Powered by Deep Web Technologies
Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BTU Accounting for Industry  

E-Print Network [OSTI]

convert utility bills to BTUs? All fuels can be measured in terms of BTU content. Natural gas has a million BTUs per thousand cubic feet; propane - 92,000 BTUs per gallon; fuel oil - 140,000 BTUs per gallon; electricity - 3,413 BTUs per KW hour... BTU ACCOUNTING FOR INDUSTRY Robert O. Redd-CPA Seidman & Seidman Grand Rapids, Michigan Today, as never before, American industry needs to identify and control their most criti cal resources. One of these is energy. In 1973 and again in 1976...

Redd, R. O.

1979-01-01T23:59:59.000Z

2

The Italian National Solar Energy History Project  

Science Journals Connector (OSTI)

This poster presentation introduces The Italian National Solar Energy History Project (The Project) to the participants of the ISES SWC 2007. The Project is currently being promoted by the Italian National Com...

Cesare Silvi

2009-01-01T23:59:59.000Z

3

Report. Web of Science History project  

Science Journals Connector (OSTI)

...September 2002 research-article Report. Web of Science History project J. Corden Archivist...Heritage Lottery Fund awarded 43,000 to the Web of Science History project, which was put...hosted by the Public Record Office at Kew. Web Of Science History|The Royal Society...

2002-01-01T23:59:59.000Z

4

The Manhattan Project National Security History Series  

Broader source: Energy.gov (indexed) [DOE]

The Manhattan Project National Security History Series 5 Visit our Manhattan Project web site: http://www.cfo.doe.gov/me70/manhattan/index.htm 5 DOE/MA-0002 Revised F. G. Gosling Office of History and Heritage Resources Executive Secretariat Office of Management Department of Energy January 2010 The Manhattan Project National Security History Series 5 National Security History Series Volume I: The Manhattan Project: Making the Atomic Bomb Volume II: Building the Nuclear Arsenal: Cold War Nuclear Weapons Development and Production, 1946-1989 (in progress) Volume III: Nonproliferation and Stockpile Stewardship: The Nuclear Weapons Complex in the Post-Cold War World (projected) The National Security History Series is a joint project of the Office

5

History and Organization of the Port Hacking Estuary Project  

Science Journals Connector (OSTI)

The history of research into Port Hacking before the Port Hacking Estuary Project of 19731978 is summarized....

Robert R. Parker; David J. Rochford

1983-01-01T23:59:59.000Z

6

The Manhattan Project: An Interactive History  

Office of Scientific and Technical Information (OSTI)

Leslie Groves and J. Robert Oppenheimer In a national survey at the turn of the millennium, both journalists and the public ranked the dropping of the atomic bomb and the end of the Second World War as the top news stories of the twentieth-century. The advent of nuclear weapons, made possible by the Manhattan Project, not only helped bring an end to the Second World War-it ushered in the atomic age and determined how the next war, the Cold War, would be fought. The Manhattan Project: An Interactive History is intended to provide a comprehensive overview of the Manhattan Project. Five main topical areas-Events, People, Places, Processes, and Science-are further divided into sub-sections, each with an introductory page and as many as a dozen or more sub-pages. The site is interactive in the sense that it is designed with the flexibility to meet the needs of a variety of users. Those seeking a brief overview of the Manhattan Project, for example, should start with the introductory pages for the eight sub-sections of the Events Section. Users wanting a more in-depth chronological history should read, in order, the fifty-six Events sub-pages. Numerous internal links within the content of the pages allows the reader to easily move from page to page, wherever his or her interests lead. There are thus multiple ways for the user to approach the site. In addition, the Resources Section provides access to a variety of resource materials, including photos, documents, maps, and published histories.

7

Roadmap to the Project: Oral Histories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search HREX Multimedia Related Sites Feedback Search HREX Multimedia Related Sites Feedback DOE Roadmap Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report Human Radiation Experiments Oral Histories Health Physicist William J. Bair, Ph.D. covers the University of Rochester's radiation biology program; Bair's radionuclide inhalation research at Hanford Site; and his management of Hanford's Biology Department and Life Sciences Program. Biochemist Waldo E. Cohn, Ph.D. covers Cohn's wartime work as Biochemistry Group leader at the University of Chicago's Metallurgical Laboratory and his tenure at Oak Ridge National Laboratory, where he helped shape America's postwar isotope production and distribution policy.

8

Provo River Project Power Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Provo River Project Power Sales Rate History Updated: 12/20/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) Administrative Action 4/58 - 6/64 (Summer Season) 3.000 N.A. N.A. Administrative Action 10/58 - 4/64 (Winter Season) 4.500 N.A. N.A. Administrative Action 7/64 - 9/79 (Summer Season) 5.000 N.A. N.A. Administrative Action 10/64 - 9/79 (Winter Season) 3.000 N.A. N.A. Administrative Action 10/79 - 9/82 6.000 N.A. N.A. Administrative Action 10/82 - 9/90 6.850 N.A. N.A. Administrative Action 10/90 - 9/94 8.000 N.A. N.A. Administrative Action 10/94 - Present Installments N.A. N.A. Note: The Provo River Project sells energy only. As of October 1994, customers pay all OM&R expenses and in return, receive all the energy produced by the Project.

9

Report. Web of Science History project  

Science Journals Connector (OSTI)

...by the Public Record Office at Kew. Web Of Science History|The Royal Society|Public Record Office| 383 Notes Rec. R...Aids for the History of Science, Technology and the...through the Public Record Office site, it is possible...

2002-01-01T23:59:59.000Z

10

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Workers Demolish Facility Tied to Project Pluto Recovery Act Workers Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters

11

Recovery Act Workers Demolish Facility Tied to Project Pluto History |  

Broader source: Energy.gov (indexed) [DOE]

Demolish Facility Tied to Project Pluto Demolish Facility Tied to Project Pluto History Recovery Act Workers Demolish Facility Tied to Project Pluto History Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Reinvestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after workers finish installing a concrete cap over the below-ground level where the facility stood. Recovery Act Workers Demolish Facility Tied to Project Pluto History More Documents & Publications 2010 ARRA Newsletters 2011 ARRA Newsletters

12

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

13

NASA/CR2004208938 Lunar Receiving Laboratory Project History  

E-Print Network [OSTI]

NASA/CR­2004­208938 Lunar Receiving Laboratory Project History Susan Mangus Muskingum College New Concord, Ohio William Larsen Johnson Space Center Houston, Texas June 2004 #12;THE NASA STI PROGRAM OFFICE . . . IN PROFILE Since its founding, NASA has been dedicated to the advancement of aeronautics and space science

Rathbun, Julie A.

14

Microsoft Word - APRIL 2009 PMCDP Module CHRIS ESS Tutorial_MAINTAIN_PROJECT_HISTORY.doc  

Broader source: Energy.gov (indexed) [DOE]

MAINTIN PROJECT HISTORY MAINTIN PROJECT HISTORY REV: APRIL 2009 1 1. To update your project history, click on the "PMCDP Menu" and choose "Maintain project history." Maintain Project History ESS Tutorial, Project Management Career Development Program MAINTIN PROJECT HISTORY REV: APRIL 2009 2 2. A screen with the header "PMCDP Profile for [Your Name]" will appear titled "Step 3: Maintain project history." Options: Delete: This will delete all information for the selected project as currently showing in the table. Update: This will bring you back to the original input screen for project information. View Description: This will bring up a text box that will allow you to see the description previously entered. Sort: Project history information is presented in date-order, with the most recent position

15

www.arts.canterbury.ac.nz/internships Project Title: Health, History and Digital  

E-Print Network [OSTI]

project on the history of unfree labour in the Pacific. The intern will link the database to other onlinewww.arts.canterbury.ac.nz/internships Project Title: Health, History and Digital Humanities: The project explores the health history of indentured labourers in Fiji. The intern will digitise microfilm

Hickman, Mark

16

Low-Btu coal gasification in the United States: company topical. [Brick producers  

SciTech Connect (OSTI)

Hazelton and other brick producers have proved the reliability of the commercial size Wellman-Galusha gasifier. For this energy intensive business, gas cost is the major portion of the product cost. Costs required Webster/Hazelton to go back to the old, reliable alternative energy of low Btu gasification when the natural gas supply started to be curtailed and prices escalated. Although anthracite coal prices have skyrocketed from $34/ton (1979) to over $71.50/ton (1981) because of high demand (local as well as export) and rising labor costs, the delivered natural gas cost, which reached $3.90 to 4.20/million Btu in the Hazelton area during 1981, has allowed the producer gas from the gasifier at Webster Brick to remain competitive. The low Btu gas cost (at the escalated coal price) is estimated to be $4/million Btu. In addition to producing gas that is cost competitive with natural gas at the Webster Brick Hazelton plant, Webster has the security of knowing that its gas supply will be constant. Improvements in brick business and projected deregulation of the natural gas price may yield additional, attractive cost benefits to Webster Brick through the use of low Btu gas from these gasifiers. Also, use of hot raw gas (that requires no tar or sulfur removal) keeps the overall process efficiency high. 25 references, 47 figures, 14 tables.

Boesch, L.P.; Hylton, B.G.; Bhatt, C.S.

1983-07-01T23:59:59.000Z

17

Children and elders sharing stories: lessons from two online oral history projects  

Science Journals Connector (OSTI)

Oral history projects provide a way for students to learn history by engaging with elders sharing stories relevant to their experience. However, these kinds of projects require a large amount of effort to undertake. We believe computing technology can ... Keywords: children, elders, history, language arts, online community, senior citizens

Jason B. Ellis; Amy S. Bruckman; Robert C. Satterwhite

1999-12-01T23:59:59.000Z

18

Colorado River Storage Project Power Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Colorado River Storage Project Power Sales Rate History Updated: 10/2/2009 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) R4-F1 3/62 - 4/74 3.000 $1.275 6.000 UC-F1 4/74 - 6/77 3.000 $1.320 6.110 UC-F2 (Firm Only) 6/77 - 1/81 3.400 $1.340 6.550 UC-FP2 (Peaking Only) 6/77 - 1/81 N.A. $1.340 N.A. SP-F1 (Firm Only) 1/81 - 6/83 4.000 $1.655 7.890 SP-FP1 (Peaking Only) 1/81 - 6/83 N.A. $1.655 N.A. SP-F2 (Firm Only) 6/83 - 9/87 5.000 $2.090 9.920 SP-FP2 (Peaking Only) 6/83 - 9/87 N.A. $2.090 N.A. None 10/87 - Present N.A. N.A. N.A. Note: Beginning October 1, 1987, all Colorado River Storage Project power became a Salt Lake City Area Integrated Projects resource. As of that date, direct sales to power customers ceased.

19

Salt Lake City Area Integrated Projects Power Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Lake City Area Integrated Projects Power Sales Rate History Updated: 9/11/2013 Rate Schedule Effective Dates Energy (Mills/kWh) Capacity ($/kW-mo.) Combined (Mills/kWh) 1/ Composite (Mills/kWh) 2/ SLIP-F1 10/87-9/90 5.000 $2.09 9.92 - SLIP-F2 10/90-11/91 7.250 $3.08 14.5 - SLIP-F3 12/91-9/92 8.100 $3.44 16.2 - SLIP-F4 10/92-9/94 8.400 $3.54 16.72 - SLIP-F5 12/94-4/98 8.900 $3.83 - 20.17 SLIP-F6 4/98-9/02 8.100 $3.44 - 17.57 SLIP-F7 10/02-9/06 9.500 $4.04 - 20.72 SLIP-F8 10/06-9/08 10.430 $4.43 - 25.28 SLIP-F9 (First Step) 10/08-9/09 11.060 $4.70 - 26.80 SLIP-F9 (Second Step) 10/09-Present 12.190 $5.18 - 29.62 The Salt Lake City Area Integrated Projects is a combination of resources from the Collbran, CRSP, and Rio Grande Projects. 1/ Combined rates are calculated with a load factor which is assumed to be constant over a given period. In the SLCA/IP, the load factor is considered to be 58.2 percent.

20

Building Energy Software Tools Directory: BTU Analysis Plus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plus Plus BTU Analysis Plus logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The BTU Analysi Plus program is designed for general heating, air-conditioning, and commerical studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis Plus was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Lowest Pressure Steam Saves More BTU's Than You Think  

E-Print Network [OSTI]

ABSTRACT Steam is the most transferring heat from But most steam systems LOWEST PRESSURE STEAM SAVES MORE BTU'S THAN YOU THINK Stafford J. Vallery Armstrong Machine Works Three Rivers, Michigan steam to do the process heating rather than...

Vallery, S. J.

22

Property:Geothermal/AnnualGenBtuYr | Open Energy Information  

Open Energy Info (EERE)

AnnualGenBtuYr AnnualGenBtuYr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/AnnualGenBtuYr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 5.3 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 72.5 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 5 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 7 + Americulture Aquaculture Low Temperature Geothermal Facility + 17 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 6.5 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 1.8 +

23

Building Energy Software Tools Directory: BTU Analysis REG  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REG REG BTU Analysis REG logo. Heat load calculation program that performs comprehensive heat load studies with hardcopy printouts of the results. The REG program is designed for general heating, air-conditioning, and light commercial studies. Since 1987, the BTU Analysis family of programs have been commercially distributed and are marketed through professional organizations, trade advertisements, and word of mouth. They are currently used in six (6) foriegn countries and the U.S. Used in temperate, tropic, artic, and arid climates. They have proved themselves easy to use, accurate and productive again and again. A version of BTU Analysis, was adopted for use in the revised HEATING VENTILATING AND AIR CONDITIONING FUNDAMENTALS by Raymond A. Havrella. Keywords

24

Property:Geothermal/CapacityBtuHr | Open Energy Information  

Open Energy Info (EERE)

CapacityBtuHr CapacityBtuHr Jump to: navigation, search This is a property of type Number. Pages using the property "Geothermal/CapacityBtuHr" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + 0.8 + A Ace Development Aquaculture Low Temperature Geothermal Facility + 10.3 + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + 2 + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + 1 + Americulture Aquaculture Low Temperature Geothermal Facility + 2.4 + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + 3 + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + 0.3 +

25

STUDENT HOURLY OFFICE ASSISTANT Position available with the History of Cartography Project  

E-Print Network [OSTI]

STUDENT HOURLY OFFICE ASSISTANT Position available with the History of Cartography Project Hours · Must be enrolled UW student; work study funding accepted · Experience with Word, Excel, database To apply, submit a detailed letter of application and resume to Beth Freundlich at: History of Cartography

Wisconsin at Madison, University of

26

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

27

Recovery Act Workers Demolish Facility Tied to Project Pluto History  

Broader source: Energy.gov (indexed) [DOE]

LAS VEGAS - Workers recently razed a facility used in the LAS VEGAS - Workers recently razed a facility used in the historic Project Pluto, the latest American Recovery and Rein- vestment Act accomplishment helping clean up traces of past nuclear testing at the Nevada National Security Site (NNSS). Recovery Act workers safely hauled the last demolition waste from the Pluto Disassembly Facility to disposal facilities Jan. 11. The project is slated for completion this spring after work- ers finish installing a concrete cap over the below-ground level where the facility stood. "Without Recovery Act funding, the demolition of Pluto would not have been feasible for several more years," Federal Sub- Project Director Kevin Cabble said. In the late 1950s and early 1960s, the Pluto facility was used to develop the world's first

28

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History A repository for images about our legacy as a Laboratory. News Releases Media Contacts Videos Photos Fact Sheets Social Media PHOTOS BY TOPIC Careers Community...

29

Virtual Museum Captures Ohio Plant History: Web-based Project Preserves  

Broader source: Energy.gov (indexed) [DOE]

Virtual Museum Captures Ohio Plant History: Web-based Project Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do you wonder what the interior of a uranium enrichment plant looks like without ever stepping foot in the facility? Now, the public can view photos, watch interviews with current and former workers who share historical accounts and browse old newsletters on the Portsmouth Gaseous Diffusion Plant from as far back as the early 1950s with

30

Virtual Museum Captures Ohio Plant History: Web-based Project Preserves  

Broader source: Energy.gov (indexed) [DOE]

Virtual Museum Captures Ohio Plant History: Web-based Project Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy Virtual Museum Captures Ohio Plant History: Web-based Project Preserves Plant's Uranium Enrichment Legacy May 21, 2012 - 12:00pm Addthis An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. An online museum on the Portsmouth Gaseous Diffusion Plant went live earlier this year. PIKETON, Ohio - Do you wonder what the interior of a uranium enrichment plant looks like without ever stepping foot in the facility? Now, the public can view photos, watch interviews with current and former workers who share historical accounts and browse old newsletters on the Portsmouth Gaseous Diffusion Plant from as far back as the early 1950s with

31

U.S. Total Consumption of Heat Content of Natural Gas (BTU per...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

32

Margaret A. Ormsby Oral History Project Compiled by Christopher Hives (1999)  

E-Print Network [OSTI]

Margaret A. Ormsby Oral History Project fonds Compiled by Christopher Hives (1999) University Alphabetically by Interviewee 1-6 #1 John Bovey (April 9, 1999) - 2 tapes 1-7 #2 Keith Ralston (May 4, 1999) 1 Marcellus (May 11, 1999) 1-10 #5 Lewis G. Thomas (May 12, 1999) 1-11 #6 Keith Ralston (May 12, 1999) 1-12 #7

Handy, Todd C.

33

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" " ",,"Consumption","per Dollar" " ","Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",3,3,3 " 20-49",5,5,4 " 50-99",6,5,4 " 100-249",5,5,4 " 250-499",7,9,7 " 500 and Over",3,2,2 "Total",2,2,2

34

history  

National Nuclear Security Administration (NNSA)

highlights of the site's history now is available for viewing on the Y-12 public Web site at

35

Table 11a. Coal Prices to Electric Generating Plants, Projected...  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Constant Dollars" " constant dollars per million Btu in ""dollar year"" specific to each...

36

Project Team Elizabeth Rodini, Lecturer, Department of the History of Art, Krieger School of Arts & Sciences; Nora  

E-Print Network [OSTI]

Project Team Elizabeth Rodini, Lecturer, Department of the History of Art, Krieger School of Arts study, such as how collections are organized in a space, the history of collections through time in their architectural, historical, and narrative complexities. This "museum database" addresses several pedagogical

Gray, Jeffrey J.

37

The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations  

E-Print Network [OSTI]

The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

Blackwell, L. T.; Crowder, J. T.

1983-01-01T23:59:59.000Z

38

Method for producing low and medium BTU gas from coal  

SciTech Connect (OSTI)

A process for producing low and medium BTU gas from carbonizable material is described which comprises: partly devolatizing the material and forming hot incandescent coke therefrom by passing a bed of the same part way through a hot furnace chamber on a first horizontally moving grate while supplying a sub-stoichiometric quantity of air to the same and driving the reactions: C + O/sub 2/ = CO/sub 2/; 2C + O/sub 2/ = 2CO discharging the hot incandescent coke from the end of the first grate run onto a second horizontally moving grate run below the first grate run in the same furnace chamber so as to form a bed thereon, the bed formed on the second grate run being considerably thicker than the bed formed on the first grate run, passing the hot incandescent coke bed on the second grate run further through the furnace chamber in a substantially horizontal direction while feeding air and stream thereto so as to fully burn the coke and in ratio of steam to air driving the following reactions: 2C + O/sub 2/ = 2CO; C + H/sub 2/O = H/sub 2/ + CO; C + 2H/sub 2/O = 2H/sub 2/ + CO/sub 2/; CO + H/sub 2/O = H/sub 2/ + CO/sub 2/ taking off the ash residue of the burned coke and taking off the gaseous products of the reactions.

Mansfield, V.; Francoeur, C.M.

1988-06-07T23:59:59.000Z

39

"Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

2 Relative Standard Errors for Table 6.2;" 2 Relative Standard Errors for Table 6.2;" " Unit: Percents." ,,,"Consumption" ,,"Consumption","per Dollar" ,"Consumption","per Dollar","of Value" "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)" ,"Total United States" "Value of Shipments and Receipts" "(million dollars)" " Under 20",2.5,2.5,2.4 " 20-49",5,5,4.3 " 50-99",5.8,5.8,5.3 " 100-249",6.2,6.2,5.3 " 250-499",8.2,8,7.1 " 500 and Over",4.3,3,2.7

40

Toxicological characterization of the process stream from an experimental low Btu coal gasifier  

Science Journals Connector (OSTI)

Samples were obtained from selected positions in the process stream of an experimental low Btu gasifier using a five-stage multicyclone train and...Salmonella mammalian microsome mutagenicity assay) and forin vit...

J. M. Benson; J. O. Hill; C. E. Mitchell

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mutagenicity of potential effluents from an experimental low btu coal gasifier  

Science Journals Connector (OSTI)

Potential waste effluents produced by an experimental low Btu coal gasifier were assessed for mutagenic activity inSalmonella...strain TA98. Cyclone dust, tar and water effluents were mutagenic, but only followin...

J. M. Benson; C. E. Mitchell; R. E. Royer

1982-09-01T23:59:59.000Z

42

Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035  

U.S. Energy Information Administration (EIA) Indexed Site

Erin Boedecker, Session Moderator Erin Boedecker, Session Moderator April 27, 2011 | Washington, DC Energy Demand. Efficiency, and Consumer Behavior 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference Expanded Standards Expanded Standards + Codes -7.6% ≈ 0 Expanded standards and codes case limits combined buildings delivered energy to 21 quadrillion Btu by 2035 2 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu Source: EIA, Annual Energy Outlook 2011 -4.8% 16 17 18 19 20 21 22 23 24 25 2005 2010 2015 2020 2025 2030 2035 2010 Technology Reference High Technology High technology assumptions with more efficient consumer behavior keep buildings energy to just over 20 quadrillion Btu 3 Erin Boedecker, EIA Energy Conference, April 27, 2011 delivered energy quadrillion Btu

43

Using ecological and life-history characteristics for projecting species' responses to climate change  

E-Print Network [OSTI]

were used to project sensitiv- ity to climate change basedapproach to project spe- cies responses to climate warmingclimate change cal research: experiences and legacy of the ALARM project.

Pompe, Sven; Hanspach, Jan; Badeck, Franz W.; Klotz, Stefan; Bruelheide, Helge; Khn, Ingolf

2014-01-01T23:59:59.000Z

44

,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per Million Btu)",1,"Weekly","12/13/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdw.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdw.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:22 PM"

45

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

46

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 6.3;" 3 Relative Standard Errors for Table 6.3;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Value of Shipments and Receipts" ,"(million dollars)" ," Under 20",3,3,3

47

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","8/2013" Monthly","8/2013" ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtum.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtum.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:47 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

48

,"U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","10/31/2013" ,"Next Release Date:","11/29/2013" ,"Excel File Name:","ngm_epg0_plc_nus_dmmbtua.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/ngm_epg0_plc_nus_dmmbtua.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:46 PM" "Back to Contents","Data 1: U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)" "Sourcekey","NGM_EPG0_PLC_NUS_DMMBTU" "Date","U.S. Natural Gas Liquid Composite Price (Dollars per Million Btu)"

49

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhda.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhda.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:19 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35611,2.49 35976,2.09 36341,2.27 36707,4.31 37072,3.96 37437,3.38 37802,5.47 38168,5.89 38533,8.69 38898,6.73

50

,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

Daily","12/16/2013" Daily","12/16/2013" ,"Release Date:","12/18/2013" ,"Next Release Date:","12/27/2013" ,"Excel File Name:","rngwhhdd.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/rngwhhdd.htm" ,"Source:" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/18/2013 12:22:24 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" 35437,3.82 35438,3.8 35439,3.61 35440,3.92 35443,4 35444,4.01 35445,4.34 35446,4.71 35447,3.91

51

Weathering and aggregate suitabilityA case history from the Victoria project, Sri Lanka  

Science Journals Connector (OSTI)

The Victoria Project under construction near Kandy in Sri Lanka, required 1.7 million tonnes of aggregate to be quarried in slightly weathered gneiss. This paper describes an investigation into the strength an...

C. Stevens

1984-06-01T23:59:59.000Z

52

An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels  

E-Print Network [OSTI]

is the production of low-BTU gas from a coal gasification reactor for combustion before introduction to the topping cycle gas turbine (Minchener, 1990). Most low-BTU gases are heavily loaded with sulfur-containing compounds which appear to be a major problem... with direct combustion of coal and low-BTU gases (Caraway, 1995). Environmental standards require the removal of these compounds which can be expensive and hazardous when removed from coal in post-combustion processes. However, gasification of coal results...

Carney, Christopher Mark

2012-06-07T23:59:59.000Z

53

"NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Relative Standard Errors for Table 6.4;" 4 Relative Standard Errors for Table 6.4;" " Unit: Percents." " "," ",,,"Consumption" " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"Employment Size" ," Under 50",3,4,4 ," 50-99",5,5,5 ," 100-249",4,4,3

54

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

SciTech Connect (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

55

Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates  

SciTech Connect (OSTI)

The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation`s first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ``engineered materials`` is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site.

Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

1995-08-01T23:59:59.000Z

56

The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite  

E-Print Network [OSTI]

Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... ? Flammability limit data for three actual samples of low-BTU gas obtained from an in-situ coal gasification experiment (Heffington, 1981). The HHC are higher LIST OF TABLES (Cont'd) PAGE hydrocarbons orimarily C H and C H . ----- 34 I 2 6 3 8' TABLE 5...

Gaines, William Russell

2012-06-07T23:59:59.000Z

57

Changing Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages and Tobacco  

E-Print Network [OSTI]

at 215 million Btu. The rate of consumption generally increased until the oil price shocks of the midChanging Trends: A Brief History of the US Household Consumption of Energy, Water, Food, Beverages understand energy conservation policies, we take a brief look at the history in the US of consumption

58

History - Cyclotron  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History Lawrence's original Cyclotron, for which he received a patent and the Nobel Prize. Lawrence's original cyclotron design was limited to energies where relativistic effects were not important. The third generation cyclotron included "sector-focusing" to allow higher energies to be obtained. The 88-Inch Cyclotron was based on Lawrence's design of a sector-focused cyclotron for the MTA project at Livermore. 1500 man-hours of work were necessary to assemble the trim coils which help regulate the strength and shape of the accelerator's magnetic field. Discussing the cyclotron magnet (seen in the background) are Dr. Elmer Kelly, physicist in charge of the 88-Inch Cyclotron and Warren Dexter, electrical coordinator for the cyclotron project.

59

Archives and History Office: Oral History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oral History Oral History Oral History Oral History interviews with SLAC staff and users have been conducted at SLAC and at other institutions by SLAC Archives and History Office staff and by others interested in the history of physics and computing. Information collected in these interviews supplements original correspondence and other primary source materials collected by the Archives and History Office. SLAC Interviews Interviews have been conducted by SLAC staff on an irregular basis, as resources have permitted. The Archives and History Office staff are currently working on a project to identify all past interview subjects, locate interview tapes and permission forms, and create interview transcripts. Our holdings contain tapes or transcripts of interviews with the following staff members and users:

60

Awarded ESPC Projects  

Broader source: Energy.gov [DOE]

Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 325 DOE ESPC projects have been awarded. More than $3.41 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 398 trillion Btu life cycle energy savings and more than $8.53 billion of cumulative energy cost savings for the Federal Government.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Low/medium-Btu coal-gasification-assessment program for potential users in New Jersey. Final report  

SciTech Connect (OSTI)

Burns and Roe Industrial Services Corporation and Public Service Electric and Gas in association with Scientific Design Company have completed a technical and economic evaluation of coal gasification. The evaluation also addressed the regulatory, institutional, and environmental issues of coal gasification. Two uses of coal-derived medium Btu (MBU) gas were explored: (1) substitute boiler fuel for electric generation and (2) substitute fuel for industrial customers using natural gas. The summary and conclusions of his evaluation are: The Sewaren Generating Station was selected as potentially the most suitable site for the coal gasification plant. The Texaco process was selected because it offered the best combination of efficiency and pilot plant experience; in addition, it is a pressurized process which is advantageous if gas is to be supplied to industrial customers via a pipeline. Several large industrial gas customers within the vicinities of Sewaren and Hudson Generating Stations indicated that MBG would be considered as an alternate fuel provided that its use was economically justified. The capital cost estimates for a 2000 tons/day and a 1000 tons/day gasification plant installed at Sewaren Generating Station are $115.6 million and $73.8 million, in 1980 dollars, respectively. The cost of supplying MBG to industrial customers is competitive with existing pipeline natural gas on a Btu heating value basis for gasifier capacity factors of 35% or higher.

Not Available

1981-05-01T23:59:59.000Z

62

ORISE: History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History The Oak Ridge Institute for Science and Education (ORISE) is a national leader in science education and research, with programs dating back to 1946 and having served as an official U.S. Department of Energy (DOE) institute since 1992. The institute that eventually became what is known today as ORISE was the brainchild of University of Tennessee (UT) physics professor Dr. William G. Pollard. Aware of the valuable assets on hand in Oak Ridge, Tenn., as part of the Manhattan Project, Pollard talked about the possibility of aligning regional universities with the scientific resources and state-of-the-art equipment in Oak Ridge. On Oct. 17, 1946, Pollard's vision became a reality when the Oak Ridge Institute of Nuclear Studies (ORINS) received a charter of incorporation

63

Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

64

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The Malheur River is a 306-kilometer tributary to the Snake River, which drains 12,950 square kilometers. The Malheur River originates in the Blue Mountains and flows into the Snake River near Ontario, Oregon. The climate of the basin is characterized by hot dry summers, occasionally exceeding 38 C, and cold winters that may drop below -29 C. Average annual precipitation is 30 centimeters in the lower reaches. Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2002. Bull trout Salvelinus confluentus are considered to be cold water species and are temperature-dependant. Due to the interest of bull trout from various state and Federal agencies, a workgroup was formed to develop project objectives related to bull trout. Table 1 lists individuals that participated in the 2002 work group. This report will reflect work completed during the Bonneville Power Administration contract period starting April 1, 2002, and ending March 31, 2003. All tasks were conducted within this timeframe, and a more detailed timeframe may be referred to in each individual report.

Miller, Alan; Soupir, Jim (US Forest Service, Prairie City Ranger District, Prairie City, OR); Schwabe, Lawrence (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2003-08-01T23:59:59.000Z

65

Beam History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then...

66

Beam History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and...

67

History | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Energy.gov » History About Energy.gov » History History History The Department of Energy has one of the richest and most diverse histories in the Federal Government. Although only in existence since 1977, the Department traces its lineage to the Manhattan Project effort to develop the atomic bomb during World War II and to the various energy-related programs that previously had been dispersed throughout various Federal agencies. The Department has made available to researchers and the general public a rich variety of materials and information: Historical Resources, including published and online histories of the Department and its predecessor agencies and information on records, exhibits, museums, and tours available online and at various locations both within and outside the Department. Major publications and websites can be

68

History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Energy.gov » History About Energy.gov » History History History The Department of Energy has one of the richest and most diverse histories in the Federal Government. Although only in existence since 1977, the Department traces its lineage to the Manhattan Project effort to develop the atomic bomb during World War II and to the various energy-related programs that previously had been dispersed throughout various Federal agencies. The Department has made available to researchers and the general public a rich variety of materials and information: Historical Resources, including published and online histories of the Department and its predecessor agencies and information on records, exhibits, museums, and tours available online and at various locations both within and outside the Department. Major publications and websites can be

69

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.  

SciTech Connect (OSTI)

The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

2001-08-01T23:59:59.000Z

70

System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings  

DOE Patents [OSTI]

Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

1984-07-03T23:59:59.000Z

71

THE ACS LCID PROJECT. VI. THE STAR FORMATION HISTORY OF THE TUCANA dSph AND THE RELATIVE AGES OF THE ISOLATED dSph GALAXIES  

SciTech Connect (OSTI)

We present a detailed study of the star formation history (SFH) of the Tucana dwarf spheroidal galaxy. High-quality, deep HST/ACS data, collected in the framework of the LCID project, allowed us to obtain the deepest color-magnitude diagram to date, reaching the old main-sequence turnoff (F814 {approx} 29) with good photometric accuracy. Our analysis, based on three different SFH codes, shows that Tucana is an old and metal-poor stellar system, which experienced a strong initial burst of star formation at a very early epoch ({approx_equal}13 Gyr ago) which lasted a maximum of 1 Gyr (sigma value). We are not able to unambiguously answer the question of whether most star formation in Tucana occurred before or after the end of the reionization era, and we analyze alternative scenarios that may explain the transformation of Tucana from a gas-rich galaxy into a dSph. Current measurements of its radial velocity do not preclude that Tucana may have crossed the inner regions of the Local Group (LG) once, and so gas stripping by ram pressure and tides due to a close interaction cannot be ruled out. A single pericenter passage would generate insufficient tidal heating to turn an originally disky dwarf into a true dSph; however, this possibility would be consistent with the observed residual rotation in Tucana. On the other hand, the high star formation rate measured at early times may have injected enough energy into the interstellar medium to blow out a significant fraction of the initial gas content. Gas that is heated but not blown out would also be more easily stripped via ram pressure. We compare the SFH inferred for Tucana with that of Cetus, the other isolated LG dSph galaxy in the LCID sample. We show that the formation time of the bulk of star formation in Cetus is clearly delayed with respect to that of Tucana. This reinforces the conclusion of Monelli et al. that Cetus formed the vast majority of its stars after the end of the reionization era implying, therefore, that small dwarf galaxies are not necessarily strongly affected by reionization, in agreement with many state-of-the-art cosmological models.

Monelli, M.; Gallart, C.; Hidalgo, S. L.; Aparicio, A.; Drozdovsky, I., E-mail: monelli@iac.e [Instituto de Astrofisica de Canarias, La Laguna, Tenerife (Spain)

2010-10-20T23:59:59.000Z

72

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS August 20-22, 2013 2 Presentation Outline * Benefits to the program * Project overall objectives * Technical status * Project summary * Conclusions and future plans 3 Benefit to the Program * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * This research project develops a reservoir scale CO 2 plume migration model at the Sleipner project, Norway. The Sleipner project in the Norwegian North Sea is the world's first commercial scale geological carbon storage project. 4D seismic data have delineated the CO 2 plume migration history. The relatively long history and high fidelity data make

73

"DOE IDIQ ESPC Awarded Projects Summary  

Broader source: Energy.gov (indexed) [DOE]

DOE IDIQ ESPC Awarded Projects Summary DOE IDIQ ESPC Awarded Projects Summary " ,"Project Count","Project Investment","Contract Price","Guaranteed Cost Savings","Annual Energy Savings (btu x 10^6)","Cumulative Energy Savings (btu x 10^6)" "Total for FY 1998",5,6575201,14990629,17162375,60931,783240 "Total for FY 1999",15,40950583,93441996,94265528,340539,5660293 "Total for FY 2000",20,62161736,130641996,131703866,609730,9510029 "Total for FY 2001",31,126376566,259078354,273213735,869148,13374390 "Total for FY 2002",19,112866816,337364927,340061131,1032973,21194077 "Total for FY 2003",39,260867190,531558407,541848764,2543263,35515859 "Total for FY 2004",6,28366270,63938167,66492625,310836,5496755

74

The Mining Life : : A Transnational History of Race and Family in the U.S.-Mexico Borderlands, 1890-1965  

E-Print Network [OSTI]

no. 437, Mining Engineering Project, Oral History Office,hierarchies. The history of mining engineering families inthe engineering profession because most histories of mining

Maiorana, Juliette Charlie

75

History Images  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History Images History Images Los Alamos History in Images Los Alamos has a proud history and heritage of almost 70 years of science and innovation. The people of the Laboratory work on advanced technologies to provide the best scientific and engineering solutions to many of the nation's most crucial security challenges. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. Back in the day Back in the day LA bridge in Los Alamos LA bridge in Los Alamos 1945 Army-Navy "E" Award 1945 Army-Navy "E" Award Louis Rosen Louis Rosen Bob Van Ness Robert Kuckuck and Michael Anastasio Bob Van Ness Robert Kuckuck and Michael Anastasio TA-18 TA-18 Elmer Island TU-4 assembly area Elmer Island TU-4 assembly area

76

ESnet History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet History View ESnet's 25-year anniversary timeline in...

77

NTS_History.indd  

Broader source: Energy.gov (indexed) [DOE]

Atmospheric Nuclear Atmospheric Nuclear Weapons Testing 1951 - 1963 Battlefi eld of the Cold War The Nevada Test Site United States Department of Energy Volume I Of related interest: Origins of the Nevada Test Site by Terrence R. Fehner and F. G. Gosling The Manhattan Project: Making the Atomic Bomb * by F. G. Gosling The United States Department of Energy: A Summary History, 1977 - 1994 * by Terrence R. Fehner and Jack M. Holl * Copies available from the U.S. Department of Energy 1000 Independence Ave. S.W., Washington, DC 20585 Attention: Offi ce of History and Heritage Resources Telephone: 301-903-5431 DOE/MA-0003 Terrence R. Fehner & F. G. Gosling Offi ce of History and Heritage Resources Executive Secretariat Offi ce of Management Department of Energy September 2006 Battlefi eld of the Cold War

78

Cold Climate Heat Pump Projects at Purdue University & the Living Lab  

E-Print Network [OSTI]

11/10/2011 6 #12;System Design · 19 kW (~65000 Btu/h) at -20 OC (-4 OF) · Install strip electric heat pump optimized for heating » Greatly reduce or eliminate need for auxiliary electric resistance heatingCold Climate Heat Pump Projects at Purdue University & the Living Lab at the new Herrick Labs

Oak Ridge National Laboratory

79

Cosmic Growth History and Expansion History  

E-Print Network [OSTI]

of the expansion history dark energy equation of state,and growth history constraints on the dark energy equationand growth history constraints on the dark energy equation

Linder, Eric V.

2009-01-01T23:59:59.000Z

80

NETL: History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History About NETL History Over the past century, fossil energy research and technology development has been advanced by NETL and its predecessor facilities as the energy needs of the Nation have grown and evolved. 1910 - The newly created Bureau of Mines in the U.S. Department of the Interior (DOI) opens the Pittsburgh Experiment Station in Bruceton, Pennsylvania, 12 miles south of Pittsburgh. The station includes an experimental coal mine and offers advanced training for coal operators and miners. Onsite research focuses on developing innovative coal-mining safety equipment and practices. 1918 - Following new discoveries of oil in Oklahoma and Texas, the Petroleum Experiment Station is established in Bartlesville, Oklahoma, as one of 17 DOI Bureau of Mines facilities under Public Law 283 (63rd Congress, 1915). The Station pursues systematic application of engineering and scientific methods to oil drilling, helping the early "boom and bust" oil industry create operating and safety standards.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NERSC History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History NERSC History Powering Scientific Discovery Since 1974 Contact: Jon Bashor, jbashor@lbl.gov, +1 510 486 4236 For more information, read "25 Years of Leadership," a historical perspective written at NERSC's quarter-century mark.⨠Download (PDF, 1.7MB) The oil crisis of 1973 did more than create long lines at the gas pumps - it jumpstarted a supercomputing revolution. The quest for alternative energy sources led to increased funding for the Department of Energy's Magnetic Fusion Energy program, and simulating the behavior of plasma in a fusion reactor required a computer center dedicated to this purpose. Founded in 1974 at Lawrence Livermore National Laboratory, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that

82

Revision History  

Broader source: Energy.gov (indexed) [DOE]

Revision History Revision History Rev. 0, August 2012 Original submittal for milestone M3FT-12SN0804032 (Sandia programmatic and classification review) Rev. 1, September 2012 Corrected transposition errors in costing tables; recalculated stainless steel overpacks to be carbon steel; corrected various editorial problems. (SAND2012-7979P) Rev. 2, November 2012 Performed peer review and retitled. Submittal for milestone M2FT-13SN0804031 (formerly milestone M2FT- 12SN0804031) (SAND2012-9737P) Unclassified Unlimited Release Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

83

Awarded ESPC Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Funding » Energy Savings Performance Contracts » Awarded Project Funding » Energy Savings Performance Contracts » Awarded ESPC Projects Awarded ESPC Projects October 7, 2013 - 1:47pm Addthis Photovoltaic panels were installed on the Harold Washington Social Security Center in Chicago as part of an ESPC. Photovoltaic panels were installed on the Harold Washington Social Security Center in Chicago as part of an ESPC. Since the inception of the U.S. Department of Energy's (DOE) energy savings performance contracts (ESPCs) in 1998, 300 DOE ESPC projects have been awarded. More than $3.08 billion has been invested in Federal energy efficiency and renewable energy improvements. These improvements have resulted in more than 371 trillion Btu life cycle energy savings and more than $7.6 billion of cumulative energy cost savings for the Federal

84

Mound History and Information  

Office of Legacy Management (LM)

Mound Site History and Information Mound Site History and Information The Mound site, formerly known as the Mound Plant or Facility, takes its name from a nearby Na- tive American burial mound. The 306 acre facility is sited on a hill in the center of Miamisburg, Ohio. Construction of the Mound Plant began in 1946, and the site became operational in 1949. Mound, the nation's first post-war U.S. Atomic Energy Commission site to be constructed, was established to consolidate and continue the work conducted at the Dayton Units for the Manhattan Project. Much of the work at the Mound Plant during the Cold War involved production of the polonium- beryllium initiators used in early atomic weapons and the manufacture of and research related to ra- dionuclides. In the 1950s, the facility began to

85

Derek R. Peterson Department of History  

E-Print Network [OSTI]

for Church History, for Ethnic Patriotism and the East African Revival 2009 Elected Fellow of the Royal for Research Libraries/Cooperative Africana Microfilms Project grant to fund the `Project to Preserve and Economic Research, $1,500,000 2012 Center for Research Libraries/Cooperative Africana Microfilms Project

Edwards, Paul N.

86

Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 1999-2000 Annual Report.  

SciTech Connect (OSTI)

The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchanan 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.

Schwabe, Lawrence; Tiley, Mark (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR); Perkins, Raymond R. (Oregon Department of Fish and Wildlife, Ontario, OR)

2000-11-01T23:59:59.000Z

87

Complexity in Big History  

E-Print Network [OSTI]

Spier, Fred. How Big History Works: Energy Flows and RiseSmil, Vaclav. Energy in World History. Boulder, CO: Westviewkg) Energy and complexity Spier: Complexity in Big History.

Spier, Fred

2011-01-01T23:59:59.000Z

88

This Letter presented projections of future sea-level rise based on simulations of the past 22,000 years of sea-level history using a simple, empirical model linking sea-level rise to global mean-temperature anomalies. One of the main conclusions of the L  

E-Print Network [OSTI]

This Letter presented projections of future sea-level rise based on simulations of the past 22,000 years of sea-level history using a simple, empirical model linking sea-level rise to global mean of sea-level rise during the twenty-first century that are reported in the Fourth Assessment Report

Siddall, Mark

89

The history of the LHC  

ScienceCinema (OSTI)

Abstract: From the civil engineering, to the manufacturing of the various magnet types, each building block of this extraordinary machine required ambitious leaps in innovation. This lecture will review the history of the LHC project, focusing on the many challenges -- scientific, technological, managerial -- that had to be met during the various phases of R&D;, industrialization, construction, installation and commissioning.

None

2011-10-06T23:59:59.000Z

90

Our History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History History Our History Elk Hills Naval Petroleum Reserve Circa 1920s Elk Hills Naval Petroleum Reserve Circa 1920s The Office of Fossil Energy has the longest directly-traceable history of any organization in the Department of Energy. While the nuclear energy program can look back to the Manhattan Project of World War II for its origins, the Federal Government's involvement in fossil fuel resources began several decades earlier, in the early 1900s. Oil Dominates Early Concerns The U.S.S. Colorado, Maryland, and West Virginia off the coast of California during the 1920's. The West Virginia was one of the first oil-burning ships. Much as today, petroleum was a major concern for the Federal Government at the start of the 20th century. Barely 50 years after the birth of the

91

History of the Stanford Synchrotron Radiation Lightsource | Stanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of the Stanford Synchrotron Radiation Lightsource SPEAR Based on new applications of synchrotron radiation, SSRL began in 1973 as the Stanford Synchrotron Radiation Project...

92

A History or Geothermal Energy Research and Development in the...  

Energy Savers [EERE]

Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed...

93

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Results from Simulation Project Results from Simulation Framework for Regional Geologic CO 2 Storage Infrastructure along Arches Province of Midwest United States DOE Award No. DE-FE0001034 Ohio Dept. of Dev. Grant CDO/D-10-03 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting August 21-23, 2012 Joel Sminchak and Neeraj Gupta Battelle Energy Systems sminchak@battelle.org, 614-424-7392 gupta@battelle.org, 614-424-3820 BUSINESS SENSITIVE 2 Presentation Outline 1. Technical Status 2. Background (CO 2 Sources, Geologic Setting) 3. Injection Well history 4. Geocellular Model Development 5. Geological Data (Geological dataset, Geostatistics) 6. Geocellular porosity/permeability model development 7. Pipeline Routing Analysis

94

Rio Grande Project Power Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schedule Effective Dates Energy (MillskWh) Capacity (kW-mo.) Combined (MillskWh) R5-F1 1940 - 1949 3.000 - 8.000 (declining block) 1.250 N.A. R5-F2 549 - 474 4.000 - 4.5000...

95

Seedskadee Participating Project Power Sales Rate History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schedule Effective Dates Energy (MillskWh) Capacity (kW-mo.) Combined (MillskWh) R4-F1 thru 474 3.000 1.275 6.000 UC-F1 474-677 3.000 1.320 6.110 UC-F2 (Firm Only) 6...

96

Labs and Field Site Histories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Historical Resources » Labs Historical Resources » Labs and Field Site Histories Labs and Field Site Histories Labs and Field Site Histories Note: Every effort is made to keep these links current and updated. Yet as many of the links below point to sites not under our direct control, some may stop working without warning . National Laboratories & Technology Centers Operations Offices & Field Sites Ames Laboratory (Iowa) -- History Chicago Office (Illinois) -- History Argonne National Laboratory (Illinois) -- Laboratory History and Timeline Fernald Environmental Management Project (Ohio) -- Site History Brookhaven National Laboratory (New York) -- Tour Brookhaven's History Grand Junction (Colorado) -- Site Description and History (pdf - less than 1MB) Fermi National Accelerator Laboratory (Illinois) -- History Idaho Operations Office (Idaho) -- Site History

97

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

98

Progress in two major CCPI projects  

SciTech Connect (OSTI)

Two projects under the US Department of Energy (DOE) sponsored Clean Coal Power initiative have made significant progress in demonstrating new technologies to remove mercury from coal and enhance use of low-Btu lignite coals while increasing energy efficiency. The Wisconsin Electricity Power Company is demonstrating the TOXECON{trademark} mercury control process at its Presque Isle Power Plant near Marquette, Michigan, while Great River Energy (GRE) is showing the viability of lignite fuel enhancement at its Coal Creek Station in Underwood, North Dakota. Both projects were awarded in 2004 under Round I of the Clean Coal Power Initiative. Elsewhere in the program, six projects are in various phases of planning or operation. Plans for a third round under the CCPI were announced on May 23, 2007. 2 figs.

NONE

2007-07-01T23:59:59.000Z

99

Table 22. Energy Intensity, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual" Energy Intensity, Projected vs. Actual" "Projected" " (quadrillion Btu / real GDP in billion 2005 chained dollars)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",11.24893441,11.08565002,10.98332766,10.82852279,10.67400621,10.54170176,10.39583203,10.27184573,10.14478673,10.02575883,9.910410202,9.810812106,9.69894802,9.599821783,9.486985399,9.394733753,9.303329725,9.221322623 "AEO 1995",,10.86137373,10.75116461,10.60467959,10.42268977,10.28668187,10.14461664,10.01081222,9.883759026,9.759022105,9.627404949,9.513643295,9.400418762,9.311729546,9.226142899,9.147374752,9.071102491,8.99599906 "AEO 1996",,,10.71047701,10.59846153,10.43655044,10.27812088,10.12746866,9.9694713,9.824165152,9.714832565,9.621874334,9.532324916,9.428169355,9.32931308,9.232716414,9.170931044,9.086870061,9.019963901,8.945602337

100

Project Year Spring 2009  

E-Print Network [OSTI]

Project Year Spring 2009 Project Title A Database of Film and Media History and Aesthetics Part 2 experience with colleagues, they were eager to participate in expanding the database to include clips or they simply don't have the time, or both. Solution: The development of a user-friendly database of clips would

Gray, Jeffrey J.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Projects/Akwanga Nigeria SHP | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon MHK ProjectsAkwanga Nigeria SHP < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map......

102

ESnet IPv6 History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History Engineering Services The Network OSCARS Fasterdata IPv6 Network IPv6 Implementation Checklist ESnet IPv6 Mirror Servers ESnet IPv6 History ESnet supports Sandia and APNIC...

103

Idaho National Laboratory History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

104

Southeast Idaho History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

105

Project Year Project Title  

E-Print Network [OSTI]

the cost of the project to labor only. The efficacy of the examples will be assessed through their useProject Year 2012-2013 Project Title Sight-Reading at the Piano Project Team Ken Johansen, Peabody) Faculty Statement The goal of this project is to create a bank of practice exercises that student pianists

Gray, Jeffrey J.

106

Project Year Project Team  

E-Print Network [OSTI]

design goals for this project include low cost (less than $30 per paddle) and robustness. The projectProject Year 2001 Project Team Faculty: Allison Okamura, Mechanical Engineering, Whiting School Project Title Haptic Display of Dynamic Systems Audience 30 to 40 students per year, enrolled

Gray, Jeffrey J.

107

Project Year Project Team  

E-Print Network [OSTI]

-year section of the summer project will cost $1344.) This project will be measured by the CER surveys conductedProject Year 2005 Project Team Sean Greenberg, Faculty, Philosophy Department, Krieger School of Arts & Sciences; Kevin Clark, Student, Philosophy Department, Krieger School of Arts & Sciences Project

Gray, Jeffrey J.

108

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Louise Pasternack, Chemistry Department, Krieger School, Krieger School of Arts & Sciences Project Title Introductory Chemistry Lab Demonstrations Audience an interactive virtual lab manual that will facilitate understanding of the procedures and techniques required

Gray, Jeffrey J.

109

Project Year Project Team  

E-Print Network [OSTI]

(Karl) Zhang, Undergraduate Student, Biomedical Engineering, Whiting School of Engineering; Cheryl Kim Audio, Digital Video Project Abstract The goal of this project is to develop online modular units

Gray, Jeffrey J.

110

Line Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Line Projects BPA identifies critical infrastructure and...

111

United States Agricultural Information Network (USAIN) National Preservation Program for the History of Agriculture and Rural Life: Texas Preservation Project 1820-1945, Texas A&M University: Final Report  

E-Print Network [OSTI]

? The University of Texas General Libraries Dr. Harold Billings, Director Dr. JoAnne Hawkins, Associate Director for Public Services Nancy Paine, Interlibrary Service Librarian o The Center for American History Kate Adams, Associate Director o... ? The University of Texas General Libraries Dr. Harold Billings, Director Dr. JoAnne Hawkins, Associate Director for Public Services Nancy Paine, Interlibrary Service Librarian o The Center for American History Kate Adams, Associate Director o...

Gyeszly, Suzanne D.; McGeachin, Robert B.

112

Project Year Project Title  

E-Print Network [OSTI]

that incorporate video taped procedures for student preview. Solution This project will create videos for more to study the procedure and techniques before coming to class. Our previous fellowship project addressedProject Year 2009 Project Title Enhancing Biology Laboratory Preparation through Video

Gray, Jeffrey J.

113

Project Year Project Team  

E-Print Network [OSTI]

, there is no resource available to view the procedure before class. Solution The purpose of this project is to capture available to view the procedure before class. The purpose #12;of this project is to capture variousProject Year 2007 Project Team Kristina Obom, Faculty, Advanced Academic Programs, Krieger School

Gray, Jeffrey J.

114

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2013-2014 Project Title German Online Placement Exam Project Team Deborah Mifflin to increased cost. As well, it lacked listening comprehension, writing and speaking components providing support, we will use Blackboard for this project. The creation will require numerous steps

Gray, Jeffrey J.

115

Manhattan Project: People Images  

Office of Scientific and Technical Information (OSTI)

PEOPLE IMAGES PEOPLE IMAGES Resources > Photo Gallery Scroll down to see each of these images individually. The images are: 1. J. Robert Oppenheimer, Enrico Fermi, and Ernest Lawrence (courtesy the Lawrence Berkeley National Laboratory); 2. Hanford, Washington, workers sending money home (reproduced from the photo insert in F. G. Gosling, The Manhattan Project: Making the Atomic Bomb (Washington: History Division, Department of Energy, October 2001)); 3. Oppenheimer and Leslie Groves at the Trinity Site, September 1945 (reproduced from the cover of the Office of History and Heritage Resources publication: The Signature Facilities of the Manhattan Project (Washington: History Division, Department of Energy, 2001)); 4. A WAC detachment marching at Oak Ridge, Tennessee, June 1945 (courtesy the Army Corps of Engineers; it is reprinted in Rachel Fermi and Esther Samra, Picturing the Bomb: Photographs from the Secret World of the Manhattan Project (New York: Harry N. Abrams, Inc., Publishers, 1995), 40);

116

Manhattan Project: Suggested Readings  

Office of Scientific and Technical Information (OSTI)

SUGGESTED READINGS SUGGESTED READINGS Resources > Readings The literature on the Manhattan Project is extensive. The purpose of this web page is not to catalogue it, but only to suggest a very select few places to start. For more exhaustive lists of secondary works relating to the early history of nuclear energy, consult the bibliographies of the books listed below. Suggested Surveys of the Manhattan Project Gosling, F. G. The Manhattan Project: Making the Atomic Bomb. DOE/MA-0001; Washington: History Division, Department of Energy, January 1999. An overview history by the Chief Historian of the Department of Energy and the basis for most of the "Events" in this web site. The best short survey for the general reader. Revised with additional photographs in January 2010 as DOE/MA-0002 Revised and available in .pdf format.

117

OIL & GAS HISTORY 1 History in California  

E-Print Network [OSTI]

OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

118

Archives and History Office: Digital Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources > Digital Resources Resources > Digital Resources Digital Resources Informal History, Part 1 The Histories page provides publications that examine SLAC history or particular events, experiments, and equipment. Publications are listed in reverse chronological order (i.e. newest listed first). Edward L. Ginzton and the MARK III accelerator at Stanford University as it nears its completion in 1952. Copies of Stanford University Physics Department Project M Reports held by the SLAC Archives and History Office, including those produced by the Microwave Lab, and the High-Energy Physics Lab (HEPL) have been scanned and are now available online. Linac construction site showing curved and straight sections in rain and mud, 1963. Copies of ABA reports held by the SLAC Archives have been scanned and are now available online along with a list of ABA numbered reports relating to the development of the SLAC proposal and known to the SLAC Archives and History Office.

119

Cape Wind Project  

Broader source: Energy.gov (indexed) [DOE]

G G Biological Assessment U.S. Department of the Interior Minerals Management Service MMS Cape Wind Energy Project January 2009 Final EIS Appendix G Biological Assessment Cape Wind Energy Project Nantucket Sound Biological Assessment Minerals Management Service for Consultation with the United States Fish and Wildlife Service and NOAA Fisheries May 2008 Appendix G Biological Assessment Cape Wind Energy Project i May 2008 U.S. Department of the Interior Minerals Management Service MMS TABLE OF CONTENTS 1.0 BACKGROUND ............................................................................................................ 1-1 1.1 Project History .............................................................................................................

120

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

6 Appendix C Table C5. World crude and lease condensate a production by region and country, Low Oil Price case, 2009-40 (million barrels per day) Region History Projections Average...

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Appendix A. Reference case projections  

Gasoline and Diesel Fuel Update (EIA)

44 Appendix B Table B5. World crude and lease condensate a production by region and country, High Oil Price case, 2009-40 (million barrels per day) Region History Projections...

122

Uganda: A Modern History  

E-Print Network [OSTI]

pages, hardcover,. $27.50. uganda; A Modern History. Jan J .contemporary history Qf Uganda. His work supplies us with aand integration of Uganda's economy into the World capita 1

Ssali, Ndugu Mike

1983-01-01T23:59:59.000Z

123

Kronos 6.2 Project Charter OEPM101 Kronos Project Charter Page 1 of 11  

E-Print Network [OSTI]

Kronos 6.2 Project Charter OEPM101 Kronos Project Charter Page 1 of 11 Project Name: Campus Wide Implementation of a Standardized Timekeeping System ­ Kronos 6.2 Prepared by: Steven McCabe - Project Manager Date (MM/DD/YYYY): June 30, 2011 Project Charter Version History: Version Date (MM/DD/YYYY) Comments

Doudna, Jennifer A.

124

BLACK HISTORY MONTH  

Broader source: Energy.gov [DOE]

Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of Negro History Week, created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

125

Projectivities and Projective Embeddings  

Science Journals Connector (OSTI)

In this chapter, we aim to prove some of the main achievements in the theory of generalized polygons. First, we want to show what the little projective group and the groups of projectivities of some Moufang po...

Hendrik van Maldeghem

1998-01-01T23:59:59.000Z

126

A handbook of history  

Science Journals Connector (OSTI)

...February-March 1997 review-article Reviews A handbook of history P D Hingley Librarian of the RAS Burlington House...it all. REVIEWS February/March 1997 Vol 38 Issue1 32 A handbook of history Cambridge Illustrated History of Astronomy by......

P D Hingley

1997-01-01T23:59:59.000Z

127

Project Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Questions Keeler-Pennwalt Wood Pole Removal Line Projects Line Rebuild, Relocation and Substation Projects Spacer Damper Replacement Program Wind Projects Project Overview BPA...

128

Project Year Project Title  

E-Print Network [OSTI]

operators, matrix indexing, vector computations, loops, functions, and plotting graphs, among others basic arithmetic operators, matrix indexing, and vector computations in MATLAB. After creatingProject Year 2011-2012 Project Title Online Tutorial for MATLAB Project Team Eileen Haase, Whiting

Gray, Jeffrey J.

129

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2005 Project Team Krysia Hudson, Faculty, School of Nursing, Undergraduate Instruction for Educational Resources Project Title Enhanced Web-based Learning Environments for Beginning Nursing Students (e.g., demonstrations of procedures or tasks) into the WBL systems, it will be possible to increase

Gray, Jeffrey J.

130

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Michael McCloskey, Cognitive Science/Neuroscience, Krieger of Arts & Sciences Project Title Cognitive Neuropsychology Audience The initial audience to access. The current procedure calls for individual students or researchers to contact the faculty member

Gray, Jeffrey J.

131

Project Year Project Title  

E-Print Network [OSTI]

Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve into teams and having each team use a different m-health data collection tool (e.g., cellular phones, smart health patterns. The Tech Fellow, Jacqueline Ferguson, will assist in creating an m-health project

Gray, Jeffrey J.

132

Project Year Project Team  

E-Print Network [OSTI]

Project Year 2002 Project Team Faculty: Gregory Hager, Computer Science, Whiting School of Engineering Fellow: Alan Chen, Biomedical Engineering, Whiting School of Engineering Project Title Robotics is complicated, time-consuming, and costly, making a robot for an introductory-level class is not practical

Gray, Jeffrey J.

133

Project Proposal Project Logistics  

E-Print Network [OSTI]

Project Proposal · Project Logistics: ­ 2-3 person teams ­ Significant implementation, worth 55 and anticipated cost of copying to/from host memory. IV. Intellectual Challenges - Generally, what makes this computation worthy of a project? - Point to any difficulties you anticipate at present in achieving high

Hall, Mary W.

134

IUPAC Solubility Data Project 1973?2001  

Science Journals Connector (OSTI)

This is a history of the International Union of Pure and Applied Chemistry Solubility Data Commission and the Solubility Data Project that it organized and supervised. ... This worked fine when the projects were not too large, but the Solubility Data Project planned large time-consuming projects. ... H. L. Clever, Krypton, Xenon and Radon (1979), xx + 357 pp. ...

H. Lawrence Clever

2004-10-20T23:59:59.000Z

135

Manhattan Project: Library  

Office of Scientific and Technical Information (OSTI)

LIBRARY LIBRARY Resources A number of government publications relating to the Manhattan Project are available either as web pages or as .pdf documents. Cover of the Manhattan Project publication Department of Energy Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Battlefield of the Cold War: The Nevada Test Site Gosling, Manhattan Project, 1999 Gosling, Manhattan Project, 2010 Harnessed Atom United States Nuclear Tests, 1945-1992 Wahlen, History of 100-B Area Los Alamos National Laboratory Publications Bainbridge, Trinity Fakley, "The British Mission" Hawkins, MDH: Project Y, Vol. 1 Los Alamos: Beginning of an Era, 1943-1945 Malik, Yields of Hiroshima and Nagasaki "Oppenheimer Years" Serber, Los Alamos Primer Truslow, MDH: Project Y, Vol. 2

136

INVESTIGATION Inferring Admixture Histories of Human Populations  

E-Print Network [OSTI]

and apply to test for admixture among all populations from the Human Genome Diversity Project (HGDPINVESTIGATION Inferring Admixture Histories of Human Populations Using Linkage Disequilibrium Po-range migrations and the resulting admixtures between populations have been important forces shaping human genetic

Reich, David

137

History of the DOE Human Genome Program  

Office of Scientific and Technical Information (OSTI)

History of the DOE Human Genome Program History of the DOE Human Genome Program The following history is taken from the U.S. Department of Energy 1991-91 Human Genome Program Report (June 1992). This is an archived item. A brief history of the U.S. Department of Energy (DOE) Human Genome Program will be useful in a discussion of the objectives of the DOE program as well as those of the collaborative U.S. Human Genome Project. The Office of Health and Environmental Research (OHER) of DOE and its predecessor agencies--the Atomic Energy Commission and the Energy Research and Development Administration--have long sponsored research into genetics, both in microbial systems and in mammals, including basic studies on genome structure, replication, damage, and repair and the consequences of genetic

138

DOE History Timeline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Timeline Timeline DOE History Timeline DOE History Timeline The Department of Energy is one of the most interesting and diverse agencies in the Federal Government. Activated on October 1, 1977, the twelfth cabinet-level department brought together for the first time within one agency two programmatic traditions that had long coexisted within the Federal establishment: 1) defense responsibilities that included the design, construction, and testing of nuclear weapons dating from the Manhattan Project effort to build the atomic bomb during World War II; and 2) a loosely knit amalgamation of energy-related programs scattered throughout the Federal Government. The intent of the DOE History Timeline is to provide the public with easy access to accurate information about the history of DOE and its predecessor

139

NAWS-China Lake Project  

Broader source: Energy.gov (indexed) [DOE]

g g y g y S S C C NAWS NAWS - - China Lake China Lake Working with the Local Utility Working with the Local Utility Mark Shvartzman Mark Shvartzman Project Manager, Southern California Edison Project Manager, Southern California Edison Presented at the November FUPWG Meeting Presented at the November FUPWG Meeting November 18, 2009 November 18, 2009 1 1 g E t bli h d i 1998 d Ad i Fili 1358 E History of SCE's UESC Program History of SCE's UESC Program History of SCE s UESC Program History of SCE s UESC Program * Background - Edison developed Energy Related Services (ERS) to assist Federal customers in identifying and implementing energy efficiency and renewable energy projects at government owned and/or managed facilities within Southern California Edison service territory - Established in 1998 under Advice Filing 1358-E

140

NETL: Albany, Oregon History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > About NETL > History > Albany Research Center History Home > About NETL > History > Albany Research Center History About NETL Albany, Oregon History Albany Research Center has a history rich in successful materials research and development. It was on March 17, 1943 that President Franklin D. Roosevelt announced that the U. S. Bureau of Mines had selected a site in Albany, Oregon for the new Northwest Electro-development Laboratory. The original mission of the center was to find methods for using the abundant low-grade resources of the area, and to develop new metallurgical processes using the abundant electrical energy in the area. The name of the center was changed in 1945 to the Albany Metallurgy Research Center and was used through 1977 where the name was shortened to Albany Research Center. One of our first successes was the development

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Kristie Stremel Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Kristie Stremel Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Return to Kristie Stremel Oral History in KU ScholarWorks Tami Albin, Director for Under the Rainbow...

Stremel, Kristie; Albin, Tami

2009-10-27T23:59:59.000Z

142

UBC adopts energy makeover project  

E-Print Network [OSTI]

May 2011 3 UBC adopts energy makeover project 15 Max Jones makes PhD history in the Okanagan 16. This adaptation may better their odds of surviving projected rises in water temperature because of climate change. "Things like tuition, student loans, the economy, whether they'll get a job when they graduate, high cost

Farrell, Anthony P.

143

Coastal engineering, history of  

Science Journals Connector (OSTI)

Turner I.L., Leatherman S.P., 1997. Beach dewatering as a soft' engineering solution to coastal erosion A history and critical review. J Coastal Res 13...

Per Bruun

1982-01-01T23:59:59.000Z

144

Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

NONE

1995-05-01T23:59:59.000Z

145

History of Astronomy  

Science Journals Connector (OSTI)

... pages Prof. G. Abetti gives the reader a straightforward summary of the history of astronomy. As he remarks in the preface, a book of this size "can be ... the history and civilization of the peoples of the Earth". First we have ancient astronomy, which can be traced back to about forty centuries before Christ and which can ...

W. M. H. GREAVES

1955-08-20T23:59:59.000Z

146

David Ollington Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas David Ollington Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Return to David Ollington...

Ollington, David; Albin, Tami

2010-01-11T23:59:59.000Z

147

George Paris Oral History  

E-Print Network [OSTI]

Part 3 video platform video management video solutionsvideo player Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas George Paris Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player...

Paris, George; Albin, Tami

2010-01-11T23:59:59.000Z

148

Steven Brown Oral History  

E-Print Network [OSTI]

Part 4 video platform video management video solutionsvideo player Part 5 video platform video management video solutionsvideo player Part 6 video platform video management video solutionsvideo player Part 7 video platform video... Under the Rainbow: Oral Histories of GLBTQ People in Kansas Steven Brown Oral History Part 2 video platform video management video solutionsvideo player Part 3 video platform video management video solutionsvideo player...

Brown, Steven; Albin, Tami

2010-11-24T23:59:59.000Z

149

Microscale acceleration history discriminators  

DOE Patents [OSTI]

A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

150

A handbook of history  

Science Journals Connector (OSTI)

......review-article Reviews A handbook of history P D Hingley...professional astronomy. This does not mean that it skimps...1997 Vol 38 Issue1 32 A handbook of history Cambridge Illustrated...this magnificent new work does not totally replace the......

P D Hingley

1997-01-01T23:59:59.000Z

151

Clean Coal Technology Programs: Completed Projects (Volume 2)  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

152

Mosquito Life Histories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Histories Life Histories Nature Bulletin No. 682 June 2, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist MOSQUITO LIFE HISTORIES Everybody knows that a mosquito is a small, long-legged insect that bites. However, there are many kinds of them each with its own peculiarities of life history and habits. Some are produced in marshes or in flood plains of streams, some in puddles, some in woodlands, and others in cities and towns. Here in the Chicago region, although mosquito-borne diseases are no longer a danger, they become nuisances in many places at certain times in almost every year. In times past and in many countries the mosquitoes which carried malaria, yellow fever and other infections shaped the course of history. Hundreds of scientists have studied them for years but much remains to be learned.

153

Project Year Project Team  

E-Print Network [OSTI]

; Ian Sims, Student, Electrical and Computer Engineering, Whiting School of Engineering Project Title and Jazz Theory/Keyboard I & II. Technologies Used Digital Audio, Digital Video, Graphic Design, HTML

Gray, Jeffrey J.

154

President Roosevelt Establishes Manhattan Project | National Nuclear  

National Nuclear Security Administration (NNSA)

Establishes Manhattan Project | National Nuclear Establishes Manhattan Project | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Roosevelt Establishes Manhattan Project President Roosevelt Establishes Manhattan Project June 17, 1942 Washington, DC President Roosevelt Establishes Manhattan Project

155

Commemorating Black History: Contributions of African Americans to the  

Broader source: Energy.gov (indexed) [DOE]

Commemorating Black History: Contributions of African Americans to Commemorating Black History: Contributions of African Americans to the Manhattan Project Commemorating Black History: Contributions of African Americans to the Manhattan Project February 21, 2013 - 12:00pm Addthis July 20, 1944 July 20, 1944 September 21, 1944 September 21, 1944 March 24, 1944 March 24, 1944 June 27, 1944 June 27, 1944 July 20, 1944 September 21, 1944 March 24, 1944 June 27, 1944 The Department of Energy (DOE) commissioned an exhibit documenting the contributions of African Americans to the Manhattan Project at Hanford Reservation. The exhibit features pictures taken from the Hanford archives and oral histories of African Americans. The site was used to produce plutonium for the bomb that brought an end to World War II. During that era, people from all over the country came to Hanford, ultimately forming a

156

7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.  

E-Print Network [OSTI]

is to be determined. Assumptions 1 The computers are operated by 4 adult men. 2 The computers consume 40 percent to the amount of electrical energy they consume. Therefore, AC Outside Computer room 4000 Btu/h ( ( ) ( Q Q Q Q. Analysis The unit that will cost less during its lifetime is a better buy. The total cost of a system

Bahrami, Majid

157

BNL | Our History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our History Our History A Passion for Discovery, a History of Scientific Achievement Brookhaven National Laboratory was established in 1947 on the eastern end of Long Island at the former site of the U.S. Army's Camp Upton. Originally built out of a post-World War II desire to explore the peaceful applications of atomic energy, the Laboratory now has a broader mission: to perform basic and applied research at the frontiers of science, including nuclear and high-energy physics; physics and chemistry of materials; nanoscience; energy and environmental research; national security and nonproliferation; neurosciences; structural biology; and computational sciences. Over its history, Brookhaven Lab has housed three research reactors, numerous one-of-a-kind particle accelerators, and other

158

Kelli Cox Oral History  

E-Print Network [OSTI]

Oral history interview with Kelli Cox conducted by Lauren Helmer in Lawrence, Kansas, on December 30, 2010. In this inteview, Kelli Cox discusses her experiences attending a variety of churches in Lawrence, including the Christ Community Church...

Cox, Kelli; Helmer, Lauren

2010-12-30T23:59:59.000Z

159

Noah Hamilton Oral History  

E-Print Network [OSTI]

Oral history interview with Noah Hamilton conducted by Stephanie Meador in Topeka, Kansas, on November 20, 2009. In this interview, Noah Hamilton describes the experience of being raised in the Bah' faith. He discusses the tenets of Bah...

Hamilton, Noah; Meador, Stephanie Rae

2009-11-20T23:59:59.000Z

160

Black History Month  

Broader source: Energy.gov [DOE]

During National African American History Month, we pay tribute to the contributions of past generations and reaffirm our commitment to keeping the American dream alive for the next generation. In...

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Beverly Boyd Oral History  

E-Print Network [OSTI]

Oral history interview with Beverly Boyd conducted by Steve Teichgraeber in Lawrence, Kansas, on November 12, 2010. In this interview, Beverly Boyd discusses the life of Saint Rose-Phillippine Duchesne (1769-1852), a ...

Boyd, Beverly; Teichgraeber, Steve

2010-11-12T23:59:59.000Z

162

Garrett Fugate Oral History  

E-Print Network [OSTI]

Oral history interview with Garrett Fugate conducted by Jeremy Adkison in 2010. In this interview, University of Kansas student Garrett Fugate discusses his childhood experiences as a member of the Greek Orthodox community, and his eventual decision...

Fugate, Garrett; Adkison, Jeremy

2010-01-01T23:59:59.000Z

163

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: Construction Project Team: Project Facts & Figures: Budget: £1.1M Funding Source: Departmental Construction Project Programme: Start on Site: November 2010 End Date : March 2011 Occupation Date: March 2011 For further information contact Project Manager as listed above

164

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The works cover the refurbishment of floors 4, 5 operating theatre. The Bionanotechnology Centre is one of the projects funded from the UK Government's £20.imperial.ac.uk/biomedeng Construction Project Team: Project Facts & Figures: Budget: £13,095,963 Funding Source: SRIF II and Capital

165

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: This project refurbished half of the 5th and 7th floors on the Faculty of Medicine, please visit: http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £3,500,000 Funding Source: SRIF III Construction Project Programme: Start

166

Oilfield Flare Gas Electricity Systems (OFFGASES Project)  

SciTech Connect (OSTI)

The Oilfield Flare Gas Electricity Systems (OFFGASES) project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under Preferred Upstream Management Projects (PUMP III). Project partners included the Interstate Oil and Gas Compact Commission (IOGCC) as lead agency working with the California Energy Commission (CEC) and the California Oil Producers Electric Cooperative (COPE). The project was designed to demonstrate that the entire range of oilfield 'stranded gases' (gas production that can not be delivered to a commercial market because it is poor quality, or the quantity is too small to be economically sold, or there are no pipeline facilities to transport it to market) can be cost-effectively harnessed to make electricity. The utilization of existing, proven distribution generation (DG) technologies to generate electricity was field-tested successfully at four marginal well sites, selected to cover a variety of potential scenarios: high Btu, medium Btu, ultra-low Btu gas, as well as a 'harsh', or high contaminant, gas. Two of the four sites for the OFFGASES project were idle wells that were shut in because of a lack of viable solutions for the stranded noncommercial gas that they produced. Converting stranded gas to useable electrical energy eliminates a waste stream that has potential negative environmental impacts to the oil production operation. The electricity produced will offset that which normally would be purchased from an electric utility, potentially lowering operating costs and extending the economic life of the oil wells. Of the piloted sites, the most promising technologies to handle the range were microturbines that have very low emissions. One recently developed product, the Flex-Microturbine, has the potential to handle the entire range of oilfield gases. It is deployed at an oilfield near Santa Barbara to run on waste gas that is only 4% the strength of natural gas. The cost of producing oil is to a large extent the cost of electric power used to extract and deliver the oil. Researchers have identified stranded and flared gas in California that could generate 400 megawatts of power, and believe that there is at least an additional 2,000 megawatts that have not been identified. Since California accounts for about 14.5% of the total domestic oil production, it is reasonable to assume that about 16,500 megawatts could be generated throughout the United States. This power could restore the cost-effectiveness of thousands of oil wells, increasing oil production by millions of barrels a year, while reducing emissions and greenhouse gas emissions by burning the gas in clean distributed generators rather than flaring or venting the stranded gases. Most turbines and engines are designed for standardized, high-quality gas. However, emerging technologies such as microturbines have increased the options for a broader range of fuels. By demonstrating practical means to consume the four gas streams, the project showed that any gases whose properties are between the extreme conditions also could be utilized. The economics of doing so depends on factors such as the value of additional oil recovered, the price of electricity produced, and the alternate costs to dispose of stranded gas.

Rachel Henderson; Robert Fickes

2007-12-31T23:59:59.000Z

167

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Production Coal Production Annual Energy Outlook 2007 with Projections to 2030 Coal Production Figure 85. Cellulose ethanol production, 2005-2030 (billion gallons per year). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Figure 86. Coal production by region, 1970-2030 (quadrillion Btu). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Lower Costs, Greater Demand Could Spur Cellulose Ethanol Production For AEO2007, two alternative ethanol cases examine the potential impact on ethanol demand of lower costs for cellulosic ethanol production, in combination with policies that increase sales of FFVs [170]. The reference case projects that 10.5 percent of new light-duty vehicles will be capable

168

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect (OSTI)

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

169

Ryan Campbell Oral History  

E-Print Network [OSTI]

Under the Rainbow: Oral Histories of GLBTQ People in Kansas Ryan Campbell Oral History Part 1 video platform video management video solutionsvideo player Part 2 video platform video management video solutionsvideo player... Lawrence, KS 66045 Requestors must identify: 1. Type of publication 2. Proposed title 3. Specific passages to be quoted 4. Anticipated uses of the passages 5. Publisher's name 6. Expected date of publication ...

Campbell, Ryan; Albin, Tami

2009-12-16T23:59:59.000Z

170

U.S. Energy Information Administration | AEO Retrospective Review: Evaluation of 2011 and Prior Reference Case Projections 22  

Gasoline and Diesel Fuel Update (EIA)

2 2 Table 11a. Coal prices to electric generating plants, projected vs. actual Projected price in constant dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92

171

SPEAR History | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SPEAR History SPEAR History Experimental Facilities : The SPEAR Storage Ring Stanford University has a long history of involvement in the development and use of colliding-beam storage rings for particle physics research. The first such machine at Stanford was a small electron-electron collider, shaped like a figure eight, located on the main campus. A collaborative effort between physicists from Princeton and Stanford Universities, this project produced the first physics results ever obtained with the colliding-beam technique. Stanford Positron Electron Accelerating Ring The next in the succession of Stanford colliders was the SPEAR (Stanford Positron Electron Accelerating Ring) machine at SLAC, completed in 1972. SPEAR consists of a single ring some 80 meters in diameter, in which counter-rotating beams of electrons

172

AEO2013 Early Release Base Overnight Project Technological Total Overnight  

U.S. Energy Information Administration (EIA) Indexed Site

AEO2013 Early Release AEO2013 Early Release Base Overnight Project Technological Total Overnight Variable Fixed Heatrate 6 nth-of-a- kind Online Size Lead time Cost in 2012 Contingency Optimism Cost in 2012 4 O&M 5 O&M in 2012 Heatrate Technology Year 1 (MW) (years) (2011 $/kW) Factor 2 Factor 3 (2011 $/kW) (2011 $/MWh) (2011$/kW) (Btu/kWh) (Btu/kWh) Scrubbed Coal New 7 2016 1300 4 2,694 1.07 1.00 2,883 4.39 30.64 8,800 8,740 Integrated Coal-Gasification Comb Cycle (IGCC) 7 2016 1200 4 3,475 1.07 1.00 3,718 7.09 50.49 8,700 7,450 Pulverized Coal with carbon sequestration 2017 650 4 4,662 1.07 1.03 5,138 4.37 65.31 12,000 9,316

173

A History of the Southeastern Power Administration  

Broader source: Energy.gov (indexed) [DOE]

Southeastern Power Administration Southeastern Power Administration 1990-2010 SERVING SOUTHEAST the Distribu teD by us Department of energy southeastern Power Administration 2012 A History of the Southeastern Power Administration 1990-2010 SERVING SOUTHEAST the ii Project contribu tors Sponsor us Department of energy, southeastern Power Administration Contracting Agency us Army corps of engineers, Mobile District Author Patricia stallings, brockington and Associates, inc. Design and Editing john cason and Alicia sullivan, brockington and Associates, inc. iii AcknowleDgeMents The author gratefully acknowledges the efforts of many individuals who contributed to make this history possible. Mrs. Melissa chastain sease initiated the project and worked tirelessly to facilitate an excellent research environment and also established an efficient

174

Celebrating Women's History Month: Marie Curie | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Women's History Month: Marie Curie Women's History Month: Marie Curie Celebrating Women's History Month: Marie Curie March 4, 2011 - 12:30pm Addthis Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science It's Women's History Month and this year's theme, according to the National Women's History Project, is "Our History Is Our Strength." We'll be celebrating that strength all month on the Energy Blog to highlight the remarkable women of science (and the Energy Department!) and their achievements - past, present, and future. (It's also the International Year of Chemistry, so BYOB . . . Bring Your Own Beaker.) It's fitting to begin this celebration with a salute to the first woman to receive a doctorate in France, the discoverer of two elements, the first person to win two Nobel Prizes and the mother of another winner. It's

175

Project Year Project Team  

E-Print Network [OSTI]

An Engineer's Guide to the Structures of Baltimore Audience Students from the Krieger School of Arts City, interfaced through a course website, the team will integrate descriptions of structural behavior format. Technologies Used HTML/Web Design, MySQL Project Abstract Structural analysis is typically taught

Gray, Jeffrey J.

176

Project Year Project Team  

E-Print Network [OSTI]

information systems (GIS) tools to design maps that integrate data for visualizing geographic concepts School of Engineering Project Title GIS & Introductory Geography Audience Undergraduate students on how to use the Internet for geographic research, and an interactive introduction to GIS through online

Gray, Jeffrey J.

177

Project Management Project Managment  

E-Print Network [OSTI]

­ Inspired by agile methods #12;Background · Large-scale software development & IT projects, plagued relations #12;One Agile Approach to Scheduling · The creative nature of game development resist heavy up Problems ­incompatible platforms, 3rd party etc. #12;Is Games Development Similar? · Yes & No

Stephenson, Ben

178

Project Completion/Closeout Guide - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No Related History Exemptions Standards Related to: DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets Cancels: DOE G 413.3-16, Project...

179

Project Accounts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

» Project Accounts » Project Accounts Project Accounts Overview Project accounts are designed to facilitate collaborative computing by allowing multiple users to use the same account. All actions performed by the project account are traceable back to the individual who used the project account to perform those actions via gsisshd accounting logs. Requesting a Project Account PI's, PI proxies and project managers are allowed to request a project account. In NIM do "Actions->Request a Project Account" and fill in the form. Select the repository that the Project Account is to use from the drop-down menu, "Sponsoring Repository". Enter the name you want for the account (8 characters maximum) and a description of what you will use the account for and then click on the "Request Project Account" button. You

180

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: A state of the art facility, at Hammersmith information visit the Faculty of Medicine web pages http://www1.imperial.ac.uk/medicine/ Construction Project Team: Project Facts & Figures: Budget: £60 000 000 Funding Source: SRIF II (Imperial College), GSK, MRC

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Fact Sheet Project Update  

E-Print Network [OSTI]

Project Fact Sheet Project Update: Project Brief: The refurbishment of the instrumentation equipment. This project encompasses refurbishment work on over 1,150m2 of laboratory space across four, the completed project will allow researchers to expand their work in satellite instrumentation, the fabrication

182

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

Project Fact Sheet Project Brief: In the first phase of the Union Building re.union.ic.ac.uk/marketing/building Construction Project Team: Project Facts & Figures: Budget: £1,400,000 Funding Source: Capital Plan and Imperial College Union reserves Construction Project Programme: Start on Site: August 2006 End Date: March

183

History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History History History On January 7, 2011, the President signed H.R. 6523 (111th), the Ike Skelton National Defense Authorization Act for Fiscal Year 2011 (http://www.govtrack.us/congress/bills/111/hr6523) which became Public Law 111-384. Section 3124 specifically states, "The Secretary of Energy may establish a program to permit the establishment of energy parks on former defense nuclear facilities" (50 U.S.C. 2814). In response, on February 17, 2011, the Department of Energy (DOE) established a Task Force on the ARI to address the legislation in detail. The purpose of the task force was to implement asset revitalization efforts in response to Congressional direction, and to develop recommendations for a continued formalized asset revitalization program. The task force achieved this through facilitating

184

PAFC History and Successes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PAFC History and Successes PAFC History and Successes John Ferro Manager Product Development john.ferro@utcpower.com 2 2 AGENDA Company overview and history System description and applications Failure modes and life analysis Summary 3 3 Research Center Hamilton Sundstrand Pratt & Whitney Sikorsky UTC Power Otis Carrier UTC Fire & Security UNITED TECHNOLOGIES CORPORATION 18 th largest U.S. manufacturer (2009 list, Industry Week) 37 th largest U.S. corporation (2009 list, Fortune) 61 st largest publicly held manufacturer in the world (2009 list, Industry Week) Revenues: $58.7 billion (2008) Commercial & Residential Building Systems, Aerospace & Transportation, Industrial systems 4 UTC POWER Markets Transportation fuel cells Stationary fuel cells Global sales 5 continents 19 countries Space & defense

185

SRS - History Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 SEARCH GO Side Menu Spacer SRS Mission & Vision Where We Are SRS History Fact Sheets Tour SRS Contact SRS SRS Home SRS History Highlights The Savannah River Site was constructed during the early 1950s to produce the basic materials used in the fabrication of nuclear weapons, primarily tritium and plutonium-239, in support of our nation's defense programs. Five reactors were built to produce these materials. Also built were a number of support facilities including two chemical separations plants, a heavy water extraction plant, a nuclear fuel and target fabrication facility, a tritium extraction facility and waste management facilities. If you wish to view an in-depth history (1950-2000), please explore SRS at Fifty, our 50th anniversary book. Browse by Era: 1950s * 1960s * 1970s * 1980s * 1990s * 2000s * 2010s

186

History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History History History Although they are tiny, atoms have a large amount of energy holding their nuclei together. Certain isotopes of some elements can be split and will release part of their energy as heat. This splitting is called fission. The heat released in fission can be used to help generate electricity in powerplants. Uranium-235 (U-235) is one of the isotopes that fissions easily. During fission, U-235 atoms absorb loose neutrons. This causes U-235 to become unstable and split into two light atoms called fission products. The combined mass of the fission products is less than that of the original U-235. The reduction occurs because some of the matter changes into energy. The energy is released as heat. Two or three neutrons are released along with the heat. These neutrons may hit other

187

Volume Project  

E-Print Network [OSTI]

Math 13900. Volume Project. For the following project, you may use any materials. This must be your own original creation. Construct a right pyramid with a base...

rroames

2010-01-12T23:59:59.000Z

188

Oral Histories: Merril Eisenbud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 HUMAN RADIATION STUDIES: REMEMBERING THE EARLY YEARS Oral History of Merril Eisenbud Conducted January 26, 1995 United States Department of Energy Office of Human Radiation Experiments May 1995 CONTENTS Foreword Short Biography Early Days as an Industrial Hygienist Hired as AEC's First Industrial Hygienist Insuring Atomic Workers Setting up the AEC's Health and Safety Laboratory Worker's Compensation History Contamination and Industrial Worker Education Federal Versus State Responsibility for Materials Production Safety Plant Safety and the Community Monitoring Radioactive Fallout Radiation and Cancer Rates Safety of the Nuclear Industry Use of Children in Research Developing Thyroid Radiation Counters Secrecy, Louis Strauss, and the Bravo Test Nuclear Test Fallout Studies

189

Annual Energy Outlook 2002 with Projections to 2020 - Table 1  

Gasoline and Diesel Fuel Update (EIA)

Welcome to the Annual Energy Outlook 2002 with Projections to 2020. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Welcome to the Annual Energy Outlook 2002 with Projections to 2020. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Annual Energy Outlook 2002 with Projections to 2020 Table 1. Summary of results for five cases Sensitivity Factors 1999 2000 2020 Reference Low Economic Growth High Economic Growth Low World Oil Price High World Oil Price Primary Production (quadrillion Btu) Petroleum 15.06 15.04 15.95 15.52 16.39 14.40 17.73 Natural Gas 19.20 19.59 29.25 27.98 29.72 28.54 30.03 Coal 23.15 22.58 28.11 26.88 30.08 27.58 29.04 Nuclear Power 7.74 8.03 7.49 7.38 7.49 7.31 7.58 Renewable Energy 6.69 6.46 8.93 8.59 9.37 8.90 8.97 Other 1.66 1.10 0.93 0.91 0.73 0.40 1.06 Total Primary Production 73.50 72.80 90.66 87.26 93.79 87.13 94.40 Net Imports (quadrillion Btu)

190

Wolf's History of Astronomy  

Science Journals Connector (OSTI)

... THE History of Astronomy, by Prof. Rudolf Wolf, of Zurich, a volume of 800 pages issued ... student. The production of such a work, involving an outline of the progress of astronomy from the earliest times to the present period, must have been a labour of ...

J. R. HIND

1878-01-31T23:59:59.000Z

191

Oil Quantity : The histori  

E-Print Network [OSTI]

model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

Lin, C.-Y. Cynthia

192

Early History of Magnetism  

Science Journals Connector (OSTI)

... 2, Dr. J. B. Kramer read a paper on The Early History of Magnetism, in which he discussed the various accounts of the first discovery of a magnet ... accounts of the first discovery of a magnet, and the development of the science of magnetism down to A.D. 1600. His remarks were divided into five sections, the ...

1932-03-19T23:59:59.000Z

193

Exploring Mars' Climate History  

E-Print Network [OSTI]

Exploring Mars' Climate History #12;2 Mars Reconnaissance Orbiter ESA Mars Express (NASA: MARSIS by studying the solar wind and other interactions with the Sun. #12;The solar wind is a high-speed stream of electrons and protons released from the Sun. #12;High-energy photons (light) stream constantly from the Sun

194

Project Controls  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

1997-03-28T23:59:59.000Z

195

2013 Global Carbon Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

196

Production of low BTU gas from biomass  

E-Print Network [OSTI]

and transported with little difficulty. It was decided to use a fluidized bed reactor for the gasification. Fluidized bed reactors offer many advantages when utilized as a medium for gasifi- cation of solid fuels. Some of them are excellent mixing... carbon and graphite. The results showed the equilibrium constant to be a function of temperature alone, independent of carbon source, particle size and other physical properties of the carbon. Brink (1976) studied the pyrolysis and gasifi- cation...

Lee, Yung N.

2012-06-07T23:59:59.000Z

197

Catalytic reactor for low-Btu fuels  

DOE Patents [OSTI]

An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

2009-04-21T23:59:59.000Z

198

New Book Updates INL's History, Documents a Decade of Transformation |  

Broader source: Energy.gov (indexed) [DOE]

Book Updates INL's History, Documents a Decade of Book Updates INL's History, Documents a Decade of Transformation New Book Updates INL's History, Documents a Decade of Transformation June 21, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Tim Jackson 208-526-8484 The U.S. Department of Energy is releasing an update to the history of the Idaho National Laboratory, documenting a decade of transformation at the laboratory, and a "decade of doing" for the Idaho Cleanup Project. "Transformed: A Recent History of the Idaho National Laboratory, 2000 to 2010," was commissioned to update the highly popular, "Proving the Principle," the book that was issued in 1999 to document the first 50 years of the lab. "During the first decade of this century, Idaho National Laboratory got a

199

About Fermilab - History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is Fermilab? What is Fermilab? what is Fermilab main page | mission | history | Enrico Fermi History - Wilson Hall Beauvais Cathedral A daring achievement of Gothic architecture, the Saint-Pierre Cathedral of Beauvais, France helped inspire the distinctive design of Wilson Hall. The Cathedral (A.D. 1225-1568) was never completed westward of the choir and transepts, and the site of the proposed nave is partly occupied by the Romanesque church known as the "Basse oeuvre" ("low work"). The roof fell (A.D. 1284); the choir was reconstructed and strengthened by additional piers (A.D. 1337-47), and in the 16th century the transepts were built. The height of the vault (157 ft., 6 ins.) is the loftiest in Europe, and measures about three and a half times its span. One of the most daring

200

BNL | Our History: Accelerators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RMOTC - About Us - History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History Teapot Dome Scandal Teapot Dome was the popular name for the scandal during the administration of U.S. President Warren G. Harding. The scandal, which involved the secret leasing of naval oil reserve lands to private companies, was first revealed to the general public in 1924 after findings by a committee of the U.S. Senate. Teapot Rock, From which the famous Teapot Dome derives its name The creation of the Naval Petroleum Reserves originated with the growth of federal conservation policy under presidents Theodore Roosevelt, William Howard Taft, and Woodrow Wilson. The reserves were tracts of public land where oil should be kept in its natural reservoirs for the future use of the Navy. "Teapot Dome" originally acquired its name from a rock nearby

202

Reading Comprehension - Atomic History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atomic History Atomic History A Greek philosopher named Democritus said that all atoms are small, hard particles. He thought that atoms were made of a single material formed into different shapes and sizes. The word " _________ element compound mixture atom " is derived from the Greek word "atomos" which means "not able to be divided." In 1803, John Dalton, a school teacher, proposed his atomic theory. Dalton's theory states that elements (substances composed of only one type of _________ molecules ions atom ) combine in certain proportions to form _________ compounds atoms mixtures elements . In 1897, a British scientist named J. J. Thomson experimented with a cathode-ray tube which had a positively charged plate. The plate attracted negatively charged particles that we now call _________ protons neutrons

203

Annual Energy Outlook with Projections to 2025-Market Trends - Energy  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Index (click to jump links) Residential Sector Commercial Sector Industrial Sector Transportation Sector Energy Demand in Alternative Technology Cases Annual Growth in Energy Use Is Projected To Continue Net energy delivered to consumers represents only a part of total primary energy consumption. Primary consumption includes energy losses associated with the generation, transmission, and distribution of electricity, which are allocated to the end-use sectors (residential, commercial, and industrial) in proportion to each sector’s share of electricity use [103]. Figure 45. Primary and delivered energy consumption, excluding transportation use, 1970-2025 (quadrillion Btu). Having problems, call our National Energy Information Center at 202-586-8800 for help.

204

NERSC Systems History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History of Systems History of Systems History of Systems Established in 1974 at Lawrence Livermore National Laboratory, NERSC was moved to Berkeley Lab in 1996 with a goal of increased interactions with the UC Berkeley campus. NERSC Systems System Name Installed System Type CPU Computational Pool Interconnect Disk (TB) Avg. Power Linpack HPL/ Top Rank Peak GFlops/s Type Speed Nodes SMP Size Total Cores Aggregate Memory (GB) Avg. Memory/ CPU Edison 2013 Cray XC30 Xeon 12-Core 2.3 GHz 5,200 24 124,800 332,800 2.67GB Hopper 2010 Cray XE6 Opteron Hex-Core 2.1 GHz 6,384 24 153,216 216,832 1.3 GB Gemini 2,000 1,054,000 (5) 1,054,000 Carver 2010 IBM iDataPlex Intel Nehalem Quad-Core 2.6 GHz 400 8 3,200 9,600 3 GB 4X QDR InfiniBand NGF 36,856 (322) 42,656

205

Manhattan Project: The Manhattan Project and the Second World War,  

Office of Scientific and Technical Information (OSTI)

Oak Ridgers celebrate V-J Day THE MANHATTAN PROJECT AND THE SECOND WORLD WAR Oak Ridgers celebrate V-J Day THE MANHATTAN PROJECT AND THE SECOND WORLD WAR (1939-1945) Events > Dawn of the Atomic Era, 1945 The War Enters Its Final Phase, 1945 Debate Over How to Use the Bomb, Late Spring 1945 The Trinity Test, July 16, 1945 Safety and the Trinity Test, July 1945 Evaluations of Trinity, July 1945 Potsdam and the Final Decision to Bomb, July 1945 The Atomic Bombing of Hiroshima, August 6, 1945 The Atomic Bombing of Nagasaki, August 9, 1945 Japan Surrenders, August 10-15, 1945 The Manhattan Project and the Second World War, 1939-1945 The atomic bombings of Hiroshima and Nagasaki and the surrender of Japan were the last acts of the Second World War. The most destructive weapon in the history of combat had helped bring an end to the most destructive conflict in human history.

206

history | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

highlights of the site's history now is available for viewing on the Y-12 public Web site at http:www.y12.doe.gov Office of Secure Transportation History Since 1947,...

207

The Tevatron Hadron Collider: A short history  

SciTech Connect (OSTI)

The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade.

Tollestrup, A.V.

1994-11-01T23:59:59.000Z

208

Science Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne Argonne Science Project Ideas! Our Science Project section provides you with sample classroom projects and experiments, online aids for learning about science, as well as ideas for Science Fair Projects. Please select any project below to continue. Also, if you have an idea for a great project or experiment that we could share, please click our Ideas page. We would love to hear from you! Science Fair Ideas Science Fair Ideas! The best ideas for science projects are learning about and investigating something in science that interests you. NEWTON has a list of Science Fair linkd that can help you find the right topic. Toothpick Bridge Web Sites Toothpick Bridge Sites! Building a toothpick bridge is a great class project for physics and engineering students. Here are some sites that we recommend to get you started!

209

Projection Systems  

Science Journals Connector (OSTI)

As a general rule, broad-band sources which employ projection optics are the most difficult to evaluate. In addition to the problems encountered in evaluating exposed lamps, one must characterize the projected...

David Sliney; Myron Wolbarsht

1980-01-01T23:59:59.000Z

210

Circle Project  

E-Print Network [OSTI]

This project asks students to decide if a collection of points in space do or do not lie on a ... The project is accessible to linear algebra students who have studied...

211

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

212

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

213

Table 22. Energy Intensity, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual Projected (quadrillion Btu / real GDP in billion 2005 chained dollars) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 11.2 11.1 11.0 10.8 10.7 10.5 10.4 10.3 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 AEO 1995 10.9 10.8 10.6 10.4 10.3 10.1 10.0 9.9 9.8 9.6 9.5 9.4 9.3 9.2 9.1 9.1 9.0 AEO 1996 10.7 10.6 10.4 10.3 10.1 10.0 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1997 10.3 10.3 10.2 10.1 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.2 9.1 9.0 8.9 AEO 1998 10.1 10.1 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.5 9.4 9.3 9.2 9.1 9.0 AEO 1999 9.6 9.7 9.7 9.7 9.6 9.4 9.3 9.1 9.0 8.9 8.8 8.7 8.6 8.5 AEO 2000 9.4 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.7 8.6 8.5 8.4 AEO 2001 8.7 8.6 8.5 8.4 8.3 8.1 8.0 7.9 7.8 7.6 7.5 7.4

214

RECOUNTING HISTORY THROUGH RADIOASSAY  

SciTech Connect (OSTI)

This paper describes a proposed method for using historical documentation to identify unknown wastes resulting from retrieving suspect transuranic (TRU) waste. Identification is accomplished by a historical review of radionuclides identified by radioassay, along with the project controls used to ensure an accurate segregation of TRU from low-level waste (LLW). This paper presents an historical perspective on the identification of radionuclides at the Hanford Site from various waste generators of suspect TRU waste with an emphasis on the Data Quality Objectives (DQO's) and project controls used to ensure the waste is properly classified as TRU or LLW.

JASEN, W.G.

2005-12-21T23:59:59.000Z

215

Hanford Overview and History - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Us > Hanford Overview and History About Us Hanford Overview and History Hanford Cleanup Hanford Site Wide Programs Hanford Overview and History Email Email Page | Print Print...

216

Kami Oral History  

E-Print Network [OSTI]

this interview the way that I start off all the oral histories which is, Tell me where you were born and when. KAMI: I was born in Salt Lake City, Utah in August, 1950. And my father was at the University of Utah in school. And they lived in Layton, so we.... But yeah, I went across the country and I danced around and(laugh) and I love Salt Lake. And I didn't appreciate Salt Lake then the way I do now. I've really come tobut I had good friends in the dorms and, yeah I didn'tI was never homesick, never...

Albin, Tami; Kami

2010-01-11T23:59:59.000Z

217

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

218

URAT: astrometric requirements and design history  

E-Print Network [OSTI]

The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) project aims at a highly accurate (5 mas), ground-based, all-sky survey. Requirements are presented for the optics and telescope for this 0.85 m aperture, 4.5 degree diameter field-of-view, specialized instrument, which are close to the capability of the industry. The history of the design process is presented as well as astrometric performance evaluations of the toleranced, optical design, with expected wavefront errors included.

Zacharias, N; Rakich, A; Epps, H

2006-01-01T23:59:59.000Z

219

Chapter 8 - The history of nuclear energy  

Science Journals Connector (OSTI)

Abstract This chapter reviews the history related to nuclear energy beginning with scientific investigations in the late 1800s that led to the discovery of subatomic particles and both atomic and nuclear structure. Those research efforts spawned the discovery of fission. The Manhattan Project to develop an atomic bomb then accelerated the knowledge base of nuclear phenomena. After World War II, the Atomic Energy Commission was established and later the International Atomic Energy Agency. Research and development efforts led to the deployment of the first nuclear power plants. This chapter ends by addressing the controversies surrounding nuclear energy in the late twentieth century.

Raymond L. Murray; Keith E. Holbert

2015-01-01T23:59:59.000Z

220

Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects  

E-Print Network [OSTI]

Savings Performance Contract EUI Energy Use Intensity IGAenergy use intensity (EUI) metric such as a thousand Btu perstudent (for a school). The EUI metric is normalized for key

Sanders, Mark D.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

West Valley Demonstration Project: A Short History and Status  

Broader source: Energy.gov [DOE]

Presentation made by Bryan C. Bower for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY.

222

Los Angeles Museum of History, Science and Art/  

E-Print Network [OSTI]

Public Works of Art Project/ Works Progress Administration LouisaEtcheverryKing University of California2 3 #12;16 17 Los Angeles Museum of History, Science and Art/ Los Angeles County Museum of Art Guild University of Southern California CoritaKent MitchellBobrick AllanAdler Architectural

223

History | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

History History New Brunswick Laboratory (NBL) NBL Home About Organization Chart .pdf file (189KB) Points of Contact (POCs) History Directions Jobs Programs Certified Reference Materials (CRMs) Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov About History Print Text Size: A A A RSS Feeds FeedbackShare Page NBL was established by the Atomic Energy Commission in 1949 in New Brunswick, NJ. It was initially staffed by scientists from the National Bureau of Standards that had contributed to the measurement science of nuclear materials for the Manhattan Project. NBL's initial mission was to

224

History | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

History History About Organization Budget Field Offices Federal Advisory Committees History Former Directors Scientific and Technical Information Honors & Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 History Print Text Size: A A A RSS Feeds FeedbackShare Page Origins The origins of the Office of Science trace to the Manhattan Project. The all-out effort to create the world's first nuclear weapon created a vast research and development apparatus under the control of the War Department's Army Corps of Engineers. The classified nature and sprawling logistical and technical demands of this work created large, multi-purpose facilities that became the nation's first national laboratories.

225

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

226

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL's Consolidated Sequestration Research Program (CSRP) Project Number FWP ESD09-056 Barry Freifeld Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefits and Goals of GEO-SEQ * Technical Status - Otway Project (CO2CRC) - In Salah (BP, Sonatrach and Statoil) - Ketzin Project (GFZ, Potsdam) - Aquistore (PTRC) * Accomplishments and Summary * Future Plans 3 Benefit to the Program * Program goals being addressed: - Develop technologies to improve reservoir storage capacity estimation - Develop and validate technologies to ensure 99 percent storage permanence.

227

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline I. Benefits II. Project Overview III. Technical Status A. Background B. Results IV. Accomplishments V. Summary 3 Benefit to the Program * Program goals. - Prediction of CO 2 storage capacity. * Project benefits. - Workforce/Student Training: Support of 3 student GAs in use of multiphase flow and geochemical models simulating CO 2 injection. - Support of Missouri DGLS Sequestration Program. 4 Project Overview: Goals and Objectives Project Goals and Objectives. 1. Training graduate students in use of multi-phase flow models related to CO 2 sequestration. 2. Training graduate students in use of geochemical models to assess interaction of CO

228

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center for Coal's Center for Coal's FY10 Carbon Sequestration Peer Review February 8 - 12, 2010 2 Collaborators * Tissa Illangasekare (Colorado School of Mines) * Michael Plampin (Colorado School of Mines) * Jeri Sullivan (LANL) * Shaoping Chu (LANL) * Jacob Bauman (LANL) * Mark Porter (LANL) 3 Presentation Outline * Benefit to the program * Project overview * Project technical status * Accomplishments to date * Future Plans * Appendix 4 Benefit to the program * Program goals being addressed (2011 TPP): - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefit: - This project is developing system modeling capabilities that can be used to address challenges associated with infrastructure development, integration, permanence &

229

Discontinued Projects  

Broader source: Energy.gov [DOE]

This page lists projects that received a loan or a loan guarantee from DOE, but that are considered discontinued by LPO for one of several reasons.

230

project management  

National Nuclear Security Administration (NNSA)

the Baseline Change Proposal process. Two 400,000-gallon fire protection water supply tanks and associated pumping facilities were added. Later in the project, an additional...

231

Custom Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Incentive Payment - The ESIP works with utility, industry, and BPA to complete the measurement and verification, reporting and development of a custom project completion...

232

History | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne's Nobelists Argonne's Nobelists Three Argonne physicists have been honored with Nobel Prizes: Enrico Fermi, Argonne's founding director, won the 1938 Nobel Prize in physics for his demonstrations of the existence of new radioactive elements produced by neutron irradiation and for his related discovery of nuclear reactions brought about by slow neutrons. Maria Goeppert Mayer shared the 1963 Nobel Prize in physics. While working at Argonne in 1948, she developed the "nuclear shell model" to explain how neutrons and protons within atomic nuclei are structured. Alexei A. Abrikosov shared the 2003 Nobel Prize in physics for research on condensed-matter physics and superconductivity. Our history sparked the nation's future AVIDAC, Argonne's first digital computer, began operation in January 1953.

233

Whistling Ridge Energy Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PDCI) Upgrade Project Whistling Ridge Energy Project Line Rebuild, Relocation and Substation Projects Wind Projects Whistling Ridge Energy Project Bonneville Power...

234

A history of the neutron  

Science Journals Connector (OSTI)

A history of the neutron ... Describes some of the individuals and the work they did leading to the discovery of the neutron. ...

Vasilis Lavrakas

1952-01-01T23:59:59.000Z

235

History of Proton Linear Accelerators  

E-Print Network [OSTI]

much. References 1. Linear Accelerators, edited by P. M .at the 1986 Linear Accelerator Conference, SLAC, Stanford,HISTORY OF PROTON LINEAR ACCELERATORS Luis W. Alvarez TWO-

Alvarez, Luis W.

1987-01-01T23:59:59.000Z

236

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Snøhvit CO Snøhvit CO 2 Storage Project Project Number: FWP-FEW0174 Task 4 Principal Investigators: L. Chiaramonte, *J.A. White Team Members: Y. Hao, J. Wagoner, S. Walsh Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Summary & Accomplishments * Appendix 3 Benefit to the Program * The research project is focused on mechanical

237

Project title:  

Broader source: Energy.gov (indexed) [DOE]

Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Project title: Roseville Elverta (RSC-ELV) OPGW Replacement Project Requested By: David Young Mail Code : N1410 Phone: 916-353-4542 Date Submitted: 5/4/2011 Date Required: 5/7/2011 Description of the Project: Purpose and Need The Western Area Power Administration (Western), Sierra Nevada Region (SNR), is responsible for the operation and maintenance (O&M) of federally owned and operated transmission lines, Switchyards, and facilities throughout California. Western and Reclamation must comply with the National Electric Safety Code, Western States Coordinating Council (WECC), and internal directives for protecting human safety, the physical environment, and maintaining the reliable operation of the transmission system. There is an existing OPGW communications fiber on the transmission towers between Roseville and Elverta

238

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InSalah CO InSalah CO 2 Storage Project Project Number: FWP-FEW0174 Task 2 Principal Investigator: W. McNab Team Members: L. Chiaramonte, S. Ezzedine, W. Foxall, Y. Hao, A. Ramirez, *J.A. White Lawrence Livermore National Laboratory This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Benefit to Program * Project Goals and Objectives * Technical Status * Accomplishments * Summary * Appendix 3 Benefit to the Program * The research project is combining sophisticated

239

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy, Seismology, Space Geodesy, Seismology, and Geochemistry for Monitoring Verification and Accounting of CO 2 in Sequestration Sites DE-FE0001580 Tim Dixon, University of South Florida Peter Swart, University of Miami U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to program * Goals & objectives * Preliminary InSAR results (site selection phase) * Project location * Project installed equipment * Specific project results * Summary 3 Benefit to the Program * Focused on monitoring, verification, and accounting (MVA) * If successful, our project will demonstrate the utility of low cost, surface

240

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 DE-FE0001159 Advanced Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations Gary Mavko Rock Physics Project/Stanford University 2 Presentation Outline * Benefit to the Program * Project Overview * Motivating technical challenge * Approach * Technical Status - Laboratory results - Theoretical modeling * Summary Mavko: Stanford University 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations. - Develop technologies to demonstrate that 99% of injected CO 2 remains in injection zones. * Project benefits statement.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Volume Injection of CO Large Volume Injection of CO 2 to Assess Commercial Scale Geological Sequestration in Saline Formations in the Big Sky Region Project Number: DE-FC26-05NT42587 Dr. Lee Spangler Big Sky Carbon Sequestration Partnership Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and Objectives * Project overview * Kevin Dome characteristics * Project design philosophy * Infrastructure * Modeling * Monitoring * Project Opportunities 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

242

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Research on Probabilistic and Research on Probabilistic Hydro-Thermo-Mechanical (HTM) Modeling of CO 2 Geological Sequestration (GS) in Fractured Porous Rocks Project DE-FE0002058 Marte Gutierrez, Ph.D. Colorado School of Mines U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program (Program goals addressed and Project benefits) * Project goals and objectives * Technical status - Project tasks * Technical status - Key findings * Lessons learned * Summary - Accomplishments to date 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

243

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Complexity and Choice of Complexity and Choice of Model Approaches for Practical Simulations of CO 2 Injection, Migration, Leakage, and Long- term Fate Karl W. Bandilla Princeton University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Project Number DE-FE0009563 2 Presentation Outline * Project Goals and Objectives * Project overview * Accomplishments * Summary 3 Benefit to the Program * The aim of the project is to develop criteria for the selection of the appropriate level of model complexity for CO 2 sequestration modeling at a given site. This will increase the confidence in modeling results, and reduce computational cost when appropriate.

244

A HISTORY OF EMATS  

Science Journals Connector (OSTI)

This paper was prepared for a Special Session in the 34th Annual Review of Quantitative NDE devoted to Applications of EMATs. As such it reviews the past history of electromagnetic induction of vibrations in metals with special attention to the application to nondestructive testing. The first patent describing the use of Electromagnetic Acoustic Transducers (EMATs) to replace the commonly used piezoelectric transducer was in 1969 but their first appearance in the scientific literature was in 1939 when the principles were applied to exciting and detecting the longitudinal resonance modes of bars of brass. The first true application to nondestructive testing was an R&D program sponsored by the American Gas Association to develop a device for inspecting buried gas pipelines for stress corrosion cracks in the early 1970's. During this same time period theoretical models to describe the transduction mechanism appeared and led to the engineering of solutions to NDT and NDE problems that could not be accomplished with piezoelectric devices. The papers in the session to follow this historical summary show how the field has developed over the past 30 years and expose an impressive array of applications to quantitative nondestructive evaluation (QNDE) practices.

George Alers

2008-01-01T23:59:59.000Z

245

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS: CCS: Life Cycle Water Consumption for Carbon Capture and Storage Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Benefit to the Program * Program goals being addressed. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints

246

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Mitigation Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number: FE0004478 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background Information * Accomplishments to Date - Injection strategy development (control and prediction) - Large core tests - ambient pressure - Large core tests - high pressure - Small core tests - high pressure - MCDP, permeability and porosity assessments * Progress Assessment and Summary

247

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Leakage Mitigation CO2 Leakage Mitigation using Engineered Biomineralized Sealing Technologies Project Number FE0004478 Lee H Spangler, Al Cunningham, Robin Gerlach Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation * Background information * Large core tests - ambient pressure * Large core tests - high pressure 3 Benefit to the Program Program goals being addressed. Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Project benefits statement. The Engineered Biomineralized Sealing Technologies

248

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCS CCS Project Number 49607 Christopher Harto Argonne National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program goals being addressed. - Increased control of reservoir pressure, reduced risk of CO2 migration, and expanded formation storage capacity. * Project benefits statement. - This work supports the development of active reservoir management approaches by identifying cost effective and environmentally benign strategies for managing extracted brines (Tasks 1 + 2). - This work will help identify water related constraints on CCS deployment and provide insight into

249

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Multiphase of Multiphase Flow for Improved Injectivity and Trapping 4000.4.641.251.002 Dustin Crandall, URS PI: Grant Bromhal, NETL ORD Morgantown, West Virginia U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the program * Project overview * Breakdown of FY12 project tasks * Facilities and personnel * Task progress to date * Planned task successes * Tech transfer and summary 3 Benefit to the Program * Program goal being addressed - Develop technologies that will support industries' ability to predict CO

250

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Resources International, Inc. Advanced Resources International, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Program goal being addressed: - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Project benefits statement: - This research seeks to develop a set of robust mathematical modules to predict how coal and shale permeability and

251

Our History | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Our History Our History Our History Our History The history of Office of Electricity Delivery and Energy Reliability (OE) begins in August 2003, when the Department created two offices to provide focus in several critical areas: the Office of Electric Transmission and Distribution (TD), which included elements from the DOE Energy Efficiency and Renewable Energy office and the DOE Policy and International Affairs office, to advance the technologies needed to ensure a reliable, robust and modern U.S. electricity grid; and the Office of Energy Assurance (EA), to coordinate Federal response activities within the energy sector during energy disruptions and developed strategies to harden infrastructure against such disruptions. On August 14, 2003, large portions of the Midwest and Northeast United

252

Initial test results of the limestone injection multistage burner (LIMB) demonstration project. Report for September 1984-April 1988  

SciTech Connect (OSTI)

This paper discusses SO/sub 2/ removal efficiency and low-NOx burner performance obtained during short term tests, as well as the impact of LIMB ash on electrostatic precipitator (ESP) performance at Ohio Edison's Edgewater Station. Project goals are to demonstrate 50% or more SO/sub 2/ removal at a Ca/S molar stoichiometry of 2.0 and NOx emissions of less than 0.5 lb/million Btu while maintaining boiler operability and reliability. The tests, conducted before September 1987, indicated that 55-60% SO/sub 2/ removal and NOx emissions on the order of 0.48 lb/million Btu are achievable. The increased dust loading of a high-resistivity ash typically limited continuous operation to 2-6 hr. The paper discusses how the LIMB ash gave rise to back corona which, in turn, increased stack opacity to regulated levels. The extension of the project to include humidification of the flue gas is also described as a way to minimize these effects.

Nolan, P.S.; Hendriks, R.V.

1988-05-01T23:59:59.000Z

253

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER SUMNER COUNTY, KANSAS Project Number DE-FE0006821 W. Lynn Watney Kansas Geological Survey Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Fountainview Wednesday 8-21-12 1:10-1:35 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Acknowledgements & Disclaimer Acknowledgements * The work supported by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant DE-FE0002056 and DE- FE0006821, W.L. Watney and Jason Rush, Joint PIs. Project is managed and

254

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 Collaborators Zhengrong Wang, Yale University Kevin Johnson, University of Hawaii 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 storage capacity - Demonstrate fate of injected CO 2 and most common contaminants * Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO 2 . Findings from this project

255

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

behavior of shales as behavior of shales as seals and storage reservoirs for CO2 Project Number: Car Stor_FY131415 Daniel J. Soeder USDOE/NETL/ORD U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Project Overview: Goals and Objectives * Program Goals - Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. - Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness * Project Objectives - Assess how shales behave as caprocks in contact with CO 2 under a variety of conditions - Assess the viability of depleted gas shales to serve as storage reservoirs for sequestered CO

256

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 leakage and cap rock remediation DE-FE0001132 Runar Nygaard Missouri University of Science and Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the program * Project overview * Technical status * Accomplishments to date * Summary 2 3 Benefit to the Program * Program goals being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * Project benefits statement. - The project develops a coupled reservoir and geomechanical modeling approach to simulate cap rock leakage and simulate the success of remediation

257

LUCF Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RZWR'HVLJQDQG RZWR'HVLJQDQG +RZWR'HVLJQDQG ,PSOHPHQW&DUERQ ,PSOHPHQW&DUERQ 0HDVXULQJDQG0RQLWRULQJ 0HDVXULQJDQG0RQLWRULQJ $.WLYLWLHVIRU/8&) $.WLYLWLHVIRU/8&) 3URMH.WV 3URMH.WV Sandra Brown Winrock International sbrown@winrock.org Winrock International 2 3URMH.WGHVLJQLVVXHV 3URMH.WGHVLJQLVVXHV z Baselines and additionality z Leakage z Permanence z Measuring and monitoring z Issues vary with projects in developed versus developing countries Winrock International 3 /HDNDJH /HDNDJH z Leakage is the unanticipated loss or gain in carbon benefits outside of the project's boundary as a result of the project activities-divide into two types: - Primary leakage or activity shifting outside project area - Secondary leakage or market effects due to

258

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Web-based CO Web-based CO 2 Subsurface Modeling Geologic Sequestration Training and Research Project Number DE-FE0002069 Christopher Paolini San Diego State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and goals. * Web interface for simulating water-rock interaction. * Development of, and experience teaching, a new Carbon Capture and Sequestration course at San Diego State University. * Some noteworthy results of student research and training in CCS oriented geochemistry. * Status of active student geochemical and geomechancal modeling projects.

259

Project Title:  

Broader source: Energy.gov (indexed) [DOE]

Repair flowline 61-66-SX-3 Repair flowline 61-66-SX-3 DOE Code: Project Lead: Wes Riesland NEPA COMPLIANCE SURVEY # 291 Project Information Date: 3/1 1/2010 Contractor Code: Project Overview In order to repair this line it was decided to trench a line aproximately 100 feet and tie it into the line at 71-3- 1. What are the environmental sx-3. This will get us out of the old flow line which has been repaired 5-6 times. this will mitigate the chances impacts? of having spills in the future. 2. What is the legal location? This flowline runs from the well77-s-1 0 to the B-2-10 manifold.+ "/-,~?X3 3. What is the duration of the project? Approximately 10 hours(1 day) to complete 4. What major equipment will be used backhoe and operator and one hand if any (work over rig. drilling rig.

260

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co-Sequestration Co-Sequestration Studies Project Number 58159 Task 2 B. Peter McGrail Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Focus Area and DOE Connections * Goals and Objectives * Scope of Work * Technical Discussion * Accomplishments to Date * Project Wrap-up * Appendix (Organization Chart, Gantt Chart, and Bibliography 3 Benefit to the Program * Program goals addressed: - Technology development to predict CO 2 and mixed gas storage capacity in various geologic settings - Demonstrate fate of injected mixed gases * Project benefits statement:

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project X  

E-Print Network [OSTI]

provided by Project X would be a cost- effective approach toin Section I and for the cost estimate necessary as part ofby DOE order 413.3b. The cost range required for CD-0 will

Holmes, Steve

2014-01-01T23:59:59.000Z

262

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity in Geological Carbon Model Complexity in Geological Carbon Sequestration: A Design of Experiment (DoE) & Response Surface (RS) Uncertainty Analysis Project Number: DE-FE-0009238 Mingkan Zhang 1 , Ye Zhang 1 , Peter Lichtner 2 1. Dept. of Geology & Geophysics, University of Wyoming, Laramie, Wyoming 2. OFM Research, Inc., Santa Fe, New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project major goals and benefits; * Detailed project objectives & success criteria; * Accomplishments to date; * Summary of results; * Appendix (organization chart; Gantt chart; additional results). Dept. of Geology & Geophysics, University of Wyoming

263

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Region Region DE-FE0001812 Brian J. McPherson University of Utah U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Acknowledgements * NETL * Shell * Tri-State * Trapper Mining * State of Colorado 3 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 4 Presentation Outline * Program Benefits * Project / Program Goals * Technical Status: Finalizing 10-Point Protocol for CO 2 Storage Site Characterization * Key Accomplishments * Summary 5 Benefit to the Program Program Goals Being Addressed by this Project

264

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

265

Revolutionizing history education : using augmented reality games to teach histories  

E-Print Network [OSTI]

In an ever-changing present of multiple truths and reconfigured histories, people need to be critical thinkers. Research has suggested the potential for using augmented reality (AR) games- location-based games that use ...

Schrier, Karen L

2005-01-01T23:59:59.000Z

266

UCD School of History & Archives Student Handbook  

E-Print Network [OSTI]

UCD School of History & Archives Student Handbook 2014-2015 This handbook is relevant for all Students study history? Can Evening Arts students study history? How does the School of history School of History and Archives UCD: Student Handbook, 2014-15 2 #12;6. The ECTS credit system How are my

267

Project Fact Sheet Project Update  

E-Print Network [OSTI]

medical and dental centre; shop and café area for students and vacation accommodation centre. The new & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on Site

268

NEPA History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History History NEPA History Selected documents providing historical information on NEPA. June 14, 2012 Federal Register Notices for DOE NEPA Guidelines and Regulations Historical compilation of Federal Register notices for DOE NEPA guidelines and regulations. December 31, 2009 Presidential Proclamation on the 40th Anniversary of the National Environmental Policy Act Proclamation of President Obama to "call upon all executive branch agencies to promote public involvement and transparency in their implementation of the National Environmental Policy Act." July 1, 1999 EPA's Section 309 Review: The Clean Air Act and NEPA This document discusses Section 309 of the Clean Air Act, which authorizes the Environmental Protection Agency to review certain proposed actions of

269

Preparing for Project Implementation Financing Project Implementation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Project Implementation Financing Project Implementation Save Energy Now LEADER Web Conference Project Implementation Seminar Series Save Energy Now LEADER Web Conference...

270

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring Geological CO Monitoring Geological CO 2 Sequestration using Perfluorocarbon and Stable Isotope Tracers Project Number FEAA-045 Tommy J. Phelps and David R. Cole* Oak Ridge National Laboratory Phone: 865-574-7290 email: phelpstj@ornl.gov (*The Ohio State University) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Developing the Technologies and Building the Infrastructure for CO 2 Storage August 22, 2013 2 Project Overview: Goals and Objectives Goal: Develop methods to interrogate subsurface for improved CO 2 sequestration, field test characterization and MVA, demonstrate CO 2 remains in zone, and tech transfer. Objectives: 1. Assessment of injections in field. PFT gas tracers are analyzed by GC-ECD to

271

Project Homepage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Middle School Home Energy Audit Middle School Home Energy Audit Project Homepage NTEP Home - Project Homepage - Teacher Homepage - Student Pages Abstract: This set of lessons provides an opportunity for midlevel students to gain a basic understanding of how energy is turned into power, how power is measured using a meter, the costs of those units and the eventual reduction of energy consumption and cost to the consumer. Introduction to Research: By conducting energy audits of their own homes and completing exercises to gain baclground information, students begin to see the importance of energy in their daily lives. By using the Internet as a research tool, students gain develop research skills as they gain knowledge for their project. They use e-mail to collaborate with energy experts and share results with other

272

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Title: DEVELOPING A Title: DEVELOPING A COMPREHENSIVE RISK ASSESMENT FRAMEWORK FOR GEOLOGICAL STORAGE OF CO2 Ian Duncan University of Texas U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline 1. Benefit to the Program 2. Goals and Objectives 3. Technical Status Project 4. Accomplishments to Date 5. Summary 3 Benefit to the Program The research project is developing a comprehensive understanding of the programmatic (business), and technical risks associated with CCS particularly the likelihood of leakage and its potential consequences. This contributes to the Carbon Storage Program's effort of ensuring 99 percent CO

273

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage R&D Project Review Meeting Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Acknowledgments Dave Harris, Kentucky Geological Survey Dave Barnes, Western Michigan University John Rupp, Indiana Geological Survey Scott Marsteller, Schlumberger Carbon Services John McBride, Brigham Young University * Project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute * ConocoPhillips: in-kind match * Western Kentucky Carbon Storage Foundation: matching funding * SeisRes 2020, Houston: VSP acquisition and processing

274

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Analyze Spatial and Temporal to Analyze Spatial and Temporal Heterogeneities in Reservoir and Seal Petrology, Mineralogy, and Geochemistry: Implications for CO 2 Sequestration Prediction, Simulation, and Monitoring Project Number DE-FE0001852 Dr. Brenda B. Bowen Purdue University (now at the University of Utah) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction to the project * Tasks * Student training * Student research successes * Lessons learned and future plans 3 Benefit to the Program * Addresses Carbon Storage Program major goals: - Develop technologies that will support industries' ability to predict CO

275

Research projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yuan » Research projects Yuan » Research projects Research projects Research Interests Scientific computing, domain decomposition methods Linear solvers for sparse matrices Computational plasma physics Grid generation techniques GPU computing Current Research PDSLin: A hybrid linear solver for large-scale highly-indefinite linear systems The Parallel Domain decomposition Schur complement based Linear solver (PDSLin), which implements a hybrid (direct and iterative) linear solver based on a non-overlapping domain decomposition technique called chur complement method, and it has two levels of parallelism: a) to solve independent subdomains in parallel and b) to apply multiple processors per subdomain. In such a framework, load imbalance and excessive communication lead to the performance bottlenecks, and several techniques are developed

276

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SECARB Anthropogenic Test: SECARB Anthropogenic Test: CO 2 Capture/Transportation/Storage Project # DE-FC26-05NT42590 Jerry Hill, Southern Sates Energy Board Richard A. Esposito, Southern Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - CO 2 Capture - CO 2 Transportation - CO 2 Storage * Accomplishments to Date * Organization Chart * Gantt Chart * Bibliography * Summary Benefit to the Program 1. Predict storage capacities within +/- 30% * Conducted high resolution reservoir characterization of the Paluxy saline formation key

277

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation of the CO Investigation of the CO 2 Sequestration in Depleted Shale Gas Formations Project Number DE-FE-0004731 Jennifer Wilcox, Tony Kovscek, Mark Zoback Stanford University, School of Earth Sciences U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Outline * Project Benefits * Technical Status * Imaging at mm- to micron-scales using CT - Permeability measurements and application of the Klinkenberg effect - Molecular Dynamics simulations for permeability and viscosity estimates * Accomplishments to Date * Summary Stanford University 3 Benefit to the Program * Carbon Storage Program major goals

278

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fidelity Computational Analysis of Fidelity Computational Analysis of CO2 Trappings at Pore-scales Project Number: DE-FE0002407 Vinod Kumar (vkumar@utep.edu) & Paul Delgado (pmdelgado2@utep.edu) University of Texas at El Paso U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Collaborators: Dr. C. Harris (Shell Oil Company/Imperial College), Dr. G. Bromhal (NETL), Dr. M. Ferer (WVU/NETL), Dr. D. Crandall (NETL-Ctr), and Dr. D. McIntyre (NETL). 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status - Pore-network modeling - Conductance derivation for irregular geom. - Pore-to-CFD Computations

279

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary KANSAS STATE UNIVERSITY Bittersweet Energy Inc. Partners FE0002056 Devilbiss Coring Service Basic Energy Services Wellington Field Operator Industrial and Electrical Power Sources of CO 2 Southwest Kansas CO 2 -EOR Initiative Industry Partners (modeling 4 Chester/Morrowan oil fields to make CO2 ready) +drilling and seismic contractors TBN

280

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Number (DE-FE0002056) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 W. Lynn Watney & Jason Rush (Joint PIs) Kansas Geological Survey Lawrence, KS 66047 Brighton 1&2 2:40 August 20, 2013 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary ORGANIZATIONAL STRUCTURE Modeling CO 2 Sequestration in Saline A quifer and Depleted Oil Reservoir to Evaluate Regional CO 2 Sequestration Potential of Ozark Plateau A quifer System, South-Central Kansas Co-Principal Investigators Co-Principal Investigators Kerry D. Newell -- stratigraphy, geochemistry

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks DE-FE0004847 Jennifer Hall Columbia University in the City of New York U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Conservative and Reactive Tracer Techniques * Accomplishments to Date * Summary 3 Benefit to the Program * The goal of the project is to develop and test novel geochemical tracer techniques for quantitative monitoring, verification and accounting of stored CO 2 . These techniques contribute to the Carbon Storage Program's

282

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO 2 Rich Flue Gas Direct Injection Facility Project Number DOE Grant FE0001833 Paul Metz Department of Mining & Geological Engineering University of Alaska Fairbanks U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix: Not Included in Presentation 3 Benefit to the Program * Carbon Storage Program Major Goals: - Develop technologies that will support industries' ability to

283

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale CO Scale CO 2 Injection and Optimization of Storage Capacity in the Southeastern United States Project Number: DE-FE0010554 George J. Koperna, Jr. Shawna Cyphers Advanced Resources International U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Program Goals * Benefits Statement * Project Overview - Goals - Objectives * Technical Status * Accomplishments to Date * Summary * Appendix USDOE/NETL Program Goals * Support industry's ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop and validate technologies to ensure 99 percent storage permanence. * Develop technologies to improve reservoir storage

284

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUMNER COUNTY, KANSAS DE-FE0006821 W. Lynn Watney, Jason Rush, Joint PIs Kansas Geological Survey The University of Kansas Lawrence, KS U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Brighton 1&2 Wednesday 8-21-13 1:10-1:35 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 2 Small Scale Field Test Wellington Field Regional Assessment of deep saline Arbuckle aquifer Project Team DOE-NETL Contract #FE0006821 KANSAS STATE UNIVERSITY 3 L. Watney (Joint PI), J. Rush (Joint PI), J. Doveton, E. Holubnyak, M. Fazelalavi, R. Miller, D. Newell, J. Raney

285

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seal Repair Using Seal Repair Using Nanocomposite Materials Project Number DE-FE0009562 John Stormont, Mahmoud Reda Taha University of New Mexico U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Ed Matteo, Thomas Dewers Sandia National Laboratories 2 Presentation Outline * Introduction and overview * Materials synthesis * Materials testing and characterization * Annular seal system testing * Numerical simulation * Summary 3 Benefit to the Program * BENEFITS STATEMENT: The project involves the development and testing of polymer-cement nanocomposites for repairing flaws in annular wellbore seals. These materials will have superior characteristics compared to conventional

286

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity Project Number DE-FE0002112 PIs Drs. John Kaszuba and Kenneth Sims Virginia Marcon University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to the Program * Project Overview * Technical Status - Results - Conclusions - Next Steps * Summary 3 Benefit to the Program * Program goal being addressed. - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. - Monitoring, Verification, and Accounting (MVA). MVA technologies seek to monitor, verify, and

287

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of CO Impact of CO 2 Injection on the Subsurface Microbial Community in an Illinois Basin CCS Reservoir: Integrated Student Training in Geoscience and Geomicrobiology Project Number (DEFE0002421) Dr. Yiran Dong Drs. Bruce W. Fouke, Robert A. Sanford, Stephen Marshak University of Illinois-Urbana Champaign U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefit to the Program * Technical status * Results and discussion * Summary * Appendix 3 Benefit to the Program This research project has developed scientific, technical and institutional collaborations for the development of

288

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mohammad Piri and Felipe Pereira Mohammad Piri and Felipe Pereira University of Wyoming U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 2013 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status o Experimentation: core-flooding and IFT/CA o Pore-scale modeling modeling * Accomplishments to Date * Summary University of Wyoming 3 Benefit to the Program * Program goal: o 'Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.' * Benefits statement: o The research project is focused on performing reservoir conditions experiments to measure steady-state relative permeabilities,

289

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MVA Tools MVA Tools Sam Clegg, Kristy Nowak-Lovato, Ron Martinez, Julianna Fessenden, Thom Rahn, & Lianjie Huang Los Alamos National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview - Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix - Organization Chart - Bibliography 3 Project Overview: Goals and Objectives * Surface MVA - Frequency Modulated Spectroscopy - Quantitatively identify CO2, H2S and CH4 seepage from geologic sequestration sites - Distinguish anthropogenic CO2 from natural CO2 emissions * CO2 carbon stable isotope measurements

290

EM History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EM History EM History EM History Before (left) and after (right) photos of the Hanford site's F Reactor during operations in 1956 and in 2012, when EM and its contractors completed cleanup there. It was the first reactor area at the 586-square-mile Hanford site to be fully remediated. Before (left) and after (right) photos of the Hanford site's F Reactor during operations in 1956 and in 2012, when EM and its contractors completed cleanup there. It was the first reactor area at the 586-square-mile Hanford site to be fully remediated. EM's HISTORY (1989 - present) Fifty years of nuclear weapons production and energy research generated millions of gallons of liquid radioactive waste, millions of cubic meters of solid radioactive wastes, thousands of tons of spent nuclear fuel and

291

HFIR History - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home › Facilities › HFIR › History Home › Facilities › HFIR › History History of HFIR HFIR was constructed in the mid-1960s to fulfill a need for the production of transuranic isotopes (i.e., "heavy" elements such as plutonium and curium). Since then its mission has grown to include materials irradiation, neutron activation, and, most recently, neutron scattering. In 2007, HFIR completed the most dramatic transformation in its 40-year history. During a shutdown of more than a year, the facility was refurbished and a number of new instruments were installed, as well as a cold neutron source. The reactor was restarted in mid-May; it attained its full power of 85 MW within a couple of days, and experiments resumed within a week. Improvements and upgrades to HFIR include an overhaul of the

292

Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2  

E-Print Network [OSTI]

Project Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2 EXECUTIVE SUMMARY The purpose of the UBC Project Services web-based project management portal project on campus within Project Services, and with the rest of the UBC community. We began this project by defining

293

Center for the history of chemistry resources  

Science Journals Connector (OSTI)

Center for the history of chemistry resources ... A note alerting those interested in the histories of chemistry, chemical engineering, and chemical process industries to the resources available from the Center for the History of Chemistry. ... Chemical Engineering ...

Bruce V. Lewenstein

1988-01-01T23:59:59.000Z

294

Manhattan Project: Berkeley Meeting  

Office of Scientific and Technical Information (OSTI)

Resources Resources About this Site How to Navigate this Site Library Maps Note on Sources Nuclear Energy and the Public's Right to Know Photo Gallery Site Map Sources and Notes Suggested Readings BERKELEY MEETING University of California, Berkeley (March 29, 1940) Resources > Photo Gallery Lawrence, A. Compton, Bush, Conant, K. Compton, and Loomis A meeting regarding the 184-inch cyclotron project, held at the University of California, Berkeley, on March 29, 1940. Left to right: Ernest O. Lawrence, Arthur H. Compton, Vannevar Bush, James B. Conant, Karl T. Compton, and Alfred L. Loomis. The photograph is reprinted in Richard G. Hewlett and Oscar E. Anderson, Jr., The New World, 1939-1946: Volume I, A History of the United States Atomic Energy Commission (Washington: U.S. Atomic Energy Commission, 1972), opposite page 33.

295

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 BROWN 2 Presentation Outline * Benefits & overview of deriving acrylates from coupling carbon dioxide and ethylene * Chemical catalysis approach: background and battles left to fight * Experimental assessment of the viability of thermochemical acrylate production * Perspectives for the future BROWN 3 Benefit to the Program * This project identifies the critical catalyst features necessary to promote carbon dioxide coupling with ethylene to acrylate at molybdenum catalysts. This research demonstrates the viability of acrylate production

296

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration DE FE0004542 Larry Murdoch, Clemson University Stephen Moysey, Clemson University Leonid Germanovich, Georgia Tech Cem Ozan, Baker Hughes Sihyun Kim, Georgia Tech Glenn Skawski, Clemson University Alex Hanna, Clemson University Johnathan Ebenhack, Clemson University Josh Smith, Clemson University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool, Larry Murdoch Project Review Meeting, 23 Aug. 2013 2 Presentation Outline * Preliminaries

297

Hallmark Project  

Broader source: Energy.gov (indexed) [DOE]

Project Project Commercialization of the Secure SCADA Communications Protocol, a cryptographic security solution for device-to-device communication Increased connectivity and automation in the control systems that manage the nation's energy infrastructure have improved system functionality, but left systems more vulnerable to cyber attack. Intruders could severely disrupt control system operation by sending fabricated information or commands to control system devices. To ensure message integrity, supervisory control and data acquisition (SCADA) systems require a method to validate device-to- device communication and verify that information has come from a trusted source and not been altered in transit. The Secure SCADA Communications Protocol (SSCP) provides message

298

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0001836: DE-FE0001836: Numerical modeling of geomechanical processes related to CO 2 injection within generic reservoirs Andreas Eckert & Runar Nygaard Missouri University of Science & Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Objectives, Benefits and Outcomes * Technical status: Project summary - Teaching - Reservoir scale (Geomechanics & Fluid flow simulation) - Borehole scale (Wellbore integrity & wellbore trajectory planning) * Conclusions * Appendix 3 Benefit to the Program * Program goals being addressed. - Develop technologies that will support industries'

299

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DE-FE0002225: DE-FE0002225: Actualistic and geochemical modeling of reservoir rock, CO 2 and formation fluid interaction, Citronelle oil field, Alabama West Virginia University & University of Alabama Presenter: Dr. Amy Weislogel (WVU) Co-PI: Dr. Rona Donahoe (UA) U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Overview & Project Map * Reservoir Geochemical Characterization * Formation Fluid Geochemistry * Geochemical Modeling * Summary 3 Benefit to the Program * Develop technologies that will support industries'

300

Cloudnet Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

Hogan, Robin

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

302

Paducah Community Chronicles Site History in New Book | Department of  

Broader source: Energy.gov (indexed) [DOE]

Community Chronicles Site History in New Book Community Chronicles Site History in New Book Paducah Community Chronicles Site History in New Book July 31, 2013 - 12:00pm Addthis Members of the Paducah Citizens Advisory Board helped create the book, The Story of the Paducah Gaseous Diffusion Plant, Megawatts to Megatons to Megawatts. They believe the stories of plant workers are important to preserve for future generations. Members of the Paducah Citizens Advisory Board helped create the book, The Story of the Paducah Gaseous Diffusion Plant, Megawatts to Megatons to Megawatts. They believe the stories of plant workers are important to preserve for future generations. Judy Clayton, project leader and a member of the Paducah Citizen's Advisory Board (CAB), along with the CAB Vice Chair Ben Peterson, present a copy of the book to Cate Alexander (center), Designated Federal Officer of the EM Site-Specific Advisory Board.

303

Hanford Natural Resource Trustee Council History & Accomplishments...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Resource Trustee Council > HNRTC History & Accomplishments About Us Hanford Natural Resource Trustee Council HNRTC Members HNRTC History & Accomplishments Memorandum of...

304

History of Hydropower | Department of Energy  

Energy Savers [EERE]

History of Hydropower History of Hydropower Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour...

305

UC land grants: A photo history  

E-Print Network [OSTI]

Berkeley UC land grants: A photo history D Early days: 1862UCR/CMP UC land grants: A photo history H. In 1987, UC

Editors, By

2012-01-01T23:59:59.000Z

306

PROJECT REQUEST FORM PROJECT HOLDER INFORMATION  

E-Print Network [OSTI]

PROJECT REQUEST FORM Last Name: Email: PROJECT HOLDER INFORMATION UCID:Last Name: Email: Institute if different than Project Holder) First Name: Project Short Name: (50 characters max) (for eFIN view only) Project Title: PROJECT INFORMATION Start Date (MM/DD/YYYY): End Date (MM/DD/YYYY): For Questions or HELP

de Leon, Alex R.

307

History Overview of Solid-State Lighting - History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Condensed History of Lighting | Review Articles | FAQs | Condensed History of Lighting | Review Articles | FAQs | Documents Archive | CONDENSED HISTORY OF LIGHTING Figure courtesy of Jeff Tsao; a version of this figure was published in IEEE Circuits and Devices Vol 20, No 3, pp 28-37, May/June, 2004 Lighting technologies are substitutes for sunlight in the 425-675 nm spectral region where sunlight is most concentrated and to which the human eye has evolved to be most sensitive. The history of lighting can be viewed as the development of increasingly efficient technologies for creating visible light inside, but not wasted light outside, of that spectral region. A 200-year perspective on that history is shown in the figure above. The left axis indicates luminous efficacy, in units of lumens (a measure of light which factors in the human visual response to various wavelengths) per watt. The right axis indicates the corresponding power-conversion efficiency for a tri-LED tri-color white light source with moderate color rendering (CRI=80) and relatively warm color temperature (CCT=3900K). For such a source, 400lm/W would correspond to 100% power-conversion efficiency.

308

DEMO Project Goals | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

DEMO Project Goals | National Nuclear Security Administration DEMO Project Goals | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog DEMO Project Goals Home > About Us > Our Operations > Management and Budget > Human Resources > Pay-banding > DEMO Project Goals DEMO Project Goals The goals of this demonstration project are to Improve hiring by allowing NNSA to compete more effectively for high

309

Project Management and Systems Support | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Management and Systems Support | National Nuclear Security Project Management and Systems Support | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Project Management and Systems Support Home > About Us > Our Operations > Acquisition and Project Management > Project Management and Systems Support Project Management and Systems Support Goal

310

Project Management and Systems Support | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Project Management and Systems Support | National Nuclear Security Project Management and Systems Support | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Project Management and Systems Support Home > About Us > Our Operations > Acquisition and Project Management > Project Management and Systems Support Project Management and Systems Support Goal

311

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

312

SAT-WIND project Final report  

E-Print Network [OSTI]

-2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

313

Project Fact Sheet Project Brief  

E-Print Network [OSTI]

RCS1 Sub-station HV Installation completed in April 2011 In defects until April 2012 For more Project Manager: Rob Pask Phase 2a RCS1 Sub-station enclosing works completed in December 2010 Phase 2b when completed will provide a new 11,000 volt electrical substation, switching gear and associated

314

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigating the Fundamental Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide Project Number DE-FE0000397 Lee H Spangler Energy Research Institute Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Computational tool development * Laboratory studies to understand subsurface CO 2 behavior * Analog studies to inform risk analysis * Near surface detection technologies / testing * Mitigation method development 3 Benefit to the Program Program goals being addressed. * Develop technologies that will support industries' ability to predict CO

315

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE/NETL CTS Cost Models and FE/NETL CTS Cost Models and Benefits Assessment of Carbon Storage R&D Program David Morgan Benefits Division Office of Program Planning and Analysis National Energy Technology Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 OFFICE OF FOSSIL ENERGY 2 Presentation Outline * Overview of benefits assessment * Overview of FE/NETL models used to assess benefits of CO 2 capture and storage * Benefits evaluation of Storage Program's R&D projects using a model to estimate costs of CO 2 storage in a saline aquifer * Description of model used to estimate costs of

316

Project 307  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTEGRATING MONO ETHANOL AMINE (MEA) INTEGRATING MONO ETHANOL AMINE (MEA) REGENERATION WITH CO 2 COMPRESSION AND PEAKING TO REDUCE CO 2 CAPTURE COSTS Background In Phase I, Trimeric Corporation, in collaboration with the University of Texas at Austin, performed engineering and economic analyses necessary to determine the feasibility of novel MEA processing schemes aimed at reducing the cost of CO 2 capture from flue gas. These novel MEA-based CO 2 capture schemes are designed for integration into coal-fired power plants with the aim of reducing costs and improving efficiency. Primary Project Goal The primary goal of this project was to reduce the cost of MEA scrubbing for the recovery of CO 2 from flue gas by improved process integration. CONTACTS Sean I. Plasynski Sequestration Technology Manager

317

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-23, 2012 1-23, 2012 2 Presentation Outline * Benefit to the program * Project overview: Why 14 C for MVA? * Technical status: Cartridges, injections, lasers * Summary * Organizational chart * Collaborators 3 Benefit to the Program * Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. Permanent storage of CO 2 can be demonstrated by adding carbon-14 ( 14 C) prior to injection. This research project aims to demonstrate this by tagging fossil CO 2 with 14 C at a field site. When completed, this system will show that 14 C can be a safe and effective tracer for sequestered CO 2 . A laser-based 14 C measurement method is being adapted for continuous monitoring. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent

318

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leakage Pathways and Leakage Pathways and Mineralization within Caprocks for Geologic Storage of CO 2 Project DE-FC26-0xNT4 FE0001786 James P. Evans Utah State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits * Goals and Objectives * Relationship to overall program goals * Overview of seal bypass * Technical status; bypass systems - Field based studies - Technological advances * Accomplishments and Summary * Appendices 3 Benefit to the Program * Program goals addressed * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

319

Project 301  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2006 2006 Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Arun C. Bose Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4467 arun.bose@netl.doe.gov ADVANCED, LOW/ZERO EMISSION BOILER DESIGN AND OPERATION Background Over the past years, environmental concerns regarding pollutants have grown dramatically. Current annual greenhouse gas (GHG) emissions are 12% higher than they were in 1992. In addition, carbon dioxide (CO 2 ) emissions are projected to increase by an additional 34% over the next 20 years. About one third of carbon emissions in the

320

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael G. Waddell Earth Sciences and Resources Institute University of South Carolina U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 2 Presentation Outline * Project goals and benefits * Overview of the geology of the South Georgia Rift basin in SC * Results of petrographic and core analysis from the Rizer #1 * Future investigations in the SGR * Summary 3 Benefit to the Program Program Goals: * Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent. * Develop technologies to demonstrate that 99 percent of injected

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Micro-Structured Sapphire Fiber Sensors for Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments DE-FE0001127 Investigators: Hai Xiao, Hai-Lung Tsai, Missouri University of Science and Technology Junhang Dong, University of Cincinnati Program Manager: Norm Popkie, Gasification Division, NETL DOE Project Kickoff Meeting in the NETL Pittsburgh December 15, 2009 Outline * Background * Objectives * Project Elements * Management Plan * Research Plan and Approaches * Risk Management * Summary Background * Demands: High-performance, reliable, in situ sensors are highly demanded for advanced process control and lifecycle management in existing and future advanced power and fuel systems - Improved efficiency/safety/reliability/availability/maintainability

322

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mart Oostrom Mart Oostrom Pacific Northwest National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline  Project overview  Sub-Task 1: Investigation of CO 2 migration in heterogeneous porous media  Sub-Task 2: Modeling CCUS deployment in China  Summary Collaboration with China on Clean Energy Research 3 Benefit to the Program The Clean Energy Partnership was established by a memorandum of understanding between the Chinese Academy of Sciences, the National Energy Technology Laboratory and the Pacific Northwest National Laboratory in May of 2009 with the goal of significantly reducing the environmental emissions and improving the efficiency of

323

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Evaluation of Geophysical Methods for Monitoring and Tracking CO 2 Migration in the Subsurface PI: Jeffrey Daniels Co-PI: Robert Burns & Franklin Schwartz Students: Michael Murphy & Kyle Shalek The Ohio State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441 2 Presentation Outline * Benefit to the Program * Project Overview * Technical Status * Accomplishments to Date * Summary 3 Benefit to the Program * Program Goal: Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones

324

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capillary trapping (FE0004956), Bryant, UT-Austin capillary trapping (FE0004956), Bryant, UT-Austin Influence of Local Capillary Trapping on Containment System Effectiveness DE-FE0004956 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Local capillary trapping (FE0004956), Bryant, UT-Austin Local capillary trapping (FE0004956), Bryant, UT-Austin

325

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Project benefits and objectives * Carbon gasification * Carbon reactivity studies * Catalyst development * Techno-economic analysis * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

326

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Caprock Integrity and Improved Caprock Integrity and Risk Assessment Techniques Project Number (FE0009168) Michael Bruno, PhD, PE GeoMechanics Technologies U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Introduction and Motivation 2 A primary requirement for long-term geologic storage and containment of carbon dioxide is ensuring caprock integrity. Large-scale CO2 injection requires improved and advanced simulation tools and risk assessment techniques to better predict and help control system failures, and to enhance performance of geologic storage. GeoMechanics Technologies is developing enhanced simulation and risk analysis approaches to assess and

327

Irene Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irene Station, African Weather Bureau Irene Station, African Weather Bureau The photos on this site come from the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Additional photos can be found on the SHADOZ Project Web Site. Photo of the Dobson 89 Instrument The Irene Weather Office Agnes Phahlane sits behind the Dobson and collects Total Ozone Data The lab at the Irene station Cal Archer Prepares an ozonesonde Flight Preparations The balloon is readied The release Back to the SAFARI 2000 Photo Page Index Other Sites: Skukuza, MISR Validation Site | Skukuza, Eddy Covariance Site | C-130 Flight Photos | Sua Pan Site | Irene Weather Station | Fire Studies | Kalahari Transect | Kalahari Transect Sites for Canopy Structure Data | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data

328

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin Inexpensive Monitoring and Uncertainty Assessment of CO 2 Plume Migration DOE-FE0004962 Steven Bryant The University of Texas at Austin U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin 2 Presentation Outline * Motivation and relevance to Program * Project goals * Technical status * Accomplishments * Summary * Future plans Inexpensive plume monitoring (FE0004962), Bryant and Srinivasan, UT-Austin

329

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on CCS Energy Market Competitiveness Catherine A. Peters Jeffery P. Fitts Michael A. Celia Princeton University Paul D. Kalb Vatsal Bhatt Brookhaven National Laboratory Elizabeth J. Wilson Jeffrey M. Bielicki Melisa Pollak University of Minnesota DOE Award DE-FE0000749 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits to CCUS research program * Project Goals & Objectives * Technical Status  Thrust I - Reservoir-scale simulations of leakage potential with permeability evolution

330

Project Description  

Broader source: Energy.gov (indexed) [DOE]

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

331

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Modeling CO for Modeling CO 2 Processes: Pressure Management, Basin-Scale Models, Model Comparison, and Stochastic Inversion ESD09-056 Jens T. Birkholzer with Abdullah Cihan, Marco Bianchi, Quanlin Zhou, Xiaoyi Liu, Sumit Mukhopadhyay, Dorothee Rebscher, Barbara Fialeix Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview and Technical Status - Task 1: Optimization of Brine Extraction for Pressure Management and Mitigation - Task 2: Basin-scale Simulation of CO 2 Storage in the Northern Plains - Prairie Basal Aquifer - Task 3: Sim-SEQ Model Comparison

332

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO Beneficial Use of CO 2 in Precast Concrete Production DE-FE0004285 Yixin Shao, Yaodong Jia Liang Hu McGill University 3H Company U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Presentation outline * Goals and objectives * Benefits to the program * Project overview * Technical status * Accomplishment to date * Summary 2 Objective Masonry blocks Fiber-cement panels Prefabricated buildings Concrete pipes To develop a carbonation process to replace steam curing in precast concrete production for energy reduction, and carbon storage and utilization. Goals * CO 2 sequestration capacity by cement:

333

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Kansas Center for Research University of Kansas Center for Research Kansas Geological Survey U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 Presentation Outline * Benefits, objectives, overview * Methods * Background & setting * Technical status * Accomplishments * Summary Benefit to the Program * Program goal addressed: Develop technologies that will support the industries' ability to predict CO 2 storage capacity in geologic formations to within ± 30 percent. * Program goal addressed: This project will confirm - via a horizontal test boring - whether fracture attributes derived from 3-D seismic PSDM Volumetric Curvature (VC) processing are real. If

334

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brian Turk Research Triangle Institute U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Project benefits and objectives * Carbon reactivity studies * Catalyst mechanism studies * Catalyst development * Test results * Summary 3 Benefit to the Program * Program goal: Reduce CO 2 emissions by developing beneficial uses that meet the DOE net cost metric of $10/MT for captured CO 2 that will mitigate CO 2 emissions in areas where geological storage may not be an optimal solution * Benefits statement: Development of a commercial process for converting CO 2 and a carbon source into a commodity chemical at a

335

FUSRAP Project  

Office of Legacy Management (LM)

Project Project 23b 14501 FUSRAP TECHNICAL BULLETIN N O . - R 3 v . L DATE: 1.2 9-99 SUBJECT : Pr.pec.d BY T r m L u d Approval Summary of the results for the Springdale characterization activities performed per WI-94-015, Rev. 0. TUO separate radiological characterization surveys and a limited cherical characterization survey were performed on the Springdale Site in Octcjer and December, 1993. The design of the radiological surveys were to supplement and define existing ORNL surveys. The limited cher.ica1 characterization survey was performed to assist in the completion of waste disposal paperwork. Radiological contamination is primarily ir. the 'belt cutting and belt fabrication'areas of the building with a small erea of contamination in the south end of the building. The chemiccl sac~le

336

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0-22, 2013 0-22, 2013 2 Presentation Outline * Benefit to the Program * Project Overview: Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefit to the Program * Advanced simulation tool for quantifying transport in porous and fractured geological formations during CO 2 sequestration that includes all mechanisms: convection, diffusion, dissolution and chemical reactions * A simulator that can fully model these processes does not currently exist * Simulator will contribute to our ability to predict CO 2 storage capacity in geologic formations, to within ±30 percent 4 Project Overview: Goals and Objectives Comprehensive reservoir simulator for investigation of CO 2 non-isothermal, multiphase flow and long-term storage in

337

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas J. Wolery Thomas J. Wolery Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 LLNL-PRES-574632 2 Team Members * Roger Aines * Bill Bourcier * Tom Wolery * Tom Buscheck * Tom Wolfe (consultant) * Mike DiFilippo (consultant) * Larry Lien (Membrane Development Specialists) 3 Presentation Outline * Overview of Active CO 2 Reservoir Management (ACRM) * Subsurface Reservoir Management: Made Possible by Brine Production, Yielding Many Benefits * Brine Disposal Options - What brines are out there? - What are the treatment options? 4 Benefit to the Program * This project is identifying and evaluating

338

Form:Marine and Hydrokinetic Technology Project | Open Energy Information  

Open Energy Info (EERE)

Form Form Edit History Facebook icon Twitter icon » Form:Marine and Hydrokinetic Technology Project Jump to: navigation, search Add a Marine and Hydrokinetic Technology Project Input the name of your Marine and Hydrokinetic Technology Project below to add it to the registry. If your project is already in the registry, the form will be populated with that project's fields and you may edit. MHK_Projects/ Submit The text entered into this field will be used as the name of the project being defined. All projects are automatically prefixed with MHK_Projects/. The field is case sensitive so be sure to capitalize in the correct areas and type the full title properly. << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=Form:Marine_and_Hydrokinetic_Technology_Project&oldid=688143"

339

Accelerating projects  

SciTech Connect (OSTI)

This chapter describes work at ORNL in the period around 1950, when the laboratory was evolving from its original mission of research aimed at producing the atomic bomb, to a new mission, which in many ways was unclear. The research division from Y-12 merged with the laboratory, which gave an increased work force, access to a wide array of equipment, and the opportunity to work on a number of projects related to nuclear propulsion. The first major project was for a nuclear aircraft. From work on this program, a good share of the laboratories work in peaceful application of nuclear energy would spring. A major concern was the development of light weight shielding to protect the crew and materials in such a plane. To do such shielding work, the laboratory employed existing, and new reactors. The original plans called for the transfer of reactor work to Argonne, but because of their own research load, and the needs of the lab, new reactor projects were started at the lab. They included the Low Intensity Test Reactor, the Swimming Pool Reactor, the Bulk Shielding Reactor, the Tower Shielding Facility, and others. The laboratory was able to extend early work on calutrons to accelerator development, pursuing both electrostatic accelerators and cyclotrons. The aircraft project also drove the need for immense quantities of scientific data, with rapid analysis, which resulted the development of divisions aimed at information support and calculational support. The laboratory also expanded its work in the effects of radiation and cells and biological systems, as well as in health physics.

Not Available

1992-01-01T23:59:59.000Z

340

EIA - Annual Energy Outlook 2007 with Projections to 2030 - Market Trends-  

Gasoline and Diesel Fuel Update (EIA)

Energy Demand Energy Demand Annual Energy Outlook 2007 with Projections to 2030 Energy Demand Figure 33. Energy use per capita and per dollar of gross domestic product, 1980-2030 (index, 1980 = 1). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Figure 34. Primary energy use by fuel, 2005-2030 (quadrillion Btu). Need help, contact the National Energyi Information Center at 202-586-8800. figure data Average Energy Use per Person Increases Through 2030 The future path of U.S. energy demand will depend on trends in population, economic growth, energy prices, and technology adoption. AEO2007 cases developed to illustrate the uncertainties associated with those factors include low and high economic growth cases, low and high price cases, and

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Bartlesville History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bartlesville History Bartlesville History Bartlesville History The Bartlesville Energy Technology Center, Bartlesville, Oklahoma, circa 1937. The Bartlesville Energy Technology Center, Bartlesville, Oklahoma, circa 1937. Origins of the U.S. Government's First Petroleum Research Laboratory By 1916 the Bureau of Mines, which had been established six years earlier in the U.S. Department of the Interior, recognized the transforming role that petroleum was playing in American society. Across the country, the Bureau had begun establishing experiment stations, each specializing in a different extraction industry - coal, metals, clay, and other minerals - and each located close to the major centers of each resource. Now, the Bureau announced its intent to establish a petroleum experiment station

342

APS USER TRAINING HISTORY Background  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USER TRAINING HISTORY USER TRAINING HISTORY Background The User Program Division Director has delegated to the CATs the authority to authorize the conduct of experiments because the CATs have accepted responsibility for: * identifying and evaluating the hazards posed by the experiment, * specifying controls appropriate to the hazards, and * verifying that controls are in place. One form of hazard control frequently made mandatory by law and laboratory policy is worker knowledge. The accepted means of verifying that a worker has the required knowledge is ensuring that the worker has completed appropriate training. With CAT input, the APS has developed the APS User Training History. This web-based tool enables designated CAT personnel to examine data characterizing ES&H training courses

343

FTCP History | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

History History FTCP History In 1993, the Board issued Recommendation 93-3, Improving DOE Technical Capability in Defense Nuclear Facilities. This recommendation resulted in DOE's establishing the Federal Technical Capability Panel (FTCP) and developing two noteworthy standards: DOE M 426.1-1, Federal Technical Capability Manual, and DOE G 426.1-1, Recruiting, Hiring, and Retaining High Quality Technical Staff: A Manager's Guide to Administrative Flexibilities. These standards provide techniques and processes for improving the recruitment, retention, training, and qualification of high-quality personnel. Board Recommendation 93-3 was issued on June 1, 1993, and accepted by the Department of Energy on July 23, 1993. The Recommendation discussed the need to improve the technical capability of federal employees associated

344

Our History | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project's existing physics program. Nobel Physicist Enrico Fermi was sure a self-sustaining chain reaction could be triggered by bombarding the uranium nucleus with thermal...

345

History | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

under the code name Project Matterhorn. Lyman Spitzer, Jr., Professor of Astronomy at Princeton University, had for many years been involved in the study of very hot rarefied...

346

NICMOS HISTORY DATABASE AND April 10, 1998  

E-Print Network [OSTI]

1 NICMOS HISTORY DATABASE AND WEB TOOLS C. Tullos April 10, 1998 ABSTRACT The history of NICMOS. The Database and Data A convenient way of keeping a history of some of the NICMOS instrument parameters parameters apply. Instrument Science Report OSG-CAL 98-01 #12;2 NICMOS HISTORY DATABASE LAYOUT 2. The Web

Sirianni, Marco

347

Laboratory automation-A case history  

Science Journals Connector (OSTI)

Laboratory automation-A case history ... This article describes an automated Raman spectrometer. ...

Bernard J. Bulkin; Edward H. Cole; Arthur Noguerola

1974-01-01T23:59:59.000Z

348

UCD School of History & Archives Student Handbook  

E-Print Network [OSTI]

UCD School of History & Archives Student Handbook 2013-2014 This handbook is relevant for all of History and Archives UCD: Student Handbook, 2013-2014 2 Table of Contents 1: Introduction and welcome from Evening Arts students study history? How does the School of history and Archives communicate with its

349

Science and Technology Roadmapping to Support Project Planning  

SciTech Connect (OSTI)

Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

2001-07-01T23:59:59.000Z

350

The Mathematics Education into the 21st Century Project  

E-Print Network [OSTI]

The Mathematics Education into the 21st Century Project Proceedings ooff tthhee information on the statistical software available at the faculty, use of computer rooms, degree projects in the history but also in the teaching organization and methods, in procedures used to assess the knowledge

Spagnolo, Filippo

351

ANU Service Desk project communication overview Further information  

E-Print Network [OSTI]

, ANU Research Information Enterprise System (ARIES) and the Researchers database. If you require help users in order to maintain visibility. Job history is also being added to display closed/ processed jobs, and a configuration management database. Communication channels (at varying times throughout project): > Project

352

Research Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Projects Basic Energy Science Projects AA (Fossil Energy) Projects EERE-VT Projects EERE-ED Projects ARPA-E Projects...

353

Wind Project Siting Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wind Project Siting Tools Jump to: navigation, search Photo from Alstom 2010, NREL 18207 The following tools are helpful for anyone planning a wind project. Resources Cadmus Group. (2012). Distributed Wind Site Analysis Tool. Accessed March 29, 2013. The Distributed Wind Site Analysis Tool is an online tool for conducting detailed site assessments for single-turbine projects, from residential to community scale. Eastern Interconnection States' Planning Council. (2013). EISPC EZ Mapping Tool. Accessed August 13, 2013. This free online mapping tool helps to identify potential clean energy

354

Economic and Conservation Evaluation of Capital Renovation Projects: Cameron County Irrigation District No. 2 (San Benito) Interconnect Between Canals 39 and 13-A1 and Replacement of Rio Grande Diversion Pumping Plant  

E-Print Network [OSTI]

of the Bureau of Reclamations evaluation of proposed projects: c60 Number of acre-feet of water saved per dollar of construction costs; c60 Number of British Thermal Units (BTU) of energy saved per dollar of construction costs; and c60 Dollars of annual... Documentation for Sonia Kaniger, March, 2003 Manager, Cameron County Irrigation District No. 2 (San Benito) page ii of 82 associated with energy savings. There are energy savings both from pumping less water forthcoming from reducing leaks and from improving...

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

2003-01-01T23:59:59.000Z

355

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Bourcier William Bourcier Lawrence Livermore National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Saline Aquifer Brine Production Well Brine Injection Well Chiller Pretreatment Desalination Brine Permeate To power plant or other use Storage pump CO 2 injection Concept is to extract and desalinate aquifer brines to create fresh water and space for CO 2 storage cap-rock 3 Presentation Outline * Overview, Purpose, Goals and Benefits * Technical status - Brine treatment and disposition - Reservoir management * Accomplishments * Summary and Planned work Goals and Objectives Technical Goals Potential advantages of brine

356

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metrics for Screening CO Metrics for Screening CO 2 Utilization Processes Peter Kabatek Energy Sector Planning and Analysis (ESPA) Services / WorleyParsons U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * NETL's Carbon Storage Program * Introduction of the metrics * Review of the case study technology * Application of metrics to the case study technology * Discussion of metrics interpretation and grouping 3 NETL Carbon Storage Program * The Carbon Storage Program contains three key elements: - Infrastructure - Global Collaborations - Core Research and Development: * Monitoring, Verification and Accounting (MVA) * Geologic Storage

357

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Reservoir Simulation Model * Intelligent Leakage Detection System (ILDS) * Accomplishments * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. CO2 Leakage(X,Y,Q) Artificial Intelligence & Data Mining Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 : * Conference call * Site selection criteria - November 17 th 2009: * A meeting during the Regional Carbon Sequestration Partnership Meeting in Pittsburgh

358

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Factors Influencing Factors Influencing CO 2 Storage Capacity and Injectivity in Eastern Gas Shales Contract No. DE-FE0004633 Michael Godec, Vice President Advanced Resources International mgodec@adv-res.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Program Benefits * Goals and Objectives * Technical Status * Accomplishments to Date * Summary * Appendix 3 Benefits to the Program * Program Goals Addressed - Develop technologies that will support industries' ability to predict CO 2 storage capacity in geologic formations to within ±30 percent.

359

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Research Peter M. Walsh University of Alabama at Birmingham U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CCUS Pittsburgh, Pennsylvania August 21-23, 2012 DE-FE0002224 * Evaluation of the sealing capacity of caprocks serving as barriers to upward migration of CO 2 sequestered in geologic formations. * Education and training of undergraduate and graduate students, through independent research on geologic sequestration. * Education, through an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. * Simulation of CO 2 migration and trapping in storage

360

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction - Objective - Industrial Review Committee - Background * Steps Involved - Geological and Reservoir Simulation Modeling - Leakage Modeling & Real-Time Data Processing - Pattern Recognition & Intelligent Leakage Detection System (ILDS) * Accomplishments to Date * Summary Objective * Develop an in-situ CO 2 leak detection technology based on the concept of Smart Fields. - Using real-time pressure data from permanent downhole gauges to estimate the location and the rate of CO 2 leakage. Industrial Advisory Committee (IAC) * Project goes through continuous peer-review by an Industrial Review Committee. * Meetings: - November 6 th 2009 :

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure for CCS August 20-22, 2013 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies assume a discrete reservoir/caprock interface with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 4 Reservoir Caprock Reservoir Introduction The nature of reservoir/caprock interfaces 4 Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person (Cooperating Scientist) NMT Modeling Stefan Raduha NMT Sedimentology

362

The Manhattan Project -- Its Story  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project -- Its Story Project -- Its Story Establishment · Operations · Immediate Influences · Long-term Influences · Other Info More About the Manhattan Project atom image Courtesy Argonne National Laboratory The Manhattan Project -- Its Background This year is the 70th anniversary of the establishment of the Manhattan Project, a predecessor of the U.S. Department of Energy. To honor its impacts on science and history, various aspects of its background, establishment, operations, and immediate and long-term influences will be revisited. It started during the fall of 1939, when President F. D. Roosevelt was made aware of the possibility that German scientists were racing to build an atomic bomb and was warned that Hitler would be more than willing to resort to such a weapon. As a result, Roosevelt set up the Advisory Committee on Uranium, consisting of both civilian and military representatives, to study the current state of research on uranium and to recommend an appropriate role for the federal government. The result was limited military funding for isotope separation and the work on chain reactions by Enrico Fermi and Leo Szilard at Columbia University.

363

History and philosophy of psychology  

Science Journals Connector (OSTI)

... not a rehash job, for it covers many topics in the history and philosophy of psychology of which most self-respecting Anglo-Saxon psychologists are entirely innocent. This is not ... , know what is meant by phenomenology, and understand the strengths and weaknesses of Gestalt psychology. All in all, Thines' choice of topics is excellent and their range impressive. ...

William Barnes-Gutteridge

1978-03-16T23:59:59.000Z

364

HISTORY OF PSYCHOLOGY Psychology 805  

E-Print Network [OSTI]

1 HISTORY OF PSYCHOLOGY Psychology 805 Department of Psychology Michigan State University Spring, 2011 Class meeting times: Tuesday, Thursday, 12:40-2:30 p.m. Place: 119 Psychology Building Instructor: L.J. Harris Office: 217 Psychology Building Office Hours: Mondays, 3:00 - 5 p.m.; other times

Liu, Taosheng

365

HISTORY OF PSYCHOLOGY Psychology 805  

E-Print Network [OSTI]

1 HISTORY OF PSYCHOLOGY Psychology 805 Department of Psychology Michigan State University Fall, 2012 Class meeting times: Tuesday, Thursday, 12:40-2:30 p.m. Place: 120 Psychology Building Instructor: L.J. Harris Office: 217 Psychology Building Office Hours: Mondays, 3:00 - 5 p.m.; other times

Liu, Taosheng

366

History of federal transportation policy  

E-Print Network [OSTI]

History of federal transportation policy TTP 220 S. Handy 4/7/14 #12;Federal Transportation Policy · Rise of road building (1910s +) · Rise of mandated planning (1960s +) · Rise of transit funding (1960s for road building support from the start! · Cars seen as way to decentralize, to get people away from ills

Handy, Susan L.

367

Invited paper History of Semiconductors  

E-Print Network [OSTI]

AbstractThe history of semiconductors is presented beginning with the first documented observation of a semiconductor effect (Faraday), through the development of the first devices (point-contact rectifiers and transistors, early field-effect transistors) and the theory of semiconductors up to the contemporary devices (SOI and multigate devices). Keywordsband theory, laser, Moores law, semiconductor, transistor.

Lidia ?ukasiak; Andrzej Jakubowski

368

Economic History Revisited: New Uncertainties  

E-Print Network [OSTI]

to the southern and midwestern regions of the United States. However, the large run-up in oil prices is increasingEconomic History Revisited: New Uncertainties I n the last Sitar-Rutgers Regional Report, we are paying ever-increasing prices for fewer available sites. Warehouse sites in the southern portion

369

US Energy Service Company Industry: History and Business Models  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned.

370

Earth Repair: A Transatlantic History of Environmental Restoration  

E-Print Network [OSTI]

Earth Repair: A Transatlantic History of EnvironmentalHall. Earth Repair: A Transatlantic History of Environmental

Hamilton-Smith, Elery

2006-01-01T23:59:59.000Z

371

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12 generally cannot be achieved for reasonable computational cost. Applications that require modeling, and in nondestructive testing. The objective of this project is to advance the state of the art in electromagnetic

Perkins, Richard A.

372

Project Rulison  

Office of Legacy Management (LM)

Rulison Rulison 1970 Environmerstal Surveillance Summary Report J - - Colorado Department of Health DIVISION OF OCCUPATIONAL AND RADIOLOGICAL HEALTH DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. STATE OF COLORADO P R O J E C T R U L I S O N Environments 1 S u r v e i l l a n c e Summary R e p o r t C o l o r a d o D e p a r t m e n t o f H e a l t h D i v i s i o n o f O c c u p a t i o n a l and R a d i o l o g i c a l 3 e a l t h This page intentionally left blank FOREWORD Project Rulison is an experimental Plowshare project undertaken cooperatively by the Atomic Energy Commission (AEC) and the Department of Interior for the government, and Austral Oil Company and CER Geo- nuclear Corporation for private industry. As required by law, the AEC

373

PROJECTS FROM FEDERAL REGION IX DOE APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM - PART I  

E-Print Network [OSTI]

welded together like sewer pipe. Biogas production from theintends to convert the biogas into electricity. The wasteproduce 7.6 million Btu of biogas annually. This estimate

Case, C.W.

2011-01-01T23:59:59.000Z

374

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project)  

E-Print Network [OSTI]

Microfabrication Project Proposal Form Principle Investigator: (Person responsible for project: ___________________________________ Department: _____________________ _________________ __ Phone Number: _________________________ Project Information: Project Title: ________________________________________________________________ Funding Agency

375

PROCEDURES FOR ARC PROJECTS  

E-Print Network [OSTI]

PROCEDURES FOR ARC PROJECTS Revised - May 2013 Agricultural Research Center Washington State University #12;Table of Contents THE PROJECT SYSTEM, AN INTRODUCTION................................................................................. 5 DEVELOPING AN ARC PROJECT

Collins, Gary S.

376

Richland Environmental Restoration Project management action process document  

SciTech Connect (OSTI)

This document is the prescribed means for providing direct input to the US Department of Energy Headquarters regarding the status, accomplishments, strategy, and issues of the Richland Environmental Restoration Project. The project mission, organizational interfaces, and operational history of the Hanford Site are provided. Remediation strategies are analyzed in detail. The document includes a status of Richland Environmental Restoration project activities and accomplishments, and it presents current cost summaries, schedules, and technical baselines.

NONE

1996-04-01T23:59:59.000Z

377

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The target chamber under construction. Holes in the target chamber provide access for the laser beams and viewing ports for NIF diagnostic equipment. Photo Number: NIF-1209-18056...

378

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 31 | Next | Last Back to Index Target Bay Foundation One unique challenge was creating the foundation for the NIF target bay, which is about 15 meters below ground level....

379

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 31 | Next | Last Back to Index NIF Groundbreaking Lawrence Livermore National Laboratory Director Bruce Tarter, Secretary of Energy Federico Pena, and Congresswoman Ellen...

380

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. Department of Energy (DOE) has provided radioisotope thermoelectric generators for space applications since 1961. These generators provide electrical power for spacecraft...

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

equipment. The chamber, a sphere ten meters (33 feet) in diameter, is covered with boron-injected concrete to absorb neutrons during NIF experiments. Photo Number: NIF-1209-18055...

382

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 31 | Next | Last Back to Index NIF at Night Crews often worked around the clock to build the stadium-size facility. Construction required more than 4,600 metric tons of...

383

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 31 | Next | Last Back to Index Nova Target Chamber In 1986, Nova produced the largest laser fusion yield to date - a record 11 trillion fusion neutrons. The following year,...

384

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Index Switchyard Construction The switchyards' support structures are built to resist vibration. They are firmly anchored to the building's reinforced concrete walls, which are 0.6...

385

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

convert infrared light to ultraviolet. Nova experiments provided confidence that a NIF-size laser could achieve thermonuclear ignition in a laboratory. Photo Number: NIF-1109-17878...

386

History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 31 | Next | Last Back to Index The Final "Golden Bolt" NIF and Photon Science Principal Associate Director Ed Moses honors a NIF contract worker by presenting him with the...

387

Project 371  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brent Marquis Brent Marquis Project Manager Sensor Research and Development 17 Godfrey Dr. Orono, ME. 04473 207-866-0100 ext. 241 SEMI-CONDUCTOR METAL OXIDE TECHNOLOGY FOR IN SITU DETECTION OF COAL-FIRED COMBUSTION GASES Description Sensor Research and Development Corporation is developing a robust prototype sensor system for in situ, real-time detection, identification, and measurement of coal-fired combustion gases. The sensor system is comprised of several unique semi-conducting metal oxide (SMO) sensor arrays in tandem with novel gas prefiltration techniques. The sensor array will be able to selectively detect and measure nitric oxide (NO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), and ammonia (NH 3 ). The SMO sensor array is the heart of the combustion gas analyzer being developed

388

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ketzin Collaboration Ketzin Collaboration ESD-09-056 Barry Freifeld Earth Sciences Division Lawrence Berkeley National Laboratory U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Goals and objectives * Success Criteria * Technical Status * Latest developments in Integrated Monitoring * Summary and Lessons Learned 3 Image from: www.co2ketzin.de 4 Benefit to the Program * Program goal being addressed: - Develop technologies to demonstrate that 99 percent of injected CO 2 remains in the injection zones. * The Ketzin collaboration leverages information gained through the mid-scale geological sequestration experiment in Ketzin, Germany.

389

Project 298  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reaction Engineering Reaction Engineering International Salt Lake City, UT www.reaction-eng.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Michael Bockelie Reaction Engineering International 801-364-69255 bockelie@reaction-eng.com WEBSITE http://www.netl.doe.gov NO X CONTROL OPTIONS AND INTEGRATION FOR U.S. COAL FIRED BOILERS (RICH REAGENT INJECTION) Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and

390

Project 398  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Ronald Breault Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4486 ronald.breault@netl.doe.gov Michael Swanson Principal Investigator University of North Dakota Energy and Environmental Research Center 15 North 23rd Street P.O. Box 9018 Grand Forks, ND 58202 701-777-5239 mswanson@eerc.und.nodak.edu ADVANCED HIGH TEMPERATURE, HIGH-PRESSURE TRANSPORT REACTOR Description Today, coal supplies over 55 percent of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being

391

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jennifer A. Kozak, Jennifer A. Kozak, 1,2 Dr. Fritz Simeon, 2 Prof. T. Alan Hatton,* ,2 and Prof. Timothy F. Jamison* ,1 1 Department of Chemistry and 2 Department of Chemical Engineering Massachusetts Institute of Technology U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Motivation, Goals, Objectives * Background * Cyclic Carbonate Synthesis via Catalytic Coupling of CO 2 and Epoxides * New Catalysts and Reaction Scope * Mechanism - A New Paradigm for Activating Epoxides * Conclusions 3 Benefit to the Program * Identify the Program goals being addressed. - Develop technologies to demonstrate that 99 percent

392

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. 485 Massachusetts Ave. Cambridge, MA 02139 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 Benefits of a 14 CO 2 Field Analyzer to DOE MVA Program Goals Program Goals: 99% Containment Identify/Quantify CCS Credits Direct Tracking Verification Tight/Leaky Account for Natural Baseline MVA Atmosphere MVA Groundwater Ecosystem Health, Community Safety

393

Project 339  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Combustion Technologies CONTACTS Robert R. Romanosky Advanced Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4721 robert.romanosky@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 jenny.tennant@netl.doe.gov Dr. Tomasz Wiltowski Southern Illinios University Dept. of Mechanical Engineering & Energy Processes Carbondale, IL 62901-4709 618-536-5521 tomek@siu.edu QUALIFICATIONS OF CANDLE FILTERS FOR COMBINED CYCLE COMBUSTION APPLICATIONS Background In order to make oxygen-fired combined cycle combustion feasible, it is necessary to have a reliable high temperature particulate cleanup system. It is well established

394

Project 350  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrates Gas Hydrates CONTACTS Ray Boswell Acting Technology Manager Gas Technology Management Division 304-285-4541 ray.boswell@netl.doe.gov James Ammer Director Gas Technology Management Division 304-285-4383 james.ammer@netl.doe.gov Kelly Rose Project Manager Gas Technology Management Division 304-285-4157 kelly.rose@netl.doe.gov Joseph Wilder Research Group Leader Simulation, Analysis and Computational Science Division 304-285-0989 joseph.wilder@netl.doe.gov NETL - DIRECTING THE DEVELOPMENT OF WORLD-CLASS GAS HYDRATE RESERVOIR SIMULATORS Development of reliable simulators that accurately predict the behavior methane hydrates in nature is a critical component of NETL's program to appraise the gas supply potential of hydrates. NETL is leading the development of a suite of modeling tools that are providing

395

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building the Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Introduction * Organization * Benefit to Program * Project Overview * Technical Status * Accomplishments to Date * Summary * Appendix Introduction * Most storage modeling studies involve a caprock/reservoir interface, and assume a discrete contact with simple (uniform) flow conditions. * We address the question of whether or not heterogeneities at the interface influence transmission of CO 2 into the caprock 3 Introduction The nature of reservoir/caprock interfaces 4 Triassic-Jurassic Strata, San Rafael Swell, UT Organization 5 Peter Mozley (PD/PI) NMT Sedimentology James Evans (Co-PI) USU Structure Thomas Dewers (Co-I) Jason Heath (Staff) SNL Modeling Mark Person

396

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verification and Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready 14 C Isotopic Analyzer CCS Public Outreach: Pathway to Tradable CCS Securities DEFE 0001116 Bruno D.V. Marino PhD CEO, Founder Planetary Emissions Management, Inc. One Broadway, 14 th Floor Cambridge, MA 02142 bruno.marino@pem-carbon.com www.pem-carbon.com U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 20-22, 2013 All RIGHTS RESERVED © Benefits: Public Outreach CCS-MVA LINKED TRADABLE SECURITY Increase Public Confidence in CCS Increase Public involvement in CCS "Leakage Rate" Product Distinct from GHG "Credits"

397

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Richmond Richmond PROJECT TITLE: EECBG - Solar Compactors and Recycling Units Page 1 of2 STATE: VA Funding Opportunity Announcement Number DE-FOA-0000013 Procurement Instrument Number DE-EE0000878 NEPA Control Number cm Number GFO-0000878-003 0 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical assistance to individuals (such as builders, owners, consultants, designers), organizations (such as utilities), and state

398

Project 370  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

crshadd@sandia.gov crshadd@sandia.gov O 2 /CO 2 RECYCLE COAL COMBUSTION TO MINIMIZE POLLUTANTS Description O 2 /CO 2 recycle coal combustion is a promising, retrofittable technique for electric power production, while producing a nearly pure stream of CO 2 for subsequent use or sequestration. Most pollutant emissions, including NO x , are lower in this process, compared to conventional pulverized coal combustion. However, laboratory and pilot-scale tests to date have shown a wide variation in the fractional reduction of NO x when adopting this technology, suggesting that further improvements in NO x reduction are possible, given a better understanding of the dominant routes of NO x production and destruction in these systems. Goals The goal of this project is to determine the relative influence of three different

399

Project 346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sara Pletcher Sara Pletcher Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-385-4236 sara.pletcher@netl.doe.gov Gary M. Blythe URS Corporation PO Box 201088 Austin, TX 78720 512-419-5321 gary_blythe@urscorp.com BENCH SCALE KINETICS OF MERCURY REACTIONS IN FGD LIQUORS Background When research into the measurement and control of Hg emissions from coal-fired power plants began in earnest in the early 1990s, it was observed that oxidized mercury can be scrubbed at high efficiency in wet FGD systems, while elemental mercury cannot. In many cases, elemental mercury concentrations were observed to increase slightly across wet FGD systems, but this was typically regarded as within the variability of the measurement methods. However, later measurements have

400

Project 261  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEL CORROSION SENSOR FOR ADVANCED NOVEL CORROSION SENSOR FOR ADVANCED FOSSIL ENERGY POWER SYSTEMS Description The overall objective of this proposed project is to develop a new technology for on-line corrosion monitoring based on an innovative concept. The specific objectives and corresponding tasks are (1) develop the sensor and electronic measurement system; (2) evaluate and improve the system in a laboratory muffle furnace; and (3) evaluate and improve the system through tests conducted in a pilot-scale coal combustor (~1 MW). Fireside corrosion refers to the metal loss caused by chemical reactions on surfaces exposed to the combustion environment. Such corrosion is the leading mechanism for boiler tube failures and is a serious concern for current and future energy plants due to the introduction of technologies targeting emissions

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Project 278  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Karen Cohen Karen Cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Ken Nemeth Executive Director Southern States Energy Board 6325 Amherst Court Norcross, GA 30092 770-242-7712 nemeth@sseb.org Sequestration SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB) Background The U.S. Department of Energy has selected the seven partnerships of state agencies, universities, and private companies that will form the core of a nationwide network that will help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. All together, the partnerships include more than 240 organizations, spanning 40 states, three Indian nations, and

402

FLUXNET Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation > FLUXNET Validation > FLUXNET The FLUXNET Project Overview [FLUXNET Logo] FLUXNET is a global network of micrometeorological tower sites that use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystems and the atmosphere. More that 500 tower sites from about 30 regional networks across five continents are currently operating on a long-term basis. The overarching goal of FLUXNET is to provide information for validating remote sensing products for net primary productivity (npp), evaporation, and energy absorption. FLUXNET provides information to FLUXNET investigators and to the public. The primary functions of FLUXNET are: To provide information about tower location, site characteristics, data availability, and where to obtain the data

403

Project 296  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

McDermott Technology McDermott Technology Alliance, OH www.mcdermott.com CONTACTS Bruce W. Lani Project Manager National Energy Technology Laboratory 412-386-5819 bruce.lani@netl.doe.gov Thomas J. Feeley, III Technology Manager National Energy Technology Laboratory 412-386-6134 thomas.feeley@netl.doe.gov Hamid Farzan Babcock & Wilcox Company 330-860-6628 HFarzan@babcock.com WEBSITE http://www.netl.doe.gov NO X CONTROL FOR UTILITY BOILER OTR COMPLIANCE Background Enacted regulations pertaining to the NO X SIP Call and potential future regulations in proposed legislation such as the President's Clear Skies Act or EPA's Clean Air Interstate Rule require power producers to seek the most cost effective methods to achieve compliance. In order to address present and anticipated NO X emissions control legislation targeting the current fleet of U.S. coal-fired boilers, the Department

404

Project 253  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anna Lee Tonkovich Anna Lee Tonkovich Technical Contact Velocys, Inc. 7950 Corporate Blvd. Plain City, OH 43064 614-733-3330 tonkovich@velocys.com Sequestration UPGRADING METHANE STREAMS WITH ULTRA-FAST TSA Background Most natural gas streams are contaminated with other materials, such as hydrogen sulfide (H 2 S), carbon dioxide (CO 2 ), and nitrogen. Effective processes for removal of H 2 S and CO 2 exist, but because of its relative inertness, nitrogen removal is more difficult and expensive. This project will focus on the separation of nitrogen from methane, which is one of the most significant challenges in recovering low-purity methane streams. The approach is based on applying Velocys' modular microchannel process technology (MPT) to achieve ultra-fast thermal swing adsorption (TSA). MPT

405

Project 397  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 6 Gasification Technologies CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov John Stipanovich Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6027 john.stipanovich@netl.doe.gov Derek Aldred Principal Investigator Stamet, Inc. 8210 Lankershim Blvd. #9 North Hollywood, CA 91605 818-768-1025 dlaldred@stametinc.com CONTINUOUS PRESSURE INJECTION OF SOLID FUELS INTO ADVANCED COMBUSTION SYSTEM PRESSURES Description Operators and designers of high-pressure combustion systems universally agree that one of the major problems inhibiting the success of this technology relates to solid

406

Project 303  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONCEPTUAL DESIGN OF OXYGEN-BASED CONCEPTUAL DESIGN OF OXYGEN-BASED PC BOILER Background Because of growing concern that a link exists between global climatic change and emission of greenhouse gases, such as CO 2 , it is prudent to develop new coal combustion technologies to meet future emissions standards, should it become necessary to limit CO 2 emissions to the atmosphere. New technology is needed to ensure that the U.S. can continue to generate power from its abundant domestic coal resources. This project will design an optimized combustion furnace to produce a low-cost, high-efficiency power plant that supports the U.S. Department of Energy's (DOE) goal of developing advanced combustion systems that have the potential to control CO 2 through an integrated power system that produces a concentrated

407

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Geologic Characterization of the Triassic Newark Basin of Southeastern New York and Northern New Jersey (DE-FE0002352) Daniel J. Collins, PG, RG Sandia Technologies, LLC U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 * Acknowledgment: This material is based upon work supported by the Department of Energy [National Energy Technology Laboratory] under Award Number DE- FE0002352, Contract No. 18131 from the New York State Energy Research & Development Authority [NYSERDA], and "In Kind" Cost Share from Schlumberger Carbon Services, Weatherford Laboratories, National Oilwell Varco, New York State Museum, and Rutgers University.

408

Project 143  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

George Rizeq George Rizeq Principal Investigator GE Global Research 18A Mason Irvine, CA 92618 949-330-8973 rizeq@research.ge.com FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF HYDROGEN AND SEQUESTRATION-READY CARBON DIOXIDE Description Projections of increased demands for energy worldwide, coupled with increasing environmental concerns have given rise to the need for new and innovative technologies for coal-based energy plants. Incremental improvements in existing plants will likely fall short of meeting future capacity and environmental needs economically. Thus, the implementation of new technologies at large scale is vital. In order to prepare for this inevitable paradigm shift, it is necessary to have viable alternatives that have been proven both theoretically and experimentally

409

Project 270  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SILICON CARBIDE MICRO-DEVICES FOR SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS Description Reducing pollution and improving energy efficiency require sensitive, rugged sensors that can quantitatively detect gases that are produced in advanced combustion systems. Most materials cannot withstand the high temperature, chemically reactive environments encountered in power plants. This project is focused on developing solid state sensors based on the wide bandgap semiconductor silicon carbide (SiC), which can tolerate high temperatures and pressures as well as corrosive gases. Drawing upon the tools of semiconductor physics, surface science and chemistry, at the level of individual atoms and molecules, an understanding of the underlying physical mechanisms leading to

410

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

1 1 July 2011 Doc. No. S07978 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: April 1-June 30, 2011 This report summarizes project status and activities implemented April through June 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

411

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

FFA Quarterly Report: April 1-June 30, 2009 FFA Quarterly Report: April 1-June 30, 2009 July 2009 Doc. No. S05572 Page 1 Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: April 1-June 30, 2009 This report summarizes project status and activities implemented April through June 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system. 1.0 MMTS Activities/Status 1.1 Disposal Cell and Pond 4 * Monthly and quarterly inspections of the repository identified livestock damage to a

412

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

31, 2011 31, 2011 April 2011 Doc. No. S07666 Page 1 Monticello, Utah, National Priorities List Sites Federal Facility Agreement (FFA) Quarterly Report: January 1-March 31, 2011 This report summarizes project status and activities implemented January through March 2011 and provides a schedule for near-term activities at the Monticello Vicinity Properties (MVP) site and the Monticello Mill Tailings Site (MMTS) located in and near Monticello, Utah. The MMTS and MVP were placed on the U.S. Environmental Protection Agency (EPA) National Priorities List (NPL) in 1989 and 1986, respectively. The U.S. Department of Energy (DOE) implemented remedial actions at the MVP in 1986 and at the MMTS in 1989, to conform to requirements of the Comprehensive Environmental Response, Compensation, and Liability

413

Project 320  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Philip Goldberg Philip Goldberg Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-5806 philip.goldberg@netl.doe.gov Marek Wojtowicz Advanced Fuel Research, Inc. 87 Church Street East Hartford, CT 06108 860-528-9806 marek@AFRinc.com Sequestration CARBON DIOXIDE RECOVERY FROM COMBUSTION FLUE GAS USING CARBON- SUPPORTED AMINE SORBENTS Background In Phase I, Advanced Fuel Research, Inc. will initiate development of a novel sorbent for the removal of carbon dioxide from combustion/incineration flue gas. The sorbent, based on amines supported on low-cost activated carbon, will be produced from scrap tires. Liquid-based amine systems are limited to relatively low concentrations to avoid corrosion. Corrosion should not be a

414

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RISK ASSESSMENT AND MONITORING OF RISK ASSESSMENT AND MONITORING OF STORED CO 2 IN ORGANIC ROCKS UNDER NON- EQUILIBRIUM CONDITIONS DOE (NETL) Award Number: DE-FE0002423 Investigator: Vivak (Vik) Malhotra DOE supported undergraduate student participants: Jacob Huffstutler, Ryan Belscamper, Stephen Hofer, Kyle Flannery,, Bradley Wilson, Jamie Pfister, Jeffrey Pieper, Joshua T. Thompson, Collier Scalzitti-Sanders, and Shaun Wolfe Southern Illinois University-Carbondale Carbondale, Illinois 62901-4401 U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Carbon Storage Program * Program goals being addressed: - To attempt to answer whether CO

415

Project Status  

Broader source: Energy.gov (indexed) [DOE]

Hybrid Generation Simulator Hybrid Generation Simulator HybSim© 1.0 DAVID TRUJILLO SANDIA NATIONAL LABORATORY Presented by Joshua Bartlett - University of Michigan Introduction * HybSim© 1.0 copyrighted 2006 * First license to University of Michigan Introduction HybSim© Model What - "Hybrid Simulator"; Tool designed to evaluate the economic and environmental benefits of adding renewable energy to the fossil fuel generation mix in remote and difficult-accessible locations. Why - Benefits of energy storage, decision analysis, risk analysis, load growth issues, load management, economic analysis, planning (what-ifs) Who - Availability to coops, field techs, project managers, administrative personnel Where - Remote villages, military installations, remote industrial systems; any climate

416

PROJECT TITLE:  

Broader source: Energy.gov (indexed) [DOE]

Baltimore Baltimore PROJECT TITLE: EECBG - GHG Scrubbing System Page 1 of2 STATE: MD Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number em Number DE-EE0000738 GFO-0000738-002 0 Based all my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: All Technical advice and planning assistance to international, national, state, and local organizations. 85.1 Actions to conserve energy, demonstrate potential energy conservation, and promote energy-efficiency that do not increase the indoor concentrations of potentially harmful substances. These actions may involve financial and technical

417

Project 328  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 CONTACTS Gary J. Stiegel Gasification Technology Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4499 gary.stiegel@netl.doe.gov Jenny Tennant Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4830 Jenny.Tennant@netl.doe.gov Gasification Technologies Conceptual drawing of Rocketdyne's gasification system ADVANCED GASIFICATION SYSTEMS DEVELOPMENT Description Rocketdyne will apply rocket engine technology to gasifier design, allowing for a paradigm shift in gasifier function, resulting in significant improvements in capital and maintenance costs. Its new gasifier will be an oxygen-blown, dry-feed, plug-flow entrained reactor able to achieve carbon conversions of nearly 100 percent by rapidly heating low coal particles

418

Project 199  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heino Beckert Heino Beckert Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4132 heino.beckert@netl.doe.gov Ramin Yazdani Senior Civil Engineer Yolo County Planning and Public Works Department 292 West Beamer Street Woodland, CA 95695 530-666-8848 ryazdani@yolocounty.org Sequestration Yolo County Landfill Methane Production Compared to Other Landfills FULL-SCALE BIOREACTOR LANDFILL Background Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for the disposal of about 217 million tons of waste annually (U.S. EPA, 1997). The annual production of municipal waste in the United States has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and

419

Project 258  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MONITORING POWER PLANT EFFICIENCY USING MONITORING POWER PLANT EFFICIENCY USING THE MICROWAVE-EXCITED PHOTOACOUSTIC EFFECT TO MEASURE UNBURNED CARBON Objective The objective of this project is to explore the use of the microwave-excited photoacoustic (MEPA) effect for quantitative analysis of unburned carbon in fly ash, an extremely important parameter to the electric utility industry. Specific objectives include: * Determine factors that influence accuracy and precision of the MEPA effect; * Evaluate the microwave spectra of fly ash and other divided solids of importance to the power industry; and * Determine the feasibility of an on-line carbon-in-ash monitor based on the MEPA effect. Benefits High carbon levels in coal ash indicate poor combustion efficiency, resulting in additional fuel requirements and higher emissions of pollutants, such as acid-rain

420

Project311  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lang Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov John Bowser Principal Investigator Compact Membrane Systems, Inc. 325 Water Street Wilmington, DE 19804 302-999-7996 john.bowser@compactmembrane.com Sequestration CARBON DIOXIDE CAPTURE FROM LARGE POINT SOURCES Background Capture of carbon dioxide at the source of its emission has been a major focus in greenhouse gas emission control. Current technologies used for capturing CO 2 suffer from inefficient mass transfer and economics. In Phase I, Compact Membrane Systems, Inc. will fabricate and test a membrane-based absorption system for the removal of carbon dioxide from a simulated power-plant flue gas. The stability of the membrane system under various operating conditions

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MONTICELLO PROJECTS  

Office of Legacy Management (LM)

09 09 January 2010 Doc. No. S06172 Page 1 1.3 Peripheral Properties (Private and City-Owned) * No land use or supplemental standards compliance issues were observed or reported by LTSM on-site staff. Monticello National Priorities List Sites Federal Facilities Agreement (FFA) Quarterly Report: October 1-December 31, 2009 This report summarizes project status and activities implemented October through December 2009, and provides a schedule of near-term activities for the Monticello Mill Tailings Site (MMTS) and the Monticello Vicinity Properties (MVP) sites. This report also includes disposal cell and Pond 4 leachate collection data, quarterly site inspection reports, site meteorological data, and a performance summary for the ex situ groundwater treatment system.

422

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Rock Interactions Water-Rock Interactions and the Integrity of Hydrodynamic Seals FWP FE-10-001 Bill Carey Los Alamos National Laboratory Los Alamos, NM U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Benefit to the Program * Program Goal: Ensure retention of 99% of injected CO 2 * Focus: Wellbore integrity * Approach: Use field, experimental and computational methods - Determine long-term compatibility of wellbore materials with CO 2 - Determine leakage mechanisms - Predict well performance * Benefit: The research will provide a basis for evaluating the long-term performance of wells, guide remediation

423

Project 333  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

José D. Figueroa José D. Figueroa Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4966 jose.figueroa@netl.doe.gov C. Jeffrey Brinker Sandia Fellow, Sandia National Laboratories Professor of Chemical & Nuclear Engineering The University of New Mexico Advanced Materials Laboratory 1001 University Blvd. SE, Suite 100 Albuquerque, NM 87106 505-272-7627 cjbrink@sandia.gov Sequestration NOVEL DUAL FUNCTIONAL MEMBRANE FOR CONTROLLING CARBON DIOXIDE EMISSIONS FROM FOSSIL FUELED POWER PLANTS Background There is growing concern among climate scientists that the buildup of greenhouse gases (GHG), particularly carbon dioxide, in the atmosphere is affecting the global climate in ways that could have serious consequences. One approach to reducing GHG emissions

424

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

© 2012 Paulsson, Inc. (PI) Development of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration DE-FE0004522 Björn N.P. Paulsson Paulsson, Inc. U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 ® © 2012 Paulsson, Inc. (PI) © 2012 Paulsson, Inc. (PI) * Goals: Design, build, and test a high performance borehole seismic receiver system to allow cost effective geologic Carbon Capture and Storage (CCS) * Objectives: A: Develop technology to allow deployment of a 1,000 level drill pipe deployed 3C Fiber Optic Geophone (FOG) receiver array for deep

425

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy and Geochemistry Space Geodesy and Geochemistry Applied to Monitoring and Verification of Carbon Capture and Storage Award # DE-FE0002184 Peter Swart University of Miami Tim Dixon University of South Florida U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * What is the Award For? * What Research Work is being Supported? * Geochemical Research What is the Award For? * Provides Support for the Training of Two Graduate Students - Student 1: Involved in analysis of SAR images - Student 2: Involved in modeling of sub-surface geochemistry and application of models for policy decisions

426

Project Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fluid-driven fracture fluid-driven fracture DE-FE0002020 Joseph F. Labuz Civil Engineering University of Minnesota U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 2 Presentation Outline * Benefits statement * Goal, objectives * Technical status: fracture code, experimental results (poro, AE) * Accomplishments * Summary 0 50 100 150 200 250 300 350 0.00 0.05 0.10 0.15 0.20 Lateral displacement [mm] Load [kN] 0 300 600 900 1200 1500 AE events inelastic deformation peak 3 Benefit to the Program * Goal: develop technologies to predict CO2 storage capacity in geologic formations. * Benefits statement: develop 3D boundary element code & experimental techniques

427

Economics of Plant Energy Savings Projects in a Changing Market  

E-Print Network [OSTI]

Energy prices have exhibited significant volatility in recent years. For example, natural gas prices ranged from $4 to $15 per MM BTU's in calendar years 2005 through 2011. Future prices are uncertain but are likely to retain a high level...

White, D. C.

2011-01-01T23:59:59.000Z

428

Project Management Lessons Learned  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide supports DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, and aids the federal project directors and integrated project teams in the execution of projects.

2008-08-05T23:59:59.000Z

429

Western Interconnection Synchrophasor Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Western Interconnection Synchrophasor Project Resources & Links Demand Response Energy Efficiency Emerging Technologies Synchrophasor measurements are a type of...

430

Windy Gap Firming Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOEEIS-0370 (cooperating agency) Western's proposed...

431

Project Title Project Sponsor (funding agency)  

E-Print Network [OSTI]

and procedures applicable to the above project; and we confirm that the PI is eligible to apply in accordance Project Title Project Sponsor (funding agency) Declaration of Principal Investigator (PI) I certify that: I agree that my participation in the project must be in accordance with all

Saskatchewan, University of

432

Livingston Solar Canopy Project The Project  

E-Print Network [OSTI]

Livingston Solar Canopy Project The Project: This project entails the installation of more than 40,000 high efficiency solar panels on canopy structures over two major surface parking areas. In conjunction with the existing 1.4 megawatt solar energy facility on this campus, this project will generate

Delgado, Mauricio

433

Tracy Power Station -- Unit No. 4, Pinon Pine Power Project Public Design Report  

SciTech Connect (OSTI)

This Public Design Report describes the Pinon Pine Project which will be located at the Sierra Pacific Power Company`s (SPPCO) Tracy Station near Reno, Nevada. The integrated gasification combined-cycle (IGCC) plant is designed to process 880 tones per day (TPD) of bituminous coal producing approximately 107 gross megawatts of electric power (MWe). This project is receiving cost-sharing from the US Department of Energy (DOE) in accordance with DOE Cooperative Agreement DE-FC2192MC29309. The plant incorporates the Kellogg-Rust-Westinghouse (KRW) fluidized bed gasification technology which produces a low-Btu gas which is used as fuel in a combined cycle power plant which has been modified to accommodate the fuel gas produced by an air-blown gasifier. The gasification system also includes hot gas removal of particulates and sulfur compounds from the fuel gas resulting in a plant with exceptionally low atmospheric emissions. Desulfurization is accomplished by a combination of limestone injection into the KRW fluidized bed gasifier and by a transport reactor system. Particulate removal is accomplished by high efficiency cyclones and a barrier filter. The Pinon Pine Project Schedule is divided into three phases. Phase I includes permitting and preliminary design. Phase II, which overlaps Phase I, covers detailed design, procurement, and construction. Phase III will cover the initial operation and demonstration portion of the project.

NONE

1994-12-01T23:59:59.000Z

434

Chopwell Wood Health Project  

E-Print Network [OSTI]

Chopwell Wood Health Project An innovative project of school visits and General Practitioner. The project took place at Chopwell Wood a 360 hectare mixed woodland managed by the Forestry Commission to carry on being involved in the project. Next stage of the project Although the project leader has now

435

Rebekah Foster-Terry Oral History  

E-Print Network [OSTI]

Oral history interview with Reverend Rebekah Foster-Terry conducted by Stephanie Meador in 2009. In this interview, Rev. Foster-Terry, pastor of the Victory Tabernacle Church in Topeka, Kansas, discusses the history of the ...

Foster-Terry, Rebekah; Meador, Stephanie Rae

2009-01-01T23:59:59.000Z

436

Scepticism and the Study of History  

Science Journals Connector (OSTI)

During the two centuries prior to the publication of David Humes History of England, the attitude of the sceptical thinkers regarding the study of history had changed greatly. The ancient Greek sceptics and the ...

Richard H. Popkin

1970-01-01T23:59:59.000Z

437

The History of DEER | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The History of DEER The History of DEER Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan....

438

Well Record or History | Open Energy Information  

Open Energy Info (EERE)

History Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Well Record or HistoryLegal Published NA Year Signed or Took Effect 2013...

439

14.731 Economic History, Fall 2003  

E-Print Network [OSTI]

A survey of world economic history, designed to introduce economics graduate students to the subject matter and methodology of economic history. Topics chosen to show a wide variety of historical experience and illuminate ...

Temin, Peter

440

Fisheries Science & Management: a Brief History  

E-Print Network [OSTI]

: a brief history ·Late 1800s: industrial revolution allowed rapid expansion of exploitation ·E in 1882 #12;Fisheries sci & mgt: a brief history ·Late 1800s: industrial revolution allowed rapid

Limburg, Karin E.

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Energy Information Administration / Annual Energy Outlook 2011 1 Table B1. Total Energy Supply, Disposition, and Price Summary (Quadrillion Btu per Year, Unless Otherwise Noted) Supply, Disposition, and Prices 2009 Projections 2015 2025 2035 Low Economic Growth Reference High Economic Growth Low Economic Growth Reference High Economic Growth Low Economic Growth Reference High Economic Growth Production Crude Oil and Lease Condensate . . . . . . . . . . 11.34 12.53 12.51 12.55 12.44 12.64 12.62 12.13 12.80 12.87 Natural Gas Plant Liquids . . . . . . . . . . . . . . . . 2.57 2.79 2.86 2.89 3.39 3.55 3.70 3.59 3.92 4.11 Dry Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 21.50 22.50 23.01 23.30 23.58 24.60 25.54 24.92 27.00 30.16 Coal 1 . . . . . . . . . . . . . . . . . . . . . . . . .

442

Sustainability Project Fund Application Form Requirements Project Title  

E-Print Network [OSTI]

Sustainability Project Fund Application Form Requirements Project Title: Budget Requested: Applicant/Project Leader: Faculty/Department: Email: Daytime Phone: Project Team: (Please include. Project Overview Project summary: · Provide a brief background, describing the project, objectives

Volesky, Bohumil

443

BOSTON UNIVERSITY HISTORY OF ART & ARCHITECTURE  

E-Print Network [OSTI]

BOSTON UNIVERSITY HISTORY OF ART & ARCHITECTURE GRADUATE PROGRAM 2012-2013 Information & Architecture College of Arts & Sciences 725 Commonwealth Avenue, Room 302 Boston, MA 02215 Tel: (617) 353 ..................................................................... 5 THE MA DEGREE IN HISTORY OF ART AND ARCHITECTURE ........................ 5 History of Art

Goldberg, Bennett

444

Table 23. Energy Intensity, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Intensity, Projected vs. Actual Energy Intensity, Projected vs. Actual (quadrillion Btu / $Billion Nominal GDP) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 20.1 18.5 16.9 15.5 14.4 13.2 AEO 1983 19.9 18.7 17.4 16.2 15.1 14.0 9.5 AEO 1984 20.1 19.0 17.7 16.5 15.5 14.5 10.2 AEO 1985 20.0 19.1 18.0 16.9 15.9 14.7 13.7 12.7 11.8 11.0 10.3 AEO 1986 18.3 17.8 16.8 16.1 15.2 14.3 13.4 12.6 11.7 10.9 10.2 9.5 8.9 8.3 7.8 AEO 1987 17.6 17.0 16.3 15.4 14.5 13.7 12.9 12.1 11.4 8.2 AEO 1989* 16.9 16.2 15.2 14.2 13.3 12.5 11.7 10.9 10.2 9.6 9.0 8.5 8.0 AEO 1990 16.1 15.4 11.7 8.6 6.4 AEO 1991 15.5 14.9 14.2 13.6 13.0 12.5 11.9 11.3 10.8 10.3 9.7 9.2 8.7 8.3 7.9 7.4 7.0 6.7 6.3 6.0 AEO 1992 15.0 14.5 13.9 13.3 12.7 12.1 11.6 11.0 10.5 10.0 9.5 9.0 8.6 8.1 7.7 7.3 6.9 6.6 6.2 AEO 1993 14.7 13.9 13.4 12.8 12.3 11.8 11.2 10.7 10.2 9.6 9.2 8.7 8.3 7.8 7.4 7.1 6.7 6.4

445

Manhattan Project Resources | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manhattan Project Resources Manhattan Project Resources Manhattan Project Resources Building 9731 was the first building completed at Y-12 and was the "Pilot Plant" for the Calutron electromagnetic separation of uranium. The Manhattan Project web pages are designed to disseminate information and documentation on the Manhattan Project to a broad audience including scholars, students, and the general public. These web pages are a joint collaboration between DOE's Office of Classification and Office of History and Heritage Resources. The Y-12 History Center is proud to recommend them highly as they contain very helpful information. The site brings together an enormous amount of material, much of it never before released. An example of the key resource information provided is the update and

446

PROJECT MANAGEMENT PLANS Project Management Plans  

Broader source: Energy.gov (indexed) [DOE]

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

447

Preconditioning concepts in polymer flooding in high-salinity reservoirs; Laboratory investigations and case histories  

SciTech Connect (OSTI)

In polymer-flood field projects with partially hydrolized polyacrylamide (PH PAA) solutions, the authors applied two methods of preconditioning: a preflush with fresh water and the use of a relatively small slug of a less-salt-sensitive polymer. Results of laboratory work that led to an improved preconditioning concept with polymer are described. Case histories of two projects with two different preconditioning processes are presented and discussed in detail.

Volz, H.; Maltin, B.K. (RWE-DEA AG (DE)); Sohn, W.O.

1990-11-01T23:59:59.000Z

448

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect (OSTI)

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parishs ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

449

Roadmap to the Project: DOE Roadmap  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experiments List Experiments List Oral Histories Records Series Descriptions Overview Documents Declassified Documents Project Events ACHRE Report Uranium Miners Resources Building Public Trust Department of Defense Report HUMAN RADIATION EXPERIMENTS: The Department of Energy Roadmap to the Story and the Records United States Department of Energy Assistant Secretary for Environment, Safety, and Health February 1995 Contents Foreword Acknowledgments List of Photographs Chapter 1. Overview of the DOE Project Introduction Background DOE Archives and Records DOE Strategy for Finding Experiment Information Information as an Engine for Democratic Government Looking Forward Chapter 2. Narratives and Records Series Descriptions Introduction DOE Predecessor Agencies and Human Radiation Experimentsation: A Headquarters Overview

450

Winnipegosis case history: Tableland Saskatchewan  

SciTech Connect (OSTI)

The geology and history of exploration in the Tableland area of southeast Saskatchewan will be reviewed in relation to a major Middle Devonian Winnipegosis oil discovery made in 1986 by Home Oil. Southern Saskatchewan is underlain by the northern third of the Williston basin. Although rich oil deposits have been found in the Devonian of the basin on the American side, dry holes have been the rule in Saskatchewan except for the Hummingbird Upper Devonian Birdbear discovery in 1966. The long history of failures in the Winnipegosis Formation had led to a general reluctance in the industry to drill deep wells especially with today's lower crude prices. Based on geology, seismic data, and modeling, Home Oil drilled Tableland 08-22-002-09W2M in february 1986 and encountered an oil-bearing Winnipegosis reef. This well has the highest production rate of any well in Saskatchewan and is the first commercially significant Winnipegosis well in a basinal setting within the Williston basin. A state-of-the-art pseudo 3-D processing of all the existing 2-D seismic data was performed to aid in choosing development well locations. As a result of this discovery, deep exploration plays in southeast Saskatchewan are now being pursued aggressively by many companies.

Orr, N.E.; Martindale, W.

1988-02-01T23:59:59.000Z

451

Project Sponsor Professor Peter  

E-Print Network [OSTI]

Project Sponsor Professor Peter McGearoge Project Director Nicki Matthew Audit / Quality Mazars Architect IT ServicesProcess Owners Build Team Lead Nicki Matthew Project Manager ­ Unit4 Joe Cairney Student Lifecycle Project Board InfrastructureDBA's TBC TBC TBC Process 1 Process 2 Project Sponsor ­ Unit

Levi, Ran

452

Project Structure Elke Karrenberg  

E-Print Network [OSTI]

Project Structure Elke Karrenberg Project Manager, Head of Personnel Development Phone +49 6131 39-20634 Dr. Jana Leipold Project Staff, Personnel Development Consultant Phone +49 6131 39-25433 Antje Swietlik Project Staff Phone +49 6131 39-20140 Project Office JGU Leadership Forum Universitatis 3, Room 00

Kaus, Boris

453

PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples  

Broader source: Energy.gov (indexed) [DOE]

Organization Examples Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four project organizations and their associated summary responsibilities are described in the following paragraphs. 4.1.1 U.S. Department of Energy, Headquarters (HQ) The DOE-HQ Office of Nuclear Material and Facility Stabilization (EM-60) is primarily responsible for policy and budget decisions

454

Oral Histories: Radiation Biologist Marvin Goldman, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 HUMAN RADIATION STUDIES: REMEMBERING THE EARLY YEARS Oral History of Radiation Biologist Marvin Goldman, Ph.D. Conducted December 22, 1994 United States Department of Energy Office of Human Radiation Experiments September 1995 CONTENTS Foreword Short Biography Educational Background and Early Involvement in Radiation Research Brookhaven Acquaintances and Early Hospital Research (Circa 1952) Vulnerable Populations and Acceptable Risks Research at the University of Rochester (1952-57) Relationship with Newell Stannard and Stafford Warren (1952-57) Participation in "Project Sunshine" and Move to the University of California, Davis (Mid '50s to '58) Participation in Beagle Studies at the University of California at Davis (1958 to '60s) Budget Concerns and Goldman's Other Radiation Research Projects (1965 to Late '60s)

455

A Consensus Tree Approach for Reconstructing Human Evolutionary History and Detecting  

E-Print Network [OSTI]

genome over time implicitly encodes a history of how human populations have arisen, dispersed of the method on two large-scale genetic variation data sets: the HapMap Phase II and the Human Genome Diversity Project. Qualitative comparison to a consensus model of the evolution of mod- ern human population groups

Ravi, R.

456

Sequence variations in the public human genome data reflect a bottlenecked population history  

E-Print Network [OSTI]

. Redundant coverage in overlaps of large-insert genomic clones, sequenced as part of the Human Genome ProjectSequence variations in the public human genome data reflect a bottlenecked population history Gabor-nucleotide polymorphisms (SNPs) constitute the great ma- jority of variations in the human genome, and as heritable

Hahn, Mark E.

457

CS348 Project 1 Oracle Project  

E-Print Network [OSTI]

CS348 Project 1 Oracle Project Due Date: 2/12/2009 You are going to use Oracle to design a simple; if nothing else, mark each query with its number. Turnin You may turn in the project for grading using the procedure described below. Run the following shell command (see 'man turnin' for details): turnin -c cs348

Elmagarmid, Ahmed K.

458

Part II: Project Summaries Project Summaries  

E-Print Network [OSTI]

Part II: Project Summaries Part II Project Summaries #12;22 Math & Computational Sciences Division generally cannot be achieved for reasonable computational cost. Applications that require modeling of this project is to advance the state of the art in electromagnetic computations by eliminating three existing

Perkins, Richard A.

459

Table 11a. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

a. Coal Prices to Electric Generating Plants, Projected vs. Actual a. Coal Prices to Electric Generating Plants, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per million Btu in "dollar year" specific to each AEO) AEO Dollar Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 1992 1.47 1.48 1.53 1.57 1.58 1.57 1.61 1.63 1.68 1.69 1.70 1.72 1.70 1.76 1.79 1.81 1.88 1.92 AEO 1995 1993 1.39 1.39 1.38 1.40 1.40 1.39 1.39 1.42 1.41 1.43 1.44 1.45 1.46 1.46 1.46 1.47 1.50 AEO 1996 1994 1.32 1.29 1.28 1.27 1.26 1.26 1.25 1.27 1.27 1.27 1.28 1.27 1.28 1.27 1.28 1.26 1.28

460

Table 11b. Coal Prices to Electric Generating Plants, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

b. Coal Prices to Electric Generating Plants, Projected vs. Actual" b. Coal Prices to Electric Generating Plants, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per million Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",1.502753725,1.549729719,1.64272351,1.727259934,1.784039735,1.822135762,1.923203642,2.00781457,2.134768212,2.217425497,2.303725166,2.407715232,2.46134106,2.637086093,2.775389073,2.902293046,3.120364238,3.298013245 "AEO 1995",,1.4212343,1.462640338,1.488780998,1.545300242,1.585877053,1.619428341,1.668671498,1.7584219,1.803937198,1.890547504,1.968695652,2.048913043,2.134750403,2.205281804,2.281690821,2.375434783,2.504830918 "AEO 1996",,,1.346101641,1.350594221,1.369020126,1.391737646,1.421340737,1.458772082,1.496497523,1.561369914,1.619940033,1.674758358,1.749420803,1.800709877,1.871110564,1.924495246,2.006850327,2.048938234,2.156821499

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

462

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

463

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

464

Department of Energy, 1977-1994, A Summary History | Department...  

Broader source: Energy.gov (indexed) [DOE]

Energy, 1977-1994, A Summary History Department of Energy, 1977-1994, A Summary History history fo the Department of Energy Department of Energy, 1977-1994, A Summary History More...

465

Project 1640 Palomar Procedures  

E-Print Network [OSTI]

Project 1640 Palomar Procedures Version 0.1 7/7/08 2:11:08 PM #12;2 Project 1640 Design and Operations Table of Contents Project 1640..................................................................................................................... 1 Palomar Procedures

466

Projects | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects Projects All 1703 1705 ATVM Current Portfolio 32.4 B in Loans 55 K Jobs Current Portfolio Loans 32.4 B Jobs 55,000 Loan Program Office Projects 1703 1705 ATVM...

467

Getting projects in gear  

Science Journals Connector (OSTI)

......week for most projects - to review progress against the plan. Use a standard agenda. Document and agree...achievements. Ensure that review and quality assurance processes...of the high level project plan. Make sure that the project......

John Lawlor

2001-11-01T23:59:59.000Z

468

project.m  

E-Print Network [OSTI]

function project(u,w) %last updated 5/9/94 %PROJECT Projecting vector U onto vector W orthogonally. Vectors % U and W can be either a pair of 2D or 3D...

469

Project Selection - Record Keeping  

E-Print Network [OSTI]

4-H members have many project areas to choose from, depending on where they live. Members should consult with their parents and 4-H leaders when choosing a project. This publication outlines project considerations....

Howard, Jeff W.

2005-05-10T23:59:59.000Z

470

Improving Project Management  

Broader source: Energy.gov [DOE]

On December 19, 2014, the Energy Department released its "Improving Project Management" report, a roadmap to transformation in funding, culture, project ownership, independent oversight and front-end planning from experienced project management leaders.

471

Contract/Project Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

65% 100% Five projects >100M achieved CD-2 in FY10. PDRI represents Project Definition Index Rating. 5. TRA Use: By end of FY11, 80% of projects >750M will implement TRA no...

472

About the Artificial Retina Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of the Overview of the Artificial Retina Project The DOE Artificial Retina Project was a multi-institutional collaborative effort to develop and implant a device containing an array of microelectrodes into the eyes of people blinded by retinal disease. The ultimate goal was to design a device to help restore limited vision that enables reading, unaided mobility, and facial recognition. The device is intended to bypass the damaged eye structure of those with retinitis pigmentosa and macular degeneration. These diseases destroy the light-sensing cells (photoreceptors, or rods and cones) in the retina, a multilayered membrane located at the back of the eye. For more information, see How the Artificial Retina Works. History The DOE project builds on the foundational work of its leader, Mark Humayun at the Doheny Eye Institute of the University of Southern California. In a breakthrough operation performed in 2002, a team led by Humayun successfully implanted the first device of its kind-an array containing 16 microelectrodes-into the eye of a patient who had been blind for more than 50 years. Since then, more than 30 additional volunteers around the world have had first- or second-generation (60-electrode) devices implanted. These devices enable patients to distinguish light from dark and localize large objects. For more information, read patient stories.

473

A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY The Department of Energy Organization Act of 1977 created one the most interesting and diverse agencies in the Federal government. Activated on October 1, 1977, the twelfth cabinet-level department brought together for the first time within one agency two programmatic traditions that had long coexisted within the Federal establishment: 1) defense responsibilities that included the design, construction, and testing of nuclear weapons dating from the Manhattan Project effort to build the atomic bomb, and 2) a loosely knit amalgamation of energy-related programs scattered throughout the Federal government. DOE's Two Programmatic Traditions

474

A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A BRIEF HISTORY OF THE A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY A BRIEF HISTORY OF THE DEPARTMENT OF ENERGY The Department of Energy Organization Act of 1977 created one the most interesting and diverse agencies in the Federal government. Activated on October 1, 1977, the twelfth cabinet-level department brought together for the first time within one agency two programmatic traditions that had long coexisted within the Federal establishment: 1) defense responsibilities that included the design, construction, and testing of nuclear weapons dating from the Manhattan Project effort to build the atomic bomb, and 2) a loosely knit amalgamation of energy-related programs scattered throughout the Federal government. DOE's Two Programmatic Traditions

475

ARM Orientation: Overview and History  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Orientation: ARM Orientation: Overview and History Warren Wiscombe ARM Chief Scientist Brookhaven & NASA ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 2 Mar 2006 ARM Orientation You want me to be Chief Scientist? Can you believe this guy? ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement 3 Mar 2006 ARM Orientation ARM in a nutshell ARM in a nutshell * * Largest global change research program Largest global change research program funded by the U.S. Department of Energy funded by the U.S. Department of Energy ($44M/yr; ~ ($44M/yr; ~ $10M/yr fo $10M/yr fo r Science Team r Science Team ) ) * * Created to improve cloud and radiation Created to improve cloud and radiation physics and cloud simulation capabilities in physics and cloud simulation capabilities in

476

Wind River Watershed Project; Volume I of III Reports A thru E, 1998 Annual Report.  

SciTech Connect (OSTI)

This report describes the ongoing efforts to document life history strategies of steelhead in the Wind River watershed and to formulate criteria for ranking restoration needs and proposed projects.

Connolly, Patrick J.

1999-11-01T23:59:59.000Z

477

File:08-CA-d - CPCN for Transmission Projects (2).pdf | Open...  

Open Energy Info (EERE)

(2).pdf Jump to: navigation, search File File history File usage Metadata File:08-CA-d - CPCN for Transmission Projects (2).pdf Size of this preview: 463 599 pixels....

478

Awards Received in October 2006 Principal Investigator Department Sponsor Project Title Amount GCO OSP Number  

E-Print Network [OSTI]

OSP Number ABRUNA, HECTOR D DISALVO, FRANCIS J CCMR DOE AN ADVANCED MATERIALS APPROACH TO FUEL CELL RESEARCH PROJECT $33,025 THF 52476 BELL, JAMES F CRSR NASA (GODDARD SFC) COMPOSITION AND WEATHERING HISTORY

Danforth, Bryan Nicholas

479

Project Finance and Investments  

Broader source: Energy.gov [DOE]

Plenary III: Project Finance and Investment Project Finance and Investments Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

480

RM Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

include the Fryingpan-Arkansas Project and the Pick-Sloan Missouri Basin Program--Western Division. The projects' marketing and rate-setting functions were integrated in...

Note: This page contains sample records for the topic "btu history projections" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

482

Contract/Project Management  

Energy Savers [EERE]

1 st Quarter Overall Contract and Project Management Performance Metrics and Targets ContractProject Management Performance Metrics FY 2009 Target FY 2009 Actual Comment 1....

483

Sandia National Laboratories: Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The projects below are a few of the projects that IMS is supporting. Advanced Hypersonic Weapon (AHW) The Advanced Hypersonic Weapon (AHW) Program is a technology...

484

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 274...

485

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Leafs Enrolled to Date EV Project Chevrolet Volts Enrolled to Date EV Project Smart Electric Drives Enrolled to Date Distance Driven (mi) Phoenix, AZ Metropolitan Area 259...

486

Project Risk Management:.  

E-Print Network [OSTI]

?? The recent increase in international projects has resulted in higher risk along with difficulties in control and coordination. Effective project management can therefore be (more)

Koelmeyer, Chris

2013-01-01T23:59:59.000Z

487

Contract/Project Management  

Broader source: Energy.gov (indexed) [DOE]

3 First Quarter Overall Contract and Project Management Improvement Performance Metrics and Targets 1 ContractProject Management Performance Metric FY 2013 Target FY 2013 Final FY...

488

Falls Creek Hydroelectric Project  

SciTech Connect (OSTI)

This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

2007-06-12T23:59:59.000Z

489

EV Project Overview Report  

Broader source: Energy.gov (indexed) [DOE]

Report Project to date through March 2013 Charging Infrastructure Region Number of EV Project Charging Units Installed To Date Number of Charging Events Performed Electricity...

490

Our History | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

History | National Nuclear Security Administration History | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our History Home > About Us > Our History Our History The NNSA was established by Congress in 2000 as a separately organized agency within the U.S. Department of Energy, responsible for the management and security of the nation's nuclear weapons, nuclear nonproliferation,

491

The History of Element 43Technetium  

Science Journals Connector (OSTI)

The History of Element 43Technetium ... Department of Mining, Metallurgical and Materials Engineering, Laval University, G1K 7P4 Quebec City, Canada ...

Fathi Habashi

2006-02-01T23:59:59.000Z

492

1 Introduction 4 1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . *  

E-Print Network [OSTI]

Contents 1 Introduction 4 1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * * 4 1.1.1 Early Experimental Work . . . . . . . . . . . . . . . . 4 1.2 Structure of This Paper

Martin, Alain

493

A Postage Stamp History of Chemistry  

Science Journals Connector (OSTI)

An earlier historical article in Applied Spectroscopy used postage stamps to provide colorful illustrations for a short history of spectroscopy. Since the Editor has kindly...

Miller, Foil A

1986-01-01T23:59:59.000Z

494

A History of the Atomic Energy Commission  

Broader source: Energy.gov [DOE]

A History of the Atomic Energy Commission - written by Alice L. BuckWashington, D.C.: U.S. Department of Energy, July 1983.41 pp.

495

Mexico-CCAP Developing Country Project | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Mexico-CCAP Developing Country Project Jump to: navigation, search Name Mexico-Developing Country Project Agency/Company /Organization Center for Clean Air Policy Sector Climate, Energy Topics Background analysis, Implementation, Low emission development planning, Policies/deployment programs Website http://www.ccap.org/ Program Start 2006 Country Mexico Central America References Developing Country Project[1] Mexico-Developing Country Project Screenshot Contents 1 Overview 2 Brazil 3 China 4 India 5 Indonesia 6 Mexico 7 References Overview "As the United Nations Framework Convention on Climate Change (UNFCCC)

496

Patua Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Patua Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Patua Geothermal Project Project Location Information Coordinates 39.598611111111°, -119.215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598611111111,"lon":-119.215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Manhattan Project: About the Site  

Office of Scientific and Technical Information (OSTI)

ABOUT THIS SITE ABOUT THIS SITE Resources Project Directors: Terrence R. Fehner, Chief Historian F. G. Gosling, former Chief Historian (retired) Assisted By: David Rezelman, Glenn T. Seaborg Fellow in Nuclear History Stephanie Young, Edward Teller Fellow in Science and National Security Studies Andrew Mamo, Edward Teller Fellow in Science and National Security Studies Emily Hamilton, Edward Teller Fellow in Science and National Security Studies Douglas O’Reagan, Edward Teller Fellow in Science and National Security Studies James Skee, Edward Teller Fellow in Science and National Security Studies Site Designer: Jennifer Johnson, Archivist Summary Words (estimate): 120,000 Total Pages if Printed (estimate): 430 Total Images: 500+ Photographs: 450+ Maps and Diagrams: 64 Total Images (counting varying sizes, etc.): 1,000+

498

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect (OSTI)

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

499

Statement of Project Objectives  

Broader source: Energy.gov [DOE]

Statement of Project Objectives, from the Tool Kit Framework: Small Town University Energy Program (STEP).

500

West Valley Demonstration Project  

Broader source: Energy.gov [DOE]

West Valley Demonstration Project compliance agreements, along with summaries of the agreements, can be viewed here.