National Library of Energy BETA

Sample records for brown powder additionally

  1. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    SciTech Connect (OSTI)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In this study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.

  2. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    King, W. E.; Anderson, A. T.; Ferencz, R. M.; Hodge, N. E.; Kamath, C.; Khairallah, S. A.; Rubencik, A. M.

    2015-12-29

    The production of metal parts via laser powder bed fusion additive manufacturing is growing exponentially. However, the transition of this technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. Confidence can be established via a fundamental understanding of the physics of the process. It is generally accepted that this understanding will be increasingly achieved through modeling and simulation. However, there are significant physics, computational, and materials challenges stemming from the broad range of length and time scales and temperature ranges associated with the process. In thismore » study, we review the current state of the art and describe the challenges that need to be met to achieve the desired fundamental understanding of the physics of the process.« less

  3. Flux enhancement with powdered activated carbon addition in the membrane anaerobic bioreactor

    SciTech Connect (OSTI)

    Park, H.; Choo, K.H.; Lee, C.H.

    1999-10-01

    The effect of powdered activated carbon (PAC) addition on the performance of a membrane-coupled anaerobic bioreactor (MCAB) was investigated in terms of membrane filterability and treatability through a series of batch and continuous microfiltration (MF) experiments. In both batch and continuous MF of the digestion broth, a flux improvement with PAC addition was achieved, especially when a higher shear rate and/or a higher PAC dose were applied. Both the fouling and cake layer resistances decreased continuously with increasing the PAC dose up to 5 g/L. PAC played an important role in substantially reducing the biomass cake resistance due to its incompressible nature and higher backtransport velocities. PAC might have a scouring effect for removing the deposited biomass cake from the membrane surface while sorbing and/or coagulating dissolved organics and colloidal particles in the broth. The chemical oxygen demand and color in the effluent were much removed with PAC addition, and the system was also more stable against shock loading.

  4. Rapid additive manufacturing of MR compatible multipinhole collimators with selective laser melting of tungsten powder

    SciTech Connect (OSTI)

    Deprez, Karel; Vandenberghe, Stefaan; Van Audenhaege, Karen; Van Vaerenbergh, Jonas; Van Holen, Roel

    2013-01-15

    Purpose: The construction of complex collimators with a high number of oblique pinholes is very labor intensive, expensive or is sometimes impossible with the current available techniques (drilling, milling or electric discharge machining). All these techniques are subtractive: one starts from solid plates and the material at the position of the pinholes is removed. The authors used a novel technique for collimator construction, called metal additive manufacturing. This process starts with a solid piece of tungsten on which a first layer of tungsten powder is melted. Each subsequent layer is then melted on the previous layer. This melting is done by selective laser melting at the locations where the CAD design file defines solid material. Methods: A complex collimator with 20 loftholes with 500 {mu}m diameter pinhole opening was designed and produced (16 mm thick and 70 Multiplication-Sign 52 mm{sup 2} transverse size). The density was determined, the production accuracy was measured (GOM ATOS II Triple Scan, Nikon AZ100M microscope, Olympus IMT200 microscope). Point source measurements were done by mounting the collimator on a SPECT detector. Because there is increasing interest in dual-modality SPECT-MR imaging, the collimator was also positioned in a 7T MRI scanner (Bruker Pharmascan). A uniform phantom was acquired using T1, T2, and T2* sequences to check for artifacts or distortion of the phantom images due to the collimator presence. Additionally, three tungsten sample pieces (250, 500, and 750 {mu}m thick) were produced. The density, attenuation (140 keV beam), and uniformity (GE eXplore Locus SP micro-CT) of these samples were measured. Results: The density of the collimator was equal to 17.31 {+-} 0.10 g/cm{sup 3} (89.92% of pure tungsten). The production accuracy ranges from -260 to +650 {mu}m. The aperture positions have a mean deviation of 5 {mu}m, the maximum deviation was 174 {mu}m and the minimum deviation was -122 {mu}m. The mean aperture diameter

  5. Effect of Cu addition on the martensitic transformation of powder metallurgy processed Ti–Ni alloys

    SciTech Connect (OSTI)

    Kim, Yeon-wook; Choi, Eunsoo

    2014-10-15

    Highlights: • M{sub s} of Ti{sub 50}Ni{sub 50} powders is 22 °C, while M{sub s} of SPS-sintered porous bulk increases up to 50 °C. • M{sub s} of Ti{sub 50}Ni{sub 40}Cu{sub 20} porous bulk is only 2 °C higher than that of the powders. • Recovered stain of porous TiNi and TiNiCu alloy is more than 1.5%. - Abstract: Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} powders were prepared by gas atomization and their transformation behaviors were examined by means of differential scanning calorimetry and X-ray diffraction. One-step B2–B19’ transformation occurred in Ti{sub 50}Ni{sub 50} powders, while Ti{sub 50}Ni{sub 30}Cu{sub 20} powders showed B2–B19 transformation behavior. Porous bulks with 24% porosity were fabricated by spark plasma sintering. The martensitic transformation start temperature (50 °C) of Ti{sub 50}Ni{sub 50} porous bulk is much higher than that (22 °C) of the as-solidified powders. However, the martensitic transformation start temperature (35 °C) of Ti{sub 50}Ni{sub 30}Cu{sub 20} porous bulk is almost the same as that (33 °C) of the powders. When the specimens were compressed to the strain of 8% and then unloaded, the residual strains of Ti{sub 50}Ni{sub 50} and Ti{sub 50}Ni{sub 30}Cu{sub 20} alloy bulks were 3.95 and 3.7%, respectively. However, these residual strains were recovered up to 1.7% after heating by the shape memory phenomenon.

  6. Evaluation of biological treatment of pharmaceutical waste water with PAC (powdered activated carbon) addition. Volume 1. Final report

    SciTech Connect (OSTI)

    Gardner, D.A.; Osantowski, R.A.

    1988-05-01

    A lack of information on applicable removal technologies for total chemical oxygen demand (TCOD) prevented promulgation of best available technology economically achievable (BAT) limitations and new source performance standards (NSPS) for TCOD for pharmaceutical manufacturing plants in 1983 (EPA/440/1-83/084). One technology that was evaluated was powdered activated carbon (PAC) addition to an activated-sludge system (PACT*). A viscous floating mass of mixed-liquor solids (VFMLS) developed in the PACT units and resulted in premature termination of the study. The purposes of the study were to: (1) attempt to find the cause of the formation of the VFMLS; (2) generate additional research data for TCOD removal from pharmaceutical waste water using the PACT process; (3) evaluate the efficiency of PACT in removing specific organics; (4) evaluate the effectiveness of PACT in reducing effluent aquatic toxicity and (5) evaluate the use of a selector to improve the settleability of the mixed liquor. One control unit, two PACT units and a unit equipped with a series of selector basins for improving the settling characteristics of the mixed-liquor suspended solids were operated.

  7. Influence of additives on the increase of the heating value of Bayah’s coal with upgrading brown coal (UBC) method

    SciTech Connect (OSTI)

    Heriyanto, Heri; Widya Ernayati, K.; Umam, Chairul; Margareta, Nita

    2015-12-29

    UBC (upgrading brown coal) is a method of improving the quality of coal by using oil as an additive. Through processing in the oil media, not just the calories that increase, but there is also water repellent properties and a decrease in the tendency of spontaneous combustion of coal products produced. The results showed a decrease in the water levels of natural coal bayah reached 69%, increase in calorific value reached 21.2%. Increased caloric value and reduced water content caused by the water molecules on replacing seal the pores of coal by oil and atoms C on the oil that is bound to increase the percentage of coal carbon. As a result of this experiment is, the produced coal has better calorific value, the increasing of this new calorific value up to 23.8% with the additive waste lubricant, and the moisture content reduced up to 69.45%.

  8. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    SciTech Connect (OSTI)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-22

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90?m. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  9. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect (OSTI)

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  10. Superhydrophobic powder additives to enhance chemical agent resistant coating systems for military equipment for the U.S. Marine Corps (USMC) Corrosion Prevention and Control (CPAC) Program

    SciTech Connect (OSTI)

    Pawel, Steven J.; Armstrong, Beth L.; Haynes, James A.

    2015-07-01

    The primary goal of the CPAC program at ORNL was to explore the feasibility of introducing various silica-based superhydrophobic (SH) powder additives as a way to improve the corrosion resistance of US Department of Defense (DOD) military-grade chemical agent resistant coating (CARC) systems. ORNL had previously developed and patented several SH technologies of interest to the USMC, and one of the objectives of this program was to identify methods to incorporate these technologies into the USMC’s corrosion-resistance strategy. This report discusses findings of the CPAC and their application.

  11. Evaluation of biological treatment of pharmaceutical wastewater with PAC (powdered activated carbon) addition. Volume 2. Appendices. Final report

    SciTech Connect (OSTI)

    Gardner, D.A.; Osantowski, R.A.

    1988-05-01

    A lack of information on applicable removal technologies for total chemical oxygen demand (TCOD) prevented promulgation of best available technology economically achievable (BAT) limitations and new source performance standards (NSPS) for TCOD for pharmaceutical manufacturing plants in 1983 (EPA/440/1-83/084). Therefore, in 1984 EPA conducted a pilot-plant study of activated-carbon-treatment technologies utilizing pharmaceutical waste waters from a manufacturing plant that produces fermentation products (Subcategory A) and chemical synthesis products (Subcategory C). The purposes of the study were to: (1) attempt to find the cause of the formation of the VFMLS; (2) generate additional research data for TCOD removal from pharmaceutical wastewater using the PACT process; (3) evaluate the efficiency of PACT in removing specific organics; (4) evaluate the effectiveness of PACT in reducing effluent aquatic toxicity; and, (5) evaluate the use of a selector to improve the settleability of the mixed liquor. One control unit, two PACT units and a unit equipped with a series of selector basins for improving the settling characteristics of the mixed-liquor suspended solids were operated.

  12. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... laser-sintering) Optomec LENS MR-7 Sciaky EBAM 68 Non-metal additive manufacturing Powder bed FORMIGA P 110 PolyJet 3D ... Fused deposition modeling print technology MakerBot ...

  13. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander; King, Wayne E.

    2016-02-23

    Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less

  14. Fermilab Today | Brown University Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown University April 29, 2010 NAME: Brown University HOME TOWN: Providence, Rhode Island MASCOT: Bruno the Bear SCHOOL COLORS: Seal brown and cardinal red PARTICLE PHYSICS...

  15. Energetic powder

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  16. Conversation with Paul Brown | Open Energy Information

    Open Energy Info (EERE)

    Conversation with Paul Brown Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Conversation with Paul Brown Author Paul Brown Recipient...

  17. Powder treatment process

    DOE Patents [OSTI]

    Weyand, John D. (Greensburg, PA)

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  18. Powder treatment process

    DOE Patents [OSTI]

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  19. Powder dispersion system

    DOE Patents [OSTI]

    Gorenz, Heather M.; Brockmann, John E.; Lucero, Daniel A.

    2011-09-20

    A powder dispersion method and apparatus comprising an air eductor and a powder dispensing syringe inserted into a suction connection of the air eductor.

  20. Rotary powder feed through apparatus

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2001-01-01

    A device for increasing the uniformity of solids within a solids fabrication system, such as a direct light fabrication (DLF) system in which gas entrained powders are passed through the focal point of a moving high-power light which fuses the particles in the powder to a surface being built up in layers. The invention provides a feed through interface wherein gas entrained powders input from stationary input lines are coupled to a rotating head of the fabrication system. The invention eliminates the need to provide additional slack in the feed lines to accommodate head rotation, and therefore reduces feed line bending movements which induce non-uniform feeding of gas entrained powder to a rotating head.

  1. brown-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Resolution Validation in the Shortwave: ASTI/LBLRTM QME P. D. Brown, S. A. Clough, and E. J. Mlawer Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts T. R. Shippert Pacific Northwest National Laboratory Richland, Washington F. J. Murcray Denver University Denver, Colorado Introduction To assess our modeling capability in the shortwave and to resolve issues including those described by Cess et al. (1995) and others (Li and Moreau 1996; Arking 1996), a Quality Measurement

  2. brown-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCAR/ARM Multiple Antenna Profiler W.O.J. Brown, S. A. Cohn, M. E. Susedik, C. L. Martin, G. Maclean, and D. B. Parsons National Center for Atmospheric Research Atmospheric Technology Division Boulder, Colorado Introduction National Center for Atmospheric Research/Atmospheric Technology Division (NCAR/ATD), with the support of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, is developing an advanced wind profiler radar known as Multiple Antenna Profiler Radar

  3. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-07-04

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  4. Preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, Carlos E.

    1989-01-01

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide.

  5. Baghouse Slipstream Testing at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jason Laumb; Robert Jensen; Jeffery Thompson; Christopher Martin; Mark Musich; Brandon Pavlish; Stanley Miller; Lucinda Hamre

    2007-04-30

    Performing sorbent testing for mercury control at a large scale is a very expensive endeavor and requires months of planning and careful execution. Even with good planning, there are plant limitations on what operating/design parameters can be varied/tested and when. For parameters that cannot be feasibly tested at the full scale (lower/higher gas flow, different bag material, cleaning methods, sorbents, etc.), an alternative approach is used to perform tests on a slipstream unit using flue gas from the plant. The advantage that a slipstream unit provides is the flexibility to test multiple operating and design parameters and other possible technology options without risking major disruption to the operation of the power plant. Additionally, the results generated are expected to simulate full-scale conditions closely, since the flue gas used during the tests comes directly from the plant in question. The Energy & Environmental Research Center developed and constructed a mobile baghouse that allows for cost-effective testing of impacts related to variation in operating and design parameters, as well as other possible mercury control options. Multiple sorbents, air-to-cloth ratios, bag materials, and cleaning frequencies were evaluated while flue gas was extracted from Big Brown when it fired a 70% Texas lignite-30% Powder River Basin (PRB) blend and a 100% PRB coal.

  6. Preparation of metal diboride powders

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  7. Preparation of titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  8. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect (OSTI)

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii

    2009-07-01

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  9. Precision powder feeder

    DOE Patents [OSTI]

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  10. Brown County Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Brown County Wind Facility Brown County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Adams Electric...

  11. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  12. Multiple feed powder splitter

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  13. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  14. Polymer quenched prealloyed metal powder

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Fleischhauer, Grier; German, Randall M.

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  15. brown out | OpenEI Community

    Open Energy Info (EERE)

    brown out Home Dc's picture Submitted by Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future...

  16. Pyrotechnic filled molding powder

    DOE Patents [OSTI]

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  17. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  20. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  5. Ultrafine hydrogen storage powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  6. brown-pd99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Resolution Model/Measurement Validations of Solar Direct-Beam Flux P. D. Brown, E. J. Mlawer, and S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, Massachusetts T. R. Shippert Pacific Northwest National Laboratory Richland, Washington F. J. Murcray and A. W. Dybdahl University of Denver Denver, Colorado L. C. Harrison, P. W. Kiedron, and J. J. Michalsky State University of New York at Albany Albany, New York Introduction A balance between thermal and solar radiation at

  7. Alabama Nuclear Profile - Browns Ferry

    U.S. Energy Information Administration (EIA) Indexed Site

    Browns Ferry" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,101","8,072",83.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  8. Iowa Powder Atomization Technologies

    ScienceCinema (OSTI)

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  9. Iowa Powder Atomization Technologies

    SciTech Connect (OSTI)

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  10. Method for synthesizing powder materials

    DOE Patents [OSTI]

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  11. Method to blend separator powders

    SciTech Connect (OSTI)

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  12. Bifunctional air electrodes containing elemental iron powder charging additive

    DOE Patents [OSTI]

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  13. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  14. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  15. Silicon nitride/silicon carbide composite powders

    DOE Patents [OSTI]

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  16. Effusion plate using additive manufacturing methods

    DOE Patents [OSTI]

    Johnson, Thomas Edward; Keener, Christopher Paul; Ostebee, Heath Michael; Wegerif, Daniel Gerritt

    2016-04-12

    Additive manufacturing techniques may be utilized to construct effusion plates. Such additive manufacturing techniques may include defining a configuration for an effusion plate having one or more internal cooling channels. The manufacturing techniques may further include depositing a powder into a chamber, applying an energy source to the deposited powder, and consolidating the powder into a cross-sectional shape corresponding to the defined configuration. Such methods may be implemented to construct an effusion plate having one or more channels with a curved cross-sectional geometry.

  17. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    SciTech Connect (OSTI)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.; Parten, Randy J.

    2015-12-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage, and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.

  18. Chelsea Brown | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown Graduate student Subtask 4 project: "Water Oxidation using Functionalized Porphyrin Chromophores and Iridium Catalyst"

  19. CMI Education Partner: Brown University | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Partner: Brown University Brown University offers courses in several areas: Engineering School Institute of Environment and Study Brown University: Engineering School http://www.brown.edu/academics/engineering/undergraduate-study/courses ENGN 0030 - Introduction to Engineering: An introduction to various engineering disciplines, thought processes, and issues. Topics include computing in engineering, engineering design, optimization, and estimation. Case studies in engineering are used

  20. additive manufacturuing

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  1. Microsoft PowerPoint - 7 Kevin Brown

    Office of Environmental Management (EM)

    (CBP) Toolsets Kevin G. Brown Vanderbilt University and CRESP Cementitious Barriers Partnership Performance & Risk Assessment Community of Practice Technical Exchange Meeting December 11-12, 2014 Las Vegas NM Project Team Members Vanderbilt University & CRESP D. Kosson*, K.G. Brown*, S. Mahadevan, J. Branch, F. Sanchez Savannah River National Laboratory (SRNL) C. Langton*, G. Flach*, H. Burns*, R. Seitz, S. Marra Energy Research Centre of The Netherlands (ECN) & CRESP H. van der

  2. Ukrainian mineral wax from brown coal

    SciTech Connect (OSTI)

    Shabad, T.

    1986-07-01

    An unusual mineral enterprise is the mineral wax plant of Semenovskoye in the Aleksandriya brown coal basin of the Ukraine. The only plant of its kind in the Soviet Union, it has been in operation since 1959, extracting mineral wax from the local bitumen-rich brown coal. The plant yields about 7.5 tons of mineral wax a day (about 2700 tons a year), for use in a variety of applications.

  3. additive manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additive manufacturing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  4. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  5. Preparation of superconductor precursor powders

    DOE Patents [OSTI]

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  6. Potlining Additives

    SciTech Connect (OSTI)

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  7. Phosphazene additives

    DOE Patents [OSTI]

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  8. Silica powders for powder evacuated thermal insulating panel and method

    SciTech Connect (OSTI)

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  9. Silica powders for powder evacuated thermal insulating panel and method

    SciTech Connect (OSTI)

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  10. Silica powders for powder evacuated thermal insulating panel and method

    SciTech Connect (OSTI)

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  11. Silica powders for powder evacuated thermal insulating panel and method

    SciTech Connect (OSTI)

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  12. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  13. Method for molding ceramic powders

    DOE Patents [OSTI]

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  14. Method for molding ceramic powders

    DOE Patents [OSTI]

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  15. Brown Grease to Biodiesel Demonstration Project Report

    SciTech Connect (OSTI)

    San Francisco Public Utilities Commission; URS Corporation; Biofuels, Blackgold; Carollo Engineers

    2013-01-30

    Municipal wastewater treatment facilities have typically been limited to the role of accepting wastewater, treating it to required levels, and disposing of its treatment residuals. However, a new view is emerging which includes wastewater treatment facilities as regional resource recovery centers. This view is a direct result of increasingly stringent regulations, concerns over energy use, carbon footprint, and worldwide depletion of fossil fuel resources. Resources in wastewater include chemical and thermal energy, as well as nutrients, and water. A waste stream such as residual grease, which concentrates in the drainage from restaurants (referred to as Trap Waste), is a good example of a resource with an energy content that can be recovered for beneficial reuse. If left in wastewater, grease accumulates inside of the wastewater collection system and can lead to increased corrosion and pipe blockages that can cause wastewater overflows. Also, grease in wastewater that arrives at the treatment facility can impair the operation of preliminary treatment equipment and is only partly removed in the primary treatment process. In addition, residual grease increases the demand in treatment materials such as oxygen in the secondary treatment process. When disposed of in landfills, grease is likely to undergo anaerobic decay prior to landfill capping, resulting in the atmospheric release of methane, a greenhouse gas (GHG). This research project was therefore conceptualized and implemented by the San Francisco Public Utilities Commission (SFPUC) to test the feasibility of energy recovery from Trap Waste in the form of Biodiesel or Methane gas. The research goals are given below: To validate technology performance; To determine the costs and benefits [including economic, socioeconomic, and GHG emissions reduction] associated with co-locating this type of operation at a municipal wastewater treatment plant (WWTP); To develop a business case or model for replication of the

  16. Neutron detectors comprising boron powder

    DOE Patents [OSTI]

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  17. Powder Injection Molding of Titanium Components

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Nyberg, Eric A.; Weil, K. Scott; Miller, Megan R.

    2005-01-01

    Powder injection molding (PIM) is a well-established, cost-effective method of fabricating small-to-moderate size metal components. Derived from plastic injection molding and employing a mixture of metal powder and plastic binder, the process has been used with great success in manufacturing a wide variety of metal products, including those made from stainless steel, nickel-based superalloys, and copper alloys. Less progress has been achieved with titanium and other refractory metal alloys because of problems with alloy impurities that are directly attributable to the injection molding process. Specifically, carbon, oxygen, and nitrogen are left behind during binder removal and become incorporated into the chemistry and microstructure of the material during densification. Even at low concentration, these impurities can cause severe degradation in the mechanical properties of titanium and its alloys. We have developed a unique blend of PIM constituents where only a small volume fraction of binder (~5 10 vol%) is required for injection molding; the remainder of the mixture consists of the metal powder and binder solvent. Because of the nature of decomposition in the binder system and the relatively small amount used, the binder is eliminated almost completely from the pre-sintered component during the initial stage of a two-step heat treatment process. Results will be presented on the first phase of this research, in which the binder, injection molding, de-binding and sintering schedule were developed. Additional data on the mechanical and physical properties of the material produced will be discussed.

  18. Powder collection apparatus/method

    DOE Patents [OSTI]

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  19. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, Joseph L.; Hung, Cheng-Hung

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  20. Ceramic oxide powders and the formation thereof

    DOE Patents [OSTI]

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  1. FIA-12-0009- In the Matter of Cynthia Brown

    Broader source: Energy.gov [DOE]

    Cynthia Brown filed an Appeal regarding a request she filed under the Freedom of Information Act. In December 2011, Ms. Brown filed a request for records regarding her late mother.

  2. FIA-12-0044- In the Matter of Cynthia Brown

    Broader source: Energy.gov [DOE]

    Cynthia Brown filed an Appeal regarding a request filed under the Freedom of Information Act. In March 2012, Ms. Brown filed a request for records regarding her late mother.

  3. Brown-Atchison E C A Inc | Open Energy Information

    Open Energy Info (EERE)

    Brown-Atchison E C A Inc Jump to: navigation, search Name: Brown-Atchison E C A Inc Place: Kansas Phone Number: 785-486-2117 Website: baelectric.com Outage Hotline: After Hours:...

  4. Taking It from Brown to Green: Renewable Energy on Contaminated...

    Broader source: Energy.gov (indexed) [DOE]

    Taking It from Brown to Green: Renewable Energy on Contaminated Lands - Otto Van Geet (2.61 MB) Brown to Green: Brownfields Redevelopment for Green Power - Johnson (4.79 MB) ...

  5. PROCESS OF FORMING POWDERED MATERIAL

    DOE Patents [OSTI]

    Glatter, J.; Schaner, B.E.

    1961-07-14

    A process of forming high-density compacts of a powdered ceramic material is described by agglomerating the powdered ceramic material with a heat- decompossble binder, adding a heat-decompossble lubricant to the agglomerated material, placing a quantity of the material into a die cavity, pressing the material to form a compact, pretreating the compacts in a nonoxidizing atmosphere to remove the binder and lubricant, and sintering the compacts. When this process is used for making nuclear reactor fuel elements, the ceramic material is an oxide powder of a fissionsble material and after forming, the compacts are placed in a cladding tube which is closed at its ends by vapor tight end caps, so that the sintered compacts are held in close contact with each other and with the interior wall of the cladding tube.

  6. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    SciTech Connect (OSTI)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel; Marks, Michael

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part of the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.

  7. Microsoft PowerPoint - 1 Kevin Brown

    Office of Environmental Management (EM)

    Program Update Interagency Steering Committee on Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting Richland, Washington December 15-16, 2015 Project Team Members Vanderbilt University & CRESP D. Kosson*, K.G. Brown*, A.C. Garrabrants, S. Mahadevan, J. Branch, F. Sanchez Savannah River National Laboratory (SRNL) C. Langton*; G. Flach*; H. Burns*; R. Seitz, S. Marra; F.G. Smith, III Energy Research Centre of The Netherlands (ECN) & CRESP H. van der

  8. Additive manufacturing method for SRF components of various geometries

    SciTech Connect (OSTI)

    Rimmer, Robert; Frigola, Pedro E; Murokh, Alex Y

    2015-05-05

    An additive manufacturing method for forming nearly monolithic SRF niobium cavities and end group components of arbitrary shape with features such as optimized wall thickness and integral stiffeners, greatly reducing the cost and technical variability of conventional cavity construction. The additive manufacturing method for forming an SRF cavity, includes atomizing niobium to form a niobium powder, feeding the niobium powder into an electron beam melter under a vacuum, melting the niobium powder under a vacuum in the electron beam melter to form an SRF cavity; and polishing the inside surface of the SRF cavity.

  9. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryThis invention provides for composition and method of making extremely fine powders for storing hydrogen.DescriptionThe use of the powders decreases problems that are normally encountered when storage powders repeatedly experience during absorption and then desorption of

  10. Additive Manufacturing Meets the Critical Materials Shortage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Additive Manufacturing Meets the Critical Materials Shortage Additive Manufacturing Meets the Critical Materials Shortage April 9, 2014 - 11:15am Addthis Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames Laboratory Green light reflection from a low-oxygen environment, 3D-printer laser deposition of metal powder alloys. | Photo courtesy of Critical Materials Institute, Ames

  11. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect (OSTI)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  12. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect (OSTI)

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  13. Wetter for fine dry powder

    DOE Patents [OSTI]

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  14. Browning: Email in Response to Smart Grid Request for Information |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Browning: Email in Response to Smart Grid Request for Information Browning: Email in Response to Smart Grid Request for Information Email from Stephen Browning explaing the two attachments submitted in response to the Smart Grid Request for Information on Addressing Policy and Logistical Challenges. Smart Gird Policy Memo (15.63 KB) More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical

  15. Senior Obama Administration Officials to Join Governor Brown...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Secretary Daniel Poneman will join California Governor Jerry Brown, Los Angeles Mayor Eric Garcetti and state, local and tribal leaders from across the country for a media...

  16. MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ,2008 MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Contract Change Order Administration of...

  17. Brown Grease to Biodiesel Demonstration Project Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS Brown Grease; Trap Waste; Biodiesel; Biofuel; Wastewater; Anaerobic Digestion Word Cloud More Like ...

  18. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) Exploration Activity Details Location...

  19. Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) Exploration Activity Details Location...

  20. Decontamination formulation with sorbent additive

    DOE Patents [OSTI]

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  1. Pellet fabrication development using thermally denitrated UO{sub 2} powder

    SciTech Connect (OSTI)

    Davis, N.C.; Griffin, C.W.

    1992-05-01

    Pacific Northwest Laboratory (PNL) has evaluted, on a laboratory scale, the characteristics and pellet fabrication properties of UO{sub 3} powder prepared by the thermal denitration process. Excellent quality, 96% TD (percent of theoretical density) pellets were produced from development lots of this powder. Apparently, the key to making this highly sinterable powder from uranyl nitrate is the addition of ammonium nitrate (NH{sub 4}NO{sub 3}) to the feed solution prior to thermal denitration. Powder lots were processed with and without the NH{sub 4}NO{sub 3} addition in the feed solution. The lots included samples from the ORNL laboratory rotary kiln and from a larger scale rotary kiln at National Lead of Ohio (NLO). In the PNL evaluation, samples of UO{sub 3} were calculated and reduced to UO{sub 2}, followed by conventional process procedures to compare the sinterability of the powder lots. The high density pellets made from the powder lots, which included the NH{sub 4}NO{sub 3} addition, were reduced to Fast Breeder Reactor (FBR) density range of 88 to 92% TD by the use of poreformers. The NH{sub 4}NO{sub 3} addition also improved the sinterability properties of uranium oxide powders that contain thorium and cerium. Thorium and cerium were used as ``stand-in`` for plutonium used in urania-plutonia FBR fuel pellets. A very preliminary examination of a single lot of thermally denitrated uranium-plutonium oxide powder was made. This powder lot was made with the NH{sub 3}NO{sub 3} addition and produced pellets just above the FBR density range.

  2. Trends in powder processing equipment

    SciTech Connect (OSTI)

    Sheppard, L.M.

    1993-05-01

    Spray drying is the most widely used process for producing particles. It is used in industries other than ceramics including food, chemicals, and pharmaceutical. The process involves the atomization of a liquid feed stock into a spray of droplets and contacting the droplets with hot air in a drying chamber. The sprays are produced by either rotary or nozzle atomizers. Evaporation of moisture from the droplets and formation of dry particles proceed under controlled temperature and airflow conditions. Powder is then discharged continuously from the drying chamber. Spray drying equipment is being improved to handle an ever-increasing number of applications. Several developments in particle-size reduction equipment are also described.

  3. Systems and Professional Development - David Brown, Director, Systems &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Professional Development, OAPM | Department of Energy Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Systems and Professional Development - David Brown, Director, Systems & Professional Development, OAPM Topics Discussed: Importance of Contracting in DOE Compared with Other Civilian Agencies Professional Workforce Workload DOE's Certified Workforce Acquisition Workload The Holy Grail of Contract and Project Management More...

  4. Novel Solvent System for Post Combustion CO{sub 2} Capture Brown...

    Office of Scientific and Technical Information (OSTI)

    COsub 2 Capture Brown, Alfred; Brown, Nathan 20 FOSSIL-FUELED POWER PLANTS Clean Coal Technology Coal - Environmental (Carbon Capture) Clean Coal Technology Coal -...

  5. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  6. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  7. Process for the synthesis of iron powder

    DOE Patents [OSTI]

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  8. Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron beam melting

    SciTech Connect (OSTI)

    Nandwana, Peeyush; Peter, William H.; Lowe, Larry E.; Dehoff, Ryan R.; Medina, Francisco; Babu, Sudarsanam Suresh; Kirka, Michael M.

    2015-10-20

    In this study, powder bed based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reuse time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented.

  9. Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron beam melting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nandwana, Peeyush; Peter, William H.; Lowe, Larry E.; Dehoff, Ryan R.; Medina, Francisco; Babu, Sudarsanam Suresh; Kirka, Michael M.

    2015-10-20

    In this study, powder bed based additive manufacturing technologies offer a big advantage in terms of reusability of the powders over multiple cycles that result in cost savings. However, currently there are no standards to determine the factors that govern the powder reuse times. This work presents the results from a recyclability study conducted on Inconel 718 and Ti-6Al-4V powders. It has been found that the Inconel 718 powders are chemically stable over a large number of cycles and their reuse time is limited by physical characteristics of powders such as flowability. Ti-6Al-4V, on the other hand, finds its reusemore » time governed by the oxygen pick up that occurs during and in between build cycles. The detailed results have been presented.« less

  10. Wet powder seal for gas containment

    DOE Patents [OSTI]

    Stang, Louis G.

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  11. Wet powder seal for gas containment

    DOE Patents [OSTI]

    Stang, L.G.

    1979-08-29

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  12. Additive manufacturing of hybrid circuits

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  13. A new parallax measurement for the coldest known brown dwarf

    SciTech Connect (OSTI)

    Luhman, K. L.; Esplin, T. L.

    2014-11-20

    WISE J085510.83–071442.5 was recently discovered as the coldest known brown dwarf based on four epochs of images from the Wide-field Infrared Survey Explorer and the Spitzer Space Telescope. We have improved the accuracy of its parallax measurement by obtaining two additional epochs of Spitzer astrometry. We derive a parallactic distance of 2.31 ± 0.08 pc, which continues to support its rank as the fourth closest known system to the Sun when compared to WISE J104915.57–531906.1 AB (2.02 ± 0.02 pc) and Wolf 359 (2.386 ± 0.012 pc). The new constraint on the absolute magnitude at 4.5 μm indicates an effective temperature of 235-260 K based on four sets of theoretical models. We also show the updated positions of WISE J085510.83–071442.5 in two color-magnitude diagrams. Whereas Faherty and coworkers cited its location in M {sub W2} versus J – W2 as evidence of water clouds, we find that those data can be explained instead by cloudless models that employ non-equilibrium chemistry.

  14. Brown County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Ohio. Its FIPS County Code is 015. It is classified as ASHRAE...

  15. Brown County, Indiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Indiana. Its FIPS County Code is 013. It is classified as ASHRAE...

  16. Brown County, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Kansas. Its FIPS County Code is 013. It is classified as ASHRAE...

  17. Brown County, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Minnesota. Its FIPS County Code is 015. It is classified as...

  18. Brown County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Texas. Its FIPS County Code is 049. It is classified as ASHRAE...

  19. Brown County, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in South Dakota. Its FIPS County Code is 013. It is classified as...

  20. From: Meredith Brown Subject: Yellow Alert:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fri, 12 Jun 1998 17:03:23 -0500 From: Meredith Brown Subject: Yellow Alert: Small Bench Top Fire Title: Bench Top Fire Involving Use of Alcohol and Burner...

  1. Brown County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Nebraska. Its FIPS County Code is 017. It is classified as...

  2. Brown County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Wisconsin. Its FIPS County Code is 009. It is classified as...

  3. Brown County Rural Elec Assn | Open Energy Information

    Open Energy Info (EERE)

    Rural Elec Assn Jump to: navigation, search Name: Brown County Rural Elec Assn Place: Minnesota Phone Number: 1-800-658-2368 Website: www.browncountyrea.coop Outage Hotline:...

  4. Brown County, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Brown County is a county in Illinois. Its FIPS County Code is 009. It is classified as...

  5. DOE - Office of Legacy Management -- Brown University - Metcalf Research

    Office of Legacy Management (LM)

    Lab - RI 01 Brown University - Metcalf Research Lab - RI 01 FUSRAP Considered Sites Site: Brown University (Metcalf Research Lab.) (RI.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Providence , Rhode Island RI.01-1 Evaluation Year: 1987 RI.01-1 Site Operations: Research/Development on the preparation of pure halides of heavy metals, Bench Scale Process, and Sample & Analysis. RI.01-1 Site Disposition: Eliminated -

  6. Water Outgassing from PBX-9502 powder by isoconversional thermal...

    Office of Scientific and Technical Information (OSTI)

    Water Outgassing from PBX-9502 powder by isoconversional thermal analysis Citation Details In-Document Search Title: Water Outgassing from PBX-9502 powder by isoconversional ...

  7. NanoComposite Stainless Steel Powder Technologies (Technical...

    Office of Scientific and Technical Information (OSTI)

    NanoComposite Stainless Steel Powder Technologies Citation Details In-Document Search Title: NanoComposite Stainless Steel Powder Technologies You are accessing a document from ...

  8. Solid State Processing of New Low Cost Titanium Powders Enabling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powders Enabling Affordable Automotive Components Solid State Processing of New Low Cost Titanium Powders Enabling Affordable Automotive Components Presentation given at ...

  9. Powder Dropper | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powder Dropper This device releases micron-sized dust particles at a controlled rate through an aperture in a vibrating crystal. The amount of dust released ranges from a few particles per second up to the choking point of the closed aperture. Our present crystal will pass ~ 5 million particles per second assuming particle diameter of 50 microns. The powder is released by vibrating a piezo crystal at the bottom of a reservoir. The amount of powder or dust that is released is controlled by

  10. Denudation of metal powder layers in laser powder bed fusion...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 114; Journal Issue: C; Related Information: CHORUS Timestamp: 2016-05-29 01:01:52; Journal ID: ISSN 1359-6454 Publisher: Elsevier ...

  11. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOE Patents [OSTI]

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  12. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOE Patents [OSTI]

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  13. Synthesis and processing of monosized oxide powders

    DOE Patents [OSTI]

    Barringer, Eric A.; Fegley, Jr., M. Bruce; Bowen, H. Kent

    1985-01-01

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  14. Synthesis and processing of monosized oxide powders

    DOE Patents [OSTI]

    Barringer, E.A.; Fegley, M.B. Jr.; Bowen, H.K.

    1985-09-24

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 microns can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed. 6 figs.

  15. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  16. Synthesis of nanoscale magnesium diboride powder

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nmmore » to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.« less

  17. Synthesis of nanoscale magnesium diboride powder

    SciTech Connect (OSTI)

    Finnemore, D. K.; Marzik, J. V.

    2015-12-18

    A procedure has been developed for the preparation of small grained magnesium diboride (MgB2) powder by reacting nanometer size boron powder in a magnesium vapor. Plasma synthesized boron powder that had particle sizes ranging from 20 to 300nm was mixed with millimeter size chunks of Mg by rolling stoichiometric amounts of the powders in a sealed cylindrical container under nitrogen gas. This mixture then was placed in a niobium reaction vessel, evacuated, and sealed by e-beam welding. The vessel was typically heated to approximately 830°C for several hours. The resulting MgB2 particles have a grain size in the 200 nm to 800 nm range. Agglomerates of loosely bound particles could be broken up by light grinding in a mortar and pestle. At 830°C, many particles are composed of several grains grown together so that the average particle size is about twice the average grain size. Furthermore, experiments were conducted primarily with undoped boron powder, but carbon-doped boron powder showed very similar results.

  18. I. V. Khalzov, B. P. Brown, F. Ebrahimi, D. D. Schnack, and C. B. Forest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulation of laminar plasma dynamos in a cylindrical von Kármán flow I. V. Khalzov, B. P. Brown, F. Ebrahimi, D. D. Schnack, and C. B. Forest Citation: Phys. Plasmas 18, 032110 (2011); doi: 10.1063/1.3559472 View online: http://dx.doi.org/10.1063/1.3559472 View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v18/i3 Published by the American Institute of Physics. Additional information on Phys. Plasmas Journal Homepage: http://pop.aip.org/ Journal Information:

  19. I. V. Khalzov, B. P. Brown, N. Katz, and C. B. Forest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Parker instability in a rotating plasma screw pinch I. V. Khalzov, B. P. Brown, N. Katz, and C. B. Forest Citation: Phys. Plasmas 19, 022107 (2012); doi: 10.1063/1.3684240 View online: http://dx.doi.org/10.1063/1.3684240 View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v19/i2 Published by the American Institute of Physics. Additional information on Phys. Plasmas Journal Homepage: http://pop.aip.org/ Journal Information: http://pop.aip.org/about/about_the_journal Top downloads:

  20. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  1. Slip casting nano-particle powders for making transparent ceramics

    DOE Patents [OSTI]

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  2. Iowa Powder Atomization Technologies, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder Atomization Technologies, Inc. (IPAT) aims to become a leading domestic titanium powder producer allowing for a paradigm shift in the cost of titanium powders for metal injection molding (MIM) feedstock. Decreasing this cost will create vast opportunities for aerospace, military, biomedical, and consumer applications. Titanium

  3. Characterization of temperature-dependent optical material properties of polymer powders

    SciTech Connect (OSTI)

    Laumer, Tobias; Stichel, Thomas; Bock, Thomas; Amend, Philipp; Schmidt, Michael

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  4. Die-target for dynamic powder consolidation

    DOE Patents [OSTI]

    Flinn, J.E.; Korth, G.E.

    1985-06-27

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

  5. Die-target for dynamic powder consolidation

    DOE Patents [OSTI]

    Flinn, John E.; Korth, Gary E.

    1986-01-01

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block.

  6. Dynamic compaction of tungsten carbide powder.

    SciTech Connect (OSTI)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  7. Effect of calcium modification on the microstructure and oxidation property of submicron spherical palladium powders

    SciTech Connect (OSTI)

    Che, S.; Sakurai, O.; Funakubo, H.; Shinozaki, K.; Mizutani, N.

    1997-02-01

    Ca-modified spherical palladium particles were prepared from the mixed solution of Pd(NO{sub 3}){sub 2} and Ca(NO{sub 3}){sub 2} by ultrasonic spray pyrolysis. Pure palladium powder and that modified with less than 55 ppm Ca were composed of single crystal particles. However, Ca addition of more than 550 ppm resulted in polycrystalline particles. Crystallite size of the particles decreased with the increase of Ca addition and changed dramatically at the addition of some hundred ppm. Ca additive did not form solid solution with palladium but formed CaPd{sub 3}O{sub 4} on the surface and grain boundary of the particles. 50 ppm{endash}1{percent} of Ca addition significantly reduced the oxidization of palladium powder. More addition of Ca resulted in excess oxidation due to the reaction between palladium and calcium oxide. {copyright} {ital 1997 Materials Research Society.}

  8. Biaxially textured articles formed by powder metallurgy

    DOE Patents [OSTI]

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  9. System and method for high power diode based additive manufacturing

    DOE Patents [OSTI]

    El-Dasher, Bassem S.; Bayramian, Andrew; Demuth, James A.; Farmer, Joseph C.; Torres, Sharon G.

    2016-04-12

    A system is disclosed for performing an Additive Manufacturing (AM) fabrication process on a powdered material forming a substrate. The system may make use of a diode array for generating an optical signal sufficient to melt a powdered material of the substrate. A mask may be used for preventing a first predetermined portion of the optical signal from reaching the substrate, while allowing a second predetermined portion to reach the substrate. At least one processor may be used for controlling an output of the diode array.

  10. Atomization methods for forming magnet powders

    DOE Patents [OSTI]

    Sellers, Charles H.; Branagan, Daniel J.; Hyde, Timothy A.

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  11. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  12. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  13. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  14. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  15. Process for preparing active oxide powders

    DOE Patents [OSTI]

    Berard, Michael F.; Hunter, Jr., Orville; Shiers, Loren E.; Dole, Stephen L.; Scheidecker, Ralph W.

    1979-02-20

    An improved process for preparing active oxide powders in which cation hydroxide gels, prepared in the conventional manner are chemically dried by alternately washing the gels with a liquid organic compound having polar characteristics and a liquid organic compound having nonpolar characteristics until the mechanical water is removed from the gel. The water-free cation hydroxide is then contacted with a final liquid organic wash to remove the previous organic wash and speed drying. The dried hydroxide treated in the conventional manner will form a highly sinterable active oxide powder.

  16. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, Thomas T.; Sheinberg, Haskell; Blake, Rodger D.

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  17. Synthesis of ultrafine powders by microwave heating

    DOE Patents [OSTI]

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  18. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect (OSTI)

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  19. Advanced NDE Technologies for Powder Metal Components

    SciTech Connect (OSTI)

    Martin, P; Haskins, J; Thomas, G; Dolan, K

    2003-05-01

    Nondestructive evaluation encompasses numerous technologies that assess materials and determine important properties. This paper demonstrates the applicability of several of these technologies to the field of powder metallurgy. The usual application of nondestructive evaluation is to detect and quantify defects in fully sintered product. But probably its most appealing role is to sense problems earlier in the manufacturing process to avoid making defects at all. Also nondestructive evaluation can be incorporated into the manufacturing processes to monitor important parameters and control the processes to produce defect free product. Nondestructive evaluation can characterize powders, evaluate components in the green state, monitor the sintering process, and inspect the final component.

  20. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...

  1. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  2. High-Pressure and High-Temperature Powder Diffraction (Journal...

    Office of Scientific and Technical Information (OSTI)

    High-Pressure and High-Temperature Powder Diffraction Citation Details In-Document Search Title: High-Pressure and High-Temperature Powder Diffraction Authors: Fei, Yingwei ; Wang, ...

  3. QER - Comment of Powder River Energy Corporation | Department...

    Energy Savers [EERE]

    Powder River Energy Corporation is an equal opportunity provider and employer. ... Note: PrivilegedConfidential information may be ...

  4. An efficient and cost-effective method for preparing transmission electron microscopy samples from powders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wen, Haiming; Lin, Yaojun; Seidman, David N.; Schoenung, Julie M.; van Rooyen, Isabella J.; Lavernia, Enrique J.

    2015-09-09

    The preparation of transmission electron microcopy (TEM) samples from powders with particle sizes larger than ~100 nm poses a challenge. The existing methods are complicated and expensive, or have a low probability of success. Herein, we report a modified methodology for preparation of TEM samples from powders, which is efficient, cost-effective, and easy to perform. This method involves mixing powders with an epoxy on a piece of weighing paper, curing the powder–epoxy mixture to form a bulk material, grinding the bulk to obtain a thin foil, punching TEM discs from the foil, dimpling the discs, and ion milling the dimpledmore » discs to electron transparency. Compared with the well established and robust grinding–dimpling–ion-milling method for TEM sample preparation for bulk materials, our modified approach for preparing TEM samples from powders only requires two additional simple steps. In this article, step-by-step procedures for our methodology are described in detail, and important strategies to ensure success are elucidated. Furthermore, our methodology has been applied successfully for preparing TEM samples with large thin areas and high quality for many different mechanically milled metallic powders.« less

  5. Oxidation kinetics of calcium-doped palladium powders

    SciTech Connect (OSTI)

    Jain, S.; Kodas, T.T.; Hampden-Smith, M. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-04-01

    The oxidation kinetics of submicron Ca-containing Pd powders produced by spray pyrolysis were studied in the temperature range 600 to 675 C using thermogravimetric analysis. The oxidation of pure Pd powder had an activation energy of {approximately}230 kJ/mol in the region 27% < oxidation < 70% and 65 kJ/mol for oxidation > 70%. The activation energies for Pd particles containing 0.01 weight percent (w/o) and 0.4 w/o Ca in the region 27% < oxidation < 70% were {approximately}230 kJ/mol and {approximately}50 kJ/mol, respectively. Transmission electron microscopy suggested that the conversion of Pd to Pd{sup II}O (stoichiometric PdO) proceeds from the particle surface into the interior and not homogeneously throughout the particle. The predictions of a variety of models and rate laws (shrinking core, parabolic, cubic, logarithmic, and inverse logarithmic) were compared with the data. The comparison suggested a mechanism in which oxidation of pure Pd proceeds by chemisorption and diffusion of oxygen to form a substoichiometric oxide, followed by the conversion of substoichiometric PdO to Pd{sup II}O. Oxidation of pure Pd is then probably limited by the diffusion of oxygen through the substoichiometric PdO and/or Pd{sup II}O. The addition of Ca increased the oxidation resistance of Pd most likely by inhibiting oxygen diffusion through the metal oxide layers surrounding the Pd.

  6. Additional Distinguished Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Distinguished Awards Additional Distinguished The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Jenna L. Montoya (505) 665-4230 Email The atomic bomb made the prospect of future war unendurable. It has led us up those last few steps to the mountain pass; and beyond there is a different country. ~

  7. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  8. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  9. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  10. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  11. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  12. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, Ival O.

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  13. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  14. Ignition of THKP and TKP pyrotechnic powders :

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  15. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  16. Dry powder mixes comprising phase change materials

    DOE Patents [OSTI]

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  17. Fabricating solid carbon porous electrodes from powders

    DOE Patents [OSTI]

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  18. Full body powder antichip. Final report

    SciTech Connect (OSTI)

    1996-04-17

    Chipping is the major paint defect listed for automobile customer dissatisfaction. The improved chip resistance and smoother paint surfaces produced by full body powder antichip will result in greater customer satisfaction and greater demand for US-produced automobiles. Powder antichip contains virtually no solvent, thereby reducing the potential VOC emissions from Newark Assembly by more than 90 tons per year as compared to the solvent-borne material presently applied in most full body applications. Since Newark Assembly Plant is in a severe non-attainment air quality area, which must demonstrate a 15% reduction in emissions by 1996, projects such as this are crucial to the longevity of industry in this region. The liquid paint spray systems include incineration of the oven volatile organic compounds (VOC`s) at 1,500 F. Since there are minimal VOC`s in powder coatings and the only possible releases occur only during polymerization, incineration is not required. The associated annual savings resulting from the elimination of the incinerator utilized on the liquid spray system is 1.44 {times} 10{sup 10} BTU`s per unit installed. The annual cost savings is approximately $388 thousand, far below the original estimates.

  19. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  20. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOE Patents [OSTI]

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  1. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect (OSTI)

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a

  2. Production and degradation of oxalic acid by brown rot fungi

    SciTech Connect (OSTI)

    Espejo, E.; Agosin, E. )

    1991-07-01

    Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted {sup 14}C-labeled oxalic acid to CO{sub 2} during cellulose depolymerization. The other brown rot fungi also oxidized {sup 14}C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize {sup 14}C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.

  3. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOE Patents [OSTI]

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  4. A novel process route for the production of spherical SLS polymer powders

    SciTech Connect (OSTI)

    Schmidt, Jochen; Sachs, Marius; Blümel, Christina; Winzer, Bettina; Toni, Franziska; Wirth, Karl-Ernst; Peukert, Wolfgang

    2015-05-22

    Currently, rapid prototyping gradually is transferred to additive manufacturing opening new applications. Especially selective laser sintering (SLS) is promising. One drawback is the limited choice of polymer materials available as optimized powders. Powders produced by cryogenic grinding show poor powder flowability resulting in poor device quality. Within this account we present a novel process route for the production of spherical polymer micron-sized particles of good flowability. The feasibility of the process chain is demonstrated for polystyrene e. In a first step polymer microparticles are produced by a wet grinding method. By this approach the mean particle size and the particle size distribution can be tuned between a few microns and several 10 microns. The applicability of this method will be discussed for different polymers and the dependencies of product particle size distribution on stressing conditions and process temperature will be outlined. The comminution products consist of microparticles of irregular shape and poor powder flowability. An improvement of flowability of the ground particles is achieved by changing their shape: they are rounded using a heated downer reactor. The influence of temperature profile and residence time on the product properties will be addressed applying a viscous-flow sintering model. To further improve the flowability of the cohesive spherical polymer particles nanoparticles are adhered onto the microparticles’ surface. The improvement of flowability is remarkable: rounded and dry-coated powders exhibit a strongly reduced tensile strength as compared to the comminution product. The improved polymer powders obtained by the process route proposed open new possibilities in SLS processing including the usage of much smaller polymer beads.

  5. Large Bore Powder Gun Qualification (U)

    SciTech Connect (OSTI)

    Rabern, Donald A.; Valdiviez, Robert

    2012-04-02

    A Large Bore Powder Gun (LBPG) is being designed to enable experimentalists to characterize material behavior outside the capabilities of the NNSS JASPER and LANL TA-55 PF-4 guns. The combination of these three guns will create a capability to conduct impact experiments over a wide range of pressures and shock profiles. The Large Bore Powder Gun will be fielded at the Nevada National Security Site (NNSS) U1a Complex. The Complex is nearly 1000 ft below ground with dedicated drifts for testing, instrumentation, and post-shot entombment. To ensure the reliability, safety, and performance of the LBPG, a qualification plan has been established and documented here. Requirements for the LBPG have been established and documented in WE-14-TR-0065 U A, Large Bore Powder Gun Customer Requirements. The document includes the requirements for the physics experiments, the gun and confinement systems, and operations at NNSS. A detailed description of the requirements is established in that document and is referred to and quoted throughout this document. Two Gun and Confinement Systems will be fielded. The Prototype Gun will be used primarily to characterize the gun and confinement performance and be the primary platform for qualification actions. This gun will also be used to investigate and qualify target and diagnostic modifications through the life of the program (U1a.104 Drift). An identical gun, the Physics Gun, will be fielded for confirmatory and Pu experiments (U1a.102D Drift). Both guns will be qualified for operation. The Gun and Confinement System design will be qualified through analysis, inspection, and testing using the Prototype Gun for the majority of process. The Physics Gun will be qualified through inspection and a limited number of qualification tests to ensure performance and behavior equivalent to the Prototype gun. Figure 1.1 shows the partial configuration of U1a and the locations of the Prototype and Physics Gun/Confinement Systems.

  6. Laser production of articles from powders

    DOE Patents [OSTI]

    Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

    1998-11-17

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

  7. Laser production of articles from powders

    DOE Patents [OSTI]

    Lewis, Gary K.; Milewski, John O.; Cremers, David A.; Nemec, Ronald B.; Barbe, Michael R.

    1998-01-01

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

  8. Scalable synthesis of nanoporous palladium powders.

    SciTech Connect (OSTI)

    Robinson, David B.; Tran, Kim L.; Clift, W. Miles; Arslan Ilke; Langham, Mary Elizabeth; Ong, Markus D.; Fares, Stephen James

    2009-03-01

    Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.

  9. I. V. Khalzov, B. P. Brown, E. J. Kaplan, N. Katz, C. Paz-Soldan et al.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resistive and ferritic-wall plasma dynamos in a sphere I. V. Khalzov, B. P. Brown, E. J. Kaplan, N. Katz, C. Paz-Soldan et al. Citation: Phys. Plasmas 19, 104501 (2012); doi: 10.1063/1.4757219 View online: http://dx.doi.org/10.1063/1.4757219 View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v19/i10 Published by the American Institute of Physics. Additional information on Phys. Plasmas Journal Homepage: http://pop.aip.org/ Journal Information: http://pop.aip.org/about/about_the_journal

  10. From: Meredith Brown Subject: Red Alert: Contaminatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meredith Brown Subject: Red Alert: Contamination Spread Outside of RCAs ... Priority Descriptor: REDUrgent (based on the actual spread of contamination offsite) ...

  11. From Meredith Brown racer@lanl.gov Subject: Yellow Alert- Supplied...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 Jan 2000 130859 -0700 From Meredith Brown racer@lanl.gov Subject: Yellow Alert- Supplied Air Fitting Failure Title: Yellow Alert- Mechanical Failure of Supplied Air Fitting...

  12. Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel

    DOE Patents [OSTI]

    Park, Jong-Hee (Clarendon Hills, IL)

    2011-11-29

    A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

  13. Selection of powder factor in large diameter blastholes

    SciTech Connect (OSTI)

    Eloranta, J.

    1995-12-31

    This paper documents the relationship between material handling and processing costs compared to blasting cost. The old adage, The cheapest crushing is done in the pit, appears accurate in this case study. Comparison of the accumulated cost of: powder, selected wear materials and electricity; indicate a strong, inverse correlation with powder factor (lbs powder/long ton of rock). In this case, the increased powder cost is more than offset by electrical savings alone. Measurable, overall costs decline while shovel and crusher productivity rise by about 5% when powder factor rises by 15%. These trends were previously masked by the effects of: weather, ore grade fluctuations and accounting practices. Attempts to correlate increased powder factor to: wear materials in the crushing plant and to shovel hoist rope life have not shown the same benefit.

  14. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect (OSTI)

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  15. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    SciTech Connect (OSTI)

    Zhang, Xi; Showman, Adam P.

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when the internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.

  16. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    SciTech Connect (OSTI)

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-03-15

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  17. Electrochemical cell with powdered electrically insulative material as a separator

    DOE Patents [OSTI]

    Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.

    1978-01-01

    A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.

  18. From: Doris Brown To: Congestion Study Comments Subject: NIETCs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doris Brown To: Congestion Study Comments Subject: NIETCs Date: Monday, October 20, 2014 2:47:39 PM I am opposed to the establishment of National Interest Energy Transmission Corridors (NIETC's) Easements for the corridors will mainly have to be obtained through eminent domain. Compensation for the easements can only be "just" as required in the Bill of Rights if it reflects all the possibilities of what the easement may be used for. Utilities do not want to farm the land, so farming

  19. Method of manufacturing iron aluminide by thermomechanical processing of elemental powders

    DOE Patents [OSTI]

    Deevi, Seetharama C.; Lilly, Jr., A. Clifton; Sikka, Vinod K.; Hajaligol, Mohammed R.

    2000-01-01

    A powder metallurgical process of preparing iron aluminide useful as electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 20 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.05% Zr or ZrO.sub.2 stringers extending perpendicular to an exposed surface of the heating element, .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Zr, .ltoreq.1% C, .ltoreq.0.1% B, .ltoreq.30% oxide dispersoid and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1 % rare earth metal, .ltoreq.1% oxygen, and/or .ltoreq.3% Cu. The process includes forming a mixture of aluminum powder and iron powder, shaping the mixture into an article such as by cold rolling the mixture into a sheet, and sintering the article at a temperature sufficient to react the iron and aluminum powders and form iron aluminide. The sintering can be followed by hot or cold rolling to reduce porosity created during the sintering step and optional annealing steps in a vacuum or inert atmosphere.

  20. Forming gas treatment of lithium ion battery anode graphite powders

    DOE Patents [OSTI]

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  1. POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION...

    Office of Scientific and Technical Information (OSTI)

    CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS Citation Details In-Document Search Title: POWDERED ACTIVATED...

  2. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, Barry H.; Wright, Richard N.

    1993-01-01

    A process for synthesizing intermetallic compounds from elemental powders. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe.sub.3 Al and FeAl.

  3. Joining of parts via magnetic heating of metal aluminum powders

    DOE Patents [OSTI]

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  4. Vacuum Attachment for Collection of Lithium Powder ---- Inventor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Lithium Powder ---- Inventor(s) Hans Schneider and Stephan Jurczynski The Vacuum Attachment is part of an integrated system designed to collect Lithium (Li) Power for ...

  5. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    SciTech Connect (OSTI)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Ali, M.N.; Chen, Nan

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  6. Improving properties of Mg with AlCu additions

    SciTech Connect (OSTI)

    Rashad, Muhammad; Pan, Fusheng; Asif, Muhammad; Hussain, Shahid; Saleem, Muhammad

    2014-09-15

    The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copperaluminum particulate hybrids. The AlCu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: Mg matrix is reinforced with AlCu particulate hybrids. Powder metallurgic method is used to fabricate the alloys. Tensile strength and ductility were increased simultaneously.

  7. CONFIRMATION OF ONE OF THE COLDEST KNOWN BROWN DWARFS

    SciTech Connect (OSTI)

    Luhman, K. L.; Bochanski, J. J.; Burgasser, A. J.; Labbe, I.; Monson, A. J.; Persson, S. E.; Saumon, D.; Marley, M. S.

    2012-01-10

    Using two epochs of 4.5 {mu}m images from the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope, we recently identified a common proper motion companion to the white dwarf WD 0806-661 that is a candidate for the coldest known brown dwarf. To verify its cool nature, we have obtained images of this object at 3.6 {mu}m with IRAC, at J with the High Acuity Wide-field K-band Imager (HAWK-I) on the Very Large Telescope, and in a filter covering the red half of J with FourStar on Magellan. WD 0806-661 B is detected by IRAC but not HAWK-I or FourStar. From these data we measure colors of [3.6] - [4.5] = 2.77 {+-} 0.16 and J - [4.5] > 7.0 (S/N < 3). Based on these colors and its absolute magnitudes, WD 0806-661 B is the coldest companion directly imaged outside of the solar system and is a contender for the coldest known brown dwarf with the Y dwarf WISEP J1828+2650. It is unclear which of these two objects is colder given the available data. A comparison of its absolute magnitude at 4.5 {mu}m to the predictions of theoretical spectra and evolutionary models suggests that WD 0806-661 B has T{sub eff} = 300-345 K.

  8. NEOWISE-R observation of the coolest known brown dwarf

    SciTech Connect (OSTI)

    Wright, Edward L.; Mainzer, Amy; Bauer, James; Eisenhardt, Peter R. M.; Davy Kirkpatrick, J.; Masci, Frank; Fajardo-Acosta, Sergio; Gelino, Christopher R.; Beichman, Charles A.; Cutri, Roc; Cushing, Michael C.; Skrutskie, M. F.; Grav, T.

    2014-11-01

    The Wide-field Infrared Survey Explorer (WISE) spacecraft has been reactivated as NEOWISE-R to characterize and search for near-Earth objects. The brown dwarf WISE J085510.83–071442.5 has now been re-observed by NEOWISE-R, and we confirm the results of Luhman, who found a very low effective temperature (≈250 K), a very high proper motion (8.''1 ± 0.''1 yr{sup –1}), and a large parallax (454 ± 45 mas). The large proper motion has separated the brown dwarf from the background sources that influenced the 2010 WISE data, allowing a measurement of a very red WISE color of W1 – W2 >3.9 mag. A re-analysis of the 2010 WISE astrometry using only the W2 band, combined with the new NEOWISE-R 2014 position, gives an improved parallax of 448 ± 33 mas and a proper motion of 8.''08 ± 0.''05 yr{sup –1}. These are all consistent with values from Luhman.

  9. Process for preparing titanium nitride powder

    DOE Patents [OSTI]

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  10. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  11. Apparatus for producing nanoscale ceramic powders

    SciTech Connect (OSTI)

    Helble, J.J.; Moniz, G.A.; Morse, T.F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

  12. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J.; Moniz, Gary A.; Morse, Theodore F.

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  13. Apparatus for producing nanoscale ceramic powders

    SciTech Connect (OSTI)

    Helble, J.J.; Moniz, G.A.; Morse, T.F.

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles. 5 figs.

  14. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect (OSTI)

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  15. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleishhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2003-12-09

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  16. Method of manufacturing aluminide sheet by thermomechanical processing of aluminide powders

    DOE Patents [OSTI]

    Hajaligol, Mohammad R.; Scorey, Clive; Sikka, Vinod K.; Deevi, Seetharama C.; Fleischhauer, Grier; Lilly, Jr., A. Clifton; German, Randall M.

    2000-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr.ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3% Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  17. Three new cool brown dwarfs discovered with the wide-field infrared survey explorer (WISE) and an improved spectrum of the Y0 dwarf wise J041022.71+150248.4

    SciTech Connect (OSTI)

    Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; Mace, Gregory N.; Skrutskie, Michael F.; Gould, Andrew

    2014-05-01

    As part of a larger search of Wide-field Infrared Survey Explorer (WISE) data for cool brown dwarfs with effective temperatures less than 1000 K, we present the discovery of three new cool brown dwarfs with spectral types later than T7. Using low-resolution, near-infrared spectra obtained with the NASA Infrared Telescope Facility and the Hubble Space Telescope, we derive spectral types of T9.5 for WISE J094305.98+360723.5, T8 for WISE J200050.19+362950.1, and Y0: for WISE J220905.73+271143.9. The identification of WISE J220905.73+271143.9 as a Y dwarf brings the total number of spectroscopically confirmed Y dwarfs to 17. In addition, we present an improved spectrum (i.e., higher signal-to-noise ratio) of the Y0 dwarf WISE J041022.71+150248.4 that confirms the Cushing et al. classification of Y0. Spectrophotometric distance estimates place all three new brown dwarfs at distances less than 12 pc, with WISE J200050.19+362950.1 lying at a distance of only 3.9-8.0 pc. Finally, we note that brown dwarfs like WISE J200050.19+362950.1 that lie in or near the Galactic plane offer an exciting opportunity to directly measure the mass of a brown dwarf via astrometric microlensing.

  18. Fabrication of metal matrix composite by semi-solid powder processing

    SciTech Connect (OSTI)

    Wu, Yufeng

    2012-11-28

    Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and

  19. Vacuum pyrolysis of waste tires with basic additives

    SciTech Connect (OSTI)

    Zhang Xinghua; Wang Tiejun Ma Longlong; Chang Jie

    2008-11-15

    Granules of waste tires were pyrolyzed under vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na{sub 2}CO{sub 3}, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 deg. C to 600 deg. C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 deg. C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 deg. C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) {approx}205 deg. C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt%, which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na{sub 2}CO{sub 3} addition. Pyrolysis gas was mainly composed of H{sub 2}, CO, CH{sub 4}, CO{sub 2}, C{sub 2}H{sub 4} and C{sub 2}H{sub 6}. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.

  20. Characterization of novel sorghum brown midrib mutants from an EMS-mutagenized population

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sattler, Scott E.; Saballos, Ana; Xin, Zhanguo; Funnell-Harris, Deanna L.; Vermerris, Wilfred; Pedersen, Jeffrey F.

    2014-09-02

    Reducing lignin concentration in lignocellulosic biomass can increase forage digestibility for ruminant livestock and saccharification yields of biomass for bioenergy. In sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses, brown midrib (bmr) mutants have been shown to reduce lignin concentration. Putative bmr mutants isolated from an EMS-mutagenized population were characterized and classified based on their leaf midrib phenotype and allelism tests with the previously described sorghum bmr mutants bmr2, bmr6, and bmr12. These tests resulted in the identification of additional alleles of bmr2, bmr6,and bmr12, and, in addition, six bmr mutants were identified that were not allelic tomore » these previously described loci. Further allelism testing among these six bmr mutants showed that they represented four novel bmr loci. Based on this study, the number of bmr loci uncovered in sorghum has doubled. The impact of these lines on agronomic traits and lignocellulosic composition was assessed in a 2-yr field study. Most of the identified bmr lines showed reduced lignin concentration of their biomass relative to wild-type (WT). Effects of the six new bmr mutants on enzymatic saccharification of lignocellulosic materials were determined, but the amount of glucose released from the stover was similar to WT in all cases. Like bmr2, bmr6, and bmr12, these mutants may affect monolignol biosynthesis and may be useful for bioenergy and forage improvement when stacked together or in combination with the three previously described bmr alleles.« less

  1. ATWS at Browns Ferry Unit One - accident sequence analysis

    SciTech Connect (OSTI)

    Harrington, R.M.; Hodge, S.A.

    1984-07-01

    This study describes the predicted response of Unit One at the Browns Ferry Nuclear Plant to a postulated complete failure to scram following a transient occurrence that has caused closure of all Main Steam Isolation Valves (MSIVs). This hypothetical event constitutes the most severe example of the type of accident classified as Anticipated Transient Without Scram (ATWS). Without the automatic control rod insertion provided by scram, the void coefficient of reactivity and the mechanisms by which voids are formed in the moderator/coolant play a dominant role in the progression of the accident. Actions taken by the operator greatly influence the quantity of voids in the coolant and the effect is analyzed in this report. The progression of the accident sequence under existing and under recommended procedures is discussed. For the extremely unlikely cases in which equipment failure and wrongful operator actions might lead to severe core damage, the sequence of emergency action levels and the associated timing of events are presented.

  2. ATWS analysis for Browns Ferry Nuclear Plant Unit 1

    SciTech Connect (OSTI)

    Dallman, R.J.; Jouse, W.C.

    1985-01-01

    Analyses of postulated Anticipated Transients Without Scram (ATWS) were performed at the Idaho National Engineering Laboratory (INEL). The Browns Ferry Nuclear Plant Unit 1 (BFNP1) was selected as the subject of this work because of the cooperation of the Tennessee Valley Authority (TVA). The work is part of the Severe Accident Sequence Analysis (SASA) Program of the US Nuclear Regulatory Commission (NRC). A Main Steamline Isolation Valve (MSIV) closure served as the transient initiator for these analyses, which proceeded a complete failure to scram. Results from the analyses indicate that operator mitigative actions are required to prevent overpressurization of the primary containment. Uncertainties remain concerning the effectiveness of key mitigative actions. The effectiveness of level control as a power reduction procedure is limited. Power level resulting from level control only reduce the Pressure Suppression Pool (PSP) heatup rate from 6 to 4F/min.

  3. RAMONA-3B application to Browns Ferry ATWS

    SciTech Connect (OSTI)

    Slovik, G.C.; Neymotin, L.; Cazzoli, E.; Saha, P.

    1984-01-01

    This paper discusses two preliminary MSIV clsoure ATWS calculations done using the RAMONA-3B code and the work being done to create the necessary cross section sets for the Browns Ferry Unit 1 reactor. The RAMONA-3B code employs a three-dimensional neutron kinetics model coupled with one-dimensional, four equation, nonhomogeneous, nonequilibrium thermal hydraulics. To be compatible with 3-D neutron kinetics, the code uses parallel coolant channels in the core. It also includes a boron transport model and all necessary BWR components such as jet pump, recirculation pump, steam separator, steamline with safety and relief valves, main steam isolation valve, turbine stop valve, and turbine bypass valve. A summary of RAMONA-3B neutron kinetics and thermal hydraulics models is presented in the Appendix.

  4. 2016-3-17_Allocations_Brown_Bag

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bagwell & Richard Gerber! ! NERSC Brown Bag! March 17, 2016 Allocations --- 1 --- Allocations Summary * How t he N ERSC p ie i s d istributed - A l i'le h istory * DOE O ffices & P rograms * NERSC r eserves * The E RCAP p rocess * How u ser a ccounts a nd a llocaBons w ork * What h appens w hen u ser/repo r un o ut o f B me * Q & A --- 2 --- Allocations History 0 500000000 1E+09 1.5E+09 2E+09 2.5E+09 3E+09 3.5E+09 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

  5. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect (OSTI)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  6. Preparation of cuxinygazsen precursor films and powders by electroless deposition

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Batchelor, Wendi Kay; Wiesner, Holm; Ramanathan, Kannan; Noufi, Rommel

    1999-01-01

    A method for electroless deposition of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) precursor films and powders onto a metallic substrate comprising: preparing an aqueous bath solution of compounds selected from the group consisting of: I) a copper compound, a selenium compound, an indium compound and gallium compound; II) a copper compound, a selenium compound and an indium compound; III) a selenium compound, and indium compound and a gallium compound; IV) a selenium compound and a indium compound; and V) a copper compound and selenium compound; each compound being present in sufficient quantity to react with each other to produce Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3); adjusting the pH of the aqueous bath solution to an acidic value by the addition of a dilute acid; and initiating an electroless reaction with an oxidizing counterelectrode for a sufficient time to cause a deposit of Cu.sub.x In.sub.y Ga.sub.z Se.sub.n (x=0-2, y=0-2, z=0-2, n=0-3) from the aqueous bath solution onto a metallic substrate.

  7. Atomizing apparatus for making polymer and metal powders and whiskers

    DOE Patents [OSTI]

    Otaigbe, Joshua U.; McAvoy, Jon M.; Anderson, Iver E.; Ting, Jason; Mi, Jia; Terpstra, Robert

    2003-03-18

    Method for making polymer particulates, such as spherical powder and whiskers, by melting a polymer material under conditions to avoid thermal degradation of the polymer material, atomizing the melt using gas jet means in a manner to form atomized droplets, and cooling the droplets to form polymer particulates, which are collected for further processing. Atomization parameters can be controlled to produce polymer particulates with controlled particle shape, particle size, and particle size distribution. For example, atomization parameters can be controlled to produce spherical polymer powders, polymer whiskers, and combinations of spherical powders and whiskers. Atomizing apparatus also is provided for atoomizing polymer and metallic materials.

  8. Defectiveness of the crystal structure of electroerosion powders

    SciTech Connect (OSTI)

    Fominskii, L.P.; Myuller, A.S.; Levchuk, M.V.

    1988-03-01

    The fine structure and defectiveness of metal powder crystal lattices produced by electroerosion dispersion were examined. Dispersion was performed on granulated aluminum, Armco iron, carbon steels, and tungsten. The fine structure was examined by x-ray diffraction. Harmonic analysis was performed using a computer and a program which calculates not only the expansion coefficients of the functions into a Fourier series but also the microdistortions and the dimensions of the mosaic blocks. Electroerosion powders were found to have higher density of crystal lattice defects which can increase their chemical and catalytic activity, improve the metallic electroerosion powder passivation, and increase their corrosion resistance.

  9. Melting of Uranium Metal Powders with Residual Salts

    SciTech Connect (OSTI)

    Jin-Mok Hur; Dae-Seung Kang; Chung-Seok Seo

    2007-07-01

    The Advanced Spent Fuel Conditioning Process (ACP) of the Korea Atomic Energy Research Institute focuses on the conditioning of Pressurized Water Reactor spent oxide nuclear fuel. After the oxide reduction step of the ACP, the resultant metal powders containing {approx} 30 wt% residual LiCl-Li{sub 2}O should be melted for a consolidation of the fine metal powders. In this study, we investigated the melting behaviors of uranium metal powders considering the effects of a LiCl-Li{sub 2}O residual salt. (authors)

  10. Zinc electrode with cement additive

    DOE Patents [OSTI]

    Charkey, Allen

    1982-06-01

    A zinc electrode having a cement additive, preferably, Portland Cement, distributed in the zinc active material.

  11. Process for synthesizing compounds from elemental powders and product

    DOE Patents [OSTI]

    Rabin, B.H.; Wright, R.N.

    1993-12-14

    A process for synthesizing intermetallic compounds from elemental powders is described. The elemental powders are initially combined in a ratio which approximates the stoichiometric composition of the intermetallic compound. The mixed powders are then formed into a compact which is heat treated at a controlled rate of heating such that an exothermic reaction between the elements is initiated. The heat treatment may be performed under controlled conditions ranging from a vacuum (pressureless sintering) to compression (hot pressing) to produce a desired densification of the intermetallic compound. In a preferred form of the invention, elemental powders of Fe and Al are combined to form aluminide compounds of Fe[sub 3] Al and FeAl. 25 figures.

  12. Apparatus for making environmentally stable reactive alloy powders

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1996-12-31

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  13. Environmentally stable reactive alloy powders and method of making same

    DOE Patents [OSTI]

    Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

    1998-09-22

    Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

  14. Apparatus for making environmentally stable reactive alloy powders

    DOE Patents [OSTI]

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1996-12-31

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  15. Environmentally stable reactive alloy powders and method of making same

    DOE Patents [OSTI]

    Anderson, Iver E.; Lograsso, Barbara K.; Terpstra, Robert L.

    1998-09-22

    Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.

  16. Process for preparing fine grain silicon carbide powder

    DOE Patents [OSTI]

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  17. Active hopper for promoting flow of bulk granular or powdered...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Active hopper for promoting flow of bulk granular or powdered ... An apparatus that promotes the flow of materials has a body having an inner shape for ...

  18. DOE - Office of Legacy Management -- Tyson Valley Powder Farm...

    Office of Legacy Management (LM)

    MO.11-1 - Letter; Dickenson to Duff; Subject: Granted continued use of storage magazine at Tyson Valley Powder Farm for TNT storage; May 21, 1947 MO.11-2 - Aerospace Report; FUSRAP ...

  19. Compacting Plastic-Bonded Explosive Molding Powders to Dense Solids

    SciTech Connect (OSTI)

    B. Olinger

    2005-04-15

    Dense solid high explosives are made by compacting plastic-bonded explosive molding powders with high pressures and temperatures for extended periods of time. The density is influenced by manufacturing processes of the powders, compaction temperature, the magnitude of compaction pressure, pressure duration, and number of repeated applications of pressure. The internal density variation of compacted explosives depends on method of compaction and the material being compacted.

  20. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, Jorulf; Bamberger, Carlos E.

    1984-01-01

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB.sub.2 powders with a gaseous boron halide, such as BCl.sub.3, at temperatures in the range of 500.degree.-800.degree. C. The BCl.sub.3 reacts with the oxides to form volatile species which are removed by the BCl.sub.3 exit stream.

  1. Method for removing oxide contamination from titanium diboride powder

    DOE Patents [OSTI]

    Brynestad, J.; Bamberger, C.E.

    A method for removing oxide contamination from titanium diboride powder involves the direct chemical treatment of TiB/sub 2/ powders with a gaseous boron halide, such as BCl/sub 3/, at temperatures in the range of 500 to 800/sup 0/C. The BCl/sub 3/ reacts with the oxides to form volatile species which are removed by the BCl/sub 3/ exit stream.

  2. Neutron detectors comprising ultra-thin layers of boron powder

    DOE Patents [OSTI]

    Wang, Zhehul; Morris, Christopher

    2013-07-23

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material having a thickness of from about 50 nm to about 250 nm and comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  3. Quality experimental and calculated powder x-ray diffraction

    SciTech Connect (OSTI)

    Sullenger, D.B.; Cantrell, J.S.; Beiter, T.A.; Tomlin, D.W.

    1996-08-01

    For several years, we have submitted quality powder XRD patterns to the International Centre for Diffraction Data for inclusion as reference standards in their Powder Diffraction File. The procedure followed is described; examples used are {beta}-UH{sub 3}, {alpha}- BaT{sub 2}, alpha-lithium disilicate ({alpha}-Li{sub 2}Si{sub 2}O{sub 5}), and 2,2`,4,4`,6,6`hexanitroazobenzene-III (HNAB-III).

  4. Titanium Metal Powder Production by the Plasma Quench Process

    SciTech Connect (OSTI)

    R. A. Cordes; A. Donaldson

    2000-09-01

    The goals of this project included the scale-up of the titanium hydride production process to a production rate of 50 kg/hr at a purity level of 99+%. This goal was to be achieved by incrementally increasing the production capability of a series of reactor systems. This methodic approach was designed to allow Idaho Titanium Technologies to systematically address the engineering issues associated with plasma system performance, and powder collection system design and performance. With quality powder available, actual fabrication with the titanium hydride was to be pursued. Finally, with a successful titanium production system in place, the production of titanium aluminide was to be pursued by the simultaneously injection of titanium and aluminum precursors into the reactor system. Some significant accomplishments of the project are: A unique and revolutionary torch/reactor capable of withstanding temperatures up to 5000 C with high thermal efficiency has been operated. The dissociation of titanium tetrachloride into titanium powder and HC1 has been demonstrated, and a one-megawatt reactor potentially capable of producing 100 pounds per hour has been built, but not yet operated at the powder level. The removal of residual subchlorides and adsorbed HC1 and the sintering of powder to form solid bodies have been demonstrated. The production system has been operated at production rates up to 40 pounds per hour. Subsequent to the end of the project, Idaho Titanium Technologies demonstrated that titanium hydride powder can indeed be sintered into solid titanium metal at 1500 C without sintering aids.

  5. Supercritical fluid molecular spray thin films and fine powders

    DOE Patents [OSTI]

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  6. Craig Brown | Center for Gas SeparationsRelevant to Clean Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bloch, Eric D; Queen, Wendy L; Krishna, Rajamani; Zadrozny, Joseph M.; Brown, Craig M; and Long, Jeffrey R Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) ...

  7. Travis Brown and Kamran Baksh, Final Submission | OpenEI Community

    Open Energy Info (EERE)

    Travis Brown and Kamran Baksh, Final Submission Home > Groups > 2014 Geothermal Case Study Challenge CSM's picture Submitted by CSM(5) Member 14 May, 2014 - 21:59 Colorado School...

  8. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; et al

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, themore » inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.« less

  9. Laboratory measurements of resistivity in warm dense plasmas relevant to the microphysics of brown dwarfs

    SciTech Connect (OSTI)

    Booth, N.; Robinson, A. P. L.; Hakel, P.; Clarke, R. J.; Dance, R. J.; Doria, D.; Gizzi, L. A.; Gregori, G.; Koester, P.; Labate, L.; Levato, T.; Li, B.; Makita, M.; Mancini, R. C.; Pasley, J.; Rajeev, P. P.; Riley, D.; Wagenaars, E.; Waugh, J. N.; Woolsey, N. C.

    2015-11-06

    Since the observation of the first brown dwarf in 1995, numerous studies have led to a better understanding of the structures of these objects. Here we present a method for studying material resistivity in warm dense plasmas in the laboratory, which we relate to the microphysics of brown dwarfs through viscosity and electron collisions. Here we use X-ray polarimetry to determine the resistivity of a sulphur-doped plastic target heated to Brown Dwarf conditions by an ultra-intense laser. The resistivity is determined by matching the plasma physics model to the atomic physics calculations of the measured large, positive, polarization. Furthermore, the inferred resistivity is larger than predicted using standard resistivity models, suggesting that these commonly used models will not adequately describe the resistivity of warm dense plasma related to the viscosity of brown dwarfs.

  10. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...