Sample records for btu conversion factors

  1. Energy Unit Conversion Factors / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Energy Unit Conversion Factors J kWh Btu -~ / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4 1 electron volt (eV) equals 1.60 x lo-l9 4.45 x lo-26 1.52 x 1o-22 Energy Equivalents Crude petroleum (42

  2. Accurate BTU Measurement

    E-Print Network [OSTI]

    Hosseini, S.; Rusnak, J. J.

    1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

  3. Unit Conversion Factors Quantity Equivalent Values

    E-Print Network [OSTI]

    Ashurst, W. Robert

    Unit Conversion Factors Quantity Equivalent Values Mass 1 kg = 1000 g = 0.001 metric ton = 2.921 inHg at 0 C Energy 1 J = 1 N·m = 107 ergs = 107 dyne·cm = 2.778×10-7 kW·h 1 J = 0.23901 cal = 0·R 10.73 psia·ft3 lbmol·R 62.36 liter·torr mol·K 0.7302 ft3·atm lbmol·R Temperature Conversions: T

  4. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  5. The Exposure Rate Conversion Factor for Nuclear Fallout

    SciTech Connect (OSTI)

    Spriggs, G D

    2009-02-11T23:59:59.000Z

    Nuclear fallout is comprised of approximately 2000 radionuclides. About 1000 of these radionuclides are either primary fission products or activated fission products that are created during the burn process. The exposure rate one meter above the surface produced by this complex mixture of radionuclides varies rapidly with time since many of the radionuclides are short-lived and decay numerous times before reaching a stable isotope. As a result, the mixture of radionuclides changes rapidly with time. Using a new code developed at the Lawrence Livermore National Laboratory, the mixture of radionuclides at any given point in time can be calculated. The code also calculates the exposure rate conversion factor (ECF) for all 3864 individual isotopes contained in its database based on the total gamma energy released per decay. Based on the combination of isotope mixture and individual ECFs, the time-dependent variation of the composite exposure rate conversion factor for nuclear fallout can be easily calculated. As example of this new capability, a simple test case corresponding to a 10 kt, uranium-plutonium fuel has been calculated. The results for the time-dependent, composite ECF for this test case are shown in Figure 1. For comparison, we also calculated the composite exposure rate conversion factor using the conversion factors found in Federal Guidance Report No.12 (FGR-12) published by ORNL, which contains the conversion factors for approximately 1000 isotopes. As can be noted from Figure 1, the two functions agree reasonably well at times greater than about 30 minutes. However, they do not agree at early times since FGR-12 does not include all of the short-lived isotopes that are produced in nuclear fallout. It should also be noted that the composite ECF at one hour is 19.7 R/hr per Ci/m{sup 2}. This corresponds to 3148 R/hr per 1 kt per square mile, which agrees reasonably well with the value of 3000 R/hr per 1 kt per square mile as quoted by Glasstone. We have also tabulated the top 50 contributors to the exposure rate at various points in time following a detonation. These major contributors are given in Table 1.

  6. Calculation of extremity neutron fluence-to-dose equivalent conversion factors

    E-Print Network [OSTI]

    Wood-Zika, Annmarie Ruth

    1997-01-01T23:59:59.000Z

    surface fluence spectra 45 LIST OF TABLES TABLE Page Properties of commercially available TLDs . . PNNL dose equivalent averaged quality factors . 16 3 MCNP input deck geometries Phantoms modeled in MCNP input decks . . Comparison of calculated..., PNNL and DOELAP fluence-to-dose equivalent conversion factors for bare '"Cf . . . . 37 Comparison of calculated, PNNL and DOELAP fluence-to-dose equivalent conversion factors for D, O moderated '"Cf. 37 Fluence-to-dose equivalent conversion factors...

  7. Conversion Factor Table http://vertex42.com/edu/kinematics.html Copyright 2005 Jon Wittwer Multiply by To Get

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    .696 psia bar 0.9869 atm, std bar 1x105 Pa Btu 778.169 ft·lbf Btu 1055.056 J Btu 5.40395 psia·ft3 Btu 2.928x10-4 kWh Btu 1x10-5 therm Btu / hr 1.055056 kJ / hr Btu / hr 0.216 ft·lbf / sec Btu / hr 3.929x10-4 hp Btu / hr 0.2931 W Btu / lbm 2.326* kJ / kg Btu / lbm 25,037 ft2 / s2 Btu / lbm·R 4.1868 kJ / kg

  8. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    SciTech Connect (OSTI)

    Ilas, Dan [ORNL

    2013-10-01T23:59:59.000Z

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  9. 2008 Guidelines to Defra's GHG Conversion Methodology Paper for Transport Emission Factors

    E-Print Network [OSTI]

    2008 Guidelines to Defra's GHG Conversion Factors: Methodology Paper for Transport Emission Factors: Methodology Paper for Transport Emission Factors Contents I. INTRODUCTION 3 II. AVIATION 4 Previous Approach 4 New Passenger Air Transport Emission Factors 5 New Freight Air Transport Emission Factors 10 Other

  10. 2010 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting

    E-Print Network [OSTI]

    update 44 Passenger Air Transport Direct CO2 Emission Factors (Annex 6) 44 Freight Air Transport Direct CO2 Emission Factors (Annex 7) 49 Air Transport Direct Emission Factors for CH4 and N2O 52 Air. ELECTRICITY CONVERSION FACTORS (ANNEX 3) 10 Summary of changes since previous update 10 Direct Emissions from

  11. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect (OSTI)

    Not Available

    1988-07-01T23:59:59.000Z

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  12. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01T23:59:59.000Z

    ~Mwe: conversion factor from Btu to MWe-y ( 3.345 x 10- MWe-insulation R-values [fe-hr OF I Btu] for electricity heatedspecific fuel, expressed as Btu/lb coal, Btu/ gal oil, Btu/

  13. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  14. Preliminary Assessment of ICRP Dose Conversion Factor Recommendations for Accident Analysis Applications

    SciTech Connect (OSTI)

    Vincent, A.M.

    2002-03-13T23:59:59.000Z

    Accident analysis for U.S. Department of Energy (DOE) nuclear facilities is an integral part of the overall safety basis developed by the contractor to demonstrate facility operation can be conducted safely. An appropriate documented safety analysis for a facility discusses accident phenomenology, quantifies source terms arising from postulated process upset conditions, and applies a standardized, internationally-recognized database of dose conversion factors (DCFs) to evaluate radiological conditions to offsite receptors.

  15. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  16. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  17. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect (OSTI)

    Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca [Measurement Science and Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6 (Canada); Rogers, D. W. O., E-mail: drogers@physics.carleton.ca [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 ColonelBy Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2014-11-01T23:59:59.000Z

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  18. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYrCapacityBtuHr

  19. Determination of photon conversion factors relating exposure and dose for several extremity phantom designs

    SciTech Connect (OSTI)

    Roberson, P.L.; Eichner, F.N.; Reece, W.D. (Pacific Northwest Lab., Richland, WA (USA))

    1989-11-01T23:59:59.000Z

    Dosimetric measurements were performed to determine the exposure-to-dose conversion factors (Cx) for simple extremity phantoms suitable for extremity dosimeter performance testing. The phantoms studied represented the forearm or lower leg and the finger. Measurements were performed for solid plastic phantoms and for phantoms containing simulated bone material to determine the effect of backscattered radiations from the simulated bone to the phantom surface. Photon beam energies used for the measurements ranged from 16 keV to 1.25 MeV (average). The Cx factors for the finger phantoms did not vary significantly with phantom composition. The Cx factors in the arm/leg phantoms with the bone simulant material differed significantly from those for the solid plastic phantom over the energy range of 40-100 keV. This effect was attributed to the preferential absorption of the lower energy backscattered photons by the higher atomic number material that was contained in the bone-simulant insert. The position of the bone-simulating material below the surface of the phantom was more important than its size or level of bone equivalency. For calibrations and dosimeter testing, Al was found adequate as a bone-simulating material.

  20. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLCBTMBTU

  1. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  2. Conversion and correction factors for historical measurements of Iodine-131 in Hanford-area vegetation, 1945--1947: Draft

    SciTech Connect (OSTI)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-05-01T23:59:59.000Z

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. The report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  3. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYr Jump to:

  4. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR NewBTU

  5. High Btu gas from peat. Existing social and economic conditions

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

  6. 2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting

    E-Print Network [OSTI]

    . OVERSEAS ELECTRICITY EMISSION FACTORS (ANNEX 10) 54 ANNEX: EXTRACT FROM THE CRG PASSENGER TRANSPORT CO2 (ANNEX 6 AND ANNEX 7) 12 Previous Approach 12 New Passenger Air Transport CO2 Emission Factors (Annex 6) 13 New Freight Air Transport CO2 Emission Factors (Annex 7) 18 New Air Transport Emission Factors

  7. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  8. Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117

    E-Print Network [OSTI]

    Radivojac, Predrag

    .1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

  9. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15T23:59:59.000Z

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  10. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07T23:59:59.000Z

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  11. Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams

    SciTech Connect (OSTI)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

    2012-03-15T23:59:59.000Z

    Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

  12. Rethinking the N(H2)/I(CO) Conversion Factor

    E-Print Network [OSTI]

    W. F. Wall

    2007-03-01T23:59:59.000Z

    An improved formulation for the X-factor is proposed. The statement that the velocity-integrated radiation temperature of the $\\COone$ line, $I(\\CO)$, ``counts'' optically thick clumps is quantified using the formalism of \\citet{Martin84} for line emission in a clumpy cloud. Adopting the simplifying assumptions of thermalized $\\COone$ line emission and isothermal gas, an effective optical depth, $\\tef$, is defined as the product of the clump filling factor within each velocity interval and the clump effective optical depth as a function of the optical depth on the clump's central sightline, $\\tau_0$. The clump effective optical depth is well approximated as a power law in $\\tau_0$ with power-law index, $\\epsilon$, referred to here as the clump ``fluffiness,'' and has values between zero and unity. While the $\\COone$ line is optically thick within each clump (i.e., high $\\tau_0$), it is optically thin ``to the clumps'' (i.e., low $\\tef$). Thus the dependence of $I(CO)$ on $\\tef$ is linear, resulting in an X-factor that depends only on clump properties and {\\it not} directly on the entire cloud. Assuming virialization of the clumps yields an expression for the X-factor whose dependence on physical parameters like density and temperature is ``softened'' by power-law indices of less than unity that depend on the fluffiness parameter, $\\epsilon$. The X-factor provides estimates of gas column density because each sightline within the beam has optically thin gas within certain narrow velocity ranges. Determining column density from the optically thin gas is straightforward and parameters like $\\epsilon$ then allow extrapolation of the column density of the optically thin gas to that of all the gas.

  13. DETERMINATION OF IN-VITRO LUNG SOLUBILITY AND INTAKE-TO-DOSE CONVERSION FACTOR FOR TRITIATED LANTHANUM NICKEL ALUMINUM ALLOY

    SciTech Connect (OSTI)

    Farfan, E.; Labone, T.; Staack, G.; Cheng, Y.; Zhou, Y.; Varallo, T.

    2011-11-11T23:59:59.000Z

    A sample of tritiated lanthanum nickel aluminum alloy (LaNi4.25Al0.75 or LANA.75) similar to that used at the Savannah River Site Tritium Facilities was analyzed to estimate the particle size distribution of this metal tritide powder and the rate, at which this material dissolves in the human respiratory tract after it is inhaled. This information is used to calculate the committed effective dose received by a worker after inhaling the material. These doses, which were calculated using the same methodology given in the DOE Tritium Handbook, are presented as inhalation intake-to-dose conversion factors (DCF). The DCF for this metal tritide is less than the DCF for tritiated water and radiation worker bioassay programs designed for tritiated water are adequate to monitor for intakes of this material.

  14. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils...

  15. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  16. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  17. Dust temperature and CO-to-H2 conversion factor variations in the SFR-M* plane

    E-Print Network [OSTI]

    Magnelli, B; Lutz, D; Tacconi, L J; Berta, S; Bournaud, F; Charmandaris, V; Dannerbauer, H; Elbaz, D; Förster-Schreiber, N M; Graciá-Carpio, J; Ivison, R; Maiolino, R; Nordon, R; Popesso, P; Rodighiero, G; Santini, P; Wuyts, S

    2012-01-01T23:59:59.000Z

    Deep Herschel imaging and 12CO(2-1) line luminosities from the IRAM PdBI are combined for a sample of 17 galaxies at z>1 from the GOODS-N field. The sample includes galaxies both on and above the main sequence (MS) traced by star-forming galaxies in the SFR-M* plane. The far-infrared data are used to derive dust masses, Mdust. Combined with an empirical prescription for the dependence of the gas-to-dust ratio on metallicity (GDR), the CO luminosities and Mdust values are used to derive for each galaxy the CO-to-H2 conversion factor, alpha_co. Like in the local Universe, the value of alpha_co is a factor of ~5 smaller in starbursts compared to normal star-forming galaxies (SFGs). We also uncover a relation between alpha_co and dust temperature (Tdust; alpha_co decreasing with increasing Tdust) as obtained from modified blackbody fits to the far-infrared data. While the absolute normalization of the alpha_co(Tdust) relation is uncertain, the global trend is robust against possible systematic biases in the deter...

  18. Comment on `Update of 40K and 226Ra and 232Th series $\\gamma$-to-dose conversion factors for soil'

    E-Print Network [OSTI]

    Malins, Alex; Saito, Kimiaki

    2015-01-01T23:59:59.000Z

    A letter to the editor of the Journal of Environmental Radioactivity on the article: E. Gasser, A. Nachab, A. Nourreddine, Ch. Roy, and A. Sellam, `Update of 40K and 226Ra and 232Th series $\\gamma$-to-dose conversion factors for soil', J. Environ. Radioactiv. 138, 68-71 (2014), DOI: 10.1016/j.jenvrad.2014.08.002.

  19. Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259

    E-Print Network [OSTI]

    Moret, Bernard

    Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

  20. Appendix G: Conversion factors

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469Appendix E44D-2 Table4

  1. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01T23:59:59.000Z

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  2. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  3. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  4. Conversion and correction factors for historical measurements of Iodine-131 in Hanford-area vegetation, 1945--1947: Draft. Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-05-01T23:59:59.000Z

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. The report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  5. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  6. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  7. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  8. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  9. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU perper

  10. High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

  11. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  12. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  13. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  14. Photovoltaic Energy Conversion

    E-Print Network [OSTI]

    Glashausser, Charles

    than electricity from coal if cost of carbon capture is factored in Great promise for solving globalPhotovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel No pollution No greenhouse gases No moving parts, little or no maintenance Sunlight is plentiful

  15. Landholders, Residential Land Conversion, and Market Signals

    E-Print Network [OSTI]

    Margulis, Harry L.

    2006-01-01T23:59:59.000Z

    465– Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

  16. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  17. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31T23:59:59.000Z

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  18. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  19. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  20. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  1. High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

  2. 2009 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)

    E-Print Network [OSTI]

    , emissions factors have only been provided for CO2. The 2009 update provides emissions factors for the non-CO to landfill) into kilograms of carbon dioxide equivalent (CO2eq). Carbon dioxide equivalent is a universal and refrigeration have been added. v. International electricity emission factors have been added Major changes

  3. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  4. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide's chemical form.

  5. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide`s chemical form.

  6. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  7. Treatment and reuse of coal conversion wastewaters

    SciTech Connect (OSTI)

    Luthy, R.G.

    1980-01-01T23:59:59.000Z

    This paper presents a synopsis of recent experimental activities to evaluate processing characteristics of coal conversion wastewaters. Treatment studies have been performed with high-BTU coal gasification process quench waters to assess enhanced removal of organic compounds via powdered activated carbon-activated sludge treatment, and to evaluate a coal gasification wastewater treatment train comprised of sequential processing by ammonia removal, biological oxidation, lime-soda softening, granular activated carbon adsorption, and reverse osmosis. In addition, treatment studies are in progress to evaluate solvent extraction of gasification process wastewater to recover phenolics and to reduce wastewater loading of priority organic pollutants. Biological oxidation of coal gasification wastewater has shown excellent removal efficiencies of major and trace organic contaminants at moderate loadings, addition of powdered activated carbon provides lower effluent COD and color. Gasification process wastewater treated through biological oxidation, lime-soda softening and activated carbon adsorption appears suitable for reuse as cooling tower make-up water. Solvent extraction is an effective means to reduce organic loadings to downstream processing units. In addition, preliminary results have shown that solvent extraction removes chromatographable organic contaminants to low levels.

  8. Application of Planck's law to thermionic conversion

    SciTech Connect (OSTI)

    Caldwell, F.

    1998-07-01T23:59:59.000Z

    A simple, highly accurate, mathematical model of heat-to-electricity conversion is developed from Planck's law for the distribution of the radiant exitance of heat at a selected temperature. An electrical power curve is calculated by integration of the heat law over a selected range of electromagnetic wavelength corresponding to electrical voltage. A novel wavelength-voltage conversion factor, developed from the known wavelength-electron volt conversion factor, establishes the wavelength ({lambda}) for the integration. The Planck law is integrated within the limits {lambda} to 2{lambda}. The integration provides the ideal electrical power that is available from heat at the emitter temperature. When multiplied by a simple ratio, the calculated ideal power closely matches published thermionic converter experimental data. The thermal power model of thermionic conversion is validated by experiments with thermionic emission of ordinary electron tubes. A theoretical basis for the heat law based model of thermionic conversion is found in linear oscillator theory.

  9. 2011 Guidelines to Defra / DECC's GHG Conversion Factors for Company Reporting Produced by AEA for the Department of Energy and Climate Change (DECC)

    E-Print Network [OSTI]

    that allows the global warming potential of different GHGs to be compared. Values for CH4 and N2O are presented as CO2 equivalents (CO2e) using Global Warming Potential (GWP) factors*, consistent with reporting resulting from electricity supplied to the consumer that are counted in both Scope 2 (electricity GENERATED

  10. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov (indexed) [DOE]

    SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

  11. Adding value to coal conversion`s char: A strategy for lower-priced fuels

    SciTech Connect (OSTI)

    Kruse, C.W. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Corporation, Naperville, IL (United States); Feizoulof, C. [Univ. of Illinois, Urbana, IL (United States)

    1994-12-31T23:59:59.000Z

    Coal`s low hydrogen to carbon ratio gives coal physical properties that are not the most desired in fuel markets. The problem is dealt with in conversion technologies designed to upgrade coal to more desirable fuels by either: (1) chemically adding hydrogen, as in liquefaction or high-BTU gasification, or (2) the production of char, as in mild gasification. The first option is neither cost-effective nor environmentally sound. Liquefaction results in the production of one mole of carbon dioxide for each mole of hydrogen needed. The result is that despite the preferred hydrogen to carbon ratio in the fuel, carbon dioxide is produced in greater quantities than it would be by simply burning the coal. The depressed market value of char is the primary drawback of coal utilization technologies exercising the second option. Making value-added, non-fuel products from char could significantly improve the economics of overall operations and result in competitively-priced premium hydrocarbon fuels. The research goal of a growing number of groups, including ours, is to produce and describe carbon products which will command higher prices than the carbon (coal) from which they were produced.

  12. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters 

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    of these factors, the difference between coal and natural gas prices and the project life are difficult to predict. The resulting uncertainty has caused Monsanto to pursue coal gasification for process heaters with cautious optimism, on a site by site basis....

  13. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    SciTech Connect (OSTI)

    Rana, V K; Vijayan, S [Physiology and Biophysics, Toshiba Stroke and Vascular Research Center, University at Buffalo (State University of New York), Buffalo, NY (United States); Rudin, S R; Bednarek, D R [Department of Radiology, Physiology and Biophysics, Toshiba Stroke and Vascular Research Center, University at Buffalo (State University of New York), Buffalo, NY (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different phantoms can contribute different backscatter for identical exposure parameters. Research supported in part by Toshiba Medical Systems and NIH Grants R43FD0158401, R44FD0158402 and R01EB002873.

  14. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  15. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  16. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01T23:59:59.000Z

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  17. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  18. QUANTUM CONVERSION IN PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Calvin, Melvin

    2008-01-01T23:59:59.000Z

    QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

  19. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  20. High Btu gas from peat. A feasibility study. Part 3. Market analysis. Task 8. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to identify and characterize the market potential for the plant by-products - BTX (mixture of benzene, toluene and xylene), phenol, ammonia, sulfur, and sodium sulfate - and to assign value to them. Although traditionally a growth industry, the chemicals market has been generally weakened by the recession, and is experiencing back to back years of declining production. This is due to bad health of specific end uses, such as fertilizer from ammonia. In the long run, this trend is expected to moderate. It is felt that the proposed peat plant has a favorable position in the markets of each of its by-products. This is due to the synergism with nearby industries which are major consumers of these by-products. In the case of sulfur and ammonia, the Red River agricultural area is a large potential market. For sodium sulfate, phenols and perhaps BTX, the nearby paper and timber products industries are large potential markets. The values for these by-products used in the financial analysis were intentionally conservative. This is because of the uncertainty in the quantity and quality. More tests are needed in an integrated facility in order to determine these factors and the variability of each. This is particularly true of the by-product oils which could vary significantly with operating conditions and may even require alternate processing schemes. 18 references, 9 figures, 14 tables.

  1. ADEPT: Efficient Power Conversion

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    ADEPT Project: In today’s increasingly electrified world, power conversion—the process of converting electricity between different currents, voltage levels, and frequencies—forms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-E’s ADEPT Project, short for “Agile Delivery of Electrical Power Technology,” are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

  2. Solar Thermal Conversion

    SciTech Connect (OSTI)

    Kreith, F.; Meyer, R. T.

    1982-11-01T23:59:59.000Z

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  3. Object Closure Conversion * Neal Glew

    E-Print Network [OSTI]

    Glew, Neal

    of closure conversion. This paper argues that a direct formulation of object closure conversio* *n Object Closure Conversion * Neal into closed code and auxiliary data* * structures. Closure conversion has been extensively studied

  4. Sandia National Laboratories: Thermochemical Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  5. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11T23:59:59.000Z

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  6. Environmental Radioactivity 56 (2001) 327340 Radon progeny dose conversion coefficients for

    E-Print Network [OSTI]

    Yu, K.N.

    Journal of Environmental Radioactivity 56 (2001) 327­340 Radon progeny dose conversion coefficients; Dose conversion coefficients; Scaling factors; Radon progeny 1. Introduction Epidemiological studies cancer associated with exposure to radon progeny (Lubin, 1988). More recently, Lubin et al (1994

  7. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  8. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19T23:59:59.000Z

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  9. ENERGY CONVERSION Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    : Gas turbine power plants and air craft propulsion Week 5: Liquidvapor mixtures, vapor power systems: Selected problems will be solved and questions about lecture material or assignments of the course material. However, you are permitted to use a photocopy of unit conversion tables from

  10. 2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors

    E-Print Network [OSTI]

    - Imports and Exports Last updated: Jun-05 Total emissions (kg CO2) Total electricity produced Total heat produced kg CO2/kWh elecricity Total emissions (kg CO2) Total electricity produced Total heat produced kg CO2/kWh heat Emissions (in kgCO2) per kWh electricity = twice total emissions (in kgCO2) twice total

  11. Wind Energy Conversion Systems (Minnesota)

    Broader source: Energy.gov [DOE]

    This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

  12. Hydrocarbon conversion process

    SciTech Connect (OSTI)

    Buss, W.C.; Field, L.A.; Robinson, R.C.

    1984-06-26T23:59:59.000Z

    A hydrocarbon conversion process is disclosed having a very high selectivity for dehydrocyclization. In one aspect of this process, a hydrocarbon feed is subjected to hydrotreating, then the hydrocarbon feed is passed through a sulfur removal system which reduces the sulfur concentration of the hydrocarbon feed to below 500 ppb, and then the hydrocarbon feed is reformed over a dehydrocyclization catalyst comprising a large pore zeolite containing at least one Group VIII metal to produce aromatics and hydrogen.

  13. Object Closure Conversion Cornell University

    E-Print Network [OSTI]

    Glew, Neal

    that a direct formulation of object closure conversion is interesting and gives further insight into generalObject Closure Conversion Neal Glew Cornell University 24 August 1999 Abstract An integral part of implementing functional languages is closure conversion--the process of converting code with free variables

  14. Sandia National Laboratories: Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechnologiesWavelength Conversion Materials Wavelength Conversion Materials Overview of SSL Wavelength Conversion Materials Rare-Earth Phosphors Inorganic phosphors doped with...

  15. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftin Ocean Thermal Energy Conversion (OTEC) technology haveThe Ocean Thermal Energy Conversion (OTEC) 2rogrammatic

  16. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H [ORNL] [ORNL; Elwood Jr, Robert H [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  17. Advanced coal conversion process demonstration. Progress report, January 1, 1992--December 31, 1992

    SciTech Connect (OSTI)

    NONE

    1993-12-01T23:59:59.000Z

    This report contains a description of the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1992, through December 31, 1992. This project demonstrates an advanced thermal coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and has been operating in an extended startup mode since that time. As with any new developing technology, a number of unforeseen obstacles have been encountered; however, Rosebud SynCoal Partnership has instituted an aggressive program to overcome these obstacles.

  18. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01T23:59:59.000Z

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  19. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18T23:59:59.000Z

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  20. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  1. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16T23:59:59.000Z

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  2. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M. (Lakewood, CO)

    1987-01-01T23:59:59.000Z

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  3. Sandia National Laboratories: biomass conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biomass conversion Sandia Video Featured by DOE Bioenergy Technologies Office On December 10, 2014, in Biofuels, Biomass, Capabilities, Energy, Facilities, JBEI, News, News &...

  4. Power conversion technologies

    SciTech Connect (OSTI)

    Newton, M. A.

    1997-02-01T23:59:59.000Z

    The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

  5. Introduction to Solar Photon Conversion

    SciTech Connect (OSTI)

    Nozik, A.; Miller, J.

    2010-11-10T23:59:59.000Z

    The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

  6. 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

  7. HOOTS99 Preliminary Version Object Closure Conversion

    E-Print Network [OSTI]

    Glew, Neal

    classes is an exam* *ple of closure conversion. This paper argues that a direct formulation of object HOOTS99 Preliminary Version Object Closure Conversion __________________________________________________________________________ Abstract An integral part of implementing functional languages is closure conversion_the process

  8. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftof ocean thermal energy conversion technology. U.S. Depart~June 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  9. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor) Ocean Thermal Energy Conversion (OTEC) Draftr:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  10. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversionJune 1-11, 1980 OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC

  11. Plasmonic conversion of solar energy

    E-Print Network [OSTI]

    Clavero, Cesar

    2014-01-01T23:59:59.000Z

    Basic Research Needs for Solar Energy Utilization, BasicS. Pillai and M. A. Green, Solar Energy Materials and SolarPlasmonic conversion of solar energy César Clavero Plasma

  12. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  13. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWindConversion Biochemical Conversion This area focuses

  14. HOOTS99 Preliminary Version Object Closure Conversion

    E-Print Network [OSTI]

    Glew, Neal

    is an example of closure conversion. This paper argues that a direct formulation of object closure conversionHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion--the process of converting code with free variables into closed code and auxiliary data structures

  15. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  16. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China

    E-Print Network [OSTI]

    Price, Lynn

    2013-01-01T23:59:59.000Z

    conversion: 1 kwh = 10,500 Btu for power production Averageelectricity and at 10,500 Btu/kwh or 2,646 kcal/kHz energyHCs Unit Nm3/hr Nm3/hr cfh Btu/scf MM Btu/hr GJ/hr Btu/scf

  17. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island, NewFirmGreen

  18. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR

  19. MUTUAL CONVERSION SOLAR AND SIDEREAL

    E-Print Network [OSTI]

    Roegel, Denis

    TABLES FOR THE MUTUAL CONVERSION OF SOLAR AND SIDEREAL TIME BY EDWARD SANG, F.R.S.E. EDINBURGH in the third example. Sang converts 3.27 seconds of solar time into 3.26 seconds of sidereal time. But sidereal time elapses faster than solar time, and the correct value is 3.28 sec- onds. In the fourth example

  20. Energy Conversion and Storage Program

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  1. Jet conversions in a quark-gluon plasma

    E-Print Network [OSTI]

    W. Liu; C. M. Ko; B. W. Zhang

    2007-05-05T23:59:59.000Z

    Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic $q(\\bar q)g\\to gq(\\bar q)$ and the inelastic $q\\bar q\\leftrightarrow gg$ scatterings are evaluated in the lowest order in QCD. Including both jet energy loss and conversions in the expanding quark-gluon plasma produced in relativistic heavy ion collisions, we have found a net conversion of quark to gluon jets. This reduces the difference between the nuclear modification factors for quark and gluon jets in central heavy ion collisions and thus enhances the $p/\\pi^+$ and ${\\bar p}/\\pi^-$ ratios at high transverse momentum. However, a much larger net quark to gluon jet conversion rate than the one given by the lowest-order QCD is needed to account for the observed similar ratios in central Au+Au and p+p collisions at same energy. Implications of our results are discussed.

  2. Sandia National Laboratories: Biochemical Conversion Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with: Biochemical Conversion Program * Biofuels * Combustion Research Facility * CRF * Energy * Lignocellulosic biomass * Microalgae * SAND 2011-5054W * Transportation Energy...

  3. Petar Ljusev SIngle Conversion stage AMplifier

    E-Print Network [OSTI]

    . The proposed SICAM solution strives for direct energy conversion from the mains to the audio outputPetar Ljusev SIngle Conversion stage AMplifier - SICAM PhD thesis, December 2005 #12;#12;To Elena of the project "SICAM - SIngle Conversion stage AMplifier", funded by the Danish Energy Authority under the EFP

  4. Data Conversion in Residue Number System

    E-Print Network [OSTI]

    Zilic, Zeljko

    for direct conversion when interaction with the real analog world is required. We first develop two efficient schemes for direct analog-to-residue conversion. Another efficient scheme for direct residue analogique réel est nécessaire. Nous dévelopons deux systèmes efficaces pour la conversion directe du domaine

  5. HOOTS99 Preliminary Version Object Closure Conversion

    E-Print Network [OSTI]

    Glew, Neal

    classes is an example of closure conversion. This paper argues that a direct formulation of object closureHOOTS99 Preliminary Version Object Closure Conversion Neal Glew 1 Department of Computer Science conversion---the process of converting code with free variables into closed code and auxiliary data

  6. Next-Generation Thermionic Solar Energy Conversion | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Next-Generation Thermionic Solar Energy Conversion Next-Generation Thermionic Solar Energy Conversion This fact sheet describes a next-generation thermionic solar energy conversion...

  7. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

  8. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryof the Fifth Ocean Thermal Energy Conversion Conference,

  9. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

  10. Recycling of wasted energy : thermal to electrical energy conversion

    E-Print Network [OSTI]

    Lim, Hyuck

    2011-01-01T23:59:59.000Z

    Direct energy conversion ..developed. Typically, direct energy conversion is achievedTechnologies 1.2.1. Direct energy conversion In a direct

  11. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALM.D. (editor). 1980. Ocean Thermal Energy Conversion DraftDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  12. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  13. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

  14. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  15. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  16. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of the Ocean Thermal Energy Conversion (OTEC) Biofouling,development of ocean thermal energy conversion (OTEC) plant-impact assessment ocean thermal energy conversion (OTEC)

  17. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  18. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)field of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  19. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  20. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

  1. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    for the commercialization of ocean thermal energy conversionE. Hathaway. Open cycle ocean thermal energy conversion. AElectric Company. Ocean thermal energy conversion mission

  2. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion ( OTEC)the intermediate field of ocean thermal energy conversionII of the Sixth Ocean Thermal Energy conversion Conference.

  3. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,and M.D. Sands. 1980. Ocean thermal energy conversion (OTEC)

  4. Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control 

    E-Print Network [OSTI]

    Engler, Cady; Capereda, Sergio; Mukhtar, Saqib

    2010-01-01T23:59:59.000Z

    of dairy manure on a dry basis was found to be 15.93 + 0.26 MJ/kg (6,863 + 112 Btu/lb), typical of most agricultural biomass. The heating value was around 14.09 MJ/kg (6,070 Btu/lb), on an “as received” basis (around 13% moisture). • The heating value...

  5. High resolution A/D conversion based on piecewise conversion at lower resolution

    SciTech Connect (OSTI)

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05T23:59:59.000Z

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  6. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01T23:59:59.000Z

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  7. Dose factor entry and display tool for BNCT radiotherapy

    DOE Patents [OSTI]

    Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

    1999-01-01T23:59:59.000Z

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  8. Sandia Energy - Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInApplied &ClimateContactEnergy Conversion

  9. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Energy Savers [EERE]

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  10. Microturbine Power Conversion Technology Review

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-07-21T23:59:59.000Z

    In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

  11. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Energy Conversion for Efficient Waste Heat Recovery PI - Chris Caylor, GMZ Director of Thermoelectric Systems GMZ Team: Bed Poudel, Giri Joshi, Jonathan D'Angelo,...

  12. LED Street Lighting Conversion Workshop Presentations

    Broader source: Energy.gov [DOE]

    This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety,...

  13. "Approaches to Ultrahigh Efficiency Solar Energy Conversion"...

    Office of Science (SC) Website

    "Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

  14. "Fundamental Challenges in Solar Energy Conversion" workshop...

    Office of Science (SC) Website

    Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

  15. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    confidential or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle...

  16. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    Program Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit...

  17. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Energy Savers [EERE]

    Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. ctabwebinarcarbohyd...

  18. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Office of Environmental Management (EM)

    Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production....

  19. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock Fermenting...

  20. Electrochemomechanical Energy Conversion in Nanofluidic Channels

    E-Print Network [OSTI]

    Yang, Peidong

    Electrochemomechanical Energy Conversion in Nanofluidic Channels Hirofumi Daiguji,*, Peidong Yang the height of a nanofluidic channel containing surface charge, a unipolar solution of counterions

  1. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07T23:59:59.000Z

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  2. Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses

    E-Print Network [OSTI]

    Kane, Shaun K.

    Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Karim Said Warby Parker's Facebook page and explore the ways customers formulate questions and conversations,000 Facebook posts, consisting of photos, comments, and "likes". Using statistical analyses and qualitative

  3. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01T23:59:59.000Z

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  4. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    Castrejon-Pita, A A

    2006-01-01T23:59:59.000Z

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  5. Heat to electricity thermoacoustic-magnetohydrodynamic conversion

    E-Print Network [OSTI]

    A. A. Castrejon-Pita; G. Huelsz

    2006-10-12T23:59:59.000Z

    In this work, a new concept for the conversion of heat into electricity is presented. The conversion is based on the combined effects of a thermoacoustic prime mover coupled with a magnetohydrodynamic generator, using different working fluids in each process. The results of preliminary experiments are also presented.

  6. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, J.S.; Wanlass, M.W.; Gessert, T.A.

    1999-04-27T23:59:59.000Z

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.

  7. Interdigitated photovoltaic power conversion device

    DOE Patents [OSTI]

    Ward, James Scott (Englewood, CO); Wanlass, Mark Woodbury (Golden, CO); Gessert, Timothy Arthur (Conifer, CO)

    1999-01-01T23:59:59.000Z

    A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.

  8. Energy Conversion & Storage Program, 1993 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1994-06-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  9. Energy conversion & storage program. 1994 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1995-04-01T23:59:59.000Z

    The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  10. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01T23:59:59.000Z

    High-e?ciency direct conversion of heat to electrical energyJ. Yu and M. Ikura, “Direct conversion of low-grade heat tois concerned with direct conversion of thermal energy into

  11. Summer Series 2012 - Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Kathy Yelick

    2013-06-24T23:59:59.000Z

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  12. Summer Series 2012 - Conversation with Kathy Yelick

    SciTech Connect (OSTI)

    Kathy Yelick

    2012-07-23T23:59:59.000Z

    Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  13. Energy Conversion and Transmission Facilities (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain...

  14. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Presented at the 7th Ocean Energy Conference, Washington,Power Applications, Division of Ocean Energy Systems, UnitedSands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)

  15. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24T23:59:59.000Z

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  16. Assessment of ocean thermal energy conversion

    E-Print Network [OSTI]

    Muralidharan, Shylesh

    2012-01-01T23:59:59.000Z

    Ocean thermal energy conversion (OTEC) is a promising renewable energy technology to generate electricity and has other applications such as production of freshwater, seawater air-conditioning, marine culture and chilled-soil ...

  17. Radio frequency dc-dc power conversion

    E-Print Network [OSTI]

    Rivas, Juan, 1976-

    2007-01-01T23:59:59.000Z

    THIS THESIS addresses the development of system architectures and circuit topologies for dc-dc power conversion at very high frequencies. The systems architectures that are developed are structured to overcome limitations ...

  18. Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels

    E-Print Network [OSTI]

    Dekker, Cees

    Electrokinetic Energy Conversion Efficiency in Nanofluidic Channels Frank H. J. van der Heyden- and nanofluidic devices2-5 whose geometries and material properties can be engineered. High energy

  19. Catalytic Consequences of Acid Strength in the Conversion of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Catalytic Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Abstract:...

  20. Process Design and Economics for the Conversion of Lignocellulosic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to Hydrocarbons Process...

  1. Trends in Contractor Conversion Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contractor Conversion Rates Trends in Contractor Conversion Rates Better Buildings Residential Network Workforce Business Partners Peer Exchange Call Series: Trends in Contractor...

  2. Evaluation of Thermal to Electrical Energy Conversion of High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal to Electrical Energy Conversion of High Temperature Skutterudite-Based Thermoelectric Modules Evaluation of Thermal to Electrical Energy Conversion of High Temperature...

  3. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

  4. Potential Impacts of Hydrokinetic and Wave Energy Conversion...

    Energy Savers [EERE]

    Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on Aquatic Environments Potential Impacts of Hydrokinetic and Wave Energy Conversion Technologies on...

  5. WEC up! Energy Department Announces Wave Energy Conversion Prize...

    Office of Environmental Management (EM)

    WEC up Energy Department Announces Wave Energy Conversion Prize Administrator WEC up Energy Department Announces Wave Energy Conversion Prize Administrator September 24, 2014 -...

  6. 2011 Biomass Program Platform Peer Review: Biochemical Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion 2011 Biomass Program Platform Peer Review: Biochemical Conversion This document summarizes the recommendations and evaluations provided by an independent...

  7. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  8. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    District Wide Geothermal Heating Conversion Blaine County School District District Wide Geothermal Heating Conversion Blaine County School District This project will impact the...

  9. aspergillus fumigatus conversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    135 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

  10. alkane conversion chemistry: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. 472 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

  11. antidiabetic bis-maltolato-oxovanadiumiv conversion: Topics by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    88 Framing the Conversation: The Role of Facebook Conversations in Shopping for Eyeglasses Computer Technologies and Information Sciences Websites Summary: Framing the...

  12. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  13. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  14. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

  15. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  16. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

  17. Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Ocean Thermal Energy Conversion: Potential Environmental Impacts and Fisheries Christina M Comfort Institute #12;Ocean Thermal Energy Conversion (OTEC) · Renewable energy ­ ocean thermal gradient · Large

  18. Lattice effect in solid state internal conversion

    SciTech Connect (OSTI)

    Kalman, Peter; Keszthelyi, Tamas [Budapest University of Technology and Economics, Department of Experimental Physics, Budafoki ut 8. F. I.I.10, H-1521 Budapest (Hungary)

    2009-03-15T23:59:59.000Z

    The effect of the crystal lattice on nuclear fusion reactions p+d{yields}{sup 3}He taking place in internal conversion channels is studied. Fusionable particles solved in the investigated crystalline material form a sublattice. Fusion reaction is generated by a flux of incoming fusionable particles. The calculated cross sections are compared with those of an ordinary fusion reaction. The internal conversion coefficients are also calculated.

  19. Strong converse theorems using Rényi entropies

    E-Print Network [OSTI]

    Felix Leditzky; Nilanjana Datta

    2015-06-08T23:59:59.000Z

    We use a R\\'enyi entropy approach to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [arXiv:1404.5940] to prove the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the $(e,q)$-plane, where $e$ and $q$ denote the entanglement cost and quantum communication cost, respectively. This extends a recent strong converse theorem for the quantum communication cost of state redistribution, proved by Berta et al. [arXiv:1409.4338]. For the other tasks as well, we provide new proofs for strong converse theorems which were previously established using smooth entropies.

  20. Energy conversion & storage program. 1995 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1996-06-01T23:59:59.000Z

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  1. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    SciTech Connect (OSTI)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28T23:59:59.000Z

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis. Major milestones include identification of syngas cleaning requirements for proposed system

  2. Residual oil conversion in Ashland FCC Units

    SciTech Connect (OSTI)

    Barger, D.F.; Miller, C.B.

    1983-03-01T23:59:59.000Z

    Ashland Petroleum Company is a production-poor refining and marketing company. A company must have refining flexibility to compete in today's crude and marketing situation. Ashland has adopted a dual approach to achieving the required refining flexibility: development and construction of the RCC process, and development of techniques to practice residual oil conversion in Ashland FCC units. This paper discusses the operating techniques Ashland has used to allow residual oil conversion to be practiced in their present day FCC's and shows some of the yields which have been achieved.

  3. Methanol engine conversion feasibility study: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

  4. The Food Crises: A quantitative model of food prices including speculators and ethanol conversion

    E-Print Network [OSTI]

    Lagi, Marco; Bertrand, Karla Z; Bar-Yam, Yaneer

    2011-01-01T23:59:59.000Z

    Recent increases in basic food prices are severely impacting vulnerable populations worldwide. Proposed causes such as shortages of grain due to adverse weather, increasing meat consumption in China and India, conversion of corn to ethanol in the US, and investor speculation on commodity markets lead to widely differing implications for policy. A lack of clarity about which factors are responsible reinforces policy inaction. Here, for the first time, we construct a dynamic model that quantitatively agrees with food prices. The results show that the dominant causes of price increases are investor speculation and ethanol conversion. Models that just treat supply and demand are not consistent with the actual price dynamics. The two sharp peaks in 2007/2008 and 2010/2011 are specifically due to investor speculation, while an underlying upward trend is due to increasing demand from ethanol conversion. The model includes investor trend following as well as shifting between commodities, equities and bonds to take ad...

  5. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  6. Probing nuclear matter with jet conversions 

    E-Print Network [OSTI]

    Liu, W.; Fries, Rainer J.

    2008-01-01T23:59:59.000Z

    present some estimates for the rate of jet conversions in a consistent Fokker-Planck framework and their impact on future high-p(T) identified hadron measurements at RHIC and LHC. We also suggest some novel observables to test flavor effects....

  7. Soft materials for linear electromechanical energy conversion

    E-Print Network [OSTI]

    Antal Jakli; Nandor Eber

    2014-07-29T23:59:59.000Z

    We briefly review the literature of linear electromechanical effects of soft materials, especially in synthetic and biological polymers and liquid crystals (LCs). First we describe results on direct and converse piezoelectricity, and then we discuss a linear coupling between bending and electric polarization, which maybe called bending piezoelectricity, or flexoelectricity.

  8. IntroductiontoProcessEngineering(PTG) conversion, balances,

    E-Print Network [OSTI]

    Zevenhoven, Ron

    #3/6 IntroductiontoProcessEngineering(PTG) VST rz13 1/118 3. Energy conversion, balances rz13 2/118 3.1: Energy #12;#3/6 IntroductiontoProcessEngineering(PTG) VST rz13 3/118 What is energy? · "Energy is any quantity that changes the state of a closed system when crossing the system boundary" (SEHB

  9. Electrical power conversion is essential for improving

    E-Print Network [OSTI]

    Langendoen, Koen

    % Electricity is the most flexible and efficient source of energy to power mankind. If we improveElectrical power conversion is essential for improving energy efficiency and harvesting renewable energy. Diploma Master of Science Electrical Engineering Track: Electrical Sustainable Energy Credits 120

  10. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC) #12;#12;Claude's Off Rio de Janeiro (1933) · Floating Ice Plant: 2.2 MW OC- OTEC to produce 2000

  11. NAVFAC Ocean Thermal Energy Conversion (OTEC) Project

    E-Print Network [OSTI]

    NAVFAC Ocean Thermal Energy Conversion (OTEC) Project Contract Number N62583-09-C-0083 CDRL A014 OTEC Mini-Spar Pilot Plant 9 December 2011 OTEC-2011-001-4 Prepared for: Naval Facilities; distribution is unlimited. #12; Configuration Report and Development Plan Volume 4 Site Specific OTEC

  12. Ocean Thermal Energy Conversion Mostly about USA

    E-Print Network [OSTI]

    Ocean Thermal Energy Conversion History Mostly about USA 1980's to 1990's and bias towards Vega · Floating Structures (Plantships) · Bottom-Mounted Structures · Model Basin Tests/ At-Sea Tests · 210 kW OC-OTEC: Georges Claude (Open Cycle OTEC) · 1928 Ougree Experiment, France: Factory Water Outflow (33 °C) & Meuse

  13. Materials for coal conversion and utilization

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The Fifth Annual Conference on Materials for Coal Conversion and Utilization was held October 7-9, 1980, at the National Bureau of Standards, Gaithersburg, Maryland. Sixty-six papers have been entered individually into ERA and EDB; two had been entered previously from other sources. (LTN)

  14. Energy Conversion: Solid-State Lighting

    E-Print Network [OSTI]

    8 Energy Conversion: Solid-State Lighting E. Kioupakis1,2 , P. Rinke1,3 , A. Janotti1 , Q. Yan1 fraction of the world's energy resources [1]. Lighting has been one of the earliest applications. The inefficiency of existing light sources that waste most of the power they consume is the reason for this large

  15. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  16. Power Conversion APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Efficiency for different steam cycles. 17.2 Close cycle gas turbine: The closed cycle gas turbine has. POWER CONVERSION 17.1 Steam Cycle Different steam cycles have been well developed. A study by EPRI summarized the various advanced steam cycles which maybe available for an advanced coal power plant

  17. Novel Nuclear Powered Photocatalytic Energy Conversion

    SciTech Connect (OSTI)

    White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

    2005-08-29T23:59:59.000Z

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

  18. Direct Conversion of Biomass to Fuel | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Conversion of Biomass to Fuel UGA, ORNL research team engineers microbes for the direct conversion of biomass to fuel July 11, 2014 New research from the University of...

  19. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  20. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005...

  1. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01T23:59:59.000Z

    3.3 Fischer-Tropsch Synthesis of Liquid Fuels . 3.3.1Conversion in the U.S. – Fischer-Tropsch Synthesis, NaturalConversion in the U.S. – Fischer-Tropsch Synthesis, Natural

  2. Cross section generation strategy for high conversion light water reactors

    E-Print Network [OSTI]

    Herman, Bryan R. (Bryan Robert)

    2011-01-01T23:59:59.000Z

    High conversion water reactors (HCWR), such as the Resource-renewable Boiling Water Reactor (RBWR), are being designed with axial heterogeneity of alternating fissile and blanket zones to achieve a conversion ratio of ...

  3. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    for the commercialization of ocean thermal energy conversionOpen cycle ocean thermal energy conversion. A preliminary1978. 'Open cycle thermal energy converS1on. A preliminary

  4. Screening method for wind energy conversion systems

    SciTech Connect (OSTI)

    McConnell, R.D.

    1980-03-01T23:59:59.000Z

    A screening method is presented for evaluating wind energy conversion systems (WECS) logically and consistently. It is a set of procedures supported by a data base for large conventional WECS. The procedures are flexible enough to accommodate concepts lacking cost and engineering detail, as is the case with many innovative wind energy conversion systems (IWECS). The method uses both value indicators and simplified cost estimating procedures. Value indicators are selected ratios of engineering parameters involving energy, mass, area, and power. Cost mass ratios and cost estimating relationships were determined from the conventional WECS data base to estimate or verify installation cost estimates for IWECS. These value indicators and cost estimating procedures are shown for conventional WECS. An application of the method to a tracked-vehicle airfoil concept is presented.

  5. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  6. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  7. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  8. Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)

    SciTech Connect (OSTI)

    Schell, D. J.

    2009-06-15T23:59:59.000Z

    Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

  9. Workshop on Conversion Technologies for Advanced Biofuels - Carbohydra...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Innovative Topics for Advanced Biofuels Cross-cutting...

  10. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01T23:59:59.000Z

    Repowering Project, Clean Coal Topical Report Number 20,P. and Nel, H. G. 2004, Clean coal conversion options using

  11. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14T23:59:59.000Z

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  12. Materials for coal conversion and utilization

    SciTech Connect (OSTI)

    None,

    1981-01-01T23:59:59.000Z

    The Sixth annual conference on materials for coal conversion and utilization was held October 13-15, 1981 at the National Bureau of Standards Gaithersburg, Maryland. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the Gas Research Institute and the National Bureau of Standards. Fifty-eight papers from the proceedings have been entered individually into EDB and ERA; four papers had been entered previously from other sources. (LTN)

  13. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect (OSTI)

    Neil Todreas; Pavel Hejzlar

    2008-06-30T23:59:59.000Z

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  14. E2I EPRI Assessment Offshore Wave Energy Conversion Devices

    E-Print Network [OSTI]

    E2I EPRI Assessment Offshore Wave Energy Conversion Devices Report: E2I EPRI WP ­ 004 ­ US ­ Rev 1 #12;E2I EPRI Assessment - Offshore Wave Energy Conversion Devices Table of Contents Introduction Assessment - Offshore Wave Energy Conversion Devices Introduction E2I EPRI is leading a U.S. nationwide

  15. Chalmers University of Technology Henrik Thunman Department of Energy Conversion

    E-Print Network [OSTI]

    Chalmers University of Technology Henrik Thunman Department of Energy Conversion Modelling of the volume #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Momentum University of Technology Henrik Thunman Department of Energy Conversion rad pp qHm x T k xx Tc u t Tc

  16. Chalmers University of Technology Henrik Thunman Department of Energy Conversion

    E-Print Network [OSTI]

    Chalmers University of Technology Henrik Thunman Department of Energy Conversion ModellingSpecies #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Continuity+ -¸ ¹ · ¨ © § = + #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion rad pp qHm x T k

  17. Method for conversion of .beta.-hydroxy carbonyl compounds

    DOE Patents [OSTI]

    Lilga, Michael A. (Richland, WA); White, James F. (Richland, WA); Holladay, Johnathan E. (Kennewick, WA); Zacher, Alan H. (Kennewick, WA); Muzatko, Danielle S. (Kennewick, WA); Orth, Rick J. (Kennewick, WA)

    2010-03-30T23:59:59.000Z

    A process is disclosed for conversion of salts of .beta.-hydroxy carbonyl compounds forming useful conversion products including, e.g., .alpha.,.beta.-unsaturated carbonyl compounds and/or salts of .alpha.,.beta.-unsaturated carbonyl compounds. Conversion products find use, e.g., as feedstock and/or end-use chemicals.

  18. Power Control and Optimization of Photovoltaic and Wind Energy Conversion Systems /

    E-Print Network [OSTI]

    Ghaffari, Azad

    2013-01-01T23:59:59.000Z

    77 5.2 Wind Energy Conversion System . . . . .Optimization and Control in Wind Energy Conversion SystemsAC matrix con- verter for wind energy conversion system,” in

  19. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    at several proposed Ocean Thermal Energy Conversion (OTEC)Environmental assessment: ocean thermal energy conversion (FROH A PROPOSED OCEAN THERHAL _ENERGY _CONVERSION(OTEC) --:

  20. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

  1. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01T23:59:59.000Z

    Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.recommendations for Ocean Thermal Energy Conversion (OTEC)

  2. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01T23:59:59.000Z

    Assessment, Ocean Thermal Energy Conversion (OTEC) ProgramAssessment Ocean Thermal Energy Conversion (OTEC), U.S.for Ocean Thermal Energy Conversion (OTEC) plants. Argonne,

  3. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

  4. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    at several proposed Ocean Thermal Energy Conversion (OTEC)Environmental assessment: ocean thermal energy conversion (The operation of Ocean Thermal Energy Conversion (OTEC)

  5. Chemistry of Furan Conversion into Aromatics and Olefins over HZSM-5: A Model Biomass Conversion Reaction

    SciTech Connect (OSTI)

    Cheng, Yu-Ting [Univ. of Massachusetts, Amherst, MA (United States); Huber, George W. [Univ. of Massachusetts, Amherst, MA (United States)

    2011-06-03T23:59:59.000Z

    The conversion of furan (a model of cellulosic biomass) over HZSM-5 was investigated in a thermogravimetric analysis–mass spectrometry system, in situ Fourier transform infrared analysis, and in a continuous-flow fixed-bed reactor. Furan adsorbed as oligomers at room temperature with a 1.73 of adsorbed furan/Al ratio. These oligomers were polycyclic aromatic compounds that were converted to CO, CO?, aromatics, and olefins at temperatures from 400 to 600 °C. Aromatics (e.g., benzene, toluene, and naphthalene), oligomer isomers (e.g., benzofuran, 2,2-methylenebisfuran, and benzodioxane), and heavy oxygenates (C??{sub +} oligomers) were identified as intermediates formed inside HZSM-5 at different reaction temperatures. During furan conversion, graphite-type coke formed on the catalyst surface, which caused the aromatics and olefins formation to deactivate within the first 30 min of time on-stream. We have measured the effects of space velocity and temperature for furan conversion to help us understand the chemistry of biomass conversion inside zeolite catalysts. The major products for furan conversion included CO, CO?, allene, C?–C? olefins, benzene, toluene, styrene, benzofuran, indene, and naphthalene. The aromatics (benzene and toluene) and olefins (ethylene and propylene) selectivity decreased with increasing space velocity. Unsaturated hydrocarbons such as allene, cyclopentadiene, and aromatics selectivity increased with increasing space velocity. The product distribution was selective to olefins and CO at high temperatures (650 °C) but was selective to aromatics (benzene and toluene) at intermediate temperatures (450–600 °C). At low temperatures (450 °C), benzofuran and coke contributed 60% of the carbon selectivity. Several different reactions were occurring for furan conversion over zeolites. Some important reactions that we have identified in this study include Diels–Alder condensation (e.g., two furans form benzofuran and water), decarbonylation (e.g., furan forms CO and allene), oligomerization (allene forms olefins and aromatics plus hydrogen), and alkylation (e.g., furan plus olefins). The product distribution was far from thermodynamic equilibrium.

  6. Case study of the conversion of tangential- and wall-fired units to low-NO{sub x} combustion: Impact on fly ash quality

    SciTech Connect (OSTI)

    Hower, J.C.; Rathbone, R.F.; Robl, T.L.; Thomas, G.A. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Haeberlin, B.O. [LG and E Energy Corp., Louisville, KY (United States)] [LG and E Energy Corp., Louisville, KY (United States); Trimble, A.S. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research] [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; [Franklin County High School, Frankfort, KY (United States)

    1998-07-01T23:59:59.000Z

    Conversion of boilers to low-NO{sub x} combustion can influence fly ash quality in terms of the amount and forms of carbon, the overall fly ash fineness, and the relative amount of glass versus crystalline inorganic phases. All of these factors can influence the potential for a fly ash to be marketed for utilization. In this study, three coal-fired combustors, two tangentially fired and one wall-fired, all burning high-sulfur Illinois coal at the same power plant, were studied before and after conversion to low-NO{sub x} combustion. In all cases, the post-conversion fly ash was higher in carbon than the pre-conversion ash from the same unit. The fly ashes in at least two of the units would appear to have post-conversion ashes which still fall within the regional guidelines for the limit of carbon (or loss on ignition).

  7. Performance Criteria for Residential Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Goudey, Howdy; Huang, Joe; Kohler, Christian; Mitchell, Robin

    2006-01-01T23:59:59.000Z

    CA) MEC Zone MEC Pkg # Glz % Btu/h-ft2-F Fenestration U-factor W/m2-K (h-ft2-F)/Btu Ceiling R-value (m2-K)/W (h-ft2-F)/Btu Wall R-value (m2-K)/W (h-ft2-F)/Btu Floor

  8. Fabrication and testing of an infrared spectral control component for thermophotovoltaic power conversion applications

    E-Print Network [OSTI]

    O'Sullivan, Francis M. (Francis Martin), 1980-

    2004-01-01T23:59:59.000Z

    Thermophotovoltaic (TPV) power conversion is the direct conversion of thermal radiation to electricity. Conceptually, TPV power conversion is a very elegant means of energy conversion. A thermal source emits a radiative ...

  9. Energy conversion device with improved seal

    DOE Patents [OSTI]

    Miller, Gerald R. (Salt Lake City, UT); Virkar, Anil V. (Midvale, UT)

    1980-01-01T23:59:59.000Z

    An energy conversion device comprising an improved sealing member adapted to seal a cation-permeable casing to the remainder of the device. The sealing member comprises a metal substrate which (i) bears a nonconductive and corrosion resistant coating on the major surface to which said casing is sealed, and (ii) is corrugated so as to render it flexible, thereby allowing said member to move relative to said casing without cracking the seal therebetween. Corrugations may be circumferential, radial, or both radial and circumferential so as to form dimples. The corrugated member may be in form of a bellows or in a substantially flat form, such as a disc.

  10. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Kaschmitter, James L. (Pleasanton, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1997-01-01T23:59:59.000Z

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  11. Carbon aerogel electrodes for direct energy conversion

    DOE Patents [OSTI]

    Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.

    1997-02-11T23:59:59.000Z

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.

  12. NREL: Biomass Research - Biochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL RefinesAnalysisBiochemical Conversion

  13. NREL: Biomass Research - Thermochemical Conversion Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NRELChemical and CatalystNewResearchConversion

  14. BETO Conversion Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automationj.Conversion Program BETO

  15. Conversation with Paul Brown | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration Technique: ControlledConversation with Paul

  16. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass

  17. Alternative Fuels Data Center: Propane Vehicle Conversions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversions to someone by E-mail Share

  18. Alternative Fuels Data Center: Vehicle Conversions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulaseFuelsConversionsTelework to

  19. Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques

    E-Print Network [OSTI]

    Somorjai, G.A.

    2010-01-01T23:59:59.000Z

    Biointerfaces, and Renewable Energy Conversion bychemistry) and develop renewable energy based processes.biointerfaces, and renewable energy conversion chemistry. In

  20. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01T23:59:59.000Z

    2.2 Proton Acceleration . . . . . . . . . . . . . . . .plasma (LSP) simulations . . Proton Focusing and ConversionProton Focusing and Conversion Efficiency with Hemispherical

  1. Optimizing Thermoelectric Power Factor by Means of a Potential Barrier

    E-Print Network [OSTI]

    1 Optimizing Thermoelectric Power Factor by Means of a Potential Barrier Neophytos Neophytou}@iue.tuwien.ac.at Abstract Large efforts in improving thermoelectric energy conversion are devoted to energy filtering design, ~40% improvement in the thermoelectric power factor can be achieved if the following conditions

  2. Electronic dose conversion technique using a NaI(Tl) detector for assessment of exposure dose rate from environmental radiation

    SciTech Connect (OSTI)

    Cho, G.; Kim, H.K. [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of)] [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Woo, H.; Oh, G. [Korea Electric Power Research Inst., Taejon (Korea, Republic of)] [Korea Electric Power Research Inst., Taejon (Korea, Republic of); Ha, D.K. [Samchang Enterprise Co., Anyang (Korea, Republic of)] [Samchang Enterprise Co., Anyang (Korea, Republic of)

    1998-06-01T23:59:59.000Z

    An electronic dose conversion technique to assess the exposure dose rate due to environmental radiation especially from terrestrial sources was developed. For a 2 x 2 inch cylindrical NaI(Tl) scintillation detector, pulse-height spectra were obtained for gamma-rays of energy up to 3 MeV by Monte Carlo simulation. Based on the simulation results and the experimentally fitted energy resolution, dose conversion factors were calculated by a numerical decomposition method. These calculated dose conversion factors were, then, electronically implemented to a developed dose conversion unit (DCU) which is a microprocessor-controlled single channel analyzer (SCA) with variable discrimination levels. The simulated spectra were confirmed by measurement of several monoenergetic gamma spectra with a multichannel analyzer (MCA). The converted exposure dose rates from the implemented dose conversion algorithm in the DCU were also evaluated for a field test in the vicinity of the nuclear power plant at Kori as well as for several standard sources, and the results were in good agreement with separate measurement by a high pressure ionization chamber (HPIC) within a 6.4% deviation.

  3. US energy conversion and use characteristics

    SciTech Connect (OSTI)

    Imhoff, C.H.; Liberman, A.; Ashton, W.B.

    1982-02-01T23:59:59.000Z

    The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

  4. Conversion of DAP models to SPEEDUP

    SciTech Connect (OSTI)

    Aull, J.E.

    1993-08-01T23:59:59.000Z

    Several processes at the Savannah River Site are modeled using Bechtel`s Dynamic Analysis Program (DAP) which uses a sequential modular modeling architecture. The feasibility of conversion of DAP models to SPEEDUP was examined because of the benefits associated with this de facto industry standard. The equation-based approach used in SPEEDUP gives accuracy, stability, and ease of maintenance. The DAP licenses on our site are for single-user PS/2 machines whereas the SPEEDUP product is licensed on a VAX minicomputer which provides faster execution and ease of integration with existing visualization tools. In this paper the basic unit operations of a DAP model that simulates a ventilation system are described. The basic operations were modeled with both DAP and SPEEDUP, and the two models yield results that are in close agreement. Since the basic unit operations of the DAP model have been successfully duplicated using SPEEDUP, it is feasible to proceed with model conversion. DAP subroutines and functions that involve only algebraic manipulation may be inserted directly into the SPEEDUP model or their underlying equations may be extracted and written as SPEEDUP model equations. A problem modeled in SPEEDUP running on a VAX 8810 runs approximately fifteen times faster in elapsed time than the same problem modeled with DAP on a 33 MHz Intel 80486 processor.

  5. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28T23:59:59.000Z

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  6. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    SciTech Connect (OSTI)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01T23:59:59.000Z

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussions with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.

  7. Implications of Fast Reactor Transuranic Conversion Ratio

    SciTech Connect (OSTI)

    Steven J. Piet; Edward A. Hoffman; Samuel E. Bays

    2010-11-01T23:59:59.000Z

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 (“burners”) do not have blankets; the cases above CR=1 (“breeders”) have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is “attractive” for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR<1, the heat, gamma, and neutron emission increase as material is recycled. The uranium utilization is at or below 1%, just as it is in thermal reactors as both types of reactors require continuing fissile support. For CR>1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  8. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31T23:59:59.000Z

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

  9. Efficiency of light-frequency conversion in an atomic ensemble

    E-Print Network [OSTI]

    H. H. Jen; T. A. B. Kennedy

    2011-06-01T23:59:59.000Z

    The efficiency of frequency up and down conversion of light in an atomic ensemble, with a diamond level configuration, is analyzed theoretically. The conditions of pump field intensities and detunings required to maximize the conversion as a function of optical thickness of the ensemble are determined. The influence of the probe pulse duration on the conversion efficiency is investigated by numeric solution of the Maxwell-Bloch equations.

  10. Monthly energy review, May 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-25T23:59:59.000Z

    Energy production during February 1994 totaled 5.3 quadrillion Btu, a 2.2% increase over February 1993. Coal production increased 9%, natural gas rose 2.5%, and petroleum decreased 3.6%; all other forms of energy production combined were down 3%. Energy consumption during the same period totaled 7.5 quadrillion Btu, 4.1% above February 1993. Natural gas consumption increased 5.8%, petroleum 5.2%, and coal 2.3%; consumption of all other energy forms combined decreased 0.7%. Net imports of energy totaled 1.4 quadrillion Btu, 16.9% above February 1993; petroleum net imports increased 10.1%, natural gas net imports were down 4.9%, and coal net exports fell 43.7%. This document is divided into: energy overview, energy consumption, petroleum, natural gas, oil and gas resource development, coal, electricity, nuclear energy, energy prices, international energy, appendices (conversion factors, etc.), and glossary.

  11. April 2013 Most Viewed Documents for Energy Storage, Conversion...

    Office of Scientific and Technical Information (OSTI)

    for Energy Storage, Conversion, And Utilization Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 628 > Continuously variable transmissions: theory and...

  12. University Reactor Conversion Lessons Learned Workshop for Purdue University Reactor

    SciTech Connect (OSTI)

    Eric C. Woolstenhulme; Dana M. Hewit

    2008-09-01T23:59:59.000Z

    The Department of Energy’s Idaho National Laboratory, under its programmatic responsibility for managing the University Research Reactor Conversions, has completed the conversion of the reactor at Purdue University Reactor. With this work completed and in anticipation of other impending conversion projects, the INL convened and engaged the project participants in a structured discussion to capture the lessons learned. The lessons learned process has allowed us to capture gaps, opportunities, and good practices, drawing from the project team’s experiences. These lessons will be used to raise the standard of excellence, effectiveness, and efficiency in all future conversion projects.

  13. Most Viewed Documents - Energy Storage, Conversion, and Utilization...

    Office of Scientific and Technical Information (OSTI)

    - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable...

  14. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with...

  15. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources City of Eagan Civic Ice Arena Renovation Hybrid and Advanced Air Cooling...

  16. Novel Energy Conversion Equipment for Low Temperatures Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility...

  17. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    Assessment. 1978. Renewable ocean energy sources, Part I.on aquaculture and ocean energy systems for the county of310, the Ocean the Ocean Energy Thermal Energy Conversion

  18. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    E-Print Network [OSTI]

    Sands, M.Dale

    2013-01-01T23:59:59.000Z

    Presented at the 7th Ocean Energy Conference, Washington,Power Applications, Division of Ocean Energy Systems, UnitedM.D. (editor). 1980. Ocean Thermal Energy Conversion Draft

  19. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1 environmental Seventh Ocean Energy Michel, H. B. , and M.of the Seventh Ocean Energy Conference, Washington, DC.1979. Commercial ocean thermal energy conversion ( OTEC)

  20. Process Design and Economics for Biochemical Conversion of Lignocellul...

    Broader source: Energy.gov (indexed) [DOE]

    Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover Process Design and...

  1. CHEMICAL TRAPPING OF A PRIMARY QUANTUM CONVERSION PRODUCT IN PHOTOSYNTHESIS

    E-Print Network [OSTI]

    Corker, Gerald A.; Klein, Melvin P.; Calvin, Melvin.

    2008-01-01T23:59:59.000Z

    CONVERSION PRODUCT I N PHOTOSYNTHESIS G e r a l d A. C o r kthe two light acts of photosynthesis. Potassium Ecrricyanide

  2. Steam and Condensate System Optimization in Converse College, Spartanburg, SC

    E-Print Network [OSTI]

    Cruz, A.; Iordanova, N.; Stevenson, S.

    2007-01-01T23:59:59.000Z

    STEAM AND CONDENSATE SYSTEM OPTIMIZATION IN CONVERSE COLLEGE, SPARTANBURG, SC Alberto Cruz, CEM Nevena Iordanova, CEM Susan Stevenson Energy Systems Engineer Director of Engineering Services VP for Finance...

  3. Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing July 30, 2014 Bryna Berendzen Technology Manager BETO Conversion...

  4. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  5. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Biological Conversion of Sugars to Hydrocarbons...

  6. U-058: Apache Struts Conversion Error OGNL Expression Injection...

    Broader source: Energy.gov (indexed) [DOE]

    A vulnerability was reported in Apache Struts. A remote user can execute arbitrary commands on the target system. PLATFORM: Apache Struts 2.x ABSTRACT: Apache Struts Conversion...

  7. Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Algae Hydrothermal Liquefaction Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction Whole algae hydrothermal liquefaction is one of...

  8. 1 Conversational Agents 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    E-Print Network [OSTI]

    Lester, James C.

    Contents 1 Conversational Agents 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Technical Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Natural

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland. merit08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Efficiency Improvement in an...

  10. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most...

  11. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

  12. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  13. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Environmental Management (EM)

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  14. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Broader source: Energy.gov (indexed) [DOE]

    International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf More Documents &...

  15. Bioenergy Technologies Office Conversion R&D Pathway: Syngas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Syngas Upgrading to Hydrocarbon Fuels Bioenergy Technologies Office Conversion R&D Pathway: Syngas Upgrading to Hydrocarbon Fuels Syngas upgrading to hydrocarbon fuels is one of...

  16. EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah...

    Energy Savers [EERE]

    operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the...

  17. DOE Selects Contractor for Depleted Hexafluoride Conversion Project...

    Broader source: Energy.gov (indexed) [DOE]

    to the DOE Portsmouth Paducah Project Office (PPPO) in Lexington, Kentucky and the Depleted Uranium Hexafluoride (DUF6) Conversion Project in Paducah, Kentucky and...

  18. AWARD FEE PLAN FOR Babcock and Wilcox Conversion Services, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services, LLC Second Period -October 1, 2012 through September 30, 2013 Operations of Depleted Uranium Hexafluoride (DUF 6 ) Conversion Facilities at Paducah, Kentucky and...

  19. CONVERSION OF DOE TECHNICAL STANDARDS TO NON-GOVERNMENT STANDARDS

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance on the conversion of DOE Technical Standards to Voluntary Consensus Standards (VCSs), also referred to as non-Government standards. 

  20. Conversations and Connections - The Expertise of our Small Business...

    Office of Environmental Management (EM)

    business owners like Goff find their niche in the government contracting world. "It's a win-win situation to connect someone to someone else," Hopper says. "These conversations...

  1. Sandia National Laboratories: very high solar energy conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    very high solar energy conversion efficiency ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy...

  2. Tenneco upgrades system with equipment conversion

    SciTech Connect (OSTI)

    Wright, K. [Ariel Corp., Mt. Vernon, OH (United States)

    1995-10-01T23:59:59.000Z

    Tenneco Gas, Inc., Houston, recently completed the successful conversion of over 14,300 horsepower compression equipment at its transmission in Catlettsburg, KY. The system consists of three identical Ariel JGC/6 compressors, driven by three matching Ansaldo electric motors, capable of running between 450 and 900 rpm. These variable speed, synchronous electric motors allow for greater flexibility, without the use of traditional cylinder unloaders. If desired Eureka Energy Systems, Richardson, TX designed the compressor package. One of Tenneco`s objectives when selecting a package to upgrade existing compression capabilities was to ensure compliance with future regulations promulgated pursuant to the Clean Air Act Amendments of 1990. Initially, Tenneco considered separable compressors because of the availability of the newer, clean burning, gas ignited drivers in the 5,000 horsepower range, such as the Caterpillar 3612 and 3616. This paper reviews the design, performance and comparative operating cost of these compressor units.

  3. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    SciTech Connect (OSTI)

    Branover, H.; Unger, Y.

    1993-01-01T23:59:59.000Z

    The present volume discusses metallurgical applications of MHD, R D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion.

  4. Overview of the energy conversion program

    SciTech Connect (OSTI)

    LaSala, R.

    1996-04-10T23:59:59.000Z

    I wish we had time to cover all of the DOE-sponsored energy conversion and materials projects in detail, but we don`t. Instead, let me take a few minutes to bring you up to date on several items that will not be discussed elsewhere in this session. First, we still have a cooperative Agreement with Energy, Inc. to demonstrate a 12.4 MW Kalina cycle power plant at Steamboat, Nevada; but the project remains stalled by the lack of a power purchase agreement, a problem that I am sure many of you can appreciate. I hope we can get this project back on track by the time of the next annual meeting of the Geothermal Resources Council in late September.

  5. Modeling and analysis of energy conversion systems

    SciTech Connect (OSTI)

    Den Braven, K.R. (Idaho Univ., Moscow, ID (USA). Dept. of Mechanical Engineering); Stanger, S. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-10-01T23:59:59.000Z

    An investigation was conducted to assess the need for and the feasibility of developing a computer code that could model thermodynamic systems and predict the performance of energy conversion systems. To assess the market need for this code, representatives of a few industrial organizations were contacted, including manufacturers, system and component designers, and research personnel. Researchers and small manufacturers, designers, and installers were very interested in the possibility of using the proposed code. However, large companies were satisfied with the existing codes that they have developed for their own use. Also, a survey was conduced of available codes that could be used or possibly modified for the desired purpose. The codes were evaluated with respect to a list of desirable features, which was prepared as a result of the survey. A few publicly available codes were found that might be suitable. The development, verification, and maintenance of such a code would require a substantial, ongoing effort. 21 refs.

  6. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect (OSTI)

    Sands, M.Dale

    1980-08-01T23:59:59.000Z

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  7. Apparatus and method for pyroelectric power conversion

    DOE Patents [OSTI]

    Olsen, R.B.

    1984-01-10T23:59:59.000Z

    Apparatus and method for converting heat to electrical energy by the use of one or more capacitors having temperature dependent capacitance are disclosed. The capacitor is cycled between relatively high and relatively low temperatures by successive thermal contact with relatively high and relatively low temperature portions of a heat transfer medium having a temperature gradient therein. Upon heating of the capacitor, the capacitance thereof is reduced, so that a charge therein is caused to expand into associated external circuitry in which it is available to do electrical work. The capacitor is then cooled and recharged and the cycle is repeated. The electrical output of the capacitor results from the regenerative delivery of heat to and removal of heat from the capacitor by the heat transfer medium, and efficient conversion of heat to electric energy is thereby effected. 12 figs.

  8. Irradiation Experiment Conceptual Design Parameters for NBSR Fuel Conversion

    SciTech Connect (OSTI)

    Brown, N. R.; Brown, N. R.; Baek, J. S; Hanson, A. L.; Cuadra, A.; Cheng, L. Y.; Diamond, D. J.

    2014-04-30T23:59:59.000Z

    It has been proposed to convert the National Institute of Standards and Technology (NIST) research reactor, known as the NBSR, from high-enriched uranium (HEU) fuel to low-Enriched uranium (LEU) fuel. The motivation to convert the NBSR to LEU fuel is to reduce the risk of proliferation of special nuclear material. This report is a compilation of relevant information from recent studies related to the proposed conversion using a metal alloy of LEU with 10 w/o molybdenum. The objective is to inform the design of the mini-plate and full-size-Plate irradiation experiments that are being planned. This report provides relevant dimensions of the fuel elements, and the following parameters at steady state: average and maximum fission rate density and fission density, fuel temperature distribution for the plate with maximum local temperature, and two-dimensional heat flux profiles of fuel plates with high power densities. The latter profiles are given for plates in both the inner and outer core zones and for cores with both fresh and depleted shim arms (reactivity control devices). A summary of the methodology to obtain these results is presented. Fuel element tolerance assumptions and hot channel factors used in the safety analysis are also given.

  9. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    None

    2012-01-11T23:59:59.000Z

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  10. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J. (Middle Grove, NY); DePoy, David Moore (Clifton Park, NY); Baldasaro, Paul Francis (Clifton Park, NY)

    2007-01-23T23:59:59.000Z

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  11. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Dziendziel, Randolph J. (Middle Grove, NY); Baldasaro, Paul F. (Clifton Park, NY); DePoy, David M. (Clifton Park, NY)

    2010-09-07T23:59:59.000Z

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  12. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20T23:59:59.000Z

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  13. Understanding the Interaction between Interests, Conversations and Friendships in Facebook

    E-Print Network [OSTI]

    Understanding the Interaction between Interests, Conversations and Friendships in Facebook Qirong the Interaction between Interests, Conversations and Friendships in Facebook Qirong Ho Rong Yan Rajat Raina Eric P 15213 Facebook, 10 Hacker Way, Menlo Park CA 94025 Abstract In this paper, we explore salient questions

  14. On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1 , Olivier Rosec1 , Thierry.chonavel@telecom-bretagne.eu Abstract This paper explores the benefits of transforming spectral peaks in voice conversion. First, in examining classic GMM- based transformation with cepstral coefficients, we show that the lack of transformed

  15. advanced energy conversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy conversion First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy Conversion Advanced Heat...

  16. Commercial considerations in conversion and UF{sub 6} transactions

    SciTech Connect (OSTI)

    NONE

    1994-02-01T23:59:59.000Z

    This article addresses various commercial considerations that result from the conversion of U3O8 into UF6 and the associated physical characteristics of natural UF6. Handling, transport, conversion, and enrichment of UF6 are discussed. Avenues of acquisition, including nation of origin, are also noted.

  17. Jet conversions in a quark-gluon plasma

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming; Zhang, B. W.

    2007-01-01T23:59:59.000Z

    Quark and gluon jets traversing through a quark-gluon plasma not only lose their energies but also can undergo flavor conversions. The conversion rates via the elastic q((q) over bar )g -> gq((q) over bar )and the inelastic q (q) over bar gg...

  18. Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion

    E-Print Network [OSTI]

    Singh, Anup

    Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion Rajiv Bharadwaj such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Lignocellulosic (LC) biomass is an abundant and potentially carbon-neutral resource for production of biofuels

  19. The Benefits of Planar Magnetics in OF Power Conversion

    E-Print Network [OSTI]

    is increased, are related to the magnetic components: transformers and inductors. Unless the copper and coreThe Benefits of Planar Magnetics in OF Power Conversion Planar Magnetics (PM): The Technology that Meets the Challenges of HF Switch and Resonant Mode Power Conversion Professor Sam Ben-Yaakov Department

  20. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion

    E-Print Network [OSTI]

    Lin, Liwei

    Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency Chieh conversion efficiency. Here, we report direct-write, piezoelectric polymeric nanogenerators based on organic to direct-write poly(vinylidene fluoride) (PVDF) nanofibers with in situ mechanical stretch and electrical

  1. Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks

    E-Print Network [OSTI]

    Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks PNNL-16951 DRAFT Authors bottlenecks that may arise in the conversion and fuel fabrication steps when used in conjunction with the U.S.-sponsored Reliable Fuel Supply (RFS) reserve. Paper is also intended to identify pathways for assessing the magnitude

  2. Electroluminescent apparatus having a structured luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus (Sunnyvale, CA)

    2008-09-02T23:59:59.000Z

    An apparatus such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer disposed on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains color-changing and non-color-changing regions arranged in a particular pattern.

  3. A converse Lyapunov theorem for asymptotic stability in probability

    E-Print Network [OSTI]

    Hespanha, João Pedro

    1 A converse Lyapunov theorem for asymptotic stability in probability A.R. Teel, J.P. Hespanha, A. Subbaraman Abstract A converse Lyapunov theorem is established for discrete-time stochastic systems with non implies the existence of a continuous Lyapunov function, smooth outside of the attractor, that decreases

  4. WHEELS: A CONVERSATIONAL SYSTEM IN THE AUTOMOBILE CLASSIFIEDS DOMAIN

    E-Print Network [OSTI]

    WHEELS: A CONVERSATIONAL SYSTEM IN THE AUTOMOBILE CLASSIFIEDS DOMAIN Helen Meng, Senis WHEELS is a conversational system which provides access to a database of eletronic automobile classified users to search through a database of 5,000 automobile classifieds. The current end-to-end system can re

  5. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  6. High power density thermophotovoltaic energy conversion

    SciTech Connect (OSTI)

    Noreen, D.L. [R& D Technologies, Inc., Hoboken, New Jersey 07030 (United States); Du, H. [Department of Materials Science and Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States)

    1995-01-05T23:59:59.000Z

    R&D Technologies is developing thermophotovoltaic (TPV) technology based on the use of porous/fibrous ceramic broadband-type emitter designs that utilize recuperative or regenerative techniques to improve thermal efficiency and power density. This paper describes preliminary estimates of what will be required to accomplish sufficient power density to develop a practical, commercially-viable TPV generator. It addresses the needs for improved, thermal shock-resistant, long-life porous/fibrous ceramic emitters and provides information on the photocell technology required to achieve acceptable power density in broadband-type (with selective filter) TPV systems. TPV combustors/systems operating at a temperature of 1500 {degree}C with a broadband-type emitter is proposed as a viable starting point for cost-effective TPV conversion. Based on current projections for photocell cost, system power densities of 7.5--10 watts per square centimeter of emitter area will be required for TPV to become a commercially viable technology. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  7. Conversion of bagasse cellulose into ethanol

    SciTech Connect (OSTI)

    Cuzens, J.E.

    1997-11-19T23:59:59.000Z

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  8. Open cycle ocean thermal energy conversion system

    DOE Patents [OSTI]

    Wittig, J. Michael (West Goshen, PA)

    1980-01-01T23:59:59.000Z

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  9. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30T23:59:59.000Z

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  10. Method for the photocatalytic conversion of gas hydrates

    DOE Patents [OSTI]

    Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

    2001-01-01T23:59:59.000Z

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  11. Conversion of methane and acetylene into gasoline range hydrocarbons

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    Conversion Apparatus. . . 20 22 Temperature Profile Inside the Reactor. . 30 Methane and Acetylene Conversion over Time on Stream, T = 412 C, Molar Feed Ratio = 6/I (CH4/CqHr). . 36 Mass Flow Rate (g/s) of the Effluent Gas (Unreacted Methane... and Acetylene, Isobutane, Ethylene, and Nitrogen) from the Reactor Integrated over Time on Stream. 40 Mass Flow Rate (g/s) of the Gas Products (Isobutane and Ethylene) Integrated over Time on Stream. 41 Methane and Acetylene Conversion over Time on Stream...

  12. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL] [ORNL; Lee, Denise L [ORNL] [ORNL; Croft, Stephen [ORNL] [ORNL; McElroy, Robert Dennis [ORNL] [ORNL; Hertel, Nolan [Georgia Institute of Technology] [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL] [ORNL; Cleveland, Steven L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  13. --No Title--

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    International Energy Statistics - Units Close Window Energy Equivalent Conversions Million Btu (British thermal units) Giga (109) Joules TOE (Metric Tons of Oil Equivalent) TCE...

  14. advanced conversion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas S. Piwonka 1997-01-01 25 Energy Conversion Advanced Heat Transport Loop and Power Cycle Chang Oh CiteSeer Summary: ii iii The Department of Energy and the Idaho...

  15. Power conversion architecture for grid interface at high switching frequency

    E-Print Network [OSTI]

    Lim, Seungbum

    This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and ...

  16. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

  17. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringthermal energy conversion ( OTEC) plants by mid-1980 1 s.distributiion at potential OTEC sites. p. 7D-4/1-4/5. In

  18. Toward Widely-Available and Usable Multimodal Conversational Interfaces

    E-Print Network [OSTI]

    Gruenstein, Alexander

    2009-01-01T23:59:59.000Z

    Multimodal conversational interfaces, which allow humans to interact with a computer using a combination of spoken natural language and a graphical interface, offer the potential to transform the manner by which humans ...

  19. Coal Conversion Facility Privilege Tax Exemptions (North Dakota)

    Broader source: Energy.gov [DOE]

    Coal Conversion Facility Privilege Tax Exemptions are granted under a variety of conditions through the North Dakota Tax Department. Privilege tax, which is in lieu of property taxes on the...

  20. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  1. advanced coal conversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the coal plant is transmitted over the transmission lines, Phadke, Amol 2008-01-01 7 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

  2. Control strategies for supercritical carbon dioxide power conversion systems

    E-Print Network [OSTI]

    Carstens, Nathan, 1978-

    2007-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-C02) recompression cycle is a promising advanced power conversion cycle which couples well to numerous advanced nuclear reactor designs. This thesis investigates the dynamic simulation ...

  3. Thermoelectrics and aerogels for solar energy conversion systems

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2015-01-01T23:59:59.000Z

    Concerns about climate change, the world's growing energy needs, and energy independence are driving demand for solar energy conversion technologies. Solar thermal electricity generation has the potential to ll this demand. ...

  4. Drinking up endings: conversational resources of the café 

    E-Print Network [OSTI]

    Laurier, Eric

    2008-01-01T23:59:59.000Z

    A first theme of this article is the abiding relationship between the café and conversation. A relationship which begins with Habermas’s emphasis on political debate in early modernity and continues to more contemporary ...

  5. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect (OSTI)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23T23:59:59.000Z

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  6. Opportunities and challenges in Very High Frequency power conversion

    E-Print Network [OSTI]

    Perreault, David J.

    This paper explores opportunities and challenges in power conversion in the VHF frequency range of 30-300 MHz. The scaling of magnetic component size with frequency is investigated, and it is shown that substantial ...

  7. Raconteur : intelligent assistance for conversational storytelling with media libraries

    E-Print Network [OSTI]

    Chi, Pei-Yu, S.M. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    People who are not professional storytellers sometimes have difficulty putting together a coherent and engaging story, even when it is about their own experiences. However, consider putting the same person in a conversation ...

  8. Kinetics of high-conversion hydrocracking of bitumen

    SciTech Connect (OSTI)

    Nagaishi, H.; Gray, M.R. [Univ. of Alberta, Edmonton (Canada); Chan, E.W.; Sanford, E.C. [Syncrude Canada, Edmonton, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    Residues are complex mixtures of thousands of components. This mixture will change during hydrocracking, so that high conversion may result in a residue material with different characteristics from the starting material. Our objective is to determine the kinetics of residue conversion and yields of distillates at high conversions, and to relate these observations to the underlying chemical reactions. Athabasca bitumen was reacted in a 1-L CSTR in a multipass operation. Product from the first pass was collected, then run through the reactor again and so on, giving kinetic data under conditions that simulated a multi-reactor or packed-bed operation. Experiments were run both with hydrocracking catalyst and without added catalyst. Products were analyzed by distillation, elemental analysis, NMR, and GPC. These data will be used to derive a kinetic model for hydrocracking of bitumen residue covering a wide range of conversion (from 30% to 95%+), based on the underlying chemistry.

  9. Automotive Waste Heat Conversion to Electric Power using Skutterudites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe and Bi2Te3 Presentation given at DEER...

  10. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Office of Environmental Management (EM)

    Bio-Oils Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Introduction presentation report-out at the CTAB webinar on bio-oils. ctabwebinarbiooilsintro.pdf...

  11. Theoretical investigation of solar energy conversion and water oxidation catalysis

    E-Print Network [OSTI]

    Wang, Lee-Ping

    2011-01-01T23:59:59.000Z

    Solar energy conversion and water oxidation catalysis are two great scientific and engineering challenges that will play pivotal roles in a future sustainable energy economy. In this work, I apply electronic structure ...

  12. Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McCorkle Communications and Media Relations 865.574.7308 Vertimass licenses ORNL biofuel-to-hydrocarbon conversion technology Vertimass LLC, a California-based start-up...

  13. Y-12 fulfills major milestone in fuel conversion commitment for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Y-12 fulfills major milestone in fuel conversion commitment for Jamaican research reactor Posted: June 3, 2014 - 4:42pm The Y-12 National Security Complex recently completed...

  14. Optimization of Oxygen Purity for Coal Conversion Energy Reduction

    E-Print Network [OSTI]

    Baker, C. R.; Pike, R. A.

    1982-01-01T23:59:59.000Z

    The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

  15. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    Ocean Thermal Energy Conversion (OTEC) sites to identify thefishery resources at potential OTEC sites. At this time, thethermal energy conversion (OTEC) program; preoperational

  16. Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion chen.pdf More Documents & Publications Solar Thermoelectric...

  17. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    Solar Energy Conversion Applications By Dusan Coso B.S. (UniversitySolar Energy Conversion Applications by Dusan Coso Doctor of Philosophy in Engineering – Mechanical Engineering University

  18. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01T23:59:59.000Z

    nental Assessment, Ocean Thermal Energy Conversion (OTEC)Impact Assessment Ocean Thermal Energy Conversion (OTEC),Intake Screens for Ocean Thermal Energy M.S. Thesis. Oregon

  19. NEUTRINO SPIN AND FLAVOUR CONVERSION AND OSCILLATIONS IN MAGNETIC FIELD

    E-Print Network [OSTI]

    A. M. Egorov; G. G. Likhachev; A. I. Studenikin

    1995-06-09T23:59:59.000Z

    A review of the neutrino conversion and oscillations among the two neutrino species (active and sterile) induced by strong twisting magnetic field is presented and implications to neutrinos in neutron star, supernova, the Sun and interstellar galactic media are discussed. The ``cross-boundary effect" (CBE) (i.e., a possible conversion of one half of neutrinos of the bunch from active into sterile specie) at the surface of neutron star is also studied for a realistic neutron star structure.

  20. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema (OSTI)

    Jim Schuck and Alice Egan

    2010-01-08T23:59:59.000Z

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  1. Department for Environment, Food and Rural Affairs Guidelines to Defra's Greenhouse Gas Conversion Factors for

    E-Print Network [OSTI]

    Annex 3 · To understand which industrial processes lead to GHG emissions see Annex 4 · Global warming from Combined Heat and Power (CHP) see Annex 2 · To calculate emissions from the use of Electricity see

  2. Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007

    E-Print Network [OSTI]

    and Exports Last updated: Jun-05 Total emissions (kg CO2) Total electricity produced Total heat produced kg CO2/kWh elecricity Total emissions (kg CO2) Total electricity produced Total heat produced kg CO2/kWh heat Emissions (in kgCO2) per kWh electricity = twice total emissions (in kgCO2) twice total

  3. Nondestructive optical characterization of chemical conversion coatings on aluminum

    SciTech Connect (OSTI)

    Schram, T.; De Laet, J.; Terryn, H. [Vrije Univ. Brussel, Brussels (Belgium). Dept. of Metallurgy, Electrochemistry, and Materials Science

    1998-08-01T23:59:59.000Z

    Chromium phosphate conversion coatings on aluminum have been characterized with nondestructive optical techniques. Complementary vibrational spectroscopy techniques, i.e., Fourier transform infrared spectroscopy and confocal micro-Raman spectroscopy, prove the presence of chromium phosphate as principal component in the coating. Additionally, aluminum oxide and indications for the presence of chromium oxide and aluminum fluoride are found. Reflection/absorption infrared spectroscopy (RAIRS) allows analysis of coatings as thin as 40 nm, while confocal micro-Raman spectroscopy is limited to thicknesses above about 150 nm. Compared to RAIRS spectra, the interpretation of Raman spectra is easier due to the morphological characteristics of the conversion coatings, e.g., the coating thickness, using a simulation and regression procedure based on a two-layer optical model. The optical constants of the upper layer, which in a first approximation can be attributed to the chromium phosphate part of the conversion coating, can explain the greenish appearance of the thickest conversion coatings. A linear relationship exists between the coating thickness and the conversion time. An analogous linear relation exists between the conversion time and the peak areas of most of the absorption peaks in the RAIRS spectra.

  4. Guidelines in Wave Energy Conversion System Design

    E-Print Network [OSTI]

    Guiberteau, K. L.; Liu, Y.; Lee, J.; Kozman, T.

    2014-01-01T23:59:59.000Z

    surfaces. In the Minerals Management Service (MMS) report on the design standards of WECs, there are three areas in which the devices can be placed: topside, which is out of the water; in the splash zone, where water meets air; and subsea, which... is under the water [9]. When devices are subsea, air is less of a factor and these devices can better resist corrosion. Because of the presence of weather events like hurricanes and tropical storms, it is important that WECs are resilient and able...

  5. Characterization of solid waste conversion and cogeneration systems

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    The primary objective of the TASE program is to determine the probable consequences to the environment and to public health and safety resulting from widespread implementation of major solar and renewable resource technologies. The specific principal Phase I objective is to determine the levels of residuals most likely to result throughout the complete energy cycle from the utilization of each of the solar and renewable resource technologies. Three basic technologies for recovering energy from M SW are considered in this study. These are: (1) direct combustion using a waterwall incinerator in which the heat from burning refuse is converted to steam by circulating water in steel tubes jacketing the interior of the incinerator; (2) manufacture of a relatively uniform shredded, pulverized or pelleted refuse-derived fuel (RDF) for supplemental firing in a utility boiler; and (3) pyrolysis or destructive distillation of MSW to extract a low-Btu fuel gas. While resource recovery and energy recovery systems can be installed independently, the processes described here include both energy and resource recovery systems as well as necessary pollution control equipment for gaseous emissions. To meet the Phase I objective, LBL staff have characterized the individual application associated with each general technology; calculated operational residuals generated by each application; determined the input capital requirements and, when possible, annual operating input requirements; and have identified the technical and institutional constraints for the widespread implementation of each application. A description is presented of the energy and material development cycle required for the implementation of each technology. The capital requirements are compiled and presented in a SEAS system format.

  6. Particle Acceleration through Multiple Conversions from Charged into Neutral State and Back

    E-Print Network [OSTI]

    E. V. Derishev; F. A. Aharonian; V. V. Kocharovsky; Vl. V. Kocharovsky

    2003-06-09T23:59:59.000Z

    We propose a new way of quick and very efficient acceleration of protons and/or electrons in relativistic bulk flows. The new mechanism takes advantage of conversion of particles from the charged state (protons or electrons/positrons) into neutral state (neutrons or photons) and back. In most cases, the conversion is photon-induced and requires presence of intense radiation fields, but the converter acceleration mechanism may also operate via inelastic nucleon-nucleon collisions. Like in the traditional model -- ``stochastic'' (or diffusive) acceleration, -- the acceleration cycle in our scenario consists of escape of particles from the relativistic flow followed by their return back after deflection from the ambient magnetic field. The difference is that the charge-changing reactions, which occur during the cycle, allow accelerated particles to increase their energies in each cycle by a factor roughly equal to the bulk Lorentz factor squared. The emerging spectra of accelerated particles can be very hard and their cut-off energy in some cases is larger than in the standard mechanism. This drastically reduces the required energy budget of the sources of the highest-energy particles observed in cosmic rays. Also, the proposed acceleration mechanism may serve as an efficient means of transferring the energy of bulk motion to gamma-radiation and, if the accelerated particles are nucleons, routinely produces high-energy neutrinos at $\\sim 50 %$ relative efficiency.

  7. mConverse: Inferring Conversation Episodes from Respiratory Measurements Collected in the Field

    E-Print Network [OSTI]

    Kumar, Santosh

    , Experimentation, Measurement, Human Factors Permission to make digital or hard copies of all or part of this work Electrical & Comp. Engg. Behavioral Medicine University of Memphis The Ohio State University University

  8. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes

    E-Print Network [OSTI]

    Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes Iván López-Montero

  9. Assistant, Associate or Full Professor (Mid-Career)(10-657) Energy Conversion Position in MAE

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    , and biofuels. Excellent candidates in other areas of energy conversion will also be given full consideration

  10. SYNTAX-DIRECTED TRANSLATION SCHEMES FOR MULTI -AGENT SYSTEMS CONVERSATION MODELLING

    E-Print Network [OSTI]

    Fred, Ana

    SYNTAX-DIRECTED TRANSLATION SCHEMES FOR MULTI - AGENT SYSTEMS CONVERSATION MODELLING Ana Fred-intensive business processes based on formal conversations, i.e. partially ordered sets of communicative acts representation of agent conversations. In this paper we present a formal method for conversation representation

  11. Energy Conversion and Storage Program: 1992 Annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1993-06-01T23:59:59.000Z

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  12. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect (OSTI)

    Sackinger, W.M.

    1992-07-01T23:59:59.000Z

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  13. Plasma-induced conversion of surface-adsorbed hydrocarbons

    SciTech Connect (OSTI)

    Sackinger, W.M.

    1992-01-01T23:59:59.000Z

    Experimental results are reported for an electrical device for direct conversion of methane into higher hydrocarbons. A microchannel plate is excited with electrons from a photoemissive source, and electron impact ionization of methane on the inner surfaces of the microchannels creates an ion feedback process. The resulting low-density plasma creates higher hydrocarbons when charged particles impact the surfaces at grazing incidence. The production Of C{sub 2} to C{sub 8}-containing gases was noted, with a selectivity for C{sub 2} of 39% in one case. The proportions of converted products and the conversion rates depend upon the electrical voltage, the microchannel geometry, and the operating pressure. Conversion rates increase with operating pressure.

  14. Novel, Integrated Reactor / Power Conversion System (LMR-AMTEC)

    SciTech Connect (OSTI)

    Pablo Rubiolo, Principal Investigator

    2003-03-21T23:59:59.000Z

    The main features of this project were the development of a long life (up to 10 years) Liquid Metal Reactor (LMR) and a static conversion subsystem comprising an Alkali Metal Thermal-to-Electric (AMTEC) topping cycle and a ThermoElectric (TE) Bottom cycle. Various coupling options of the LMR with the energy conversion subsystem were explored and, base in the performances found in this analysis, an Indirect Coupling (IC) between the LMR and the AMTEC/TE converters with Alkali Metal Boilers (AMB) was chosen as the reference design. The performance model of the fully integrated sodium-and potassium-AMTEC/TE converters shows that a combined conversion efficiency in excess of 30% could be achieved by the plant. (B204)

  15. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  16. Proceedings of the 25th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01T23:59:59.000Z

    This book contains the proceedings of the 25th Intersociety Energy Conversion Engineering Conference. Volume 5 is organized under the following headings: Photovoltaics I, Photovoltaics II, Geothermal power, Thermochemical conversion of biomass, Energy from waste and biomass, Solar thermal systems for environmental applications, Solar thermal low temperature systems and components, Solar thermal high temperature systems and components, Wind systems, Space power sterling technology Stirling cooler developments, Stirling solar terrestrial I, Stirling solar terrestrial II, Stirling engine generator sets, Stirling models and simulations, Stirling engine analysis, Stirling models and simulations, Stirling engine analysis, Stirling engine loss understanding, Novel engine concepts, Coal conversion and utilization, Power cycles, MHD water propulsion I, Underwater vehicle powerplants - performance, MHD underwater propulsion II, Nuclear power, Update of advanced nuclear power reactor concepts.

  17. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.

    1997-12-23T23:59:59.000Z

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.

  18. Segregated tandem filter for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOE Patents [OSTI]

    Brown, Edward J. (Clifton Park, NY); Baldasaro, Paul F. (Clifton Park, NY); Dziendziel, Randolph J. (Middlegrove, NY)

    1997-01-01T23:59:59.000Z

    A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.

  19. Statistics of multiphoton events in spontaneous parametric down-conversion

    E-Print Network [OSTI]

    Wojciech Wasilewski; Czeslaw Radzewicz; Robert Frankowski; Konrad Banaszek

    2008-05-12T23:59:59.000Z

    We present an experimental characterization of the statistics of multiple photon pairs produced by spontaneous parametric down-conversion realized in a nonlinear medium pumped by high-energy ultrashort pulses from a regenerative amplifier. The photon number resolved measurement has been implemented with the help of a fiber loop detector. We introduce an effective theoretical description of the observed statistics based on parameters that can be assigned direct physical nterpretation. These parameters, determined for our source from the collected experimental data, characterize the usefulness of down-conversion sources in multiphoton interference schemes that underlie protocols for quantum information processing and communication.

  20. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01T23:59:59.000Z

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  1. Methods for natural gas and heavy hydrocarbon co-conversion

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Detering, Brent A. (Idaho Falls, ID)

    2009-02-24T23:59:59.000Z

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  2. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOE Patents [OSTI]

    Li, Qi (Marlborough, MA); Thompson, Elliott D. (Coventry, RI); Riley, Jr., Gilbert N. (Marlborough, MA); Hellstrom, Eric E. (Madison, WI); Larbalestier, David C. (Madison, WI); DeMoranville, Kenneth L. (Jefferson, MA); Parrell, Jeffrey A. (Roselle Park, NJ); Reeves, Jodi L. (Madison, WI)

    2003-04-29T23:59:59.000Z

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  3. Energy conversion device with support member having pore channels

    DOE Patents [OSTI]

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07T23:59:59.000Z

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  4. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant

    E-Print Network [OSTI]

    Raiji, Ashok

    1980-01-01T23:59:59.000Z

    Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

  5. Stress and Cognitive Load in Multimodal Conversational Interactions

    E-Print Network [OSTI]

    Nijholt, Anton

    ) and time pressure. Heart rate variability (HRV) and galvanic skin response (GSR) as well as subjective with a multimodal conversational system for crisis management. 2 Experiment Design A first system simulation was build using the CSLU toolkit1 . The simulation is meant to serve as a support tool for crisis managers

  6. Power Conversion Efficiency Characterization and Optimization for Smartphones

    E-Print Network [OSTI]

    Pedram, Massoud

    Power Conversion Efficiency Characterization and Optimization for Smartphones Woojoo Lee Yanzhi charging operations even with a 2000 mAh battery. This is in spite of many power manage- ment techniques waste a significant amount of the battery's stored energy during power con- version from the 3.7V output

  7. Instrumental Borders of Gender and Religious Conversion in the Balkans*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Instrumental Borders of Gender and Religious Conversion in the Balkans* ALBERT DOJA ABSTRACT In this paper I look at religious identifications and affiliations in the Balkans as instrumental political else, the Balkans is a place of passages, encounters and contacts, formidable in its capability

  8. Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis Elie Al-Ahmar1,2 , Mohamed El, induction generator, Discrete Wavelet Transform (DWT), failure diagnosis. I. Introduction Wind energy the condition of induction machines. Fig. 1. Worldwide growth of wind energy installed capacity [1]. 1 E. Al

  9. What is Supercomputing? A Conversation with Kathy Yelick

    ScienceCinema (OSTI)

    Kathy Yelick

    2013-06-24T23:59:59.000Z

    In this highlight video, Jeff Miller, head of Public Affairs, sat down in conversation with Kathy Yelick, Associate Berkeley Lab Director, Computing Sciences, in the second of a series of "powerpoint-free" talks on July 18th 2012, at Berkeley Lab.

  10. Tidal Conversion at a Submarine Ridge FRANOIS PTRLIS

    E-Print Network [OSTI]

    Young, William R.

    that control the tidally powered radiation of in- ternal gravity waves (the "tidal conversion") from received 30 July 2003, in final form 20 January 2004) ABSTRACT The radiative flux of internal wave energy tide over submarine topography is a main source of the mechanical energy required to power the internal

  11. Catalyst and process development for synthesis gas conversion to isobutylene

    SciTech Connect (OSTI)

    Anthony, R.G.; Akgerman, A.

    1992-05-26T23:59:59.000Z

    The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene.

  12. CRAD, Training- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of the Training Program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  13. Modal conversion with artificial materials for photonic-crystal waveguides

    E-Print Network [OSTI]

    Boyer, Edmond

    Optics (Van Nostrand Reinhold, New York, 1972). 3. Y. Xu, R. K. Lee and A. Yariv, "Adiabatic coupling, France Philippe.lalanne@iota.u-psud.fr A. Talneau Laboratoire de Photonique et de Nanostructures, Centre and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-69 (2001). 5. A. Mekis and J.D. Joannopoulos

  14. Computational study of power conversion and luminous efficiency performance for

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Computational study of power conversion and luminous efficiency performance for semiconductor) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of 90 (with R9 at least 70), a luminous efficacy

  15. Conversion and Operation of CAST as a massive axion detector

    E-Print Network [OSTI]

    Elias, Nuno; Bordalo, Paula

    2010-01-01T23:59:59.000Z

    The axion was postulated after an elegant solution proposed by R. Peccei and H. Quinn to solve the strong CP problem of Quantum Chromodynamics. The CAST experiment searches for axions created in the core of the Sun. It uses an LHC superconducting prototype magnet to trigger the axion conversion into detectable X-ray photons. During its First Phase, with the magnetic field region kept under vacuum, CAST searched with high sensitivity for axion masses up to 0.02 eV/c2, for higher values the conversion coherence is lost. This thesis reflects the work that allows CAST to extend its search up to axion masses of 1 eV/c2. To restore the lost coherence a buffer gas is introduced in the magnet cold bores, such that the photon arising from the Primakoff conversion acquires an effective mass. The axion mass can be effectively scanned by fine tuning the gas density. The conversion of the experiment required the study, design and construction of a complex gas handling system to deal with a rare helium isotope, 3He. It rep...

  16. Compact anhydrous HCl to aqueous HCl conversion system

    DOE Patents [OSTI]

    Grossman, M.W.; Speer, R.

    1993-06-01T23:59:59.000Z

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a [sup 196]Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  17. Compact anhydrous HCl to aqueous HCl conversion system

    SciTech Connect (OSTI)

    Grossman, Mark W. (Belmont, MA); Speer, Richard (S. Hamilton, MA)

    1993-01-01T23:59:59.000Z

    The present invention is directed to an inexpensive and compact apparatus adapted for use with a .sup.196 Hg isotope separation process and the conversion of anhydrous HCl to aqueous HCl without the use of air flow to carry the HCl vapor into the converter system.

  18. Thermochemical conversion of waste materials to valuable products

    SciTech Connect (OSTI)

    Saraf, S. [Engineering Technologies, Lombard, IL (United States)

    1997-12-31T23:59:59.000Z

    The potential offered by a large variety of solid and liquid wastes for generating value added products is widely recognized. Extensive research and development has focused on developing technologies to recover energy and valuable products from waste materials. These treatment technologies include use of waste materials for direct combustion, upgrading the waste materials into useful fuel such as fuel gas or fuel oil, and conversion of waste materials into higher value products for the chemical industry. Thermal treatment in aerobic (with oxygen) conditions or direct combustion of waste materials in most cases results in generating air pollution and thereby requiring installation of expensive control devices. Thermochemical conversion in aerobic (without oxygen) conditions, referred to as thermal decomposition (destructive distillation) results in formation of usable liquid, solid, and gaseous products. Thermochemical conversion includes gasification, liquefaction, and thermal decomposition (pyrolysis). Each thermochemical conversion process yields a different range of products and this paper will discuss thermal decomposition in detail. This paper will also present results of a case study for recovering value added products, in the form of a liquid, solid, and gas, from thermal decomposition of waste oil and scrap tires. The product has a high concentration of benzene, xylene, and toluene. The solid product has significant amounts of carbon black and can be used as an asphalt modifier for road construction. The gas product is primarily composed of methane and is used for heating the reactor.

  19. Wireless Sensor Network Energy Conversation Nathan A. Menhorn

    E-Print Network [OSTI]

    Wireless Sensor Network Energy Conversation Techniques Nathan A. Menhorn October 20, 2005 #12;Contents 1 Introduction to Wireless Sensor Networks 3 1.1 General Overview A Wireless Sensor Network Glossary 68 2 #12;Chapter 1 Introduction to Wireless Sensor Networks 1.1 General

  20. Photon-Axion conversions in transversely inhomogeneous magnetic fields

    E-Print Network [OSTI]

    Javier Redondo

    2010-03-01T23:59:59.000Z

    We compute the photon-axion conversion probability in an external magnetic field with a strong transverse gradient in the eikonal approximation for plane waves. We find it typically smaller than a comparable uniform case. Some insights into the phenomenon of photon-axion splitting are given.

  1. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  2. A New Optimum Jitter Protection for Conversational VoIP

    E-Print Network [OSTI]

    Kabal, Peter

    A New Optimum Jitter Protection for Conversational VoIP Qipeng Gong, Peter Kabal Electrical.kabal@mcgill.ca Abstract--In Voice-over-IP, jitter buffers are introduced at both sides of the sender and the receiver to compensate for delay jitters. A longer buffer reduces the possibility of packet loss and packet disorder

  3. Conversations for a smarter planet: A planet of smarter cities.

    E-Print Network [OSTI]

    a real impact today. But they are just the first step toward a true smart city. For a glimpse of whatConversations for a smarter planet: A planet of smarter cities. © Copyright IBM Australia Limited.ibm.com/legal/copytrade.shtml IBMCCA1043_Cities_R In 1901, only 36% of Australia's population lived in metropolitan areas. Now

  4. Bridging the Divide in Democratic Engagement: Studying Conversation Patterns in

    E-Print Network [OSTI]

    Ramakrishnan, Naren

    , where there is a concentration of poverty, are both less likely to exhibit these democratic behaviors compare informal conversational activity that takes place online in communities of high and low poverty of i-Neighbors by poverty level, and apply our algorithm to six neighborhoods (three economically

  5. CRAD, Management- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Management program at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

  6. Surface Tension Mediated Conversion of Light to Work David Okawa,,

    E-Print Network [OSTI]

    Zettl, Alex

    of intermediates. Considerable effort has been devoted to improving energy collection, storage, and utilization;2Surface Tension Mediated Conversion of Light to Work David Okawa,, Stefan J. Pastine, Alex Zettl,,§ and Jean M. J. Fre´chet*,,§ College of Chemistry and Department of Physics, UniVersity of California

  7. Energy Conversion and Storage Program. 1990 annual report

    SciTech Connect (OSTI)

    Cairns, E.J.

    1992-03-01T23:59:59.000Z

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  8. Indoor Dose Conversion Coefficients for Radon Progeny for Different

    E-Print Network [OSTI]

    Yu, K.N.

    Indoor Dose Conversion Coefficients for Radon Progeny for Different Ambient Environments K . N . Y Inhaled progeny of 222Rn (radon progeny) are the most important source of irradiation of the human-, urban-, and marine-influenced aerosols. The ASDs of attached radon progeny for all three studied ambient

  9. Proceedings of the 27th intersociety energy conversion engineering conference

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding.

  10. Energy conversion of fully random thermal relaxation times Franois Barriquand

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Energy conversion of fully random thermal relaxation times François Barriquand proba5050@hotmail.com ABSTRACT. Thermodynamic random processes in thermal systems are generally associated with one or several relaxation times, the inverse of which are formally homogeneous with energy. Here, we show in a precise way

  11. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25T23:59:59.000Z

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  12. A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels

    SciTech Connect (OSTI)

    Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.; Dai, Ziyu; Ramasamy, Karthikeyan K.; Zhu, Yunhua

    2010-09-01T23:59:59.000Z

    Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can be produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.

  13. Biomass Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Mohammad S. Roni; Patrick Lamers; Kara G. Cafferty

    2014-09-01T23:59:59.000Z

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  14. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect (OSTI)

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01T23:59:59.000Z

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets. The 2012 $35 programmatic target included only logistics costs with a limited focus on biomass quality

  15. Conversion of CO2 into Commercial Materials Using Carbon Feedstocks

    SciTech Connect (OSTI)

    Shen, Jian-Ping; Peters, Jonathan; Lail, Marty; Mobley, Paul; Turk, Brian

    2014-05-31T23:59:59.000Z

    In this project, our research focused on developing reaction chemistry that would support using carbon as a reductant for CO2 utilization that would permit CO2 consumption on a scale that would match or exceed anthropomorphic CO2 generation for energy production from fossil fuels. Armed with the knowledge that reactions attempting to produce compounds with an energy content greater than CO2 would be thermodynamically challenged and/or require significant amounts of energy, we developed a potential process that utilized a solid carbon source and recycled the carbon to effectively provide infinite time for the carbon to react. During testing of different carbon sources, we found a wide range of reaction rates. Biomass-derived samples had the most reactivity and coals and petcoke had the lowest. Because we had anticipated this challenge, we recognized that a catalyst would be necessary to improve reaction rates and conversion. From the data analysis of carbon samples, we recognized that alkali metals improved the reaction rate. Through parametric testing of catalyst formulations we were able to increase the reaction rate with petcoke by a factor of >70. Our efforts to identify the reaction mechanism to assist in improving the catalyst formulation demonstrated that the catalyst was catalyzing the extraction of oxygen from CO2 and using this extracted oxygen to oxidize carbon. This was a significant discovery in that if we could modify the catalyst formulation to permit controlled the oxidation, we would have a very power selective oxidation process. With selective oxidation, CO2 utilization could be effective used as one of the process steps in making many of the large volume commodity chemicals that support our modern lifestyles. The key challenges for incorporating these functionalities into the catalyst formulation were to make the oxidation selective and lower the temperature required for catalytic activity. We identified four catalyst families that had the potential to meet these challenges. Initial screening of the catalyst families did show that the reduction/oxidation activity did occur at lower temperatures and that these catalysts were able to cause carbon chain growth as well as C—C cleavage. A preliminary techno-economic feasibility of using petcoke/catalyst to produce a CO-rich syngas product was completed and showed significant economic promise. Testing of the different catalyst families demonstrated that Catalyst A was able to stably produce 5 sccm of ethylene/gram of catalyst at 900°C for one hour. For dry methane reforming, our Catalyst 4 was able to achieve production rates of > 10 sccm of CO and > 3 sccm of H2 per gram of catalyst at 600°C and 350 psig. Based on these developments, the potential for CO2 utilization in the production of large volume commodity chemicals is very promising.

  16. Power Factor Compensation (PFC) Power Factor Compensation

    E-Print Network [OSTI]

    Knobloch,Jürgen

    Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

  17. A PRELIMINARY EVALUATION OF IMPINGEMENT AND ENTRAINMENT BY OCEAN THERMAL ENERGY CONVERSION (OTEC) PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2013-01-01T23:59:59.000Z

    Thermal Energy Conversion (OTEC) Program PreoperationalThermal Energy Conversion (OTEC), U.S. Department of Energy,aspects of the screens for OTEC intake systems. U.S. Energy

  18. Analysis of a direct energy conversion system using medium energy helium ions

    E-Print Network [OSTI]

    Carter, Jesse James

    2006-08-16T23:59:59.000Z

    A scaled direct energy conversion device was built to convert kinetic energy of singly ionized helium ions into an electric potential by the process of direct conversion. The experiments in this paper aimed to achieve higher potentials and higher...

  19. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning 

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. ...

  20. AVTA: Testing Results on the USPS Long-life Vehicle Conversions...

    Energy Savers [EERE]

    AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric AVTA: Testing Results on the USPS Long-life Vehicle Conversions to All-Electric The Vehicle...

  1. Sustainable systems for the storage and conversion of energy are dependent on interconnected

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract Sustainable systems for the storage and conversion of energy are dependent energy systems for harvesting low availability thermal energy and for providing integrated power, cooling performance buildings, renewable energy conversion, and energy storage can be streamlined by identifying

  2. Power conversion system design for supercritical carbon dioxide cooled indirect cycle nuclear reactors

    E-Print Network [OSTI]

    Gibbs, Jonathan Paul

    2008-01-01T23:59:59.000Z

    The supercritical carbon dioxide (S-CO?) cycle is a promising advanced power conversion cycle which couples nicely to many Generation IV nuclear reactors. This work investigates the power conversion system design and ...

  3. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz...

  4. A study of ZnxZryOz mixed oxides for direct conversion of ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. A study of ZnxZryOz mixed oxides for direct conversion of ethanol to isobutene. Abstract: ZnxZryOz...

  5. Ethanol Conversion on Cyclic (MO3)3 (M = Mo, W) Clusters. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion on Cyclic (MO3)3 (M Mo, W) Clusters. Ethanol Conversion on Cyclic (MO3)3 (M Mo, W) Clusters. Abstract: Oxides of molybdenum and tungsten are an important class of...

  6. Analysis and design of high frequency link power conversion systems for fuel cell power conditioning

    E-Print Network [OSTI]

    Song, Yu Jin

    2005-11-01T23:59:59.000Z

    In this dissertation, new high frequency link power conversion systems for the fuel cell power conditioning are proposed to improve the performance and optimize the cost, size, and weight of the power conversion systems. The first study proposes a...

  7. ARTICLE doi:10.1038/nature09591 Direct conversion of human fibroblasts to

    E-Print Network [OSTI]

    ARTICLE doi:10.1038/nature09591 Direct conversion of human fibroblasts to multilineage blood, we demonstrate and characterize direct haematopoietic fate conversion to multipotent blood of the haematopoietic fate directly from human dermal fibroblasts without establishing pluripotency. Ectopic expression

  8. Analysis of a direct energy conversion system using medium energy helium ions 

    E-Print Network [OSTI]

    Carter, Jesse James

    2006-08-16T23:59:59.000Z

    A scaled direct energy conversion device was built to convert kinetic energy of singly ionized helium ions into an electric potential by the process of direct conversion. The experiments in this paper aimed to achieve ...

  9. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2+ Oxygenates. The Role of Ir in Ternary Rh-Based Catalysts for Syngas Conversion to C2+ Oxygenates....

  10. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5 Composite Catalyst System. Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5...

  11. Zero Energy Windows

    E-Print Network [OSTI]

    Arasteh, Dariush; Selkowitz, Steve; Apte, Josh; LaFrance, Marc

    2006-01-01T23:59:59.000Z

    impact of 4.1 quadrillion BTU (quads) of primary energy 1 .systems with U-factors of 0.1 Btu/hr-ft²-°F Dynamic windows:for 1 quadrillion (10 15 ) Btu = 1.056 EJ. percent (Apte,

  12. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect (OSTI)

    Triegel, E.K.

    1980-01-01T23:59:59.000Z

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  13. Mold heating and cooling microprocessor conversion. Final report

    SciTech Connect (OSTI)

    Hoffman, D.P.

    1995-07-01T23:59:59.000Z

    Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessor board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.

  14. Conversion of direct process high-boiling residue to monosilanes

    DOE Patents [OSTI]

    Brinson, Jonathan Ashley (Vale of Glamorgan, GB); Crum, Bruce Robert (Madison, IN); Jarvis, Jr., Robert Frank (Midland, MI)

    2000-01-01T23:59:59.000Z

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  15. Method for direct conversion of gaseous hydrocarbons to liquids

    DOE Patents [OSTI]

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07T23:59:59.000Z

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  16. Method for regeneration and activity improvement of syngas conversion catalyst

    DOE Patents [OSTI]

    Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

    1980-01-01T23:59:59.000Z

    A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

  17. Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000

    SciTech Connect (OSTI)

    Brown, L.C.

    2000-03-20T23:59:59.000Z

    OAK B135 Direct Energy Conversion Fission Reactor for the period December 1, 1999 through February 29, 2000

  18. DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

    SciTech Connect (OSTI)

    L.C. BROWN

    2001-09-30T23:59:59.000Z

    OAK-B135 DIRECT ENERGY CONVERSION FISSION REACTOR FOR THE PERIOD JUNE 1, 2001 THROUGH SEPTEMBER 30, 2001

  19. Resonance Conversion as a Catalyser of Nuclear Reactions

    E-Print Network [OSTI]

    Feodor Karpeshin; Jingbo Zhang; Weining Zhang

    2014-08-18T23:59:59.000Z

    It is shown that resonance interal conversion offers a feasible tool for mastering nuclear processes with laser or synchrotron radiation. Physics of the process is discussed in detail in historical aspect. Possible way of experimental applicaytion is shown in the case of the $M1$ 70.6-keV transition in nuclei of $^{169}$Yb. Nuclear transition rate in hydrogenlike ions of this nuclide can be enhanced by up to four orders of magnitude.

  20. A pattern of conversion in nineteenth century autobiography

    E-Print Network [OSTI]

    Baker, Susan Louise

    1980-01-01T23:59:59.000Z

    Carlyle, John Stuart Mill, and John Henry Newman is the spiral. The soiral pattern merges circular return with linear progress and encompasses three stages ? early mental development, a crisis of despair, and a conversion or recovery from crisis... stages of the spiral are evident in Worsdworth's The prelude, Carlyle's Sartor Resartus, Mill's Autobio ra h , and Newman's Apologia Pro Vita Sua. The pattern by which the writers of auto- biography organize the events of their lives reflects...

  1. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    2003-06-24T23:59:59.000Z

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  2. Jet conversions in a quark-gluon plasma 

    E-Print Network [OSTI]

    Liu, W.; Ko, Che Ming; Zhang, B. W.

    2007-01-01T23:59:59.000Z

    .75.?q One of the most interesting observations in central heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) is the suppressed production of hadrons with large transverse momentum [1,2]. This phenomenon has been attributed... transverse momentum pions at RHIC can indeed be described. Initial jet distributions and heavy ion collision dynamics. To see the effect of conversions between quark and gluon jets on their energy losses in QGP, we consider central Au+Au collisions...

  3. Energy conversion/power plant cost-cutting

    SciTech Connect (OSTI)

    Nichols, K.

    1996-12-31T23:59:59.000Z

    This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.

  4. Ti koze kreyòl: a Haitian-Creole conversation manual

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    . Bryant C. Freeman, Haitian-English Medical Phraseology for Doctors, Dentists, Nurses, and Paramedics - with seven accompanying tapes. 1997, 2003. Bryant C. Freeman, Third-World Folk Beliefs and Practices: Haitian Medical Anthropology. 1998, 2001. James... girl (in Haitian Creole class!), and of their honeymoon adventures and misadventures across the Haitian scene. Mary is quite bright; John—although always with the best of intentions—is not. The first seven Conversations evolve in a scene familiar...

  5. Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions 

    E-Print Network [OSTI]

    Fu, Zhihong

    2009-05-15T23:59:59.000Z

    of bio-oils: Pyrolysis and liquefaction Pyrolysis is an important thermal conversion process for biomass. Up to now, pyrolysis is less developed than gasification. Major attention was especially caused by the potential deployment of this technology... on small scale in rural areas and as feedstock for the chemical industry. Pyrolysis converts biomass at temperatures around 500?C in the absence of oxygen to liquid (bio-oil), gaseous, and solid (char) fractions (Adjaye et al. 1992; Demirbas and Balat...

  6. Enhanced conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1986-01-01T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  7. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, Peter K. (Yorktown Heights, NY); Rabo, Jule A. (Armonk, NY)

    1985-01-01T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C.sub.5.sup.+ hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  8. Enhanced catalyst for conversion of syngas to liquid motor fuels

    DOE Patents [OSTI]

    Coughlin, P.K.; Rabo, J.A.

    1985-12-03T23:59:59.000Z

    Synthesis gas comprising carbon monoxide and hydrogen is converted to C[sub 5][sup +] hydrocarbons suitable for use as liquid motor fuels by contact with a dual catalyst system capable of enhancing the selectivity of said conversion to motor fuel range hydrocarbons and the quality of the resulting motor fuel product. The catalyst composition employs a Fischer-Tropsch catalyst, together with a co-catalyst/support component comprising a SAPO silicoaluminophosphate, non-zeolitic molecular sieve catalyst.

  9. Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions

    E-Print Network [OSTI]

    Fu, Zhihong

    2009-05-15T23:59:59.000Z

    ?????????????. 17 1.4 Project description????????????..?... 25 II MATERIALS AND METHODS???????????? 27 2.1 Biomass feedstock??????????????. 27 2.2 Biomass pretreatment????????????? 29 2.3 Fermentation material and methods.... This is followed by introducing promising lignocellulosic biomass feedstocks and challenges in lignocellulosic biomass conversion. Subsequently, it presents the process description and recent advances of the MixAlco process, a novel and promising biomass...

  10. Suite of Cellulase Enzyme Technologies for Biomass Conversion - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. .Energy Conversion | ANSERNERSC

  11. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    SciTech Connect (OSTI)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28T23:59:59.000Z

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  12. Kinetics of Conversion of High-level Waste to Glass

    SciTech Connect (OSTI)

    Izak, Pavel (ASSOC WESTERN UNIVERSITY); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Schweiger, Michael J. (BATTELLE (PACIFIC NW LAB)); Heineman, W.R.; Eller, P.G.

    2001-01-01T23:59:59.000Z

    The kinetics of the conversion of high-level waste (HLW) feed to glass controls the rate of HLW processing. Simulated HLW feed and low silica - high sodium (LSHS) feed with co-precipitated Fe, Ni, Cr, and Mn hydroxides (to simulate the chemical and physical makeup of these components in the melter feed) were heated at constant temperature increase rates (0.4, 4, and 14?C/min), quenched at different stages of conversion, and analyzed with optical microscope, scanning electron microscope, and x-ray diffraction (XRD). Quartz, sodium nitrate, carnegieite (Na8Al4Si4O18), sodalite (Na8(AlSiO4)6(NO2)2), and spinel were identified in the samples. Mass fractions of these phases were determined as functions of the temperature and the heating rate. The fractions of nitrates and quartz decreased with increasing temperature, starting above 550?C and dropping to zero at 850?C. Spinel was present in the feed within the temperature interval from 350?C to 1050?C, peaking between 550 and 700?C. Sodalite (in HLW feed) and carnegieite (in LSHS feed) formed at temperatures above 600?C and then began to dissolve. TGA and DSC were use to determine the mass loss and the conversion heat as functions of temperature and heating rate and were compared with the reaction progress reached in quenched samples.

  13. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01T23:59:59.000Z

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  14. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become of the studied generators is provided in Fig. 2. II. WIND ENERGY BACKGROUND A. Wind Power Conversion

  15. Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

  16. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become. I. INTRODUCTION Wind energy conversion is the fastest-growing source of new electric generation

  17. Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Sliding Mode Power Control of Variable Speed Wind Energy Conversion Systems B. Beltran, T. Ahmed power generation in variable speed wind energy conversion systems (VS-WECS). These systems have two variations. Index Terms--Wind energy conversion system, power generation control, sliding mode control

  18. Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation of Their

    E-Print Network [OSTI]

    Verkhusha, Vladislav V.

    Understanding Blue-to-Red Conversion in Monomeric Fluorescent Timers and Hydrolytic Degradation-FT (chromophore Met66-Tyr67-Gly68) and its precursor with blocked blue-to- red conversion Blue102 (chromophore Leu data suggest that blue-to-red conversion, taking place in Fast-FT and in related FTs, is associated

  19. Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2

    E-Print Network [OSTI]

    Goddard III, William A.

    Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2 Hyung ABSTRACT: CO2 conversion is an essential technology to develop a sustainable carbon economy for the present and the future. Many studies have focused extensively on the electrochemical conversion of CO2 into various

  20. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    E-Print Network [OSTI]

    Atwater, Harry

    Solar energy conversion via hot electron internal photoemission in metallic nanostructures://scitation.aip.org/termsconditions. Downloaded to ] IP: 131.215.44.236 On: Tue, 01 Apr 2014 22:46:10 #12;Solar energy conversion via hot electron for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy

  1. Photovoltaic effect in InSe Application to Solar Energy Conversion

    E-Print Network [OSTI]

    Boyer, Edmond

    253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, JSe is shown to be a new material with attractive characteristics for solar energy conversion. PerformanceV at 300 K and it is thus close to the theoretical optimum for solar energy conversion. Since its transport

  2. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array

    E-Print Network [OSTI]

    Zhou, Chongwu

    Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire, and will aid in the design and optimization of nanowire-based systems for solar energy-conversion applications, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one

  3. Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4

    E-Print Network [OSTI]

    Omiecinski, Curtis

    Carboxypeptidase A-catalyzed direct conversion of leukotriene C4 to leukotriene F4 Pallu Reddanna the conversion of LTC4 to LTF4 via the hydrolysis of an amide bond. The identity of CPA-catalyzed LTC4 hydrolysis product as LTF4 was confirmed by several analytical criteria, including enzymatic conversion to conjugated

  4. La conversion lectromcanique directe. 4 fvrier 1999 -ENS Cachan -SEE LES ENTRANEMENTS LECTROMCANIQUES DIRECTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    La conversion électromécanique directe. 4 février 1999 - ENS Cachan - SEE LES ENTRA�NEMENTS direct drives represent ultimate simplification of the electromechanical conversion systems because'entraînement électromécanique direct représente la simplification ultime des systèmes de conversion électromécanique d

  5. Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides

    E-Print Network [OSTI]

    Jo, Moon-Ho

    Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by directAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth

  6. Characterization of an FFDM unit based on a-Se direct conversion detector

    E-Print Network [OSTI]

    Lanconelli, Nico

    Characterization of an FFDM unit based on a-Se direct conversion detector Achille Albanese1 µm. The direct conversion of X-rays into charge provides excellent imaging performance. In this work, detectors based on a direct-conversion technology seem to give a better performance, especially at high

  7. A New Argus Direct Conversion Receiver and Digital Array Receiver/Processor

    E-Print Network [OSTI]

    Ellingson, Steven W.

    A New Argus Direct Conversion Receiver and Digital Array Receiver/Processor Grant Hampson and Steve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References 20 Appendix A: Direct Conversion FPGA Source Code 21 Appendix B: Digital Receiver system. The new architecture consists of four main components: a Direct Conversion Receiver (DCR

  8. A 5364-GHz SiGe Up-Conversion Mixer with 4-GHz IF Bandwidth

    E-Print Network [OSTI]

    Choi, Woo-Young

    ), Germany wchoi@yonsei.ac.kr Abstract -- A Gilbert-cell direct up-conversion mixer is realized for 57­64-GHz mixers is important for the overall system performance of direct-conversion transmitters. In particular-to-RF isolation is necessary due to in- band LO leakage in direct-conversion transmitters. In this paper

  9. Tandem Catalytic Conversion of Glucose to 5Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid

    E-Print Network [OSTI]

    Zhao, Huimin

    , the direct conversion of glucose, a more abundant monosaccharide than fructose, to HMF in a one-pot fashionTandem Catalytic Conversion of Glucose to 5Hydroxymethylfurfural with an Immobilized Enzyme: Conversion of cellulosic biomass to renewable chemicals such as 5-hydroxyme- thylfurfural (HMF) is of high

  10. A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers

    E-Print Network [OSTI]

    Arslan, Hüseyin

    A Low-Power Correlation Detector For Binary FSK Direct-Conversion Receivers J. Min, H-C. Liu, A detector, Tone detection, Correlation, Direct-conversion wireless receivers Abstract A multiplierless-suited for low-power direct-conversion receivers used in wireless communications systems employ- ing FSK

  11. A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1

    E-Print Network [OSTI]

    A 90nm CMOS Direct Conversion Transmitter for WCDMA Xuemin Yang1 , Anosh Davierwalla2 , David Mann3 IBM, Burlington, VT Abstract -- A linear high output power CMOS direct conversion transmitter for wideÃ?5 QFN. Index Terms -- direct conversion, CMOS, WCDMA, transmitter, third order distortion cancellation

  12. A general formula for reactant conversion over a single catalyst particle in TAP pulse experiments

    E-Print Network [OSTI]

    Feres, Renato

    conversion. The results are significant because they allow direct com- parison between transient responseA general formula for reactant conversion over a single catalyst particle in TAP pulse experiments formula for reactant conversion in diffusion-reaction TAP systems over single non-porous catalyst

  13. LSF MAPPING FOR VOICE CONVERSION WITH VERY SMALL TRAINING SETS Elina Helander1

    E-Print Network [OSTI]

    Gabbouj, Moncef

    . The most common features used in voice conversion are based on direct use of spectral bandsLSF MAPPING FOR VOICE CONVERSION WITH VERY SMALL TRAINING SETS Elina Helander1 , Jani Nurminen2.gabbouj@tut.fi ABSTRACT To make voice conversion usable in practical applications, the num- ber of training sentences

  14. A 100 MHz 2.5 GHz Direct Conversion CMOS Transceiver for SDR Applications

    E-Print Network [OSTI]

    Ellingson, Steven W.

    A 100 MHz ­ 2.5 GHz Direct Conversion CMOS Transceiver for SDR Applications Gio Cafaro, Tom frequency switching and phase noise of ­123 dBc/Hz at 25 KHz offset. Index Terms -- CMOS, Direct Conversion are not practical in today's technology [5]-[7]. Direct conversion is preferred for this reason, but it has some

  15. OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE

    E-Print Network [OSTI]

    Commins, M.L.

    2010-01-01T23:59:59.000Z

    9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYat Three Proposed Ocean Thermal Energy Conversion (OTEC)M.S. et al. , (1979) Ocean Thermal Energy Conversion, Eco-

  16. OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.

    E-Print Network [OSTI]

    Quinby-Hunt, M.S.

    2008-01-01T23:59:59.000Z

    LBL-8945 GOTEC-01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICALat Three Proposed Ocean Thermal Energy Conversion (OTEC)effect of an operating Ocean Thermal Energy Conversion plant

  17. OCEAN THERMAL ENERGY CONVERSION ECOLOGICAL DATA REPORT FROM 0. S. S. RESEARCHER IN GULF OF MEXICO, JULY 12-23, 1977.

    E-Print Network [OSTI]

    Quinby-Hunt, M.S.

    2008-01-01T23:59:59.000Z

    LBL-8945 GOTEC-01 OCEAN THERMAL ENERGY CONVERSION ECOLOGICALThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:an operating Ocean Thermal Energy Conversion plant were in-

  18. OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE

    E-Print Network [OSTI]

    Commins, M.L.

    2010-01-01T23:59:59.000Z

    9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYto potential Ocean Thermal Energy Conversion (OTEC) sites inThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:

  19. OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE

    E-Print Network [OSTI]

    Commins, M.L.

    2010-01-01T23:59:59.000Z

    9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYThree Proposed Ocean Thermal Energy Conversion (OTEC) Sites:al. , (1979) Ocean Thermal Energy Conversion, Eco- logical

  20. OCEAN THERMAL ENERGY CONVERSION PRELIMINARY DATA REPORT FOR THE NOVEMBER 1977 GOTEC-02 CRUISE TO THE GULF OF MEXICO MOBILE SITE

    E-Print Network [OSTI]

    Commins, M.L.

    2010-01-01T23:59:59.000Z

    9437 GOTEC-02 OCEAN THERMAL ENERGY CONVERSION PRELIMINARYcruises to potential Ocean Thermal Energy Conversion (OTEC)at Three Proposed Ocean Thermal Energy Conversion (OTEC)

  1. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W. (Seabrook, TX)

    1980-01-01T23:59:59.000Z

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  2. Wyoming coal-conversion project. Final technical report, November 1980-February 1982. [Proposed WyCoalGas project, Converse County, Wyoming; contains list of appendices with title and identification

    SciTech Connect (OSTI)

    None

    1982-01-01T23:59:59.000Z

    This final technical report describes what WyCoalGas, Inc. and its subcontractors accomplished in resolving issues related to the resource, technology, economic, environmental, socioeconomic, and governmental requirements affecting a project located near Douglas, Wyoming for producing 150 Billion Btu per day by gasifying sub-bituminous coal. The report summarizes the results of the work on each task and includes the deliverables that WyCoalGas, Inc. and the subcontractors prepared. The co-venturers withdrew from the project for two reasons: federal financial assistance to the project was seen to be highly uncertain; and funds were being expended at an unacceptably high rate.

  3. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    SciTech Connect (OSTI)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01T23:59:59.000Z

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  4. A new search for conversion of muonium to antimuonium

    SciTech Connect (OSTI)

    Matthias, B.E.

    1991-10-01T23:59:59.000Z

    To search for conversion of muonium (M {identical to} {mu}{sup +}e{sup {minus}}) to antimuonium ({anti M} {identical to} {mu}{sup {minus}}e{sup +}) with very low background, a new signature was implemented that required the time-coincident detection of the decay e{sup {minus}}({le} 53 MeV) with the atomic e{sup +}({approximately} 13 eV) from decay of an {anti M} atom. A 20 MeV/c {mu}{sup +} beam was stopped in a 9 mg/cm{sup 2} SiO{sub 2} powder target. Muonium, formed in the powder, diffused into a vacuum region at thermal velocities and was observed for a coincidence of {anti M} decay products. Any decay e{sup {minus}} was charge and momentum analyzed in a dipole magnet and tracked by an array of MWPCs; any atomic e{sup +} was electrostatically collected, accelerated to 5.7 keV, and magnetically transported to a microchannel plate detector. To calibrate the signature, M was observed for the first time by coincidence of its decay e{sup +} and its atomic e{sup {minus}}. A maximum likelihood analysis of the position distribution of decay origins finds no {anti M} events and less than 2 at 90% confidence. This places an upper limit on the conversion probability per atom of S{anti M} < 6.5 {times} 10{sup {minus}7} (90% C.L.), which corresponds to an upper limit of G{sub M}{anti M} < 0.16 G{sub F} (90% C.L.) on the effective coupling constant for a (V - A) conversion coupling. In a class of left-right symmetric models, the value of G{sub M}{anti M} may be in this range. 116 refs., 45 figs., 10 tabs.

  5. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1992-01-01T23:59:59.000Z

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a workstation'' environment.

  6. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)) [Advanced Fuel Research, Inc., East Hartford, CT (United States); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States)) [Brigham Young Univ., Provo, UT (United States)

    1990-01-01T23:59:59.000Z

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specified conversion behavior is ARF's Functional Group (FG) and Devolatilization, Vaporization, and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (1) validation of the submodels by comparison with laboratory data obtained in this program, (2) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (3) development of well documented user friendly software applicable to a workstation'' environment.

  7. Photovoltaic energy conversion The objective of this laboratory is for you to explore the science and engineering of the conversion of

    E-Print Network [OSTI]

    Braun, Paul

    Photovoltaic energy conversion Objective The objective of this laboratory is for you to explore the science and engineering of the conversion of light to electricity by photovoltaic devices. Preparation photovoltaic modules; reversebiased Si pin photodiode. · White light LED lamp; dc power supply; bread board

  8. Treatment of gas from an in situ conversion process

    DOE Patents [OSTI]

    Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

    2011-12-06T23:59:59.000Z

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  9. Detailed balance limit of power conversion efficiency for organic photovoltaics

    SciTech Connect (OSTI)

    Seki, Kazuhiko, E-mail: k-seki@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)] [NRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan); Furube, Akihiro [RIIF, AIST Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan)] [RIIF, AIST Tsukuba Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Yoshida, Yuji [RCPVT, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)] [RCPVT, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

    2013-12-16T23:59:59.000Z

    A fundamental difference between inorganic photovoltaic (IPV) and organic photovoltaic (OPV) cells is that charges are generated at the interface in OPV cells, while free charges can be generated in the bulk in IPV cells. In OPV cells, charge generation involves intrinsic energy losses to dissociate excitons at the interface between the donor and acceptor. By taking into account the energy losses, we show the theoretical limits of the power conversion efficiency set by radiative recombination of the carriers on the basis of the detailed balance relation between radiation from the cell and black-body radiation.

  10. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect (OSTI)

    Green, H.J. (Solar Energy Research Inst., Golden, CO (USA)); Guenther, P.R. (Scripps Institution of Oceanography, La Jolla, CA (USA))

    1990-09-01T23:59:59.000Z

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  11. Direct photon cross section with conversions at CDF

    E-Print Network [OSTI]

    CDF collaboration

    2004-04-20T23:59:59.000Z

    We present a measurement of the isolated direct photon cross section in p-pbar collisions at sqrt(s) = 1.8 TeV and |eta| gamma gamma and eta -> gamma gamma events we use a new background subtraction technique which takes advantage of the tracking information available in a photon conversion event. We find that the shape of the cross section as a function of pT is poorly described by next-to-leading-order QCD predictions, but agrees with previous CDF measurements.

  12. Direct conversion of light hydrocarbon gases to liquid fuel

    SciTech Connect (OSTI)

    Kaplan, R.D.; Foral, M.J.

    1992-05-16T23:59:59.000Z

    Amoco oil Company, has investigated the direct, non-catalytic conversion of light hydrocarbon gases to liquid fuels (particularly methanol) via partial oxidation. The primary hydrocarbon feed used in these studies was natural gas. This report describes work completed in the course of our two-year project. In general we determined that the methanol yields delivered by this system were not high enough to make it economically attractive. Process variables studied included hydrocarbon feed composition, oxygen concentration, temperature and pressure effects, residence time, reactor design, and reactor recycle.

  13. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, C.E.; Eimerl, D.; Velsko, S.P.; Roberts, D.

    1993-11-23T23:59:59.000Z

    Temperature-insensitive, phase-matched harmonic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions. 12 figures.

  14. Temperature-insensitive phase-matched optical harmonic conversion crystal

    DOE Patents [OSTI]

    Barker, Charles E. (Sunnyvale, CA); Eimerl, David (Livermore, CA); Velsko, Stephan P. (Livermore, CA); Roberts, David (Sagamore Hills, OH)

    1993-01-01T23:59:59.000Z

    Temperature-insensitive, phase-matched harmomic frequency conversion of laser light at a preferred wavelength of 1.064 microns can be achieved by use of a crystal of deuterated l-arginine phosphate. The crystal is cut and oriented so that the laser light propagates inside the crystal along one of several required directions, which correspond to a temperature-insensitive, phase-matching locus. The method of measuring and calculating the temperature-insensitive, phase-matching angles can be extended to other fundamental wavelengths and other crystal compositions.

  15. Up-conversion yield in glass ceramics containing silver

    SciTech Connect (OSTI)

    Malta, O.L.; Santa-Cruz, P.A.; De Sa, G.F.; Auzel, F.

    1987-06-01T23:59:59.000Z

    Small silver particles are known to increase the fluorescence yield in rare-earth-doped glasses. These particles can be grown easily in glass ceramics of general composition (PbF2, GeO2, YbF3, ErF3). The authors have studied the effect of the addition of silver on the up-conversion yield due to sequential energy transfer between YbT and ErT ions. The origin and the information that can be obtained from this effect are discussed.

  16. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10 wt%inand FuelBiological Conversion

  17. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User and DataNewstateConversion of

  18. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew User and DataNewstateConversion

  19. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    SciTech Connect (OSTI)

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01T23:59:59.000Z

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  20. Novel Energy Conversion Equipment for Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O NThermochemical Conversion