty-five academic programs were in the survey universe and all responded (100% response rate). One of the 35 programs reported that it was discontinued after the 2001-2002 academic year. Also, two programs were discontinued after the previous academic year (2000-2001) and were not included in 2002 survey.

Oak Ridge Institute for Science and Education

2003-10-01T23:59:59.000Z

404

Nuclear Engineering Academic Programs Survey, 2003  

SciTech Connect

The survey includes degrees granted between September 1, 2002 and August 31, 2003. Thirty-three academic programs reported having nuclear engineering programs during the survey time period and all responded (100% response rate). Three of the programs included in last year's report were discontinued or out-of-scope in 2003. One new program has been added to the list. This year the survey data include U.S. citizenship, gender, and race/ethnicity by degree level.

Science and Engineering Education, Oak Ridge Institute for Science and Education

2004-03-01T23:59:59.000Z

405

Forecasting Cosmological Constraints from Redshift Surveys  

E-Print Network (OSTI)

Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In this paper we present a formalism for forecasting the constraints on the growth of structure which would arise in an idealized survey. This Fisher matrix based formalism can be used to study the power and aid in the design of future surveys.

Martin White; Yong-Seon Song; Will J. Percival

2008-10-08T23:59:59.000Z

406

Reflection Survey (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey (Nannini, 1986) Reflection Survey (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "seismic analyses" - no indication of active/passive, reflection/refraction, etc. ---> "On the contrary, in areas with little or no volcanic activity, assumptions on the nature, size and characteristics of the source of the thermal anomaly are generally much more difficult and hypothetical. In these circumstances, some useful data can be obtained from accurate seismic analyses, together with a seismotectonic and geodynamic

407

Definition: DC Resistivity Survey (Schlumberger Array) | Open...  

Open Energy Info (EERE)

Schlumberger Array) Jump to: navigation, search Dictionary.png DC Resistivity Survey (Schlumberger Array) The Schlumberger array is a type of electrode configuration for a DC...

408

WIPP Subsidence Monument Leveling Survey - 2004  

Science Conference Proceedings (OSTI)

Sections 2 through 7 of this report define the result of the 2004 leveling survey through the subsidence monuments at the WIPP site. Approximately 15 miles of leveling was completed through nine vertical control loops. The 2004 survey includes the determination of elevation on each of the 48 existing subsidence monuments and the WIPP baseline survey, and 14 of the National Geodetic Survey's (NGS) vertical control points. The field observations were completed during August through November of 2004 by personnel from the WashingtonTRU Solutions (WTS) Surveying Group, Mine Engineering Department. Additional rod personnel were provided by the Geotechnical Engineering department. Digital leveling techniques were utilized to achieve better than Second Order Class II loop closures as outlined by the Federal Geodetic Control Subcommittee (FGCS). Because it is important to perform the subsidence survey in exactly the same manner each year, WIPP procedure (WP 09-ES4001) details each step of the survey. Starting with the 2002 survey this procedure has been used to perform the subsidence survey. Starting with the survey of the year 2001, Loop 1 and redundant survey connections among the various loops were removed from the survey and report. This resulted in a reduction of fieldwork with no loss of accuracy or precision. The redundant connections caused multiple elevations for the same stations. The differences were so slight that they were not used in elevation adjustments for the loops. The redundancy was used to spot gross errors in the field. After several years of surveying these loops it is evident that no gross errors occur that are not also evident in the loop closures. Finally, Section 8 contains Table F, which summarizes the elevations for all surveys from 1987 through 2004, inclusive. A detailed listing of the 1986 through 1997 surveys is contained in the report, WIPP Subsidence Monument Leveling Surveys 1986-1997, DOE/WIPP 98-2293. A reference to the summary reports for each year after 1997 is listed in the reference section of this document.

Washington TRU Solutions LLC

2004-12-21T23:59:59.000Z

409

Supporting Statement for Survey Clearance: Electric Power ...  

U.S. Energy Information Administration (EIA)

Form EIA-63B, “Annual Photovoltaic Cell/Module Shipments Report” The Form EIA-63B is a mandatory annual census survey of companies engaged in photovol ...

410

Federal Buildings Supplemental Survey - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings in...

411

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...  

Office of Legacy Management (LM)

EAST PITTSBURGH, PENNSYLVANIA At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the Westinghouse Electric Corporation's East...

412

Residential Energy Consumption Survey (RECS) - Energy Information ...  

U.S. Energy Information Administration (EIA)

Heating and cooling no longer majority of U.S. home energy use. Source: U.S. Energy Information Administration, Residential Energy Consumption Survey.

413

Balancing Authority Related Proposals for EIA Surveys  

U.S. Energy Information Administration (EIA)

for EIA Surveys EIA Stakeholder Presentation June 5, 2012 . ... smart grid technologies and demand response. Require balancing authorities to post the next day

414

Residential Energy Consumption Survey (RECS) 2009 Technical ...  

U.S. Energy Information Administration (EIA)

Residential Energy Consumption Survey (RECS) Using the 2009 microdata file to compute estimates and standard errors (RSEs) February 2013 Independent Statistics & Analysis

415

2005 State Laboratory Program Workload Survey  

Science Conference Proceedings (OSTI)

Page 1. 2005 State Laboratory Program Workload Survey Summary Graphs and Data by NCSLI Legal Metrology Committee FL PR Jun'05 Rev 1 ...

2010-11-30T23:59:59.000Z

416

2003 State Laboratory Program Workload Survey  

Science Conference Proceedings (OSTI)

Page 1. 2003 State Laboratory Program Workload Survey Summary Graphs and Data by NCWM Metrology Subcommittee FL PR Aug'03 Rev 2 ...

2010-11-30T23:59:59.000Z

417

Survey of Geothermal Heat Pump Shipments  

U.S. Energy Information Administration (EIA)

Others 930 3,369 454 4,753 ... Source: Energy Information Administration, Form EIA-902 "Annual Geothermal Heat Pump Manufacturers Survey." Relased: March 2006

418

2009/2010 NERSC User Survey Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Demographics Overall Satisfaction All Satisfaction and Importance Ratings HPC Resources NERSC Software Services Comments Survey Text Response Summary Many thanks to the 395 users...

419

Survey Background and Technical Information on CBECS  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Background and Technical Information Survey Background and Technical Information Survey Background and Technical Information Survey Background The commercial sector encompasses a vast range of building types- service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as certain buildings that would not be considered "commercial" in a traditional economic sense, such as public and private schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The 2003 CBECS was the eighth survey in the series begun in 1979. From 1979 to 1986, the survey was known as the Nonresidential Buildings Energy Consumption Survey, or NBECS.

420

EIA initiates daily gasoline availability survey for ...  

U.S. Energy Information Administration (EIA)

To develop the emergency survey, EIA used the representative sample of retail stations selling gasoline used in EIA's Form EIA-878, "Motor Gasoline ...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Independent Communication and Outreach Stakeholder Satisfaction Survey  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Prepared for U.S. Department of Energy Office of Legacy Management December 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey Independent Communication and Outreach Stakeholder Satisfaction Survey December 2012 Table of Contents List of Figures ............................................................................................................................................. iii List of Tables .............................................................................................................................................. iii Executive Summary .................................................................................................................................... v 1. Introduction............................................................................................................................................ 1

422

Redshift Surveys with 2dF  

E-Print Network (OSTI)

We report on the 2dF Galaxy and QSO Redshift Surveys now in progress with the Two Degree Field facility at the Anglo-Australian Observatory. We describe the 2dF instrumentation, outline the scientific aims of the surveys and their current status, and present some initial results.

Matthew Colless; Brian Boyle

1997-10-24T23:59:59.000Z

423

Tornado Damage Survey at Moore, Oklahoma  

Science Conference Proceedings (OSTI)

On 4 May 1999, the Wind Science and Engineering Research Center at Texas Tech University dispatched three survey teams to the Oklahoma City area to conduct a tornado damage survey. The author was the leader of one of the teams whose purpose was ...

Timothy P. Marshall

2002-06-01T23:59:59.000Z

424

Radiological Habits Survey: Berkeley and Oldbury, 2007  

E-Print Network (OSTI)

aquatic internal exposure 63 pathways at Berkeley and Oldbury Table B Comparison between 2001 and 2007 of the survey 18 3. METHODS FOR DATA ANALYSIS 22 3.1 Data recording 22 3.2 Data analysis 24 4. AQUATIC RADIATION. TERRESTRIAL RADIATION PATHWAYS 45 5.1 Terrestrial survey area 45 5.2 Unusual pathways 48 5.3 Wholesalers

425

Radiological Habits Survey: Sellafield Review, 2005  

E-Print Network (OSTI)

2. Survey area 3 3. Conduct of survey 3 4. Data analysis 4 4.1 Internal exposure 4 Figure 2 Critical;3 1. Introduction This report describes a review of public radiation exposure pathways due to liquid 1996-2005 5 4.2 External exposure 6 5. Conclusions 7 6. Recommendations 7 7. References 7 Figure 1

426

KE Basin underwater visual fuel survey  

SciTech Connect

Results of an underwater video fuel survey in KE Basin using a high resolution camera system are presented. Quantitative and qualitative information on fuel degradation are given, and estimates of the total fraction of ruptured fuel elements are provided. Representative photographic illustrations showing the range of fuel conditions observed in the survey are included.

Pitner, A.L.

1995-02-01T23:59:59.000Z

427

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

428

Heliostat mirror survey and analysis  

DOE Green Energy (OSTI)

The mirrors used on concentrating solar systems must be able to withstand severe and sustained environmental stresses for long periods of time if they are to be economically acceptable. Little is known about how commercially produced wet process silvered second surface mirrors will withstand the test of time in solar applications. Field experience in existing systems has shown that the performance of the reflective surface varies greatly with time and is influenced to a large extent by the construction details of the mirror module. Degradation of the reflective layer has been seen that ranges from non-observable to severe. The exact mechanisms involved in the degradation process are not well understood from either the phenomenological or microanalytical points of view and are thus subject to much debate. The three chapters of this report summarize the work recently performed in three general areas that are key to understanding and ultimately controlling the degradation phenomena. These areas are: a survey of the present commercial mirroring industry, the microanalytical examination of numerous degraded and nondegraded mirrors, and an investigation of several novel techniques that might be used to extend the life of heliostat mirrors. Appendices include: (a) list of mirror manufacturers and (b) recommended specifications for second surface silvered mirrors for central receiver heliostat applications. (WHK)

Lind, M.A.; Buckwalter, C.Q.; Daniel, J.L.; Hartman, J.S.; Thomas, M.T.; Pederson, L.R.

1979-09-01T23:59:59.000Z

429

SDSS spectroscopic survey of stars  

E-Print Network (OSTI)

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Zo]~ -1.3. The median metallicity for the low-metallicity [Z/Zo] -1.3 sample. We also find that the low-metallicity sample has ~2.5 times larger velocity dispersion and that it does not rotate (at ...

Ivezic, Z; Uomoto, A; Bond, N; Beers, T; Allende-Prieto, C; Wilhelm, R; Lee, Y S; Sivarani, T; Juric, M; Lupton, R; Rockosi, C M; Knapp, G; Gunn, J; Yanny, B; Jester, S; Kent, S; Pier, J; Munn, J A; Richards, G; Newberg, H; Blanton, M; Eisenstein, D; Hawley, S; Anderson, S; Harris, H; Kiuchi, F; Chen, A; Bushong, J; Sohi, H; Haggard, D; Kimball, A; Barentine, J; Brewington, H; Harvanek, M; Kleinman, S; Krzesínski, J; Long, D; Nitta, A; Snedden, S A

2007-01-01T23:59:59.000Z

430

SDSS spectroscopic survey of stars  

E-Print Network (OSTI)

In addition to optical photometry of unprecedented quality, the Sloan Digital Sky Survey (SDSS) is also producing a massive spectroscopic database. We discuss determination of stellar parameters, such as effective temperature, gravity and metallicity from SDSS spectra, describe correlations between kinematics and metallicity, and study their variation as a function of the position in the Galaxy. We show that stellar parameter estimates by Beers et al. show a good correlation with the position of a star in the g-r vs. u-g color-color diagram, thereby demonstrating their robustness as well as a potential for photometric parameter estimation methods. Using Beers et al. parameters, we find that the metallicity distribution of the Milky Way stars at a few kpc from the galactic plane is bimodal with a local minimum at [Z/Zo]~ -1.3. The median metallicity for the low-metallicity [Z/Zo] -1.3 sample. We also find that the low-metallicity sample has ~2.5 times larger velocity dispersion and that it does not rotate (at the ~10 km/s level), while the rotational velocity of the high-metallicity sample decreases smoothly with the height above the galactic plane.

Z. Ivezic; D. Schlegel; A. Uomoto; N. Bond; T. Beers; C. Allende Prieto; R. Wilhelm; Y. Sun Lee; T. Sivarani; M. Juric; R. Lupton; C. Rockosi; G. Knapp; J. Gunn; B. Yanny; S. Jester; S. Kent; J. Pier; J. Munn; G. Richards; H. Newberg; M. Blanton; D. Eisenstein; S. Hawley; S. Anderson; H. Harris; F. Kiuchi; A. Chen; J. Bushong; H. Sohi; D. Haggard; A. Kimball; J. Barentine; H. Brewington; M. Harvanek; S. Kleinman; J. Krzesinski; D. Long; A. Nitta; S. Snedden; for the SDSS Collaboration

2007-01-17T23:59:59.000Z

431

Definition: Reflection Survey | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey Reflection Survey Jump to: navigation, search Dictionary.png Reflection Survey Seismic reflection surveys image the structure of the subsurface through the measurement of the two way travel time of reflected artificially-generated elastic waves.[1] View on Wikipedia Wikipedia Definition Also Known As Seismic Reflection References ↑ http://www.amazon.com/Introduction-Geophysical-Prospecting-Milton-Dobrin/dp/0071004041 Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Reflection_Survey&oldid=598371" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

432

Aerial Surveys to Estimate Abundance of Wintering Waterfowl in Mississippi  

E-Print Network (OSTI)

1 Aerial Surveys to Estimate Abundance of Wintering Waterfowl in Mississippi Aaron Pearse, Rick Kaminski, Steve Dinsmore, and Ken Reinecke Monitoring Waterfowl · Banding program · Breeding-ground survey(s) · Hunter surveys · Wintering waterfowl surveys Objectives Design Evaluate Application 1) Sampling 2

Gray, Matthew

433

Marine surveys aid gas line  

Science Conference Proceedings (OSTI)

Detailed marine surveys helped B.C. Hydro, a Canadian gas distribution utility, select the submarine route portion of the proposed Vancouver Island gas pipeline system. In 1984, after a series of government hearings, B.C. Hydro's route selection was adopted by the British Columbia Provincial Government. Vancouver Island is the last major population center in Western Canada not supplied with natural gas. In fact, studies of a gas pipeline to the island have been carried out periodically over the past 30 years. But until recently, all schemes have appeared unattractive because of a combination of technical, economic, and political factors. The proposed Vancouver Island project which is awaiting funding, consists of a dual 52.7-km marine transmission pipeline link from the mainland to the island. Diameter of this portion of line will be either 12 of 16-in. Also, part of the proposed system will be an 18.5-km line on the mainland, a 280-km transmission pipeline on the island, compression facilities, and distribution systems in the major population centers. Diameters for the land portions will vary between 6 and 24 in. For several months in late 1983 and early 1984, the project was the subject of public hearings held by the British Columbia Utilities Commission. This process was complicated when two companies applied to construct and operate the marine pipeline link to the island using completely different routes and techniques. In July 1984, the commission recommended to the Provincial Government that B.C. Hydro's proposal for the marine pipeline be accepted. It further recommended that an Energy Project Certificate for construction of the pipeline link to the island be awarded to B.C. Hydro. The recommendation was accepted by the Provincial Government and the project now awaits a funding agreement between the Federal and Provincial Governments.

Park, C.A.; Baines, F.A. Koenig, H.L.

1986-05-05T23:59:59.000Z

434

Being surveyed can change later behavior and related parameter estimates  

E-Print Network (OSTI)

Does completing a household survey change the later behavior of those surveyed? In three field studies of health and two of microlending, we randomly assigned subjects to be surveyed about health and/or household finances ...

Zwane, Alix Peterson

435

United States Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Survey Jump to: navigation, search Logo: United States Geological Survey Name United States Geological Survey Address USGS National Center 12201 Sunrise Valley Drive Place Reston, VA Zip 20192 Region Northeast - NY NJ CT PA Area Year founded 1879 Phone number 703-648-5953 Website http://www.usgs.gov/ Coordinates 38.947077°, -77.370315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.947077,"lon":-77.370315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

2009 Annual Employee Survey Results for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 Annual Employee Survey Results for 9 Annual Employee Survey Results for Department of Energy All Respondents 1) Interpretation of Results: The agency's overall results were favorable and showed the agency improving in most areas. The agency remained strong in areas pertaining to Job Satisfaction and Talent Management. The agency's biggest challenge is in Performance Culture. This is an area that the agency has been working on for several years and will continue to do so in 2010. Scores related to Leadership/Supervisory dimension showed a substantial decrease from the 2008 Federal Human Capital Survey. This may stem from the stress related to the major transition in the Administration's leadership and the lack of management stability during this process. This is an area that the agency will be closely reviewing following the 2010 Employee Viewpoint Survey

437

Seismic Emissions Surveys | Open Energy Information  

Open Energy Info (EERE)

Emissions Surveys Emissions Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Seismic Emissions Surveys Abstract With recent improvements in acquiring, processing and interpreting data, seismic ground noise provides a valuable tool for geothermal exploration. A time domain beam steering array processing technique is employed. This process eliminates the occurrence of false anomalies caused by local geologic amplification effects. Surveys of this type are used to located naturally fractured reservoirs. Results form Dixie Valley and Desert Peak, Nevada correlate well with the location of productive wells or known geology. Authors Katz and Lewis J. Published Journal Geothermal Resources Council Transactions, 1984 DOI Not Provided Check for DOI availability: http://crossref.org

438

REPORT OF SURVEY OF OAK RIDGE ISOTOPE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OAK RIDGE ISOTOPE OAK RIDGE ISOTOPE ENRICHMENT (CALUTRON) FACILITY BUILDING 9204-3 U.S. Department of Energy Office of Environmental Management & Office of Nuclear Energy Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 FINAL May 8, 2000 Contents 1. Introduction 1.1 Purpose 1.2 Facility Description 1.3 Organization Representatives 1.4 Survey Participants 2. Summary, Conclusions & Recommendations 2.1 Transfer Considerations 2.2 Post-Transfer EM Path Forward & Management Risk 3. Survey Results 4. Stabilization and Other Actions Required for Transfer 5. Surveillance & Maintenance After Transfer 6. Other Transfer Details 7. Attachments and References Appendix A - Detailed Survey Notes

439

FAQs for Survey Form EIA-782C  

Gasoline and Diesel Fuel Update (EIA)

C C What is the purpose of this survey? What is the estimated time needed to complete this survey? When and how can I submit data each month? Where can I find published data from the EIA-782C? Do I have to report data? Who is required to report on the survey? What are criteria for resubmissions? Are my data confidential? Should I inform you of a change in the contact person in our company for the survey? Should I inform you if our company is sold, merged with another company, or buys another company? What is a data reference month? What petroleum products does EIA want me to submit data for? What is the exclusionary list and how do I use it? My company has a product exchange agreement with another company, how do I report those sales? Should I report sales of products that are exported outside of the United

440

2011 NERSC User Survey (Read Only)  

NLE Websites -- All DOE Office Websites (Extended Search)

Results » Survey Text Results » Survey Text 2011 NERSC User Survey (Read Only) The survey is closed. Section 1: Overall Satisfaction with NERSC When you are finished with this page click "Save & Go to Next Section" or your responses will be lost. Please do not answer a specific question or rate a specific item if you have no opinion on it. For each item you use, please indicate both your satisfaction and its importance to you. Please rate: How satisfied are you? How important is this to you? Overall satisfaction with NERSC Not Answered Very Satisfied Mostly Satisfied Somewhat Sat. Neutral Somewhat Dissat. Mostly Dissat. Very Dissatisfied I Do Not Use This Not Answered Very Important Somewhat Important Not Important NERSC services Not Answered Very Satisfied Mostly Satisfied Somewhat Sat. Neutral Somewhat Dissat. Mostly Dissat. Very Dissatisfied I Do Not Use This Not Answered Very Important Somewhat Important Not Important

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Refraction Survey (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Refraction Survey (Laney, 2005) Refraction Survey (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Refraction Survey Activity Date Usefulness useful DOE-funding Unknown Notes Seismic Imaging, Majer, Gritto and Daley. The project objective includes the development and application of active seismic methods for improved understanding of the subsurface structure, faults, fractures lithology, and fluid paths in geothermal reservoirs. While the objective of the work previous to FY2003 was concerned with the detection and location of faults and fractures based on an existing 3-D seismic data set collected at the Rye Patch geothermal reservoir, the current work was aimed at investigating

442

LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY  

NLE Websites -- All DOE Office Websites (Extended Search)

LOS ALAMOS NATIONAL LABORATORY LOS ALAMOS NATIONAL LABORATORY COMMUNITY LEADERS SURVEY SEPTEMBER 2013 LOS ALAMOS NATIONAL LABORATORY-COMMUNITY LEADERS STUDY SEPTEMBER 2013 PAGE 2 RESEARCH & POLLING, INC. TABLE OF CONTENTS I. INTRODUCTION ....................................................................................................................................................................................................................................................... 3 METHODOLOGY ................................................................................................................................................................................................................................................................ 4 EXECUTIVE SUMMARY ........................................................................................................................................................................................................................................................ 5

443

BNL | Large Synoptic Survey Telescope (LSST)  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Synoptic Survey Telescope Large Synoptic Survey Telescope About LSST Digital Sensor Array Brookhaven & Physics of the Universe LSST Project Website LSST: Providing an Unprecedented View of the Cosmos rendering of the LSST site in Chile A revolutionary 3.2 gigapixel camera mounted in a massive ground-based telescope will produce unprecedented views of the cosmos, driving discoveries with the widest, densest, and most complete images of our universe ever captured. New Visions The Large Synoptic Survey Telescope (LSST) will peer into space as no other telescope can. This new facility will create an unparalleled wide-field astronomical survey of our universe - wider and deeper in volume than all previous telescopes combined. The combination of a 3200 megapixel camera sensor array, a powerful supercomputer, a cutting-edge data processing and

444

FAQs for Survey Form EIA-821  

Gasoline and Diesel Fuel Update (EIA)

21 21 What is the purpose of the EIA-821 survey? The EIA-821 survey is used to collect annual data on the sales of distillate and residual fuel oils, and kerosene to various categories of energy users at the state level. How is this data used? The data collected on the EIA-821 survey are used by EIA and the Department of Energy (DOE) in determining petroleum product supply and demand changes. In addition, the data are used by Federal, State, and local agencies, Congress, industry analysts, trade publications, academia, and the public to analyze, model and forecast petroleum product sales by state and energy use category. Where can I find published data from the EIA-821 survey? The annual data are published in the Fuel Oil and Kerosene Sales. The Fuel Oil and Kerosene Sales report provides information, illustrations

445

Definition: Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys Jump to: navigation, search Dictionary.png Near Infrared Surveys Near infrared surveys refer to multi- and hyperspectral data collected in the region just outside wavelengths detectable by the human eye. Near infrared wavelengths are generally considered to be between approximately 0.75-1.4 micrometers. View on Wikipedia Wikipedia Definition Infrared (IR) light is electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometres (nm) to 1 mm. This range of wavelengths corresponds to a frequency range of approximately 430 THz down to 300 GHz, and includes most of the thermal radiation emitted by objects near room temperature. Infrared light is emitted or absorbed by molecules

446

Commodity Flow Survey | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Commodity Flow Survey Commodity Flow Survey BusinessUSA Data/Tools Apps Challenges Let's Talk BusinessUSA You are here Data.gov » Communities » BusinessUSA » Data Commodity Flow Survey Dataset Summary Description The Commodity Flow Survey provides information on commodities shipped, their value, weight, and mode of transportation, as well as the origin and destination of shipments of commodities from manufacturing, mining, wholesale, and selected retail and services establishments. It is undertaken through a partnership between the Bureau of the Census, U.S. Department of Commerce, and the Bureau of Transportation Statistics, Research and Innovative Technology Administration. Tags {cfc,commodity,flow," federal",state,local,transportation,facilities,services,energy,safety,environment,Mining,Manufacturing,Wholesale,trade,Retail,Services,auxiliary,establishments,warehouses,industries,export,shipment,distance,tons,weight,hazardous,miles,ton-miles,destination,industry,hazard,ship,intrastate,interstate,"UN number",packaging,"TIH number",u.s.,metropolitan}

447

A Survey on Cloud Provider Security  

E-Print Network (OSTI)

A Survey on Cloud Provider Security Measures Alex Pucher, Stratos Dimopoulos Abstract Cloud take advantage of this model already, but security and privacy concerns limit the further adoption agencies and start offering security certifications and separate tightly controlled "government" cloud

448

2008 B20 Survey Results (Presentation)  

DOE Green Energy (OSTI)

Describes results of a sample survey of the quality of B20, a biodiesel blend, collected from U.S. public pumps and fleets as part of a joint effort by NREL, the NBB, and engine manufacturers.

Alleman, T. L.; McCormick, R. L.

2009-02-02T23:59:59.000Z

449

Power Optimization in VLSI Layout: A Survey  

Science Conference Proceedings (OSTI)

This paper presents a survey of layout techniques for designing low power digital CMOS circuits. It describes the many issues facing designers at the physical level of design abstraction and reviews some of the techniques and tools that have been ...

Massoud Pedram; Hirendu Vaishnav

1997-03-01T23:59:59.000Z

450

United States Geological Survey Geospatial Information Response  

E-Print Network (OSTI)

requirements, capabilities, and operations in response to a natural or man-made disaster1 United States Geological Survey Geospatial Information Response Information Response Team (GIRT) Standard Operating Procedures (SOP) contains the GIRT

Fleskes, Joe

451

Commercial Grade Dedication Survey and Training  

Energy.gov (U.S. Department of Energy (DOE))

This survey was conducted to obtain input from EM contractors on processes used to perform Commercial Grade Item (CGI) dedication.  The intended use of this information is to form the basis for...

452

Computational generation of referring expressions: A survey  

Science Conference Proceedings (OSTI)

This article offers a survey of computational research on referring expression generation (REG). It introduces the REG problem and describes early work in this area, discussing what basic assumptions lie behind it, and showing how its remit has widened ...

Emiel Krahmer; Kees van Deemter

2012-03-01T23:59:59.000Z

453

Disjunctive Logic Programming: A Survey and Assessment  

Science Conference Proceedings (OSTI)

We describe the fields of disjunctive logic programming and disjunctive deductive databases from the time of their inception to the current time. Contributions with respect to semantics, implementations and applications are surveyed.In the last decade ...

Jack Minker; Dietmar Seipel

2002-01-01T23:59:59.000Z

454

Business Innovation Programs Agribusiness Supply Chain Survey  

E-Print Network (OSTI)

Business Innovation Programs Agribusiness Supply Chain Survey Industrial Energy Efficiency Healthy LAFAYETTE, Ind. - An industry's supply chain is only as strong as its weakest link. For the agribusiness Workforce Green Worker Certification Nanotechnology Transfer Energy Systems Network Innovations Link #12

455

Energy Information Administration (EIA)- CBECS Survey Background...  

Annual Energy Outlook 2012 (EIA)

Estimation of Standard Errors Sampling error is the difference between the survey estimate and the true population value due to the use of a random sample to estimate the...

456

A Survey of Radar Rain Measurement Techniques  

Science Conference Proceedings (OSTI)

Several methods used to estimate rainfall rate R are surveyed. The distribution N(D) of drop sizes is of central importance in determining the reflectivity factor Z, attenuation rate K, and R. With single-parameter measurement techniques either ...

Richard J. Doviak

1983-05-01T23:59:59.000Z

457

Residential Energy Consumption Survey (RECS) - Energy ...  

U.S. Energy Information Administration (EIA)

A B C D E F G H I J K L M N O P Q R S T U V W XYZ ‹ Consumption & Efficiency Residential Energy Consumption Survey (RECS) Glossary ...

458

PRELIMINARY SURVEY OF TEXAS CITY CHEMICALS, INC.  

Office of Legacy Management (LM)

(DOE), a preliminary survey was performed at the Borden Chemical Division plant in Texas City, Texas (see Fig. l), on November 17, 1977, to assess the radiological status of those...

459

FAQs for Survey Form EIA-782A  

Gasoline and Diesel Fuel Update (EIA)

A A What is the purpose of this survey? What is the estimated time needed to complete this survey? When and how can I submit data each month? Where can I find published data from the EIA-782A? Do I have to report data? Who is required to report on the survey? What are criteria for resubmissions? Are my data confidential? Should I inform you of a change in the contact person in our company for the survey? Should I inform you if our company is sold, merged with another company, or buys another company? What is a data reference month? What petroleum products does EIA want me to submit data for? I am not sure in which category I should report my sales data. What is the exclusionary list and how do I use it? Should I include taxes in my reported prices? Should I include transportation charges in my reported prices?

460

Underground Distribution: Urban Network Practices Survey - 2012  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has undertaken a multiyear research effort to identify and describe leading industry practices for managing urban network systems in the key functional areas of planning, design, construction, maintenance, operations, and safety. This report summarizes the results of the 2012 survey of urban network practices issued by EPRI and provides comparisons to a similar survey issued by EPRI in 2009.

2012-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Directory and survey of particle physicists  

SciTech Connect

In order to develop a clearer understanding of the demographics of the U.S. particle physics workforce, the US Department of Energy, the National Science Foundation, and the Division of Particles and Fields of the American Physical Society commissioned a survey and census of particle physicists employed in the United States. This survey and census were conducted in 1995, with an update of the census in April 1997. The agencies and the scientific community were represented for the 1995 efforts by Dr. Robert Woods (DOE), Dr. William Chinowsky (NSF), and Prof. Uriel Nauenberg (DPF); for the current census, by Dr. Robert Diebold (DOE), Dr. Marvin Goldberg (NSF), and Dr. Patricia Rankin (NSF). The survey/census were carried out with the assistance of the Particle Data Group at Lawrence Berkeley National Laboratory. In order to obtain an accurate study of the current workforce and of future needs, we requested that all HEP physicists fill out and return the 1995 survey. There were 2494 respondents. For the 1997 census, a representative of each university and laboratory was asked to provide information on all persons at that institution who spend at least 50% of their research time on particle physics. In some cases this includes accelerator physicists. The total number of physicists in the 1997 census is 3492 from 155 institutions in the United States. The full survey questionnaires are shown. The primary one was addressed to individual particle physicists, while the secondary one was addressed to principal investigators and sought information about people leaving the field. There are many possible tables and plots from this survey, with a variety of correlations. Those chosen are representative of a cross-section of the demographic results. It should be emphasized that this survey was a snapshot in time, and does not have the same capabilities as would a series of surveys that are periodic in time. Care should be taken in interpreting the results of the tables and plots.

NONE

1997-04-01T23:59:59.000Z

462

Identification Strategies in Survey Response Using Vignettes  

E-Print Network (OSTI)

satisfaction over products and services (see Rossi, Gilula, and Allenby (2001)), surveys of job satisfaction (Kristensen and Johansson (2006)), health (Bago D’Uva, Lindeboom, O’Donnell, and Van Doorslaer (2009); Peracchi and Rossetti (2009); Salomon, Tandon... , and Murray (2004)), political efficacy (King, Murray, Salomon, and Tandon (2004)), work disability (Kapteyn, Smith, and Van Soest (2007)), and corruption (Olken (2007)). A fundamental barrier to inference using survey response is that respondents exhibit...

Corrado, Luisa; Weeks, Melvyn

463

2009 Canadian Radiation Oncology Resident Survey  

SciTech Connect

Purpose: Statistics from the Canadian post-MD education registry show that numbers of Canadian radiation oncology (RO) trainees have risen from 62 in 1999 to approximately 150 per year between 2003 and 2009, contributing to the current perceived downturn in employment opportunities for radiation oncologists in Canada. When last surveyed in 2003, Canadian RO residents identified job availability as their main concern. Our objective was to survey current Canadian RO residents on their training and career plans. Methods and Materials: Trainees from the 13 Canadian residency programs using the national matching service were sought. Potential respondents were identified through individual program directors or chief resident and were e-mailed a secure link to an online survey. Descriptive statistics were used to report responses. Results: The eligible response rate was 53% (83/156). Similar to the 2003 survey, respondents generally expressed high satisfaction with their programs and specialty. The most frequently expressed perceived weakness in their training differed from 2003, with 46.5% of current respondents feeling unprepared to enter the job market. 72% plan on pursuing a postresidency fellowship. Most respondents intend to practice in Canada. Fewer than 20% of respondents believe that there is a strong demand for radiation oncologists in Canada. Conclusions: Respondents to the current survey expressed significant satisfaction with their career choice and training program. However, differences exist compared with the 2003 survey, including the current perceived lack of demand for radiation oncologists in Canada.

Debenham, Brock, E-mail: debenham@ualberta.net [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Banerjee, Robyn [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Fairchild, Alysa; Dundas, George [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada); Trotter, Theresa [Department of Radiation Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta (Canada); Yee, Don [Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta (Canada)

2012-03-15T23:59:59.000Z

464

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

465

2006-2010 American Community Survey 5-Year Estimates Summary...  

NLE Websites -- All DOE Office Websites (Extended Search)

survey that collects information such as age, race, income, commute time to work, home value, veteran status, and other data. Data from the American Community Survey and...

466

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) UMore Park Wind Turbine Project Loggerhead Shrike Survey, DOEEA-1791 (June 2010) The project area...

467

Survey quantifies cost of organic milk production in California  

E-Print Network (OSTI)

In this survey, production costs for California organicsuch as higher production and feed costs, lowered veterinarya comprehensive dairy cost production survey, which involves

Butler, Leslie J.

2002-01-01T23:59:59.000Z

468

Ground Gravity Survey At Marysville Mt Area (Blackwell) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Ground Gravity Survey Activity Date...

469

Prospective Type Ia supernova surveys from Dome A  

E-Print Network (OSTI)

Prospective Type Ia Supernova Surveys From Dome A A. Kim a ,are conducive toward Type Ia supernova surveys forheterogeneities within the Type Ia supernova class, reducing

Kim, A.

2010-01-01T23:59:59.000Z

470

NATURAL GAS PROCESSING PLANT SURVEY FORM EIA-757 INSTRUCTIONS  

U.S. Energy Information Administration (EIA)

emergency response planning and actual emergencies. data published from this survey’s information. Thus, there may be some statistics that are based ...

471

Pages that link to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search What links...

472

Changes related to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search This is a...

473

Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home Report of Survey of Oak Ridge Isotope Enrichment (Calutron) Facility Building 9204-3 Report of Survey of Oak...

474

Confirmatory Survey Report for the Quehanna Decommissioning Project, Karthaus, PA  

Science Conference Proceedings (OSTI)

The survey activities consisted of visual inspections and radiological surveys including beta and gamma surface scans and surface beta activity measurements.

W. C. Adams

2007-10-30T23:59:59.000Z

475

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

476

Reflection Survey At Jemez Pueblo Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Jemez Pueblo Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Jemez Pueblo Area (DOE GTP)...

477

Reflection Survey At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Reflection Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Wister Area (DOE GTP) Exploration...

478

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Ground Gravity Survey At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Mcgee Mountain...

479

Figure 2. Energy Consumption of Vehicles, Selected Survey Years  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Households, Buildings & Industry >Transportation Surveys > Household Vehicles Energy Use > Figure 2 Figure 2. Energy Consumption of Vehicles, Selected Survey Years...

480

Aerial survey finds no increase in radioactivity for Los Alamos...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey finds no increase in radioactivity ... Aerial survey finds no increase in...

Note: This page contains sample records for the topic "btu mecs survey" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Using National Survey Data to Estimate Lifetimes of Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Survey Data to Estimate Lifetimes of Residential Appliances Title Using National Survey Data to Estimate Lifetimes of Residential Appliances Publication Type Journal...

482

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL...  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation,...

483

Residential Energy Consumption Survey (RECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Share of energy used by appliances and consumer electronics increases in Share of energy used by appliances and consumer electronics increases in U.S. homes RECS 2009 - Release date: March 28, 2011 Over the past three decades, the share of residential electricity used by appliances and electronics in U.S. homes has nearly doubled from 17 percent to 31 percent, growing from 1.77 quadrillion Btu (quads) to 3.25 quads. This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to 10.55 quads, and energy use per household fell 31 percent. Federal energy efficiency standards have greatly reduced consumption for home heating Total energy use in all U.S. homes occupied as primary residences decreased slightly from 10.58 quads in 1978 to 10.55 quads in 2005 as reported by the

484

Geothermal industry employment: Survey results & analysis  

DOE Green Energy (OSTI)

The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach as many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.

Not Available

2005-09-01T23:59:59.000Z

485

Experience with 113 Retrofit Insulation Surveys  

E-Print Network (OSTI)

We have surveyed 113 plants for thirteen clients. The results of 21 recent surveys at today's average fuel price, show an average project scope generation of $151,000 while saving about 5MMBTU/hour with a 72% DCF rate of return. The size of the retrofit project generated, or scope, is of course sensitive to the fuel price. This is an important consideration because of the variability of fuel price. A study of the effect of fuel price on project scope generation and on return has been made using sophisticated computer programs designed for this purpose. These results indicate that scope generation may vary from $50,000 for $3.00 fuel up to $80,000 for $6.00 fuel. When this happens, the project return will increase from 100% up to 165% per year. The main problem that we have found with retrofit insulation surveys is the processing of detail in existing plants. The solution is the preparation or selection of the right system for approaching the problem utilizing computer programs. The time required to generate systematic approaches to insulation surveys and the generation of retrofit projects are sizable. The continued heat losses while studying the project are also significant. Thus, the heat losses suffered while deciding how to insulate can be sufficient to pay for an insulation survey.

Webber, W. O.

1985-05-01T23:59:59.000Z

486

Aerial radiation survey at a military range.  

SciTech Connect

Aberdeen Proving Ground (APG) is currently listed on the Superfund National Priorities List because of past waste handling practices at 13 'study areas.' Concern has been expressed that anthropogenic radioisotopes may have been released at some of the study areas, with the potential of posing health risks to human or ecological receptors. This concern was addressed by thoroughly searching archival records, sampling and analyzing environmental media, and performing an aerial radiation survey. The aerial radiation survey techniques employed have been used over all U.S. Department of Energy and commercial reactor sites. Use of the Aerial Measurement System (AMS) allowed investigators to safely survey areas where surveys using hand-held instruments would be difficult to perform. In addition, the AMS delivered a full spectrum of the measured gamma radiation, thereby providing a means of determining which radioisotopes were present at the surface. As a quality check on the aerial measurements, four ground truth measurements were made at selected locations and compared with the aerial data for the same locations. The results of the survey revealed no evidence of surface radioactive contamination. The measured background radiation, including the cosmic contribution, ranged from 4 to 11 {mu}R/h.

Williams, G. P.; Martino, L. E.; Wrobel, J.; Environmental Assessment; U.S. Army Aberdeen Proving Ground

2001-04-01T23:59:59.000Z

487

Survey Paper Cyber security in the Smart Grid: Survey and challenges q  

E-Print Network (OSTI)

Survey Paper Cyber security in the Smart Grid: Survey and challenges q Wenye Wang , Zhuo Lu Accepted 29 December 2012 Available online 17 January 2013 Keywords: Smart Grid Cyber security Attacks and countermeasures Cryptography Security protocols a b s t r a c t The Smart Grid, generally referred to as the next

Wang, Wenye

488

www.eia.gov  

U.S. Energy Information Administration (EIA)

(million square feet) Energy Intensity for Sum of Major Fuels (thousand Btu/ square foot) ... and E of the 2003 Commercial Buildings Energy Consumption Survey.

489

www.eia.gov  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Total Northeast Q Total Midwest Total South Total West Principal Building Activity Survey Years and Census Region (Thousand Btu per Square Foot)

490

The China Survey Texas A&M University  

E-Print Network (OSTI)

The China Survey Texas A&M University Board of Overseers: Robert Harmel, Political Science, Texas A of Pittsburgh Announcement of Invitation to Propose Items The China Survey is a nationwide, multi-disciplinary, social science survey of China. It is a major infrastructure project of The China Archive, Survey

Bermúdez, José Luis

491

Accurate estimation of abundance of cetaceans from survey data requires  

E-Print Network (OSTI)

to both survey design and analysis (Buckland et al., 2001). Aerial surveys of cetaceans depend on rapid- tion of abundance. We present here the results of a series of aerial surveys designed to estimate survey, an object or group of objects is encountered, an aerial observer has only a few seconds

492

The 1997 Residential Energy Consumption Survey -- Two Decades  

U.S. Energy Information Administration (EIA)

1997 Residential Energy Consumption Survey presents two decades of changes in energy consumption related Household Characteristics

493

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations  

E-Print Network (OSTI)

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 sq. deg. region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, Galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the Type Ia SNe, the main driver for the Survey, our photometr...

Sako, Masao; Becker, A; Cinabro, D; De Jongh, F; Depoy, D L; Dilday, B; Doi, M; Frieman, J A; Garnavich, P M; Hogan, C J; Holtzman, J; Jha, S; Kessler, R; Konishi, K; Lampeitl, H; Marriner, J; Miknaitis, G; Nichol, R C; Prieto, J L; Reiss, A G; Richmond, M W; Romani, R; Schneider, D P; Smith, M; Subba-Rao, M; Takanashi, N; Tokita, K; van der Heyden, K; Yasuda, N; Zheng, C; Barentine, J; Brewington, H; Choi, C; Dembicky, J; Harnavek, M; Ihara, Y; Im, M; Ketzeback, W; Kleinman, S J; KrzesiÅ?ski, J; Long, D C; Malanushenko, E; Malanushenko, V; McMillan, R J; Morokuma, T; Nitta, A; Pan, K; Saurage, G; Snedden, S A

2007-01-01T23:59:59.000Z

494

Definition: Telluric Survey | Open Energy Information  

Open Energy Info (EERE)

Telluric Survey Telluric Survey Jump to: navigation, search Dictionary.png Telluric Survey Telluric currents, or earth currents, are generated through electromagnetic induction processes due to natural, passive geomagnetic micropulsations. The measurement of telluric currents enables determination of the strata thickness and resistivity profile with depth.[1] View on Wikipedia Wikipedia Definition A telluric current (from Latin tellūs, "earth"), or Earth current, is an electric current which moves underground or through the sea. Telluric currents result from both natural causes and human activity, and the discrete currents interact in a complex pattern. The currents are extremely low frequency and travel over large areas at or near the surface of Earth. References

495

Federal Buildings Supplemental Survey -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Publication and Tables Overview > Publication and Tables Publication and Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS buildings and floorspace by selected agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Separater Bar Separater Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Federal Buildings Supplemental Survey, 1993 (file size 1.15 MB) pages: 183 Selected Sections Main Text (file size 161,775 bytes) pages: 17. - Requires Adobe Acrobat Reader Contacts Preface Contents Introduction At a Glance Highlights on Federal Buildings Detailed Tables Appendices Appendix A. How the Survey Was Conducted (file size 45,191 bytes) pages: 8.

496

Airborne Gravity Survey | Open Energy Information  

Open Energy Info (EERE)

Airborne Gravity Survey Airborne Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Airborne Gravity Survey Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Gravity Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

497

Near Infrared Surveys | Open Energy Information  

Open Energy Info (EERE)

Near Infrared Surveys Near Infrared Surveys (Redirected from Thermal And-Or Near Infrared) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Near Infrared Surveys Details Activities (18) Areas (14) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: Passive Sensors Parent Exploration Technique: Passive Sensors Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 450.0045,000 centUSD 0.45 kUSD 4.5e-4 MUSD 4.5e-7 TUSD / sq. mile Median Estimate (USD): 800.0080,000 centUSD 0.8 kUSD 8.0e-4 MUSD 8.0e-7 TUSD / sq. mile High-End Estimate (USD): 1,350.00135,000 centUSD 1.35 kUSD 0.00135 MUSD 1.35e-6 TUSD / sq. mile

498

Static Temperature Survey | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey Static Temperature Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Static Temperature Survey Details Activities (28) Areas (24) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Extrapolate the true temperature of the formation the well penetrates Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3535 centUSD 3.5e-4 kUSD 3.5e-7 MUSD 3.5e-10 TUSD / foot High-End Estimate (USD): 0.7575 centUSD 7.5e-4 kUSD 7.5e-7 MUSD

499

FAQs for Survey Form EIA-182  

Gasoline and Diesel Fuel Update (EIA)

FAQs for Survey Form EIA-182 FAQs for Survey Form EIA-182 What is the purpose of this survey? Form EIA-182, "Domestic Crude Oil First Purchase Report" is designed to collect data on both the average cost and volume associated with the physical and financial transfer of domestic crude oil off the property on which it was produced. The monthly reported data represent the initial market value and volume of domestic crude oil production. What are the published domestic crude oil first purchase prices? The domestic crude oil first purchase price is associated with only those companies that purchase crude oil the moment the oil leaves the lease on which it was produced. Companies are asked to report the average cost per barrel and total volume purchased for requested crude streams purchased in

500

2-M Probe Survey | Open Energy Information  

Open Energy Info (EERE)

2-M Probe Survey 2-M Probe Survey (Redirected from 2-M Probe) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: 2-M Probe Survey Details Activities (27) Areas (21) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Identify and delineate shallow thermal anomalies Cost Information Low-End Estimate (USD): 200.0020,000 centUSD 0.2 kUSD 2.0e-4 MUSD 2.0e-7 TUSD / station Median Estimate (USD): 300.0030,000 centUSD 0.3 kUSD 3.0e-4 MUSD 3.0e-7 TUSD / station High-End Estimate (USD): 500.0050,000 centUSD 0.5 kUSD 5.0e-4 MUSD