Powered by Deep Web Technologies
Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Brophy Occurrence Models | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockwayBrophy Occurrence Models

2

Property:BrophyModel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthor JumpBoundingCoordinatesSW JumpBrophyModel

3

Geologic Framework Model (GFM2000)  

SciTech Connect (OSTI)

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt

2004-08-26T23:59:59.000Z

4

Category:Brophy Occurrence Models | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status of cases issued byBoreholepage?

5

Geologic Framework Model Analysis Model Report  

SciTech Connect (OSTI)

The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

R. Clayton

2000-12-19T23:59:59.000Z

6

Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological Structures  

E-Print Network [OSTI]

Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological there is a large amount of missing observations, which often is the case in geological applications. We make,predictions,MarkovchainMonteCarlo,simulatedannealing,incomplete observations. INTRODUCTION In many geological applications, there is an interest in predicting properties

Baran, Sándor

7

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

8

Inverse Modelling in Geology by Interactive Evolutionary Computation  

E-Print Network [OSTI]

Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous

Boschetti, Fabio

9

High resolution reservoir geological modelling using outcrop information  

SciTech Connect (OSTI)

This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

1997-08-01T23:59:59.000Z

10

Verification of geological/engineering model in waterflood areas  

SciTech Connect (OSTI)

The construction of a detailed geological/engineering model is the basis for development of the methodology for characterizing reservoir heterogeneity. The NIPER geological/engineering model is the subject of this report. The area selected for geological and production performance studies is a four-section area within the Powder River Basin which includes the Tertiary Incentive Project (TIP) pilot. Log, well test, production, and core data were acquired for construction of the geological model of a barrier island reservoir. In this investigation, emphasis was on the synthesis and quantification of the abundant geological information acquired from the literature and field studies (subsurface and outcrop) by mapping the geological heterogeneities that influence fluid flow. The geological model was verified by comparing it with the exceptionally complete production data available for Bell Creek field. This integration of new and existing information from various geological, geophysical, and engineering disciplines has enabled better definition of the heterogeneities that influence production during different recovery operations. 16 refs., 26 figs., 6 tabs.

Sharma, B.; Szpakiewicz, M.; Honarpour, M.; Schatzinger, R.A.; Tillman, R.

1988-12-01T23:59:59.000Z

11

Scaled Experimental Modeling of Geologic Structures Rutgers University  

E-Print Network [OSTI]

of uncertainty associated with hydrocarbon exploration and production. Furthermore, experimental models allow us in the Department of Geological Sciences at Rutgers University. She has thirty years of experience in the oil & gas experimental models provide valuable information about structural processes, especially those not observed

12

3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY PRACTICE  

E-Print Network [OSTI]

33 3D/4D MODELLING, VISUALIZATION AND INFORMATION FRAMEWORKS: CURRENT U.S. GEOLOGICAL SURVEY to visualize and model geologic data and information in 3 spatial dimensions (3D) and sometimes adding time in visualizing and coupling geologic, hydrologic, atmospheric, and biologic processes together into 3D/4D

13

Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra,  

E-Print Network [OSTI]

Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra, Australia waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region weathering over several million years, during which many climatological, hydrological, and geological changes

Hassanizadeh, S. Majid

14

Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998  

SciTech Connect (OSTI)

The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

1998-12-01T23:59:59.000Z

15

A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration  

SciTech Connect (OSTI)

We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

2012-05-15T23:59:59.000Z

16

Seismic modeling to monitor CO2 geological storage: The Atzbach ...  

E-Print Network [OSTI]

Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

2012-05-30T23:59:59.000Z

17

A seismic modeling methodology for monitoring CO2 geological ...  

E-Print Network [OSTI]

May 20, 2011 ... possible causes of the greenhouse effect. In order to avoid these emissions, one of the. 30 options is the geological storage of carbon dioxide ...

2011-05-20T23:59:59.000Z

18

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

Gas Reservoirs for Carbon Sequestration and Enhanced Gasfrom geologic carbon sequestration sites, Vadose Zonethe feasibility of carbon sequestration with enhanced gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

19

Conceptual Geologic Model and Native State Model of the Roosevelt...  

Open Energy Info (EERE)

a meteoricrecharge area in the Mineral Mountains, fluidcirculation paths to depth, a heat source, andan outflow plume. A conceptual model based onthe available data can be...

20

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations  

E-Print Network [OSTI]

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

Mills, Richard

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geologic Maps Geology 200  

E-Print Network [OSTI]

Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

Kammer, Thomas

22

Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results  

SciTech Connect (OSTI)

This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

1982-06-01T23:59:59.000Z

23

Hydrologic Nuclide Transport Models in Cyder, A Geologic Disposal Software Library - 13328  

SciTech Connect (OSTI)

Component level and system level abstraction of detailed computational geologic repository models have resulted in four rapid computational models of hydrologic radionuclide transport at varying levels of detail. Those models are described, as is their implementation in Cyder, a software library of interchangeable radionuclide transport models appropriate for representing natural and engineered barrier components of generic geology repository concepts. A proof of principle demonstration was also conducted in which these models were used to represent the natural and engineered barrier components of a repository concept in a reducing, homogenous, generic geology. This base case demonstrates integration of the Cyder open source library with the Cyclus computational fuel cycle systems analysis platform to facilitate calculation of repository performance metrics with respect to fuel cycle choices. (authors)

Huff, Kathryn D. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)] [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL (United States)

2013-07-01T23:59:59.000Z

24

Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.  

SciTech Connect (OSTI)

The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2005-04-01T23:59:59.000Z

25

Conversion of the Big Hill geological site characterization report to a three-dimensional model.  

SciTech Connect (OSTI)

The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2003-02-01T23:59:59.000Z

26

Conversion of the West Hackberry geological site characterization report to a three-dimensional model.  

SciTech Connect (OSTI)

The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur; Snider, Anna C.

2004-08-01T23:59:59.000Z

27

Proposed geologic model based on geophysical well logs  

SciTech Connect (OSTI)

An investigation of the subsurface based on a qualitative interpretation of well logs was carried out at Cerro Prieto to obtain information on the distribution of the different lithofacies that make up a deltaic depositional system. The sedimentological interpretation derived from the resistivity and spontaneous potential are shown in several cross-sections of the field. In addition to the sedimentological interpretation, a map of the structural geology of the region based on well logs and available geophysical information was prepared, including the results of gravity and seismic refraction surveys. The depth to the zone of hydrothermal alteration described by Elders (1980) was found by means of temperature, electrical, and radioactive logs. Two maps showing the configuration of the top of this anomaly show a clear correlation with the gravity anomalies found in the area.

Diaz C, S.; Puente C, I.; de la Pena L, A.

1981-01-01T23:59:59.000Z

28

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

E-Print Network [OSTI]

to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

29

U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL  

E-Print Network [OSTI]

AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

Laughlin, Robert B.

30

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms  

E-Print Network [OSTI]

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture element modelling of a hypothetical underground carbon dioxide (CO2) storage operation. The hydro

31

Modeling and Risk Assessment of CO{sub 2} Sequestration at the Geologic-basin Scale  

SciTech Connect (OSTI)

Objectives. The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO{sub 2} permanence in geologic formations at the geologic basin scale. The main motivation was that carbon capture and storage (CCS) will play an important role as a climate change mitigation technology only if it is deployed at scale of gigatonne per year injections over a period of decades. Continuous injection of this magnitude must be understood at the scale of a geologic basin. Specifically, the technical objectives of this project were: (1) to develop mathematical models of capacity and injectivity at the basin scale; (2) to apply quantitative risk assessment methodologies that will inform on CO{sub 2} permanence; (3) to apply the models to geologic basins across the continental United States. These technical objectives go hand-in-hand with the overarching goals of: (1) advancing the science for deployment of CCS at scale; and (2) contributing to training the next generation of scientists and engineers that will implement and deploy CCS in the United States and elsewhere. Methods. The differentiating factor of this proposal was to perform fundamental research on migration and fate of CO{sub 2} and displaced brine at the geologic basin scale. We developed analytical sharp-interface models of the evolution of CO{sub 2} plumes over the duration of injection (decades) and after injection (centuries). We applied the analytical solutions of CO{sub 2} plume migration and pressure evolution to specific geologic basins, to estimate the maximum footprint of the plume, and the maximum injection rate that can be sustained during a certain injection period without fracturing the caprock. These results have led to more accurate capacity estimates, based on fluid flow dynamics, rather than ad hoc assumptions of an overall “efficiency factor.” We also applied risk assessment methodologies to evaluate the uncertainty in our predictions of storage capacity and leakage rates. This was possible because the analytical mathematical models provide ultrafast forward simulation and they contain few parameters. Impact. The project has been enormously successful both in terms of its scientific output (journal publications) as well as impact in the government and industry. The mathematical models and uncertainty quantification methodologies developed here o?er a physically-based approach for estimating capacity and leakage risk at the basin scale. Our approach may also facilitate deployment of CCS by providing the basis for a simpler and more coherent regulatory structure than an “individual-point-of-injection” permitting approach. It may also lead to better science-based policy for post-closure design and transfer of responsibility to the State.

Juanes, Ruben

2013-08-31T23:59:59.000Z

32

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect (OSTI)

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-04-24T23:59:59.000Z

33

3D Geologic Modeling of the Southern San Joaquin Basin for the Westcarb Kimberlina Demonstration Project- A Status Report  

SciTech Connect (OSTI)

The objective of the Westcarb Kimberlina pilot project is to safely inject 250,000 t CO{sub 2}/yr for four years into the deep subsurface at the Clean Energy Systems (CES) Kimberlina power plant in southern San Joaquin Valley, California. In support of this effort, we have constructed a regional 3D geologic model of the southern San Joaquin basin. The model is centered on the Kimberlina power plant and spans the UTM range E 260000-343829 m and N 3887700-4000309 m; the depth of the model ranges from the topographic surface to >9000 m below sea level. The mapped geologic units are Quaternary basin fill, Tertiary marine and continental deposits, and pre-Tertiary basement rocks. Detailed geologic data, including surface maps, borehole data, and geophysical surveys, were used to define the geologic framework. Fifteen time-stratigraphic formations were mapped, as well as >140 faults. The free surface is based on a 10 m lateral resolution DEM. We use Earthvision (Dynamic Graphics, Inc.) to integrate the geologic and geophysical information into a 3D model of x,y,z,p nodes, where p is a unique integer index value representing the geologic unit. This grid represents a realistic model of the subsurface geology and provides input into subsequent flow simulations.

Wagoner, J

2009-02-23T23:59:59.000Z

34

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering  

E-Print Network [OSTI]

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering Geosciences Careers in the ik ou ve n ver see t b f rel e y ' e n i e o ! Department of Geological Sciences and Geological Engineering Queen's University See the World Geological Sciences Arts and Science Faculty

Ellis, Randy

35

Implementations of a Flexible Framework for Managing Geologic Sequestration Modeling Projects  

SciTech Connect (OSTI)

Numerical simulation is a standard practice used to support designing, operating, and monitoring CO2 injection projects. Although a variety of computational tools have been developed that support the numerical simulation process, many are single-purpose or platform specific and have a prescribed workflow that may or may not be suitable for a particular project. We are developing an open-source, flexible framework named Velo that provides a knowledge management infrastructure and tools to support modeling and simulation for various types of projects in a number of scientific domains. The Geologic Sequestration Software Suite (GS3) is a version of this framework with features and tools specifically tailored for geologic sequestration studies. Because of its general nature, GS3 is being employed in a variety of ways on projects with differing goals. GS3 is being used to support the Sim-SEQ international model comparison study, by providing a collaborative framework for the modeling teams and providing tools for model comparison. Another customized deployment of GS3 has been made to support the permit application process. In this case, GS3 is being used to manage data in support of conceptual model development and provide documentation and provenance for numerical simulations. An additional customized deployment of GS3 is being created for use by the United States Environmental Protection Agency (US-EPA) to aid in the CO2 injection permit application review process in one of its regions. These use cases demonstrate GS3’s flexibility, utility, and broad applicability

White, Signe K.; Gosink, Luke J.; Sivaramakrishnan, Chandrika; Black, Gary D.; Purohit, Sumit; Bacon, Diana H.; Hou, Zhangshuan; Lin, Guang; Gorton, Ian; Bonneville, Alain

2013-08-06T23:59:59.000Z

36

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

SciTech Connect (OSTI)

We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

2009-06-01T23:59:59.000Z

37

Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield  

SciTech Connect (OSTI)

These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

1997-08-01T23:59:59.000Z

38

Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves  

SciTech Connect (OSTI)

TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

Doughty, Christine

2006-04-28T23:59:59.000Z

39

Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems  

SciTech Connect (OSTI)

A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited.

Hart, R.D.

1981-01-01T23:59:59.000Z

40

Geological model of the Jurassic section in the State of Kuwait  

SciTech Connect (OSTI)

Until the end of the seventies, the knowledge of Jurassic Geology in the State of Kuwait was very limited, since only one deep well was drilled and bottomed in the Triassic sediments. Few scattered wells partially penetrated the Jurassic sequence. During the eighties, appreciable number of wells were drilled through the Jurassic, and added a remarkable volume of information. consequently it was necessary to analyze the new data, in order to try to construct a geological model for the Jurassic in the State of Kuwait. This paper includes a number of isopach maps explaining the Jurassic depositional basin which also helps in trying to explain the Jurassic basin in the Arabian Gulf basin. Structural evolution of the Jurassic sequence indicated an inversion of relief when compared with the Cretaceous sequence. In fact, the main Cretaceous arches were sites of sedimentation troughs during the Jurassic period. This fact marks a revolution in the concepts for the Jurassic oil exploration. One of the very effective methods of the definition of the Jurassic structures is the isopaching of the Gotnia Formation. Najmah, Sargelu and Marrat Formations include the main Jurassic reservoirs which were detected as a result of the exploration activities during the eighties. Selective stratigraphic and structural cross sections have been prepared to demonstrate and explain the nature of the Jurassic sediments.

Yousif, S.; Nouman, G.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models  

SciTech Connect (OSTI)

Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

2013-08-24T23:59:59.000Z

42

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

E-Print Network [OSTI]

CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

Chow, Fotini K.

2009-01-01T23:59:59.000Z

43

Production Data Integration into High Resolution Geologic Models with Trajectory-based Methods and A Dual Scale Approach  

E-Print Network [OSTI]

the outer iteration in the overall algorithm. The fine-scale inversion is carried out only if the data misfit is deemed to be unsatisfactory. We propose a fast and robust approach to calibrating geologic models by transient pressure data using a trajectory...

Kim, Jong Uk

2012-02-14T23:59:59.000Z

44

YOUNG GEOLOGY GEOLOGY OF THE  

E-Print Network [OSTI]

YOUNG GEOLOGY UNIVERSITY May, 1962 GEOLOGY OF THE SOUTHERN WASATCH MOUNTAINS AND VICIN~IM,UTAH C O ....................J. Keith Rigby 80 Economic Geology of North-Central Utah ...,............... Kcnneth C.Bdodc 85 Rod Log ........................Lehi F. Hintze, J. Ka# Ri&, & ClydeT. Hardy 95 Geologic Map of Southern

Seamons, Kent E.

45

Engineering Geology 52 (1999) 231250 Mathematical modelling of groundwater flow at Sellafield, UK  

E-Print Network [OSTI]

hydraulic head variations. Sensitivity analyses of geological variables showed that the rate of groundwater between the calculated equivalent freshwater head and that measured in situ, regardless of the hydraulic

Haszeldine, Stuart

46

Geology Publications 1 Fieldiana: Geology  

E-Print Network [OSTI]

in Ten Numbers) 73 No. 1. North American Plesiosaurs. By S. W. Williston. 1903. 78 pages, 34 illus. 77 No. Williston. 1903. 38 pages, 7 illus. 1 #12;Geology Publications 2 Fieldiana: Geology Pub. No. 82 No. 4

Westneat, Mark W.

47

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

48

GEOLOGY, September 2010 823 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY, September 2010 823 INTRODUCTION Deformations around transpressive plate boundaries numerical models constrained by global positioning system (GPS) observations and Geology, September 2010; v. 38; no. 9; p. 823­826; doi: 10.1130/G30963.1; 3 figures; 1 table. © 2010 Geological Society

Demouchy, Sylvie

49

Geologic model of a small, intraslope basin: Garden Banks 72 field, offshore Louisiana  

SciTech Connect (OSTI)

Garden Banks 72 field is 115 mi off the Louisiana coast and lies near the shelf-slope break in water depths ranging from 450 to 800 ft. During the middle Pleistocene, the area was the site of a small, restricted basin on the upper slope, into which turbidite sandstones were deposited. These sandstones have been slumped, uplifted, and faulted, forming oil and gas traps in the field. Mobil and partners AGIP and Kerr-McGee leased block 72 in 1984. Three wells and two sidetracks have been drilled, discovering oil and gas in middle Pleistocene sandstones. A total of 650 ft of core was cut in two wells. Geologic data in the block have been supplemented by 2-D and 3-D seismic surveys. Trapping mechanisms in the field are both structural and stratigraphic. The structural high is on the southwest flank of a northwest-southeast-trending shale/salt ridge. The middle Pleistocene reservoir sandstones trend northeast, and their seismic signature consists of discontinuous, hummocky reflections; the presence of hydrocarbons in these sandstones causes anomalous seismic responses. Amplitude terminations often cross structural contours, implying stratigraphic pinch-outs. Data from electric logs, seismic, and cores demonstrate that the middle Pleistocene reservoir sandstones are the result of deposition by turbidites into a small, restricted basin. Associated facies identified include channels, levees, and possible sheet (lobe) sandstones. Postdepositional activity has included slumping and reworking by bottom currents (contour currents ). The resulting depositional model for this field can be applied to many of the recent discoveries in the Flexure trend.

Kolb, R.A.; Tuller, J.N.; Link, M.H.; Shanmugam, G.

1989-03-01T23:59:59.000Z

50

Geology Major www.geology.pitt.edu/undergraduate/geology.html  

E-Print Network [OSTI]

Geology Major www.geology.pitt.edu/undergraduate/geology.html Revised: 03/2013 Geology is a scientific discipline that aims to understand every aspect of modern and ancient Earth. A degree in geology the field of geology, environmental and geotechnical jobs exist for people with BS degrees. A master

Jiang, Huiqiang

51

Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran  

SciTech Connect (OSTI)

The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than the flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.

Samimi, B.; Bagherpour, H.; Nioc, A. [and others

1995-08-01T23:59:59.000Z

52

Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine  

SciTech Connect (OSTI)

A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. this report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implications of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone.

Martel, S.J.

1992-04-01T23:59:59.000Z

53

Conceptual Model Summary Report Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States  

SciTech Connect (OSTI)

A conceptual model was developed for the Arches Province that integrates geologic and hydrologic information on the Eau Claire and Mt. Simon formations into a geocellular model. The conceptual model describes the geologic setting, stratigraphy, geologic structures, hydrologic features, and distribution of key hydraulic parameters. The conceptual model is focused on the Mt. Simon sandstone and Eau Claire formations. The geocellular model depicts the parameters and conditions in a numerical array that may be imported into the numerical simulations of carbon dioxide (CO{sub 2}) storage. Geophysical well logs, rock samples, drilling logs, geotechnical test results, and reservoir tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. The geologic and hydraulic data were integrated into a three-dimensional (3D) grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mt. Simon injection wells. The final geocellular model covers an area of 600 km by 600 km centered on the Arches Province. The geocellular model includes a total of 24,500,000 cells representing estimated porosity and permeability distribution. CO{sub 2} injection scenarios were developed for on-site and regional injection fields at rates of 70 to 140 million metric tons per year.

None

2011-06-30T23:59:59.000Z

54

Kinematic models of deformation in Southern California constrained by geologic and geodetic data  

E-Print Network [OSTI]

Using a standardized fault geometry based on the Community Block Model, we create two analytic block models of the southern California fault system. We constrain one model with only geodetic data. In the other, we assign ...

Eich, Lori A

2006-01-01T23:59:59.000Z

55

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

56

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect (OSTI)

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

57

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect (OSTI)

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

58

Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS) are widely available and com-  

E-Print Network [OSTI]

Abstract Thirty-meter digital elevation models (DEMs) produced by the U.S. Geological Survey (USGS, and slope classes gen- erated from sample 10-meter drainage-enforced (DE) DEMs and 30-meter DEMs. We found increasing resolution from 30 meters to 10 me- ters, particularly in flatter terrain; (2) streams and HU

59

Forward Modeling of the Induction Log Response of a Fractured Geologic Formation  

E-Print Network [OSTI]

3.1 Layered Earth Model The environment used for the induction log simulations is a layered Earth model. The model consists of six layers that are assigned different thicknesses and conductivities based on the desired induction log... Tx-Rx pair has a fixed separation and is moved along a vertical profile through the subsurface taking measurements at predetermined logging points. 20 The second change to the original Seatem code involves the surrounding environment. The code...

Bray, Steven Hunter

2013-05-02T23:59:59.000Z

60

3D Geological Modelling In Bavaria - State-Of-The-Art At A State...  

Open Energy Info (EERE)

has developed procedures and workflows for a variety of 3D modelling applications. With limited staffing and resources effective software tools and workflows have been developed...

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration  

SciTech Connect (OSTI)

The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

John Rogers

2011-12-31T23:59:59.000Z

62

Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field  

SciTech Connect (OSTI)

Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang [Institute of Petroleum Exploration and Development, Daqing (China)

1997-08-01T23:59:59.000Z

63

A Handbook for Geology Students Why study Geology?.............................................................................................3  

E-Print Network [OSTI]

1 A Handbook for Geology Students #12;2 Contents Why study Geology ..................................................................................7 Why Appalachian Geology?................................................................................10 Geology Faculty and Staff

Thaxton, Christopher S.

64

Results concerning the use of seismic and well log data for defining the geological model of the productive structures on the Romanian Continental Shelf of the Black Sea  

SciTech Connect (OSTI)

The contribution of the 3D seismics on the East-Lebada Structure of the Romanian Continental Shelf of the Black Sea, together with the complex well logging have led to the improvement of the reservoir geological model. The interpretation has been performed on 3d seismic profiles. Time migrated profiles were interpreted, by means of the program system OASIIS. The acoustic logging data were used for calibration, in order to identify the reflections corresponding to the geological boundary. By means of these reflections on the seismic profiles, the adequate geological model has been defined. A system of tectonic accidents which were not known till now were rendered evident. The interpretation of the complex well loggings, through the Well Log Analysis Program System - Express - allowed to determine the petrophysical-petrographical parameters necessary for reservoir evaluation, in correlation with core analysis. Thus, four horizons corresponding to the Albian age with favorable collector properties were rendered evident, in alternance with unfavorable collector properties zones. The well logs, performed at different time periods and with different tools were corrected and standardized for the well environment conditions and, depending on the logging program, different program modules were used to obtain the most adequate results. The parameter averaging performed by zones, for each well, together with the image furnished by the seismic data, allowed us to build the final geometrical and isoparametric model of the reservoir, used for further reservoir simulation. Based on the results obtained, the analysis was extended to West-Lebada Structure.

Babskow, A.; Baleanu, I.; Popa, D. [Institute for Research and Technology, Prahova (Romania)] [and others

1995-08-01T23:59:59.000Z

65

Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States  

SciTech Connect (OSTI)

The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States Department of Energy (U.S. DOE)/National Energy Technology Laboratory (NETL) program on innovative and advanced technologies and protocols for monitoring/verification/accounting (MVA), simulation, and risk assessment of CO{sub 2} sequestration in geologic formations. The overall objective of the project is to develop a simulation framework for regional geologic CO{sub 2} storage infrastructure along the Arches Province of the Midwestern U.S.

Joel Sminchak

2011-09-30T23:59:59.000Z

66

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico  

E-Print Network [OSTI]

characterization, formation evaluation, and 3D geologic modeling provides a sound framework in the establishment of a field/reservoir-wide development plan for optimal primary and enhanced recovery for these Upper Jurassic microbial carbonate and associated...

Al Haddad, Sharbel

2012-10-19T23:59:59.000Z

67

GEOLOGY (GEOL) Robinson Foundation  

E-Print Network [OSTI]

177Geology GEOLOGY (GEOL) Robinson Foundation PROFESSOR HARBOR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE A major in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology 160, 185, 211, 311, 330, 350

Dresden, Gregory

68

Regional Geologic Map  

SciTech Connect (OSTI)

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

2013-06-28T23:59:59.000Z

69

Regional Geologic Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

70

Proceedings of the U.S. Geological Survey Fifth Biennial Geographic Information  

E-Print Network [OSTI]

Organizations ........................................................................ 2 Review Process, SRTM, Digital Photogrammetry, and LIDAR- Derived Digital Elevation Models: Implications for Geological Digital Geologic Mapping at Yucca Mountain, Nevada ............................................. 13

Torgersen, Christian

71

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration  

E-Print Network [OSTI]

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

Bau, Domenico A.

72

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

to ductivities. Geologic logs sometimes show thin layers limit further spreading of contaminants. This flow model accounts for of potentially high hydraulic conductivity embedded complex geologic units that vary measured different methods can be employed to represent thein a geologic unit. A composite model was used

73

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

- 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

74

Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-Print Network [OSTI]

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part

Harbor, David

75

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

Ernest A. Mancini

2004-02-25T23:59:59.000Z

76

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 33, Part 1 CONTENTS Tertiary Geologic History Geology of the Deadman Canyon 7112-Minute Quadrangle, Carbon County, Utah, Utah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .James Douglas Smith 135 Geology

Seamons, Kent E.

77

Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes  

SciTech Connect (OSTI)

Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications, Kansas Geological Survey Open-file reports, Master's theses, and postings on the project website: http://www.kgs.ku.edu/SEISKARST.

Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

2009-03-31T23:59:59.000Z

78

Department of Geology and Geological Engineering University of Mississippi Announces  

E-Print Network [OSTI]

Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

Elsherbeni, Atef Z.

79

Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-Print Network [OSTI]

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section Read Ch. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic

Harbor, David

80

Environmental Geology Major www.geology.pitt.edu/uprogs.html  

E-Print Network [OSTI]

Environmental Geology Major www.geology.pitt.edu/uprogs.html Revised: 04/2004 Environmental geology in environmental geology provides the diverse skills required to work in many different employment settings issues. Within the field of geology, environmental and geotechnical jobs exist for people with BS degrees

Jiang, Huiqiang

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EMSL - subsurface geological field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

subsurface-geological-field en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-s...

82

subsurface geological field | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field subsurface geological field Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

83

CO2 Geologic Storage (Kentucky)  

Broader source: Energy.gov [DOE]

Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

84

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

SciTech Connect (OSTI)

Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross?sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

2013-12-31T23:59:59.000Z

85

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network [OSTI]

-ASTER that operate in visible, near infrared and short wave infrared wavelengths of electromagnetic spectrum and Reflection Radiometer) Imagery Collection in CPRM Examples of sensors used in the CPRM geologic projects #12

86

MINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director  

E-Print Network [OSTI]

for geologic carbon sequestration in the Midcontinent Rift System in Minnesota, Minnesota Geological Survey IN THE MIDCONTINENT RIFT SYSTEM OF MINNESOTA : ASSESSMENT OF POTENTIAL FOR DEEP GEOLOGIC SEQUESTRATION OF CARBONMINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director POTENTIAL CAPACITY FOR GEOLOGIC CARBON

87

Wave Propagation in Jointed Geologic Media  

SciTech Connect (OSTI)

Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

Antoun, T

2009-12-17T23:59:59.000Z

88

Integrated geological-engineering model of Patrick Draw field and examples of similarities and differences among various shoreline barrier systems  

SciTech Connect (OSTI)

The Reservoir Assessment and Characterization Research Program at NIPER employs an interdisciplinary approach that focuses on the high priority reservoir class of shoreline barrier deposits to: (1) determine the problems specific to this class of reservoirs by identifying the reservoir heterogeneities that influence the movement and trapping of fluids; and (2) develop methods to characterize effectively this class of reservoirs to predict residual oil saturation (ROS) on interwell scales and improve prediction of the flow patterns of injected and produced fluids. Accurate descriptions of the spatial distribution of critical reservoir parameters (e.g., permeability, porosity, pore geometry, mineralogy, and oil saturation) are essential for designing and implementing processes to improve sweep efficiency and thereby increase oil recovery. The methodologies and models developed in this program will, in the near- to mid-term, assist producers in the implementation of effective reservoir management strategies such as location of infill wells and selection of optimum enhanced oil recovery methods to maximize oil production from their reservoirs.

Schatzinger, R.A.; Szpakiewicz, M.J.; Jackson, S.R.; Chang, M.M.; Sharma, B.; Tham, M.K.; Cheng, A.M.

1992-04-01T23:59:59.000Z

89

Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration  

SciTech Connect (OSTI)

This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

2011-09-30T23:59:59.000Z

90

Occurrence and Stability of Glaciations in Geologic Time  

E-Print Network [OSTI]

Earth is characterized by episodes of glaciations and periods of minimal or no ice through geologic time. Using the linear energy balance model (EBM), nonlinear EBM with empirical ice sheet schemes, the general circulation model coupled with an ice...

Zhuang, Kelin

2011-10-21T23:59:59.000Z

91

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. (Pacific Northwest Lab., Richland, WA (United States)); Rynes, N.J. (Northern Illinois Univ., De Kalb, IL (United States)); Thiessen, R.L.; Alfaro, J.L. (Washington State Univ., Pullman, WA (United States))

1991-12-01T23:59:59.000Z

92

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. [Pacific Northwest Lab., Richland, WA (United States); Rynes, N.J. [Northern Illinois Univ., De Kalb, IL (United States); Thiessen, R.L.; Alfaro, J.L. [Washington State Univ., Pullman, WA (United States)

1991-12-01T23:59:59.000Z

93

Groundwater Modeling (Geological Sciences 16:460:528:01) Purpose: Learn to build a groundwater flow and transport model using Visual MODFLOW  

E-Print Network [OSTI]

and Groundwater Modeling, by Nevin Kresic Applied Groundwater Model, by Mary P. Anderson and William W. Woessner://envsci.rutgers.edu/~yreinfelder/GEOL_528/Anderson-Chapters.pdf Material: PC laptop (or Mac running Windows) If using lab computer, a flash Ingredients of Final Report Anderson Chapters 7.7, 7.8, 17, ASTMGuide Catch up on Project Catch

94

Chapter 14 Geology and Soils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

activity, could affect the project. Related information can be found in Chapter 15, Water and Appendix J, Geologic Hazard Assessment. 14.1 Affected Environment 14.1.1 Geology...

95

GEOLOGY, November 2008 871 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY, November 2008 871 INTRODUCTION A number of geodetic and morphotectonic techniques. 2). Geology, November 2008; v. 36; no. 11; p. 871­874; doi: 10.1130/G25073A.1; 3 figures; Data

Avouac, Jean-Philippe

96

DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE  

E-Print Network [OSTI]

DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2013-2014 SCHOOL OF OCEAN & EARTH SCIENCE & TECHNOLOGY UNIVERSITY OF HAWAI`I AT MNOA Updated July 2013 #12;CONTENTS INTRODUCTION 1 Geology and Geophysics 1 Job Opportunities 1 Prepare Educationally 1 Challenges and Rewards 1 THE DEPARTMENT OF GEOLOGY

97

The Lapworth Museum of Geology  

E-Print Network [OSTI]

The Lapworth Museum of Geology www.lapworth.bham.ac.uk www.bham.ac.uk Events The Lapworth Lectures take place on evenings during University term time. These lectures are on a wide range of geological geological topics, usually based around collections in the museum. These provide an opportunity to see

Birmingham, University of

98

145Department of Geology Graduate Catalogue 201314  

E-Print Network [OSTI]

in the exploration for petroleum and other resources. GEOL 305 Geophysics II 3.0; 3 cr. A course on electrical and their methods of interpretation. Pre- or corequisites: GEOL 221 and GEOL 222. GEOL 306 Economic Minerals Geology of their formation; ore forming processes and ore deposit models; advanced techniques to evaluate ore genesis

Shihadeh, Alan

99

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY  

E-Print Network [OSTI]

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

Suzuki, Masatsugu

100

Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage  

SciTech Connect (OSTI)

This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.

Spycher, N.; Oldenburg, C.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Co2 geological sequestration  

SciTech Connect (OSTI)

Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

Xu, Tianfu

2004-11-18T23:59:59.000Z

102

Petroleum geology of Tunisia  

SciTech Connect (OSTI)

Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))

1990-05-01T23:59:59.000Z

103

Geologic characterization of tight gas reservoirs  

SciTech Connect (OSTI)

The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

Law, B.E.

1990-12-01T23:59:59.000Z

104

Montana State University 1 Geology Option  

E-Print Network [OSTI]

Montana State University 1 Geology Option The Geology Option is a degree program designed and private sectors in fields such as petroleum geology, mining geology, seismology (including earthquake and volcanic risk assessment), hydrology (surface and ground water) natural-hazard geology, environmental clean

Maxwell, Bruce D.

105

WSU B.S. Geology Curriculum (structural)  

E-Print Network [OSTI]

WSU B.S. Geology Curriculum Geology GEL 3300 (structural) GEL 3400 (sed/strat) Geology Elective 1 Geology Elective 2 Yr 1 Yr 2 Yr 3 Yr 4 PHY 2130/31 MAT 2010 PHY 2140/41 CHEM 1220/30 MAT 1800 Cognates GEL 5593 (writing intensive) GEL 3160 (petrology) GEL 3650 (field camp) Geology Elective 3 GEL 2130

Berdichevsky, Victor

106

GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING  

E-Print Network [OSTI]

5342 Geological Engineering: Soils and Weak Rocks 3 2 EOSC 535 Transport Processes in Porous Media 3 2 Site Investigation and Management 3 2 CIVL 574 Experimental Soil Mechanics 3 2 CIVL 579 Geosynthetics 2 Geological Engineering Soils and Weak Rocks 3 2 CIVL 408 Geo-Environmental Engineering 3 2 CIVL 410

107

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

of underground test site •• 1.5 Regional bedrock geology.Stripa mine, sub-till geology in the immediate mine area.Fig. 2.1 Stripa mine, sub-till geology in the immediate mine

Olkiewicz, O.

2010-01-01T23:59:59.000Z

108

Global Warming in Geologic Time  

ScienceCinema (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2010-01-08T23:59:59.000Z

109

Global Warming in Geologic Time  

SciTech Connect (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2008-02-27T23:59:59.000Z

110

Panel 2, Geologic Storage of Hydrogen  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geologic Storage - Types Types of Underground Storage Aquifers Aquifers are similar in geology to depleted reservoirs, but have not been proven to trap gas and must be developed....

111

Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment  

SciTech Connect (OSTI)

Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings), which are the most relevant to the time scale of interest. The most likely pathways for leakage, if any, are wells and faults. We favor a defense-in-depth approach, in which storage permanence does not rely upon a primary seal only but assumes that any leak can be contained by geologic processes before impacting mineral resources, fresh ground water, or ground surface. We examined the Texas Gulf Coast as an example of an attractive target for carbon storage. Stacked sand-shale layers provide large potential storage volumes and defense-in-depth leakage protection. In the Texas Gulf Coast, the best way to achieve this goal is to establish the primary injection level below the total depth of most wells (>2,400 m-8,000 ft). In addition, most faults, particularly growth faults, present at the primary injection level do not reach the surface. A potential methodology, which includes an integrated approach comprising the whole chain of potential events from leakage from the primary site to atmospheric impacts, is also presented. It could be followed by the State/Federal Government, as well as by the operators.

Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

2006-06-30T23:59:59.000Z

112

Highway Geology Symposium Santa Fe, 2008 HGS Session 5 -Paper 5.2 Page 1 of 21  

E-Print Network [OSTI]

59th Highway Geology Symposium Santa Fe, 2008 HGS Session 5 - Paper 5.2 Page 1 of 21 59 TH HIGHWAY GEOLOGY SYMPOSIUM 2008 Santa Fe, New Mexico SESSION 5 PAPER #5.2 REVISITING AN OLD PROJECT WITH NEW TECHNOLOGY-- DIGITAL TERRAIN MODELING AND MULTI-LAYERED VIRTUAL GEOLOGIC HAZARD MAPPING ALONG A PROPOSED

Haneberg, William C.

113

Reprinted February 2003 4-H Geology  

E-Print Network [OSTI]

4-H 340 Reprinted February 2003 4-H Geology Member Guide OREGON STATE UNIVERSITY EXTENSION SERVICE #12;Contents 4-H Geology Project 3 Project Recommendations 3 Books on Geology 4 Trip Planning 4 Contests 7 Identification of Rocks and Minerals 7 Physical Properties of Minerals 8 Generalized Geologic

Tullos, Desiree

114

Geology of the Shenandoah National Park Region  

E-Print Network [OSTI]

1 Geology of the Shenandoah National Park Region 39th Annual Virginia Geological Field Conference October 2nd - 3rd, 2009 Scott Southworth U. S. Geological Survey L. Scott Eaton James Madison University Meghan H. Lamoreaux College of William & Mary William C. Burton U. S. Geological Survey Christopher M

Eaton, L. Scott

115

242 Department of Geology Undergraduate Catalogue 201415  

E-Print Network [OSTI]

242 Department of Geology Undergraduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim The Department of Geology offers programs leading to the degree of Bachelor of Science in Geology, and Master of Science degrees in certain areas of the vast

116

Assessment Report, Department of Geology August, 2012  

E-Print Network [OSTI]

Assessment Report, Department of Geology August, 2012 1. Learning Goals ALL students in geology, classification schemes, geologic history and processes, and the structure of the Earth. 3. demonstrate an understanding of the variability, complexity, and interdependency of processes within geologic systems. 4. use

Bogaerts, Steven

117

149Department of Geology Graduate Catalogue 201415  

E-Print Network [OSTI]

149Department of Geology Graduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim MS in Geology Candidates pursuing the Master of Science program in geology must complete seven graduate courses (21 cr.) and a thesis (9 cr.). Students may select

118

Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling  

SciTech Connect (OSTI)

Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

2012-12-31T23:59:59.000Z

119

Surficial Geology and Landscape Development in Northern Frenchman Flat, Interim Summary and Soil Data  

SciTech Connect (OSTI)

This report summarizes geologic studies by Raytheon Services Nevada near the Area 5 Radioactive Waste Management Site at the Nevada Test Site. These studies are part of a program to satisfy data needs of (1) the Greater Confinement Disposal (GCD) Program Performance Assessment (PA), (2) the low-level waste (LLW) PA, and (3) the Resource Conservation and Recovery Act (RCRA) permit application. The geologic studies were integrated into a single program that worked toward a landscape evolution model of northern Frenchman Flat, with more detailed geologic studies of particular topics as needed. Only the Holocene tectonism and surficial geology components of the landscape model are presented in this report.

Raytheon Services Nevada Environmental Restoration and Waste Management Division

1995-09-01T23:59:59.000Z

120

BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE  

E-Print Network [OSTI]

BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE WWW.GEOLOGY" for a complete range of advising information plus the latest Environmental Geology requirements. CORE COURSES (check each as completed): (30 credits) ____Choose one of the following introductory geology classes

Jiang, Huiqiang

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

pre or co-requisite Geology Course Prerequisite Chart  

E-Print Network [OSTI]

pre or co-requisite Geology Course Prerequisite Chart 1101, 1102, 1103,1104, 1105 2250 3160 2500 hours geology junior standing; six hours geology depends on course senior standing, permission hours geology six hours geology Evolution of the Earth Geophysics Physical Geology , Historical Geology

Thaxton, Christopher S.

122

Why Geology Matters: Decoding the Past, Anticipating the Future  

E-Print Network [OSTI]

Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to

Anderson, Byron P.

2011-01-01T23:59:59.000Z

123

www.geology.pdx.edu Undergraduate Degrees Offered  

E-Print Network [OSTI]

electron microscope, atomic absorption spectrometer, ICP-mass spectrometer, ground penetrating radarGEOLOGY www.geology.pdx.edu Undergraduate Degrees Offered: Bachelor of Arts in Geology Bachelor

124

Risk assessment framework for geologic carbon sequestration sites  

E-Print Network [OSTI]

Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

Oldenburg, C.

2010-01-01T23:59:59.000Z

125

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration  

E-Print Network [OSTI]

workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

126

Technical Geologic Overview of Long Valley Caldera for the Casa...  

Open Energy Info (EERE)

of geothermal production. This report addresses geologic considerations in preparing an EISEIR including:Geology, soils and mineralsGeologic hazardsSeismic hazardsFaulting...

127

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

128

GEOLOGY, February 2008 151 INTRODUCTION  

E-Print Network [OSTI]

College, 600 1st Street West, Mount Vernon, Iowa 52314, USA Yemane Asmerom Victor Y. Polyak Department of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA Peter Cole Department of Geology, Cornell College, 600 1st Street West, Mount Vernon, Iowa 52314, USA Ann F. Budd Department of Geoscience

Asmerom, Yemane

129

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

for the various data generated by the West Coast Regional Carbon Sequestration Partnership. The project's goals are to: · Perform a preliminary geologic characterization of the carbon dioxide sequestration of carbon sequestration potential. · For select formations previously studied in the Southern Sacramento

130

Geological Society of America Bulletin doi: 10.1130/0016-7606(2002)1142.0.CO;2  

E-Print Network [OSTI]

;114;1131-1142Geological Society of America Bulletin Gregory S. Hancock and Robert S. Anderson climate Numerical modeling in response to oscillating climate Gregory S. Hancock* Department of Geology, College of William and Mary, Williamsburg, Virginia 23187, USA Robert S. Anderson Department of Earth Sciences and Center for the Study

131

Geology, Environmental Science, Geography, Environmental Management  

E-Print Network [OSTI]

2011 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook #12 Environmental Management 14 Environmental Science 18 Geography 22 Geographic Information Science 26 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook Editors David Hayward, Ilse

Goodman, James R.

132

Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

133

A publication of the Department of Geology  

E-Print Network [OSTI]

#12;A publication of the Department of Geology Brigharn Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M. Gardner Brigham Young University Geology Studies is published semiannually by the department. Geology Studies consists of graduate-student and staff research

Seamons, Kent E.

134

, UNIVERSITY Brigham Young University Geology Studies  

E-Print Network [OSTI]

, UNIVERSITY #12;Brigham Young University Geology Studies Volume 1 5 - 1968 Part 2 Studies for Students No. 1 Guide to the Geology of the Wasatch Mountain Front, Between Provo Canyon and Y Mountain, Northeast of Provo, Utah by J. Keith Rigby and Lehi F. Hintze #12;A publication of the Department of Geology

Seamons, Kent E.

135

GeoloGy (Geol) Robinson Foundation  

E-Print Network [OSTI]

182 GeoloGy (Geol) Robinson Foundation PROFESSOR HARBoR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE Amajor in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology160,185,211,311,330,350,andacom- prehensive

Dresden, Gregory

136

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

137

ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has  

E-Print Network [OSTI]

ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology

Mateo, Jill M.

138

Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL)  

E-Print Network [OSTI]

Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Empha- sis on local geology, including earthquakes and other environmental aspects. Labo- ratory study

Ravikumar, B.

139

Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience  

E-Print Network [OSTI]

Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience Winter Break 2015 Interested in field geology? Interested in environmental hazards and climate? Want to visit #12;Geology and Geohazards in Taiwan This is a 3-week course for students interested in mixing field

Alpay, S. Pamir

140

Roadmap: Geology Environmental Geology -Bachelor of Science [AS-BS-GEOL-EGEO  

E-Print Network [OSTI]

Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS-BS-GEOL-EGEO] College of Arts This roadmap is a recommended semester-by-semester plan of study for this major. However, courses on page 2 General Elective 8 #12;Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS

Sheridan, Scott

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

R. Jonk $ Department of Geology and Petro-leum Geology, University of Aberdeen, AB24  

E-Print Network [OSTI]

Kingdom) and a geological con- sultant for various oil companies. His research focused primarilyAUTHORS R. Jonk $ Department of Geology and Petro- leum Geology, University of Aberdeen, AB24 3UE, Texas 77060; rene.jonk@exxonmobil.com Rene Jonk received his M.Sc. degree in structural geology from

Mazzini, Adriano

142

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Hudson and Axel Anderson KEYWORDS: Water management, Coastal watersheds, hydrological modeling CITATIONPractice. ResearchSection,Coast ForestRegion, BCMOF,Nanaimo, BC. Extension Note EN-022. EN-022 Hydrology March 2006

143

Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington  

E-Print Network [OSTI]

Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington Geology Department Hofstra University © 2006 #12;i PHYSICAL GEOLOGY LABORATORY MANUAL Ninth Edition Professors Charles Merguerian and J Bret Bennington Geology Department Hofstra University #12;ii ACKNOWLEDGEMENTS We thank

Merguerian, Charles

144

SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT  

SciTech Connect (OSTI)

The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

2013-09-01T23:59:59.000Z

145

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment  

E-Print Network [OSTI]

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology, Stratigraphy Paleontology, Geography and Environment, Dynamic Geology and Tectonics/ Hydrogeology, Geophysics

Kouroupetroglou, Georgios

146

Geological/geophysical study progresses  

SciTech Connect (OSTI)

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

147

B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9-10 courses, 33-34 credits  

E-Print Network [OSTI]

B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9 - Experiencing Geology Lab and either GEOSCI 103 - Intro to Oceanography or GEOSCI 105 - Dynamic Earth 4 (1) (4 semester GEOSCI 201 ­ History of the Earth 4 1st or 2nd year, spring semester GEOSCI 231 ­ Geological Field

Massachusetts at Amherst, University of

148

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect (OSTI)

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

149

Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data  

SciTech Connect (OSTI)

Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross?sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

2013-03-31T23:59:59.000Z

150

Glacial geology and glaciology of the Younger Dryas ice cap in Scotland   

E-Print Network [OSTI]

This thesis uses geological field data and numerical ice sheet modelling to study the Younger Dryas ice cap in Scotland. The Younger Dryas stadial is important because it represents the most recent period of high-magnitude ...

Golledge, Nicholas Robert

2009-01-01T23:59:59.000Z

151

Geology of the Olkaria Geothermal Field  

SciTech Connect (OSTI)

Up to now development of the resource in Olkaria geothermal field, Kenya, has been based on fragmental information that is inconclusive in most respects. Development has been concentrated in an area of 4 km/sup 2/ at most, with well to well spacing of less than 300 m. The move now is to understand the greater Olkaria field by siting exploratory wells in different parts of the area considered of reasonable potential. To correlate the data available from the different parts of the field, the geology of the area, as a base for the composite field model, is discussed and shown to have major controls over fluid movements in the area and other features.

Ogoso-Odongo, M.E.

1986-01-01T23:59:59.000Z

152

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network [OSTI]

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

153

Arizona Geological Society Digest 22  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | NationalTbilisi |Arizona Geological

154

Marine geology of the Bay of Campeche  

E-Print Network [OSTI]

LIBRARY /i & L IBRRAYA B/ iA&Co MARINE GEOLOGY OP SHE BAT OF CAMPECHE A Dissertation By JOE SCOTT CREAGER ? ? ? Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August, 1958 Major Subject: Geological Oceanography MARINE GEOLOGY OF THE BAT OF CAMPECHE A Dissertation By JOE SCOTT CREAGEB Approved as to style and content by: JLN. Chairman of Committee Heady Department...

Creager, Joe S.

1958-01-01T23:59:59.000Z

155

A geologic investigation of Longhorn Cavern  

E-Print Network [OSTI]

A GEOLOGIC INVESTIGATION OF LONGHORN CAVERN A Thesis by VICTORIA LYNN WALTERS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992... Major Subject: Geology A GEOLOGIC INVESTIGATION OF LONGHORN CAVERN A Thesis by VICTORIA LYNN WALTERS Approved as to style and content by: Christ pher C. Mathewson (Chair of Committee) Wy M Ah (Member) J. R. Giardino (Member) John H. Spang...

Walters, Victoria Lynn

1992-01-01T23:59:59.000Z

156

Carbonic Acid Shows Promise in Geology, Biology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

157

United States Geological Survey Geospatial Information Response  

E-Print Network [OSTI]

1 United States Geological Survey Geospatial Information Response Standard Operating Procedures May 20, 2013 Executive Summary The Geospatial, reporting requirements, and business processes for acquiring and providing geospatial

Torgersen, Christian

158

Regional geophysics, Cenozoic tectonics and geologic resources...  

Open Energy Info (EERE)

and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of...

159

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

160

Geology and engineering geology of a Wilcox lignite deposit in northeastern Rusk County, Texas  

E-Print Network [OSTI]

GEOLOGY AND ENGINEERING GEOLOGY OF A WILCOX LIGNITE DEPOSIT IN NORTHEASTERN RUSK COUNTY, TEXAS A Thesis by William F. Cole Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...) (Member) (Member) (Member) (Member) ad of Department) August 1980 ABSTRACT Geology and Engineering Geology of a Wilcox Lignite Deposit in Northeastern Rusk County, Texas (August, 1980) William 7. Cole, B. S. , Texas ASM University Chairman...

Cole, William F.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

E-Print Network [OSTI]

Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

Zhou, R.

2010-01-01T23:59:59.000Z

162

26 AUGUST 2009, GSA TODAY Murray Hitzman, Dept. of Geology and Geological  

E-Print Network [OSTI]

geology. Economic geology flourished from the end of World War II into the early 1970s, with major, industrial minerals, construction aggregates, and uranium but excludes carbon-based energy resources geology in academia: An impending crisis? (~15%) of the 2007 U.S. gross domestic product. The United

Barton, Mark D.

163

Petroleum Geology Conference series doi: 10.1144/0070921  

E-Print Network [OSTI]

Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

Demouchy, Sylvie

164

The role of geology in the behavior and choice of permeability predictors  

SciTech Connect (OSTI)

For effective flow-simulation models, it may be important to estimate permeability accurately over several scales of geological heterogeneity. Critical to the data analysis and permeability prediction are the volume of investigation and sampling interval of each petrophysical tool and how each relates to these geological scales. The authors examine these issues in the context of the As Sarah Field, Sirte Basin, Libya. A geological study of this braided fluvial reservoir has revealed heterogeneity at a series of scales. This geological hierarchy in turn possessed a corresponding hierarchy of permeability variation.The link between the geology and permeability was found to be very important in understanding well logs and core data and subsequent permeability upscaling. They found that the small scale (cm) permeability variability was better predicted using a flushed-zone resistivity, R{sub xo}, tool, rather than a wireline porosity measurement. The perm-resistivity correlation was strongest when the probe permeabilities were averaged to best match the window size of the wireline R{sub xo}. This behavior was explained by the geological variation present at this scale. For the larger scale geological heterogeneity, the production flowmeter highlighted discrepancies between flow data and averaged permeability. This yielded a layered sedimentological model interpretation and a change in averaging for permeability prediction at the bedset scale (ms-10 x ms).

Ball, L.D.; Corbett, P.W.M.; Jensen, J.L.; Lewis, J.J.M. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-03-01T23:59:59.000Z

165

The U.S. Geological Survey  

E-Print Network [OSTI]

U sing a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.525 trillion barrels of oil in place in seventeen oil shale zones in the Eocene Green River Formation in the Piceance Basin, western Colorado.

unknown authors

166

Geological Sciences Jeffrey D. Keith, Chair  

E-Print Network [OSTI]

, such as assessment and forecasting of natural hazards, environmental change, and discovery of energy and mineral resources. Some of the diverse disciplines that can be studied in this department include general geology Catalog. Global Geology Program Each year the department provides opportunities for advanced

Hart, Gus

167

Geology, Society and the Environmental health  

E-Print Network [OSTI]

management Environmental analysis Sustainability Learning Objectives #12; As members of the biological The water we drink The air we breathe Geologic factors in environmental health #12; Health can be definedChapter 19 Geology, Society and the Future #12; Environmental health Air pollution Waste

Pan, Feifei

168

Careers in Geology Department of Geosciences  

E-Print Network [OSTI]

, coal, and water. Environmental geology ­ study of problems associated with pollution, waste disposal ­ study of earth materials of economic interest, including metals, minerals, building stone, petroleum Army Corps of Engineers, state geological surveys Industry Oil companies, environmental firms, mining

Logan, David

169

SRS Geology/Hydrogeology Environmental Information Document  

SciTech Connect (OSTI)

The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

Denham, M.E.

1999-08-31T23:59:59.000Z

170

Sandhills Geology Response by Professor James Goeke  

E-Print Network [OSTI]

. As it turns out, a good portion of the pipeline is not in the Sandhills and doesn't overlie the Ogallala1 Sandhills Geology Response by Professor James Goeke Providing a short, succinct description of the sandhills geology is a difficult and nebulous request. The sandhills themselves are primarily eolian

Nebraska-Lincoln, University of

171

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7462  

E-Print Network [OSTI]

and the McArthur River uranium deposit, Athabasca Basin; Geological Survey of Canada, Open File 7462, 35 pGEOLOGICAL SURVEY OF CANADA OPEN FILE 7462 Alteration within the basement rocks associated with the P2 fault and the McArthur River uranium deposit, Athabasca Basin E.E. Adlakha, K. Hattori, G

172

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect (OSTI)

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

173

Brigham Young University Geology Studies Volume 28, Part 3  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 28, Part 3 CONTENTS Three Creeks Caldera ................................................................................................................................... Scott Dean Geology of the Antelope Peak Area of the Southern .................................................................................................................. Craig D. Hall Geology of the Longlick and White Mountain Area, Southern San Francisco Mountains

Seamons, Kent E.

174

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I Preble Formation, a Cambrian Outer ..........................................................................J. Roger Olsen Geology of the Sterling Quadrangle, Sanpete County, Utah ..............................................................................James Michael Taylor Publications and Maps of the Geology Department Cover: Aertalphorograph rhowing

Seamons, Kent E.

175

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R Technical Exchange (open) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE & Performance Analysis and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository

176

Geology and alteration of the Coso Geothermal Area, Inyo County...  

Open Energy Info (EERE)

California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Abstract Geology...

177

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Treatise of Petroleum Geology, Atlas of Oil and Gas Fields,A-A’). phy, geology, stratigraphic contacts, oil and gas andgeology, initial information available from hydrogeology, oil

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

178

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

179

Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...  

Open Energy Info (EERE)

Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic...

180

On leakage and seepage from geological carbon sequestration sites  

E-Print Network [OSTI]

from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

Holt, R.M.; Powers, D.W. (IT Corporation (USA))

1990-12-01T23:59:59.000Z

182

JUDSON MEAD GEOLOGIC FIELD STATION OF INDIANA UNIVERSITY 2013 APPLICATION FOR ADMISSION  

E-Print Network [OSTI]

Geology G Structural Geology G Sedimentology/Stratigraphy G Sedimentology/Stratigraphy G Sophomore G

Polly, David

183

GEOL 102: Historical Geology Exam 1 Review  

E-Print Network [OSTI]

& Last Appearance Datum; Zone #12;Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem Era (= clastic = siliciclastic), biogenic, chemical; strata Detrital Sedimentary Cycle: Source Weathering

Holtz Jr., Thomas R.

184

Carbon Trading Protocols for Geologic Sequestration  

E-Print Network [OSTI]

expensive, real reduction in CO2 emissions from their ownstored CO2 must create an actual reduction in the emissionsCO2 is instead obtained from geologic formations then the goal of the emission reduction

Hoversten, Shanna

2009-01-01T23:59:59.000Z

185

A geologic application of Biot's buckling theory  

E-Print Network [OSTI]

Subject: Geophysics A GEOLOGIC APPLlCATION OF BIOT'S BUCKLING THEORY A Thesis by WILLIAM DANIEL HEINZE Approved as to style and content by: (Chairman of Commit e) (Head of Department-Member) (Member) (Member) May 1972 ABSTRACT A Geologic..., et al. , (1967) indicates that the Georgetown was never buried by more than 2000 meters of sediment. The Del Rio Mark, 20 m thick, is predominantly clay and calcareous clay intercalated with thin lenses of clayey limestone. The thick-bedded Buda...

Heinze, William Daniel

1972-01-01T23:59:59.000Z

186

The Multi-Stage Investment Timing Game in Offshore Petroleum Production: Preliminary results from an econometric model  

E-Print Network [OSTI]

me to understand the geology of oil production. ShelbyGeology or economics? Testing models of irreversible investment using North Sea oil

Lin, C.-Y. Cynthia

2007-01-01T23:59:59.000Z

187

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1 Papers reviewing geology of field trip areas, 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28 ....................................................................................................................................................... Geology of Volcanic Rocks and Mineral Deposits in the Southern Thomas Range, Utah: A Brief Summary

Seamons, Kent E.

188

Missouri University of Science and Technology 1 Geology and Geophysics  

E-Print Network [OSTI]

Missouri University of Science and Technology 1 Geology and Geophysics Graduate work in Geology are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry and Environmental Geochemistry · Mineralogy/Petrology/Economic Geology · Geophysics/Tectonics/Remote Sensing

Missouri-Rolla, University of

189

Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado  

SciTech Connect (OSTI)

This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

1995-12-13T23:59:59.000Z

190

Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology  

E-Print Network [OSTI]

Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology Academic Plan Available: No · Other Information: GEO (Geology & Earth Science Organization); GTU (Gamma Theta Upsilon coordinator for METR, thsirle@uncc.edu PROGRAM REQUIREMENTS Geology at UNC Charlotte is for students who

Raja, Anita

191

Development of engineering geologic performance standards for land-use regulation in Sabine Pass, Texas  

E-Print Network [OSTI]

STANDARDS 9 9 11 11 18 31 31 33 35 44 50 60 Definitions and Specified Concerns Technical Basis for Standards Construction and Urbanization Environmental Protection Mineral and Water Resources Physical model Computer model Impact of Mining... on geologic features (such as chenier ridges), the effects of storm surge on chenier ridges, altered by borrow mining, was modeled physically (wave tank) and mathematically (computer model). Comparison of the physical and mathe- matical models shows...

Vaught, Richmond Murphy

1982-01-01T23:59:59.000Z

192

Grasping the Materiality of the Past: Digital Archaeology in Lower-Division Courses  

E-Print Network [OSTI]

P. , Piotrowski, P. S, Battaglia, B. , Brophy, K. , & Chugh,Lalley, Piotrowski,  Battaglia, Brophy & Chugh, 2010).  The 

Di Giuseppantonio Di Franco, Paola

2010-01-01T23:59:59.000Z

193

BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso  

E-Print Network [OSTI]

BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso 500 W failure models of icy fractures on Enceladus and Europa 3D visualization techniques for investigating viscoelastic stress accumulation model for icy fractures on Saturn's moon Enceladus 2005-2007 University

Smith-Konter, Bridget

194

U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.

Donald Gautier; Timothy Klett

2008-12-31T23:59:59.000Z

195

Assessment of effectiveness of geologic isolation systems: a short description of the AEGIS approach  

SciTech Connect (OSTI)

To meet licensing criteria and protection standards for HLW disposal, research programs are in progress to determine acceptable waste forms, canisters, backfill materials for the repository, and geological formations. Methods must be developed to evaluate the effectiveness of the total system. To meet this need, methods are being developed to assess the long-term effectiveness of isolating nuclear wastes in geologic formations. This work was started in 1976 in the Waste Isolation Safety Assessment Program (WISAP) and continues in the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program. The evaluation of this long-term effectiveness involves a number of distinct steps. AEGIS currently has the methods for performing these evaluation steps. These methods are continuously being improved to meet the inreasing level of sophistication which will be required. AEGIS develops a conceptual description of the geologic systems and uses computer models to simulate the existing ground-water pathways. AEGIS also uses a team of consulting experts, with the assistance of a computer model of the geologic processes, to develop and evaluate plausible release scenarios. Then other AEGIS computer models are used to simulate the transport of radionuclides to the surface and the resultant radiation doses to individuals and populations. (DLC)

Silviera, D.J.; Harwell, M.A.; Napier, B.A.; Zellmer, J.T.; Benson, G.L.

1980-09-01T23:59:59.000Z

196

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

197

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

198

Geologic controls influencing CO2 loss from a leaking well.  

SciTech Connect (OSTI)

Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

Hopkins, Polly L.; Martinez, Mario J.; McKenna, Sean Andrew; Klise, Katherine A.

2010-12-01T23:59:59.000Z

199

Kinetics of the Dissolution of Scheelite in Groundwater: Implications for Environmental and Economic Geology  

E-Print Network [OSTI]

Tungsten, Its History, Geology, Ore-dressing, Metallurgy,5.1 Implications for Environmental Geology…………………………..26 5.2Implications for Economic Geology………………………………..27 6. Future

Montgomery, Stephanie Danielle

2012-01-01T23:59:59.000Z

200

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

202

A life cycle cost analysis framework for geologic storage of hydrogen : a scenario analysis.  

SciTech Connect (OSTI)

The U.S. Department of Energy has an interest in large scale hydrogen geostorage, which would offer substantial buffer capacity to meet possible disruptions in supply. Geostorage options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and potentially hard rock cavrns. DOE has an interest in assessing the geological, geomechanical and economic viability for these types of hydrogen storage options. This study has developed an ecocomic analysis methodology to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) a version that is fully arrayed such that all four types of geologic storage options can be assessed at the same time, (2) incorporate specific scenarios illustrating the model's capability, and (3) incorporate more accurate model input assumptions for the wells and storage site modules. Drawing from the knowledge gained in the underground large scale geostorage options for natural gas and petroleum in the U.S. and from the potential to store relatively large volumes of CO{sub 2} in geological formations, the hydrogen storage assessment modeling will continue to build on these strengths while maintaining modeling transparency such that other modeling efforts may draw from this project.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James

2010-10-01T23:59:59.000Z

203

Department of Geological Sciences Undergraduate Handbook 2014  

E-Print Network [OSTI]

about future sea-level rise, and are there untapped energy and mineral resources both onshore and offshore New Zealand; are also increasingly important concerns both at the regional and global scales. Come-exploration, volcanology, hazard management, engineering geology, environmental planning, water resources, science teaching

Hickman, Mark

204

Department of Geological Sciences Postgraduate Handbook 2013  

E-Print Network [OSTI]

about future sea-level rise, and are there untapped energy and mineral resources both onshore and offshore New Zealand; are also increasingly important concerns both at the regional and global scales. Come-exploration, volcanology, hazard management, engineering geology, environmental planning, water resources, science teaching

Hickman, Mark

205

APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437  

E-Print Network [OSTI]

APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437 SPRING 2014 OF NATURAL RESOURCES INCLUDING OIL, COAL, MINERALS AND GROUNDWATER. OTHER APPLICATIONS OF GEOPHYSICS MAY, IF AVAILABLE, WE WILL VISIT AN OIL DRILLING RIG IN OPERATION. DATES FOR FIELD TRIPS WILL DEPEND ON THE WEATHER

Nickrent, Daniel L.

206

INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH  

E-Print Network [OSTI]

INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH ADVANCED CONSTRAINED INVERSIONS by Peter George framework (i.e. minimization of an objective function). I developed several methods to reach this goal constraints to the inverse problem. Lastly, I developed an iterative procedure for cooperatively inverting

Oldenburg, Douglas W.

207

Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards  

E-Print Network [OSTI]

. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from...

Brand, John Richard

2006-04-12T23:59:59.000Z

208

Internal Geology and Evolution of the Redondo Dome, Valles Caldera...  

Open Energy Info (EERE)

Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology and...

209

Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1  

E-Print Network [OSTI]

. Iowa Tracheophyta (vascular plants) Spores, New Albany Shale Sporing bodies, Dugger Fm. #12;Department (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

Polly, David

210

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,  

E-Print Network [OSTI]

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

Seamons, Kent E.

211

What can I do with a degree in Geology?  

E-Print Network [OSTI]

What can I do with a degree in Geology? Science Planning your career Choosing a career involves.canterbury.ac.nz/liaison/best_prep.shtml What is Geology? Geology in the twenty-first century is a fascinating, exciting,incredibly diverse,earthquakes,dramatic and varied geomorphology,and its 500 million years of pre and post-Gondwana geological history,is one

Hickman, Mark

212

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

213

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

in Geological Engineering CEE 330 & GLE 474 or instructor consent 3 0.0 CEE 631 Toxicants in the Environment

214

area geological characterization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL sequestration pilot studies to determine...

215

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

geochemistry in carbon sequestration environments. Abstractimplications for carbon sequestration. Environ Earth Sci. ,from geologic carbon sequestration: Static and dynamic

Varadharajan, C.

2013-01-01T23:59:59.000Z

216

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

217

Map of Geologic Sequestration Training and Research Projects  

Broader source: Energy.gov [DOE]

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

218

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3 CONTENTS Studies for Students #lo, Geologic Guide to Provo Canyon and Weber Canyon, Central Wasatch Mountains, Utah ............................................................................................................................. Randy L. Chamberlain The Geology of the Drum Mountains, Millard and Juab Counties, Utah

Seamons, Kent E.

219

Brigham Young University Geology Studies Volume 26, Part I  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 26, Part I Papers presented at the 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28-29, 1978, at Brig- ham Young ............................................................................................................................Publications and Maps of the Geology Department 91 Cover The Great Basrn seen from a htgh

Seamons, Kent E.

220

Brigham Young University Geology Studies Volume 27, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 27, Part 2 CONTENTS The Kinnikinic Quartzite ........................................................Robert Q. Oaks,Jr., and W . Calvin James Geology of the Sage Valley 7 W'Quadrangle, Caribou County, Idaho, and Lincoln County, Wyoming ....................J ohn L. Conner Geology of the Elk Valley Quadrangle, Bear

Seamons, Kent E.

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Semantic e-Science and Geology Clinton Smyth1  

E-Print Network [OSTI]

Semantic e-Science and Geology Clinton Smyth1 , David Poole2 and Rita Sharma3 1 Georeference Online@cs.ubc.ca Abstract e-Science, as implemented for the study of geology with Geographic Information Systems over the Internet, has highlighted the need for standardization in the semantics of geology, and stimulated

Poole, David

222

CHAPTER II GEOLOGY Blank page retained for pagination  

E-Print Network [OSTI]

CHAPTER II GEOLOGY #12;Blank page retained for pagination #12;SHORELINES AND COASTS OF THE GULF or discordant with the grain (dominant trend) of the geologic structures of a coastal regi?n, but King (1942, pIOnal geology, geomorphology, sedimentation, oceanography of the inshore zone, meteorology, climatology, biol

223

SEPM (Society for Sedementary Geology) Twenhofel medal awarded to USGS  

E-Print Network [OSTI]

SEPM (Society for Sedementary Geology) Twenhofel medal awarded to USGS Scientist Emeritus Walter the highest award given by the Society for Sedimentary Geology (SEPM) -- the Twenhofel medal. Walt joins an illustrious list of past Twenhofel recipients, which reads as a veritable "Who's Who" of sedimentary geology

Torgersen, Christian

224

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2013 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

225

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations. Int. J.elsevier.com/locate/ijggc Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static, Berkeley, CA 94720, USA b Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713

226

Job Vacancy Notice Job Title: Assistant Professor -Geology  

E-Print Network [OSTI]

1 Job Vacancy Notice Job Title: Assistant Professor - Geology Job ID: 6477 Location: Regular-track Assistant Professor in the general area of "hardrock" geology. The SEES community includes 14 full-time faculty members, 25 Masters and PhD candidates, and approximately 150 Geology, Environmental Science

Johnson Jr.,, Ray

227

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology  

E-Print Network [OSTI]

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology University of Hawaii at Manoa REQUIREMENTS FOR A MINOR IN GEOLOGY & GEOPHYSICS The minor requires GG 101 (or 103) & 101L or GG 170, 200, and 11 credits hours of non-introductory Geology and Geophysics courses at the 300

228

Geology and Geophysics College of Science code-BS  

E-Print Network [OSTI]

Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Geology Field Experience (summer) (3) Science/Engineering Elective (2xxxx or above) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics http

Kihara, Daisuke

229

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4 The Fossil Vertebrates of Utah Salt Lake Gty, Utah 84102 W .E. Miller Deparlment~of Geology and Zoology Bngham Young Unrwerrrly Provo of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblln Cynthia M. Gardner Issue

Seamons, Kent E.

230

Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING  

E-Print Network [OSTI]

Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING 3:00 p.m. Waterway. The Geological History of Venus: Constraints from Buffered Crater Densities [#1096] We apply buffered crater density technique to a new global geological map of Venus (Ivanov, 2008) and obtain robust constraints

Rathbun, Julie A.

231

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2012 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

232

MAJOR TO CAREER GUIDE B.S. Geology  

E-Print Network [OSTI]

MAJOR TO CAREER GUIDE B.S. Geology College of Sciences geoscience.unlv.edu/ Mission of the College: MPE-A 130 www.unlv.edu/sciences/advising About the Geology Career Geoscientists are stewards understanding of Earth processes and history. Value of the Geology Degree Opportunities for interesting

Walker, Lawrence R.

233

SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology  

E-Print Network [OSTI]

SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology Course Syllabus Spring 2011 Instructor: Professor David L. Kimbrough email: dkimbrough@geology.sdsu.edu, Phone: 594-1385 Office: GMCS-229A; Office Necessary: Field notebook similar to "Rite in the Rain" all-weather Geological Field Book No., 540F J

Kimbrough, David L.

234

Junior Research Fellowship in Geology (Test Codes: GEA and GEB)  

E-Print Network [OSTI]

1 Junior Research Fellowship in Geology (Test Codes: GEA and GEB) The candidates for Junior Research Fellowship in Geology will have to take two tests: Test GEA (forenoon session) and Test GEB and Geostatistics: Analysis of orientation and time-series data, Mohr's Circle of stress and strain, Geological

Bandyopadhyay, Antar

235

Brigham Young University Geology Studies Volume 24, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 24, Part 2 CONTENTS Studies for Students ............................................................................................................................... Robert C. Ahlborn Publications and Maps of the Geology Department Cover: Sahara dune sand, X130. Photo, Univer~ityof Cincinnati, Cincinnati, Ohio 45221. #12;A publication of the Department of Geology Brigham

Seamons, Kent E.

236

Brigham Young University Geology Studies Volume 29, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 29, Part 2 CONTENTS Stratigraphy ...................................................................................................... Terry C. Gosney 27 Geology of the Champlin Peak Quadrangle,Juab and Millard Counties, Utah ..................................................................................................................................... David R. Keller 103 Publications and Maps of the Department of Geology 117 Cover: Rafted orjoreign

Seamons, Kent E.

237

Brigham Young University Geology Studies Volume 30, Part 1  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 30, Part 1 CONTENTS Diagenetic Aspects ................................................................................................... Steven G. Driese Geology of the Dog Valley-Red Ridge Area, Southern Pavant Mountains, Millard County .................................................................................................. Lynn C Meibos Geology of the Southwestern Quarter of the Scipio North (15-Minute) Quadrangle, Millard

Seamons, Kent E.

238

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2014 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

239

Brigham Young University Geology Studies Volume 25, Part 3  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 25, Part 3 CONTENTS Remains of Ornithopod ...........................................................................................................................................................ames M. Stolle Publications and Maps of the Geology Department Index to volumes 21-25 of Brigham Young University Geology Studies ........................................Carol T . Smith and Nathan M. Smith Cwec

Seamons, Kent E.

240

Brigham Young University Geology Studies Volume 26, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 26, Part 2 CONTENTS A New Large Theropod................................................................................................................................................................ Danny J. Wyatt Publications and Maps of the Geology Department Cover: Cretaceouscoals near Castle Gate, Utab. #12;A publication of the Department of Geology Brigham Young University Provo, Utah 84602 Editors

Seamons, Kent E.

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Brigham Young University Geology Studies Volume 26, Part 3  

E-Print Network [OSTI]

#12;P I - #12;Brigham Young University Geology Studies Volume 26, Part 3 Conodont Biostratigraphy-meeting field trip held in conjunction with the Rocky Mountain section, Geological Society of America of the Department of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M

Seamons, Kent E.

242

Geology and Geophysics College of Science code-BS  

E-Print Network [OSTI]

Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary

Kihara, Daisuke

243

VOLUMF -31, PART 1 BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES  

E-Print Network [OSTI]

Y O U N G VOLUMF -31, PART 1 #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES VOLUME 31.PART 1 CONTENTS .................................................................. Ralph E.Lambert Geology of the Mount Ellen Quadrangle. Henry Mountains. Garfield County. Utah near White Horse Pass. Elko County. Nevada ............Stephen M Smith Geology of the Steele Butte

Seamons, Kent E.

244

DR. BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso  

E-Print Network [OSTI]

DR. BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso 500 W tidally-driven failure dynamics and crustal deformation mechanisms of fractures on satellites of the outer Development and application of tidally-driven 3-D viscoelastic stress accumulation model for icy fractures

Smith-Konter, Bridget

245

DR. BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso  

E-Print Network [OSTI]

DR. BRIDGET R. SMITH-KONTER Department of Geological Sciences, University of Texas at El Paso 500 W deformation mechanisms of fractures on satellites of the outer Solar System Development of 3D visualization viscoelastic stress accumulation model for icy fractures on Saturn's moon Enceladus 2005-2007 Postdoctoral

Smith-Konter, Bridget

246

GEOLOGY, July 2008 539 The origin of the vertical motions of East Greenland is a long-  

E-Print Network [OSTI]

GEOLOGY, July 2008 539 ABSTRACT The origin of the vertical motions of East Greenland is a long uplift in central East Greenland. Because the North Atlantic is rimmed by young glacially carved mountain, Greenland, numerical modeling. INTRODUCTION The coastal landscapes of the fjords of the North Atlantic Ocean

Podladchikov, Yuri

247

Nicolas F. Spycher Staff Geological Scientist Earth Sciences Division, Geochemistry Department ph. 510 495-2388  

E-Print Network [OSTI]

., Pruess, K., 2010. A Phase-partitioning model for CO2-brine mixtures at elevated temperatures geological sequestration on groundwater quality, U(VI) transport and reactive chemistry at contaminated DOE sites, metal cycling in contaminated lake sediments, and the study of coupled thermal, hydrological

Ajo-Franklin, Jonathan

248

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

SciTech Connect (OSTI)

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

Faulds, James E.

2013-12-31T23:59:59.000Z

249

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

Faulds, James E.

250

Geology Department Graduate Certificates: These certificates are designed to provide practicing professionals an opportunity to  

E-Print Network [OSTI]

Geology Department Graduate Certificates: These certificates are designed to provide practicing are offered: Certificate in Engineering Geology Purpose The Graduate Certificate in Engineering Geology provides practicing geologists an opportunity to upgrade their engineering geology credentials while

251

International Journal of Geography and Geology, 2013, 2(1):1-13 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL  

E-Print Network [OSTI]

International Journal of Geography and Geology, 2013, 2(1):1-13 1 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL AND MINING MAPPING IN THE WEST AFRICAN CRATON - THE EXAMPLE OF CÔTE D'IVOIRE Gbele of the evolution on the use of remote sensing imagery for geological and mining mapping in West Africa

Paris-Sud XI, Université de

252

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology and imple- #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

253

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Combined Snowpack and  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture, BCMOF 1 Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

254

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS SUMMARY

255

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

256

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

257

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

258

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-007

259

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note

260

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Assessing Habitat Quality of  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Silvicultural Treatments for Enhancing  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS EXECUTIVE SUMMARY

262

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Relationships between Elevation and Slope  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

263

The consequences of failure should be considered in siting geologic carbon sequestration projects  

E-Print Network [OSTI]

2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

Price, P.N.

2009-01-01T23:59:59.000Z

264

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

SciTech Connect (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

265

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect (OSTI)

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

266

License for the Konrad Deep Geological Repository  

SciTech Connect (OSTI)

Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

Biurrun, E.; Hartje, B.

2003-02-24T23:59:59.000Z

267

Geological problems in radioactive waste isolation  

SciTech Connect (OSTI)

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

268

A fluid pressure and deformation analysis for geological sequestration of carbon dioxide  

SciTech Connect (OSTI)

We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy’s law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green’s function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

2012-06-07T23:59:59.000Z

269

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvestFlume Facility Jump to:

270

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M&O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2000-06-01T23:59:59.000Z

271

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (YMP 2000a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. M. Curry

2001-01-30T23:59:59.000Z

272

Reaction Mechanisms in Petroleum: From Experimentation to Upgrading and Geological Conditions  

E-Print Network [OSTI]

Among the numerous questions that arise concerning the exploitation of petroleum from unconventional reservoirs, lie the questions of the composition of hydrocarbons present in deep seated HP-HT reservoirs or produced during in-situ upgrading steps of heavy oils and oil shales. Our research shows that experimental hydrocarbon cracking results obtained in the laboratory cannot be extrapolated to geological reservoir conditions in a simple manner. Our demonstration is based on two examples: 1) the role of the hydrocarbon mixture composition on reaction kinetics (the "mixing effect") and the effects of pressure (both in relationship to temperature and time). The extrapolation of experimental data to geological conditions requires investigation of the free-radical reaction mechanisms through a computed kinetic model. We propose a model that takes into account 52 reactants as of today, and which can be continuously improved by addition of new reactants as research proceeds. This model is complete and detailed enou...

Lannuzel, Frédéric; Bounaceur, Roda; Marquaire, Paul-Marie; Michels, Raymond

2009-01-01T23:59:59.000Z

273

Cigeo, the French Geological Repository Project - 13022  

SciTech Connect (OSTI)

The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)] [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

2013-07-01T23:59:59.000Z

274

Geologic flow characterization using tracer techniques  

SciTech Connect (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

275

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjingNordwindGeological Survey

276

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy InformationAirQualityPermitProcessAreaGeology

277

The Geology and Marine Science Departments invite you to: Annual Symposium of Caribbean Geology  

E-Print Network [OSTI]

The Geology and Marine Science Departments invite you to: The 28th Annual Symposium of Caribbean Caribbean Tsunami Warning Program) Conference Title: Multipurpose Sea Level Network in the Caribbean Time: 3, and Adaptation in the Caribbean Region Time: 5:00 PM ­ 5:30 PM #12;

Gilbes, Fernando

278

Geology and Geothermal Potential of the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver County,...

279

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract...

280

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network [OSTI]

c. contamination from Chernobyl m. Technologic complexity a.and Complications from the Chernobyl Disaster . . . .5by radionuclides from Chernobyl Geological division of

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

State Geological Survey Contributions to NGDS Data Development...  

Open Energy Info (EERE)

Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title State Geological...

282

Geologic interpretation of gravity and magnetic data in the Salida...  

Open Energy Info (EERE)

interpretation of gravity and magnetic data in the Salida region, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geologic interpretation of...

283

Final Supplemental Environmental Impact Statement for a Geologic...  

Broader source: Energy.gov (indexed) [DOE]

Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,...

284

Final Supplemental Environmental Impact Statement for a Geologic...  

Broader source: Energy.gov (indexed) [DOE]

- Nevada Rail Transportation Corridor DOEEIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear...

285

Development of a Geological and GeomechanicalFramework for the...  

Broader source: Energy.gov (indexed) [DOE]

during shearing; geological study of the mechanisms accommodating deformation at fracture walls using literature review, core observations, and numerical simulations 5 | US...

286

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network [OSTI]

insulation. These characteristics CROATIA CH. Figure 7.3.Geologic map of Croatia:. 1- Precambrian (metamorphicChina Other Studies China Croatia Site Selection of Low and

2010-01-01T23:59:59.000Z

287

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

Varadharajan, C.

2013-01-01T23:59:59.000Z

288

SciTech Connect: Deep Borehole Disposal Research: Geological...  

Office of Scientific and Technical Information (OSTI)

Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

289

Geologic setting of the low-level burial grounds  

SciTech Connect (OSTI)

This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

Lindsey, K.A.; Jaeger, G.K. [CH2M Hill Hanford, Inc., Richland, WA (United States); Slate, J.L. [Associated Western Universities Northwest, Richland, WA (United States); Swett, K.J.; Mercer, R.B. [Westinghouse Hanford Co., Richland, WA (United States)

1994-10-13T23:59:59.000Z

290

Geologic and thermochronologic constraints on the initial orientation...  

Open Energy Info (EERE)

footwall shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geologic and thermochronologic constraints on the initial...

291

Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...  

Open Energy Info (EERE)

and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

292

Geophysics, Geology and Geothermal Leasing Status of the Lightning...  

Open Energy Info (EERE)

Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

293

State Geological Survey Contributions to the National Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Publications AASG State Geological Survey National Geothermal Data Systems Data Acquisition and Access National Geothermal Data System Architecture Design, Testing and Maintenance...

294

Geology and Temperature Gradient Surveys Blue Mountain Geothermal...  

Open Energy Info (EERE)

Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and...

295

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

296

Recovery Act: Site Characterization of Promising Geologic Formations...  

Broader source: Energy.gov (indexed) [DOE]

Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the Office of Fossil Energy's (FE's) Coal Program...

297

Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report  

SciTech Connect (OSTI)

This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

Aggarwal, S.; Ryland, S.; Peck, R.

1980-06-19T23:59:59.000Z

298

MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT  

SciTech Connect (OSTI)

This document establishes the Monitored Geologic Repository system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are based on the ''Civilian Radioactive Waste Management System Requirements Document'' (CRD) (DOE 2004a). The ''Monitored Geologic Repository Systems Requirements Document'' (MGR-RD) is developed in accordance with LP-3.3 SQ-OCRWM, ''Preparation, Review, and Approval of Office of Repository Development Requirements Document''. As illustrated in Figure 1, the MGR-RD forms part of the DOE Office of Civilian Radioactive Waste Management Technical Requirements Baseline. Revision 0 of this document identifies requirements for the current phase of repository design that is focused on developing a preliminary design for the repository and will be included in the license application submitted to the U.S. Nuclear Regulatory Commission for a repository at Yucca Mountain in support of receiving a construction authorization and subsequent operating license. As additional information becomes available, more detailed requirements will be identified in subsequent revisions to this document.

V. Trebules

2006-06-02T23:59:59.000Z

299

Salvo: Seismic imaging software for complex geologies  

SciTech Connect (OSTI)

This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

2000-03-01T23:59:59.000Z

300

The Role of the Engineered Barrier System in Safety Cases for Geological Radioactive Waste Repoitories: An NEA Initiaive in Co-Operations with the EC, Process Issues and Modeling  

SciTech Connect (OSTI)

The Integration Group for the Safety Case (IGSC) of the Nuclear Energy Agency (NEA) Radioactive Waste Management Committee in co-operation with the European Commission (EC) is conducting a project to develop a greater understanding of how to achieve the necessary integration for successful design, construction, testing, modeling, and assessment of engineered barrier systems. The project also seeks to clarify the role that the EBS plays in assuring the overall safety of a repository. A framework for the EBS Project is provided by a series of workshops that allow discussion of the wide range of activities necessary for the design, assessment and optimization of the EBS, and the integration of this information into the safety case. The topics of this series of workshops have been planned so that the EBS project will work progressively through the main aspects comprising one cycle of the design and optimization process. This paper seeks to communicate key results from the EBS project to a wider audience. The paper focuses on two topics discussed at the workshops: process issues and the role of modeling.

D.G. Bennett; A.J. Hooper; S. Voinis; H. Umeki; A.V. Luik; J. Alonso

2006-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist in cross section and the channel flows along a boundary between the t  

E-Print Network [OSTI]

Results Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist length. The highest percentage of bedrock coverage per geologic type appears in combined categories (Fig

Curran, Joanna C.

302

doi: 10.1130/0091-7613(1975)32.0.CO;2 1975;3;361-363Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1975)32.0.CO;2 1975;3;361-363Geology R. Gordon Gastil Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

303

Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office  

E-Print Network [OSTI]

Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Offered Bachelor of Science in Geology Bachelor of Arts in Geology Minor in Geology Secondary Education

Ravikumar, B.

304

Geology Page 145Sonoma State University 2012-2013 Catalog DEPARTMENT OFFICE  

E-Print Network [OSTI]

Geology Page 145Sonoma State University 2012-2013 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR Cory Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Sciences Minor in Geology Minor

Ravikumar, B.

305

Page 148 Geology Sonoma State University 2014-2015 Catalog DEPARTMENT OFFICE  

E-Print Network [OSTI]

Page 148 Geology Sonoma State University 2014-2015 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR. Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology

Ravikumar, B.

306

Page144 Geology Sonoma State University 2013-2014 Catalog Department Office  

E-Print Network [OSTI]

Page144 Geology Sonoma State University 2013-2014 Catalog geology Department Office DarwinHall116 (707)664-2334 www.sonoma.edu/geology Department chair MatthewJ.James aDministrative cE.Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology Minor

Ravikumar, B.

307

Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect (OSTI)

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Steve P.; Chamness, Mickie A.

2007-01-01T23:59:59.000Z

308

The Department of Geology at Wayne State University is located in a urban environmental set-  

E-Print Network [OSTI]

of geological resources, geological hazards and environmental pollution. The curriculum includes courses fromThe Department of Geology at Wayne State University is located in a urban environmental set- ting (Structural Geology). The Geology Department is housed in the historic and newly renovated Old Main Building

Baskaran, Mark

309

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

310

Geologic Map and GIS Data for the Patua Geothermal Area  

SciTech Connect (OSTI)

Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

Faulds, James E.

2011-10-31T23:59:59.000Z

311

FourYear Academic Plan 20122013 BA in Geology  

E-Print Network [OSTI]

FourYear Academic Plan 20122013 BA in Geology Internal Use Version Year 1 Year 2 Year 3 Year 4: Total UD Credits: 46 Total Credits: 120 3/19/12 #12;FourYear Academic Plan 20122013 BA in Geology

312

A Catalog of Geologic Data for the Hanford Site  

SciTech Connect (OSTI)

This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

2005-08-01T23:59:59.000Z

313

US Geological Survey, Geospatial Information Response Team Team Charter  

E-Print Network [OSTI]

US Geological Survey, Geospatial Information Response Team Team Charter Revised December 15, 2010 This charter outlines the purpose, responsibility and structure of the U.S. Geological Survey Geospatial Information Response Team (GIRT). Purpose--The primary purpose of the Geospatial Information Response Team

Torgersen, Christian

314

Geologic Map and GIS Data for the Wabuska Geothermal Area  

SciTech Connect (OSTI)

Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross?section.

Hinz, Nick

2013-09-30T23:59:59.000Z

315

PNNL's Community Science & Technology Seminar Series Geology and the  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Geology and the Nuclear Fuel Cycle Presented, the nuclear industry faces unique hurdles to expansion and waste management. Geology plays a critical role in the nuclear fuel cycle beyond just the mining of uranium for nuclear fuel. Come hear Frannie Skomurski

316

1919-32: Geology Department In School of Commerce: 190508 Geology taught by Prof. John F. Fulton, Metallurgy and Mining Engineering  

E-Print Network [OSTI]

1919-32: Geology Department In School of Commerce: 1905­08 Geology taught by Prof. John F. Fulton, Metallurgy and Mining Engineering 1907­13 Geology course o ered in the School of Engineering and Mechanical Art 1900­04 Geology course o ered in the Department of Chemistry and Pharmacy 1913­1923 Henry Parks

317

The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as  

E-Print Network [OSTI]

The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as Illustrated by Native American Stories Robert G. McWilliams Professor Emeritus Department of Geology Miami University Oxford, Ohio 45056 mcwillrg@muohio.edu #12;The Geology of North

Lee Jr., Richard E.

318

Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best  

E-Print Network [OSTI]

Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best possible manner. Students minoring in Geology are strongly encouraged to plan their programs with an undergraduate geology advisor. A total of 20 credits are required for the minor as follows

Massachusetts at Amherst, University of

319

Mathematical Geology, Vol. 31, No. 1, 1999 0882-8121/99/0100-0113$16.00/1 1999 International Association for Mathematical Geology  

E-Print Network [OSTI]

Association for Mathematical Geology 113 On the Ergodicity Hypothesis in Heterogeneous Formations1 Hongbin

Zhan, Hongbin

320

Geologic analysis of Devonian Shale cores  

SciTech Connect (OSTI)

Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

none,

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geology and hydrocarbon prospects of Latvia  

SciTech Connect (OSTI)

Oil prospects in Latvia are associated with the Baltic syneclise. Latvia occupies about one fourth of that large tectonic depression; zones of oil accumulation continue there from adjacent areas: the Telshai rampart (Lithuania) and the Leba nose (Polish offshore). The oil prospects in separate areas are determined by their position regarding the sources of oil generation--the Gdansk-Kura and Liepaya depressions. The most prospective areas are the Liepaya-Saldus zone of highs and the Pape-Barta trough. The Liepaya-Saldus zone was situated so that the hydrocarbon migration path crossed it. It probably is an important oil accumulation zone. The paper describes the geology of Latvia and the one oil field in Latvia.

Freimanis, A. (Latvian Dept. of Geology, Riga (Latvia)); Margulis, L.; Brangulis, A.; Kanev, S.; Pomerantseva, R. (Inst. of Marine Geology and Geophysics, Riga (Latvia))

1993-12-06T23:59:59.000Z

322

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

323

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

324

Public Geology at Griffith Park in Los Angeles: A Sample Teachers’ Guide  

E-Print Network [OSTI]

http://www.geo.cornell.edu/geology/faculty/RWA/programs.htmlR. J. (1987). Quaternary geology and seismic hazard of the1953). Special Report 33: Geology of the Griffith Park area,

Helman, Daniel S

2012-01-01T23:59:59.000Z

325

Graduate Studies in Volcanology, Igneous Petrology & Economic Geology For more information  

E-Print Network [OSTI]

Graduate Studies in Volcanology, Igneous Petrology & Economic Geology VIPER For more information Volcanology, Igneous Petrology and Economic geology Research group Interested in Volcanoes? Magmas? Ore) John Dilles (ore deposits, igneous petrology) Randy Keller (igneous petrology, marine geology) Roger

Kurapov, Alexander

326

Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis  

E-Print Network [OSTI]

Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis procedure. Finally, theprocedures for testing the homogeneity of directional data from several geological directions from different geological formations belong to significantly different populations. KEY WORDS

Jammalamadaka, S. Rao

327

GARY KOCUREK Department of Geological Sciences, Jackson School, University of Texas, 1 University Station  

E-Print Network [OSTI]

.D., Geology, University of Wisconsin, 1980 RESEARCH AREAS: Sedimentology, stratigraphy, geomorphology, aeolian ­ Sedimentary Geology, Sedimentology, Summer Field Camp, Field Methods, Geology of the National Parks, Earth Committee, First International Conference on Mars Sedimentology & Stratigraphy, 2009 - 2010, El Paso Field

Yang, Zong-Liang

328

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and  

E-Print Network [OSTI]

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

Daniels, Jeffrey J.

329

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors-581-7250) Faculty Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

330

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2013-14 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

331

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology  

E-Print Network [OSTI]

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology Laboratory. Our catalog also includes material housed in the separately administered Law Library in White Hall and the Martin Luther King Jr. Memorial Library in the Department

McConnell, Terry

332

U.S. Geological Survey Open-File Report 02328 Geological Survey of Canada Open File 4350  

E-Print Network [OSTI]

U.S. Geological Survey Open-File Report 02­328 Geological Survey of Canada Open File 4350 August, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC, V8W 3P6, Canada #12;ISBN: 0 of Canada and the University of Victoria. This meeting was held at the University of Victoria's Dunsmuir

Goldfinger, Chris

333

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Airphotos to Interpret  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture March 2004 Research Section, Coast Forest Region, BCMOF 1 Research Disciplines: Ecology ~ Geology

334

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology-748-1331. mdeact@shaw.ca #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

335

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.for.gov.bc.ca/vancouvr/research/research_index.htm #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

336

Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia  

E-Print Network [OSTI]

Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia Creating links Tripodi, Vanga Resources, Geneva · A student view of economic geology. Honza Catchpole, President

Halazonetis, Thanos

337

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.for.gov.bc.ca/vancouvr/research/research_index.htm #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

338

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

339

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Rd., Black Creek, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology

340

E-Print Network 3.0 - annual engineering geology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manhattan Summary: , C. A., 1994, Bedrock and engineering geology maps of New York County and parts of Kings and Queens... -199 in New York (State) Geological Survey Annual...

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - assessment geologic procedures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geologic procedures Search Powered by Explorit Topic List Advanced Search Sample search results for: assessment geologic procedures Page: << < 1 2 3 4 5 > >> 1 INTRODUCTION By...

342

Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates  

E-Print Network [OSTI]

uranium concentrations (NURE). Fig. 3. Geologic map of Newuranium concentrations (NURE). New Hampshire Geology Geol.Uranium Resource Evaluation (NURE), which were processed (

Apte, M.G.

2011-01-01T23:59:59.000Z

343

LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration  

E-Print Network [OSTI]

study of geologic carbon sequestration Catherine A. Petersleakage at geologic carbon sequestration sites. Env EarthDOE) Conference on Carbon Sequestration, 2005. Alexandria,

Peters, C. A.

2011-01-01T23:59:59.000Z

344

The Department of Geology at Wayne State University consists of five full-time faculty and five  

E-Print Network [OSTI]

Geology (Site Assessment, Soils and Soil Pollution, Environmental Isotope Geochemistry, Environmental (Economic Geology). The Geology Department is housed in the historic Old Main Building, and owns in traditional fields (Hydrogeology, Eco- nomic Geology, Geochronology), and in the field of Environmental

Baskaran, Mark

345

Status report on the geology of the Oak Ridge Reservation  

SciTech Connect (OSTI)

This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young [Oak Ridge National Lab., TN (United States); Lietzke, D.A. [Lietzke (David A.), Rutledge, TN (United States); McMaster, W.M. [McMaster (William M.), Heiskell, TN (United States)

1992-10-01T23:59:59.000Z

346

Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates  

SciTech Connect (OSTI)

Generalized geologic province information and data on house construction were used to predict indoor radon concentrations in New Hampshire (NH). A mixed-effects regression model was used to predict the geometric mean (GM) short-term radon concentrations in 259 NH towns. Bayesian methods were used to avoid over-fitting and to minimize the effects of small sample variation within towns. Data from a random survey of short-term radon measurements, individual residence building characteristics, along with geologic unit information, and average surface radium concentration by town, were variables used in the model. Predicted town GM short-term indoor radon concentrations for detached houses with usable basements range from 34 Bq/m{sup 3} (1 pCi/l) to 558 Bq/m{sup 3} (15 pCi/l), with uncertainties of about 30%. A geologic province consisting of glacial deposits and marine sediments, was associated with significantly elevated radon levels, after adjustment for radium concentration, and building type. Validation and interpretation of results are discussed.

Apte, M.G.; Price, P.N.; Nero, A.V.; Revzan, K.L.

1998-05-01T23:59:59.000Z

347

Assessment of effectiveness of geologic isolation systems. CIRMIS data system. Volume 3. Generator routines  

SciTech Connect (OSTI)

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. The various input parameters required in the analysis are compiled in data systems. The data are organized and prepared by various input subroutines for utilization by the hydraulic and transport codes. The hydrologic models simulate the groundwater flow systems and provide water flow directions, rates, and velocities as inputs to the transport models. Outputs from the transport models are basically graphs of radionuclide concentration in the groundwater plotted against time. After dilution in the receiving surface-water body (e.g., lake, river, bay), these data are the input source terms for the dose models, if dose assessments are required. The dose models calculate radiation dose to individuals and populations. CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) Data System, a storage and retrieval system for model input and output data, including graphical interpretation and display is described. This is the third of four volumes of the description of the CIRMIS Data System.

Friedrichs, D.R.; Argo, R.S.

1980-01-01T23:59:59.000Z

348

A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration  

SciTech Connect (OSTI)

Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

Gasperikova, Erika; Hoversten, G. Michael

2006-07-01T23:59:59.000Z

349

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

CO 2 escapes the reservoir through the abandoned well. Theof the abandoned well and the gas reservoir is calculated by4 reservoir 1.e-12 1.e-14 8.4e-4 Fracture or abandoned well

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

350

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

formations or depleted oil or gas reservoirs. Research hasas brine formations or depleted oil or gas reservoirs. The

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

351

Role of Geological and Geophysical Data in Modeling a Southwestern...  

Open Energy Info (EERE)

values are available. A two-dimensional, finite-difference, ground-water flow computer code was used to evaluate the effectiveness of the parameter-estimation technique....

352

MATHEMATICAL MODELS OF THERMAL AND CHEMICAL TRANSPORT IN GEOLOGIC MEDIA  

E-Print Network [OSTI]

s materials, and enhanced oil recovery processes. To obtainin tracer tests or enhanced oil recovery processes and, moreresource development, enhanced oil recovery processes, and

Lai, C.-H.

2010-01-01T23:59:59.000Z

353

Fluid Flow Model Development for Representative Geologic Media | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells for Energyof

354

Geology And A Working Conceptual Model Of The Obsidian Butte...  

Open Energy Info (EERE)

concentrations of veinlets and dilational breccias mineralized with pos t-calc-silicate specular hematite & anhydrite. The foregoing observations and deductions are...

355

Geologic Study of the Coso Formation  

SciTech Connect (OSTI)

There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history. While strata in both depocenters is disrupted by faults, these faults show modest displacement, and the intensity and magnitude of faulting does no t record significant extension. For this reason, the extension between the Sierran and Coso blocks is interpreted as minor in comparison to range bounding faults in adjacent areas of the Basin and Range.

D. L. Kamola; J. D. Walker

1999-12-01T23:59:59.000Z

356

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

357

Federal Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

358

doi: 10.1130/0091-7613(1994)0222.3.CO;2 1994;22;1023-1026Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1994)0222.3.CO;2 1994;22;1023-1026Geology Michael.S. government employees within scope of their Notes Geological Society of America on May 27, 2010geology.gsapubs.orgDownloaded from #12;on May 27, 2010geology.gsapubs.orgDownloaded from #12;on May 27, 2010geology

Torsvik, Trond Helge

359

THE CAPE ANN PLUTONIC SUITE: A FIELD TRIP FOR PETROLOGY CLASSES John B. Brady, Department of Geology, Smith College, Northampton, MA 01060  

E-Print Network [OSTI]

of Geology, Smith College, Northampton, MA 01060 John T. Cheney, Department of Geology, Amherst College

Brady, John B.

360

North African geology: exploration matrix for potential major hydrocarbon discoveries  

SciTech Connect (OSTI)

Based on results and models presented previously, it is possible to consider an exploration matrix that examines the 5 basic exploration parameters: source, reservoir, timing, structure, and seal. This matrix indicates that even those basins that have had marginal exploration successes, including the Paleozoic megabasin and downfaulted Triassic grabens of Morocco, the Cyrenaican platform of Libya, and the Tunisia-Sicily shelf, have untested plays. The exploration matrix also suggests these high-risk areas could change significantly, if one of the 5 basic matrix parameters is upgraded or if adjustments in political or financial risk are made. The Sirte basin and the Gulf of Suez, 2 of the more intensely explored areas, also present attractive matrix prospects, particularly with deeper Nubian beds or with the very shallow Tertiary sections. The Ghadames basin of Libya and Tunisia shows some potential, but its evaluation responds strongly to stratigraphic and external nongeologic matrix variations based on degree of risk exposure to be assumed. Of greatest risk in the matrix are the very deep Moroccan Paleozoic clastic plays and the Jurassic of Sinai. However, recent discoveries may upgrade these untested frontier areas. Based on the matrix generated by the data presented at a North African Petroleum Geology symposium, significant hydrocarbon accumulations are yet to be found. The remaining questions are: where in the matrix does each individual company wish to place its exploration capital and how much should be the risk exposure.

Kanes, W.H.; O'Connor, T.E.

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Risk assessment framework for geologic carbon sequestration sites  

SciTech Connect (OSTI)

We have developed a simple and transparent approach for assessing CO{sub 2} and brine leakage risk associated with CO{sub 2} injection at geologic carbon sequestration (GCS) sites. The approach, called the Certification Framework (CF), is based on the concept of effective trapping, which takes into account both the probability of leakage from the storage formation and impacts of leakage. The effective trapping concept acknowledges that GCS can be safe and effective even if some CO{sub 2} and brine were to escape from the storage formation provided the impact of such leakage is below agreed-upon limits. The CF uses deterministic process models to calculate expected well- and fault-related leakage fluxes and concentrations. These in turn quantify the impacts under a given leakage scenario to so-called 'compartments,' which comprise collections of vulnerable entities. The probabilistic part of the calculated risk comes from the likelihood of (1) the intersections of injected CO{sub 2} and related pressure perturbations with well or fault leakage pathways, and (2) intersections of leakage pathways with compartments. Two innovative approaches for predicting leakage likelihood, namely (1) fault statistics, and (2) fuzzy rules for fault and fracture intersection probability, are highlighted here.

Oldenburg, C.; Jordan, P.; Zhang, Y.; Nicot, J.-P.; Bryant, S.L.

2010-02-01T23:59:59.000Z

362

Geology and Geothermal Potential North of Wells, Nevada  

SciTech Connect (OSTI)

The geology north of Wells, Nevada is dominated by approximately 2150 m of Tertiary lacustrine siltstones and conglomerates. The sediments are cut by a high-angle, range-bounding fault and several associated step faults. Hydrothermal alteration and silicification are associated with the high-angle faults. Two ages of Quaternary sediments locally overlie the Tertiary sediments. Lithologic and well log analyses define numerous potential aquifers in the Tertiary sediments. The shallowest of these aquifers is overlain by a tuffaceous siltstone which appears to act as an aquitard for hot water moving through the aquifers. Three possible subsurface hydrologic models can be constructed to explain the spatial relationships of the thermal water near Wells. Cost-effective steps taken to expedite geothermal development in the area might include deepening of an existing domestic well in the city of Wells to at least 180 m in order to penetrate the tuffaceous siltstone aquitard, running borehole logs for all existing wells, and conducting a shallow temperature-probe survey in the Tertiary sediments north of Wells.

Jewell, Paul W.

1982-11-01T23:59:59.000Z

363

Minor actinide waste disposal in deep geological boreholes  

E-Print Network [OSTI]

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

364

Geology of the Florida Canyon gold deposit, Pershing County,...  

Open Energy Info (EERE)

Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of the Florida Canyon gold deposit, Pershing County, Nevada, in: Gold and Silver...

365

Cenozoic volcanic geology of the Basin and Range province in...  

Open Energy Info (EERE)

volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

366

Statistical approaches to leak detection for geological sequestration  

E-Print Network [OSTI]

Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

Haidari, Arman S

2011-01-01T23:59:59.000Z

367

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

368

GEOL 102: Historical Geology Online Exam 1 Review  

E-Print Network [OSTI]

& Last Appearance Datum; Zone Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) #12;Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem: detrital (= clastic = siliciclastic), biogenic, chemical; strata Detrital Sedimentary Cycle: Source

Holtz Jr., Thomas R.

369

Process for structural geologic analysis of topography and point data  

DOE Patents [OSTI]

A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

1987-01-01T23:59:59.000Z

370

12.001 Introduction to Geology, Spring 2008  

E-Print Network [OSTI]

This undergraduate level course presents a basic study in geology. It introduces major minerals and rock types, rock-forming processes, and time scales; temperatures, pressures, compositions, structure of the Earth, and ...

Elkins-Tanton, Lindy

371

GEOL 102: Historical Geology Online Exam 2 Review  

E-Print Network [OSTI]

boundary types (transform, divergent, convergent); microplates Orogenesis Cycles of mountain building, ophiolites Examples in the modern world Wilson (Supercontinent) Cycles Geochemical Cycles Energy sources for geology: solar, gravity, internal heat Reservoirs (sources and sinks) and fluxes; residence time Positive

Holtz Jr., Thomas R.

372

Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)  

Broader source: Energy.gov [DOE]

This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

373

Geologic Survey of the Ewing Bank, Northern Gulf of Mexico  

E-Print Network [OSTI]

Located along the edge of the continental shelf in the northwestern Gulf of Mexico, the Ewing Bank is a significant geologic feature: yet, little information about the bank is generally available. This thesis represents a preliminary survey...

Brooks, Daniel M

2014-04-04T23:59:59.000Z

374

DOE Manual Studies 11 Major CO2 Geologic Storage Formations  

Broader source: Energy.gov [DOE]

A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

375

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

host hydrocarbon reservoirs and oil and gas produc- tionthroat radius mm Radius (m) Reservoirs Oil Gas um GeologicalIn each of these reservoirs, oil fields have been dis-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

376

Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland  

SciTech Connect (OSTI)

Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

Martel, S.J.; Peterson, J.E. Jr. (Lawrence Berkeley Lab., CA (USA))

1990-05-01T23:59:59.000Z

377

GEOLOGY, January 2007 1 GSA Data Repository item 2007010, Figures  

E-Print Network [OSTI]

GEOLOGY, January 2007 1 1 GSA Data Repository item 2007010, Figures DR1A (photo of speleothem PP1 and methods for uranium-series chronology), and DR2, (18 O and 13 C data), is available online at www 9140, Boulder, CO 80301, USA. Geology, January 2007; v. 35; no. 1; p.1­4; doi: 10.1130/G22865A.1; 3

Massachusetts at Amherst, University of

378

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report  

SciTech Connect (OSTI)

This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

Not Available

1993-07-01T23:59:59.000Z

379

Geology of interior cratonic sag basins  

SciTech Connect (OSTI)

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

380

APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 17 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bai ley and G.E. Ulrich U.s. Geological 5. Report Date Apollo 17 Voice Transcript 1975 Pertaining to the Geology of the Landing Site 6. 7

Rathbun, Julie A.

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office  

E-Print Network [OSTI]

Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Early Retirement Program Programs Offered Bachelor of science in Geology Bachelor of arts in Geology

Ravikumar, B.

382

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,  

E-Print Network [OSTI]

Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

383

College of Natural Science and Mathematics Department of Geology and Geophysics  

E-Print Network [OSTI]

gEology College of Natural Science and Mathematics Department of Geology and Geophysics 907-474-7565 www.uaf.edu/geology/ MS, phD Degrees Minimum Requirements for Degrees: MS: 30 credits; PhD: 18 thesis credits Graduates in geology have broad backgrounds in the earth sciences and firm foundations

Hartman, Chris

384

Physical Geology Laboratory J Bret Bennington, Charles Merguerian and John E. Sanders  

E-Print Network [OSTI]

Physical Geology Laboratory Manual J Bret Bennington, Charles Merguerian and John E. Sanders Geology Department Hofstra University © 1999 #12;PHYSICAL GEOLOGY LABORATORY MANUAL Third Edition (Revised) by J Bret Bennington, Charles Merguerian, and John E. Sanders Department of Geology Hofstra University

Merguerian, Charles

385

University of Calgary, Department of Geoscience Sessional Instructor Position in Petroleum Engineering Geology  

E-Print Network [OSTI]

in Petroleum Engineering Geology The Department of Geoscience at the University of Calgary is seeking a Sessional Instructor to fill 1/3 of course as lecturer for Geology 377 (Petroleum Engineering Geology to engineering students as part of the course GLGY 377 (Petroleum Engineering Geology). The topics covered

Garousi, Vahid

386

* * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 12 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bailey and G.E. Ulrich U.S. Geological to the Geology of the Landing Site 7. Auchor(s) 8. Performing Organization Repr. N. G. Bailey and G. E. Ulrich No

Rathbun, Julie A.

387

Northwestern University Archives Evanston, Illinois Department of Geology Field Notebooks and Catalogs, 1881-1953  

E-Print Network [OSTI]

geology. Mathematical techniques were applied to the exploitation of oil-bearing formations and otherNorthwestern University Archives · Evanston, Illinois Department of Geology Field Notebooks, instructors, and students of the Geology Department between the years 1881 through 1953. History Geology

388

Slope design and implementation in open pit mines; geological and geomechanical Jean-Alain FLEURISSON  

E-Print Network [OSTI]

stability, slope design, engineering geology, fault, open pit mines, SOMAIR uranium mine, OCP phosphate mine1 GHGT-9 Slope design and implementation in open pit mines; geological and geomechanical approach all natural geological and geomechanical features and the geological structures as well

Boyer, Edmond

389

Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis  

SciTech Connect (OSTI)

An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

Morris, J P; Johnson, S M

2008-03-26T23:59:59.000Z

390

New Models of Public Ownership in Energy  

E-Print Network [OSTI]

in Energy1 Aoife Brophy Haney and Michael G. Pollitt ESRC Electricity Policy Research Group and Judge Business School University of Cambridge 24 September 2010 1. Background and current challenges facing the power sector This paper discusses... of successful reform (e.g. UK, Nordic countries, Chile and Argentina)3 but there are notable reforms which have stalled (e.g. in many US states, including California, and in South Africa, Turkey and Ukraine) and many others of slow progress (e.g. in most...

Haney, Aoife Brophy; Pollitt, Michael G.

391

In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application  

SciTech Connect (OSTI)

Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

2013-02-25T23:59:59.000Z

392

OPTIMAL GEOLOGICAL ENVIRONMENTS FOR CARBON DIOXIDE DISPOSAL IN SALINE AQUIFERS IN THE UNITED STATES  

SciTech Connect (OSTI)

Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

Susan D. Hovorka

1999-02-01T23:59:59.000Z

393

doi: 10.1130/0091-7613(1985)132.0.CO;2 1985;13;231-233Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1985)132.0.CO;2 1985;13;231-233Geology V. R. Todd and S Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

394

AMERICAN JOURNAL OF SCIENCE KLINE GEOLOGY LABORATORY  

E-Print Network [OSTI]

KOWALCZYK*, and YVES GODDE´RIS§ ABSTRACT. Long-term carbon and sulfur cycle models have helped shape our the Paleozoic to early Mesozoic are highly concordant with indepen- dent records from proxies, but are offset processes. Key words: Carbon cycle, paleoclimate, models, carbon dioxide, oxygen, Phanero- zoic introduction

Royer, Dana

395

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and  

E-Print Network [OSTI]

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

Fernandez, Eduardo

396

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect (OSTI)

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

397

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

398

State and Regional Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­?three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­?and-­?trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

Reitze, Arnold; Durrant, Marie

2011-03-31T23:59:59.000Z

399

Multiblock Grid Generation for Simulations in Geological Formations  

E-Print Network [OSTI]

Simulating fluid flow in geological formations requires mesh generation, lithology mapping to the cells, and computing geometric properties such as normal vectors and volume of cells. The purpose of this research work is to compute and process the geometrical information required for performing numerical simulations in geological formations. We present algebraic techniques, named Transfinite Interpolation, for mesh generation. Various transfinite interpolation techniques are derived from 1D projection operators. Many geological formations such as the Utsira formation (Torp and Gale, 2004; Khattri, Hellevang, Fladmark and Kvamme, 2006) and the Snohvit gas field (Maldal and Tappel, 2004) can be divided into layers or blocks based on the geometrical or lithological properties of the layers. We present the concept of block structured mesh generation for handling such formations.

Sanjay Kumar Khattri

2006-07-17T23:59:59.000Z

400

Environmental Responses to Carbon Mitigation through Geological Storage  

SciTech Connect (OSTI)

In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

Cunningham, Alfred; Bromenshenk, Jerry

2013-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems  

SciTech Connect (OSTI)

A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

Dove, F.H.; Cole, C.R.; Foley, M.G.

1982-09-01T23:59:59.000Z

402

Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX  

SciTech Connect (OSTI)

The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

403

doi: 10.1130/0091-7613(1993)0212.3.CO;2 1993;21;579-582Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1993)0212.3.CO;2 1993;21;579-582Geology Paul W. Jewell on content prepared wholly by U.S. government employees within scope of their Notes Geological Society of America on July 11, 2011geology.gsapubs.orgDownloaded from #12;on July 11, 2011geology

Johnson, Cari

404

doi: 10.1130/0091-7613(2002)0302.0.CO;2 2002;30;175-178Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(2002)0302.0.CO;2 2002;30;175-178Geology Sean D. Willett not claimed on content prepared wholly by U.S. government employees within scope of Notes Geological Society of America on June 9, 2014geology.gsapubs.orgDownloaded from on June 9, 2014geology

405

doi: 10.1130/0091-7613(1986)142.0.CO;2 1986;14;115-118Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1986)142.0.CO;2 1986;14;115-118Geology A.J.R. White, J on content prepared wholly by U.S. government employees within scope of their Notes Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

406

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect (OSTI)

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

407

Technical Report TR-011 March 2000 Research Section, Vancouver Forest Region, BCMOF Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife TR-011 Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife #12;Technical ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Page Summary

408

Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository  

SciTech Connect (OSTI)

A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated.

Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

1980-12-01T23:59:59.000Z

409

National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming  

SciTech Connect (OSTI)

A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

1981-02-01T23:59:59.000Z

410

References on Bentonite U.S. Geological Survey  

E-Print Network [OSTI]

.S. Geological Survey Mineral Investigations Resources Map, MR-92, 1 p. Hosterman, J.W. and Orris, G. J., 1998 minerals: New Mexico Bureau of Mines & Mineral Resources Bulletin 154, p 267-273. Ciullo, P.A., 1996, White, Steven, 1998, Wyoming bentonite-a niche in mineral globalization: in Proceedings of the 3rd North

411

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

412

GEOLOGY | August 2012 | www.gsapubs.org 747 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY | August 2012 | www.gsapubs.org 747 INTRODUCTION Reduced organic carbon is the primary carbon and light, alternative energy sources, such as Fe(II), must be avail- able in order for life(II) as an energy source for microbial metabolism as well as supply a source of inorganic carbon for fixation

Loope, David B.

413

Geological problems in radioactive waste isolation - second worldwide review  

SciTech Connect (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

414

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology,Tsitika Watershed.Research Section,CoastForest Region,BCMOF, Nanaimo, BC. Extension Note EN-021. EN-021 Hydrology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-021 March 2006 Forest Research

415

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1  

E-Print Network [OSTI]

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1 O. Bour,2 N. E. Odling,1,3 P. Davy,2 I. Main,4 P. Cowie,4 and B. Berkowitz5 Abstract. Scaling in fracture systems has become an active field spread widely through the literature. Although it is rec- ognized that some fracture systems are best

Cowie, Patience

416

GEOL 104 Dinosaurs: A Natural History Geology Assignment  

E-Print Network [OSTI]

rocks is the energy of the environment: that is, how fast the water (or wind) was moving. EssentiallyName: 1 GEOL 104 Dinosaurs: A Natural History Geology Assignment DUE: Mon. Sept. 18 Part I, the higher the energy, the larger the size of the particles of sediment. Slow moving water can only move

Holtz Jr., Thomas R.

417

State of Oregon Department of Geology and Mineral Industries  

E-Print Network [OSTI]

://www.naturenw.org or these DOGAMI field offices: Baker City Field Office 1510 Campbell St. Baker City, OR 97814-3442 Telephone (541 ON LIMITED GEOLOGIC AND GEOPHYSICAL DATA. AT ANY GIVEN SITE IN ANY MAP AREA, SITE-SPECIFIC DATA COULD GIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Energy Resources

Goldfinger, Chris

418

The subsurface fluid mechanics of geologic carbon dioxide storage  

E-Print Network [OSTI]

In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

Szulczewski, Michael Lawrence

2013-01-01T23:59:59.000Z

419

Deborah K. Smith Department of Geology and Geophysics, MS 22  

E-Print Network [OSTI]

Deborah K. Smith Department of Geology and Geophysics, MS 22 Woods Hole Oceanographic Institution: Jordan, T. H., H. W. Menard, and D.K. Smith, Density and size distribution of seamounts in the eastern. Smith, H. W. Menard, J. A. Orcutt and T. H. Jordan, Seismic reflection site survey: correlation

Smith, Deborah K.

420

Geologic map of the Mount Adams Quadrangle, Washington  

SciTech Connect (OSTI)

This report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

Korosec, M.A. (comp.)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM  

E-Print Network [OSTI]

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM This tour may be done in groups-guided group tours are asked to book a time to prevent too many groups from being in the museum at once. Tour MUSEUM LEVEL IMPORTANT: MANY EXHIBITS ARE ALIVE. DO NOT TOUCH OR TAP TANKS OR GLASS DISPLAY FRONTS

Patterson, William P.

422

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM  

E-Print Network [OSTI]

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM This tour may be done in groups-guided group tours are asked to book a time to prevent too many groups from being in the museum at once. Tour. DINOSAUR AND OTHER REPLICAS ARE ALSO FRAGILE AND SHOULD NOT BE TOUCHED OR HANDLED. MAIN FLOOR MUSEUM LEVEL

Patterson, William P.

423

Geology 460:301 Fall 2007 Mineralogy Lab  

E-Print Network [OSTI]

Geology 460:301 Fall 2007 Mineralogy Lab Professor Jeremy Delaney Teaching Assistant: Alissa Henza Science by Cornelius Klein (22nd edition) Introduction to Optical Mineralogy by William Nesse Grading Policy: Lab is 33% of your Mineralogy grade. This 33% is made up of: Labs: 70% Quizzes: 5% Final Exam: 25

424

Location and Geology Fig 1. The Macasty black shale  

E-Print Network [OSTI]

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

425

M.S. Economic Geology, Oregon State University College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR Expected Spring, 2015  

E-Print Network [OSTI]

EDUCATION M.S. Economic Geology, Oregon State University College of Earth, Ocean. Dilles Relevant Courses Interpretation of Geologic Maps Igneous Petrology Tectonic Geomorphology B.S. Geology, University of Idaho College of Science, Moscow, ID; GPA: 3

Kurapov, Alexander

426

Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)  

E-Print Network [OSTI]

Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

Daniels, Jeffrey J.

427

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

SciTech Connect (OSTI)

Injection and movement/saturation of carbon dioxide (CO2) in a geological formation will cause changes in seismic velocities. We investigate the capability of coda-wave interferometry technique for estimating CO2-induced seismic velocity changes using time-lapse synthetic vertical seismic profiling (VSP) data and the field VSP datasets acquired for monitoring injected CO2 in a brine aquifer in Texas, USA. Synthetic VSP data are calculated using a finite-difference elastic-wave equation scheme and a layered model based on the elastic Marmousi model. A possible leakage scenario is simulated by introducing seismic velocity changes in a layer above the CO2 injection layer. We find that the leakage can be detected by the detection of a difference in seismograms recorded after the injection compared to those recorded before the injection at an earlier time in the seismogram than would be expected if there was no leakage. The absolute values of estimated mean velocity changes, from both synthetic and field VSP data, increase significantly for receiver positions approaching the top of a CO2 reservoir. Our results from field data suggest that the velocity changes caused by CO2 injection could be more than 10% and are consistent with results from a crosswell tomogram study. This study demonstrates that time-lapse VSP with coda-wave interferometry analysis can reliably and effectively monitor geological carbon sequestration.

Zhou, R.; Huang, L.; Rutledge, J.T.; Fehler, M.; Daley, T.M.; Majer, E.L.

2009-11-01T23:59:59.000Z

428

Department of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering  

E-Print Network [OSTI]

management, contaminated site remediation, and engineered barriers or containment systems. Applicants mustDepartment of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering The Department of Civil and Geological Engineering at the University of Saskatchewan invites applications from

Saskatchewan, University of

429

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

430

Geology 102 --Earth, Life, and Time University of Tennessee --Fall 2011  

E-Print Network [OSTI]

-- tornados, hurricanes, volcanoes, earthquakes, tsunamis, and the constant threat of global warming. Yet interactions throughout the geologic past. Finally, we will examine the geologic record to determine the causes

Perfect, Ed

431

The Geological Research in France - The Dossier 2005 Argile  

SciTech Connect (OSTI)

At the end of fifteen years of research defined by the French act of December 30, 1991 on radwaste management, ANDRA gave a report, 'Dossier Argile 2005', which concluded with the feasibility of a reversible disposal in the argillaceous Callovo-Oxfordian formation studied by means of an underground research laboratory at the Meuse/Haute-Marne site. Starting from source data like the characteristics of the geological medium and the waste inventory, the process followed by ANDRA to achieve this conclusion is of a sequential type, and iterative between concept design, scientific knowledge, in particular that of the phenomenological evolution of the repository and its geological environment from operating period to long term, and safety assessment. The 'Dossier Argile 2005' covers a broad radwaste inventory, ILLW, HLW and Spent Fuel, so that it makes it possible to cover the whole of the technological, scientific and safety topics. This article will give an overview of the geological disposal studies in France and draw the main conclusion of the Dossier 2005 Argile. It will be focused on the near field (engineering components and near field host rock), while considering, if necessary, its integration within the whole system. After a short description of the concepts (including waste inventory and the characteristics of the Meuse/Haute the Marne site) and the functions of the components of repository and geological medium, one will describe, successively, the broad outline of the phenomenological evolution of repository and the geological medium in near field, in particular, by releasing the time scales of processes and uncertainties of knowledge. On this basis, one will indicate the safety scenarios that were considered and the broad outline of performance and dose calculations. Lessons learn from the Dossier 2005 Argile will be discussed and perspectives and priorities for future will be indicated. (authors)

Plas, Frederic; Wendling, Jacques [DS/IT, Andra, Parc de la Croix Blanche, 1-7 rue Jean Monnet, Chatenay-Malabry, 92298 (France)

2007-07-01T23:59:59.000Z

432

Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II  

SciTech Connect (OSTI)

This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

Hogan, R.G. (ed.)

1981-03-01T23:59:59.000Z

433

A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration  

E-Print Network [OSTI]

combined CO 2 enhanced oil recovery (EOR) and sequestrationis introduced for enhanced oil/gas recovery or for geologic

Gasperikova, Erika; Hoversten, G. Michael

2006-01-01T23:59:59.000Z

434

GEOLOGY, August 2007 683Geology, August 2007; v. 35; no. 8; p. 683686; doi: 10.1130/G23675A.1; 4 figures; Data Repository item 2007176. 2007 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosoci  

E-Print Network [OSTI]

GEOLOGY, August 2007 683Geology, August 2007; v. 35; no. 8; p. 683­686; doi: 10.1130/G23675A.1; 4 figures; Data Repository item 2007176. © 2007 The Geological Society of America. For permission to copy

Demouchy, Sylvie

435

Boullier The fault zone geology 1 Fault zone geology: lessons from drilling through the Nojima and 1  

E-Print Network [OSTI]

drilling through the Nojima and 1 Chelungpu faults 2 3 Anne-Marie Boullier 4-Marie.Boullier@obs.ujf-grenoble.fr 8 9 Abstract 10 Several drilling projects have been conducted through was "fault zone drilling combined with surface-based 33 geophysical and geological

Boyer, Edmond

436

Geological and production characteristics of strandplain/barrier island reservoirs in the United States  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

1994-12-01T23:59:59.000Z

437

Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide  

SciTech Connect (OSTI)

The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical model.

Siriwardane, H.J.; Gondle, R.; Smith, D.H.

2007-05-01T23:59:59.000Z

438

Tuesday, March 13, 2007 POSTER SESSION I: GALILEAN SATELLITES: GEOLOGY AND MAPPING  

E-Print Network [OSTI]

Tuesday, March 13, 2007 POSTER SESSION I: GALILEAN SATELLITES: GEOLOGY AND MAPPING 6:30 p. Geissler P. Jaeger W. Becker T. Crown D. A. Schenk P. Geologic Mapping of the Polar Regions of Io [#1124] This abstract discusses our results from geologic mapping of the polar regions of Jupiter's moon Io using

Rathbun, Julie A.

439

APOLLO 11 .V O ICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * *: {( APOLLO 11 .V O ICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 11 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N. G. Bailey and G. E. Ulrich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1974 #12;USCOMM·OC 8265-P74THIS ~ORM 1\\1A) HI

Rathbun, Julie A.

440

Josh is a pragmatic guy. He knows that a strong background in geology and environmental  

E-Print Network [OSTI]

Josh is a pragmatic guy. He knows that a strong background in geology and environmental geosciences will help him excel in the energy sector. So, as a freshman, he took the intro to geology course. "My fit. "As a geology major, I have to get out in the field to really apply what I've learned in class

Kasman, Alex

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Bachelor of Science with Major in Geology (Minimum of 120 credits required)  

E-Print Network [OSTI]

Bachelor of Science with Major in Geology (Minimum of 120 credits required) The Bachelor of Science (B.S.) degree is designed for students planning professional careers in geology, hydrogeology work in geology, geosciences and environmental science. Prerequisite Coursework for Transfer Students

Fernandez, Eduardo

442

Bachelor of Arts with Major in Geology: Earth and Space Science (Minimum of 120 credits required)  

E-Print Network [OSTI]

Bachelor of Arts with Major in Geology: Earth and Space Science (Minimum of 120 credits required) The Bachelor of Arts (B.A.) degree in Geology (Earth Science) is designed for students planning professional 2053 & 2048L 5 College Algebra MAC 1105 3 Introductory Statistics STA 2023 3 Total 19 Geology (Earth

Belogay, Eugene A.

443

UCR Chemistry Program 1953-1966; 2nd floor, Geology Building  

E-Print Network [OSTI]

UCR Chemistry Program 1953-1970 1953-1966; 2nd floor, Geology Building 1966-2005; Pierce Hall of Physical Sciences ­ chemistry, geology, mathematics, physics ­ W. Conway Pierce, Chairman #12;Hart Schmidt of Geology bld; 1954-66 ­ Plus 2nd floor addition; 1959-66 ­ Pierce Hall; 1966-2005 · Instruments and support

Reed, Christopher A.

444

Environmental Studies Major www.geology.pitt.edu/undergraduate/Envstudies.html  

E-Print Network [OSTI]

Environmental Studies Major www.geology.pitt.edu/undergraduate/Envstudies.html Revised: 03 of earth systems and the environment, including the effect of geologic processes on human activity the completion of 73 credits distributed as follows. Geology core requirements One of the following _______ GEOL

Jiang, Huiqiang

445

Page 148 Geology Sonoma State University 2011-2012 Catalog Department Office  

E-Print Network [OSTI]

Page 148 Geology Sonoma State University 2011-2012 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Jen E. Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Sciences Minor

Ravikumar, B.

446

Program B.S. in Geology Assessment Coordinator for the program Dave Kreamer  

E-Print Network [OSTI]

1 Program B.S. in Geology Assessment Coordinator for the program Dave Kreamer Department. Student Learning Outcomes for the program. By the end of the Geology program students will be able, and the environments in which they lived. 4. Recognize, in the field, various types of geologic structures, and be able

Hemmers, Oliver

447

College of Natural Science and Mathematics Department of Geology and Geophysics  

E-Print Network [OSTI]

geoscience College of Natural Science and Mathematics Department of Geology and Geophysics 907-474-7565 www.uaf.edu/geology/ Bs Degree Minimum Requirements for Degree: 120 credits Graduates in geoscience. Four con- centrations are available to allow students to pursue their own emphasis: geology

Hartman, Chris

448

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.Understanding how the hydrologic cycle is affected by climate, trees and plants, soils, geology, topography, springs, or any Figure 1. The hydrologic cycle, or water cycle (courtesy of the US Geological Survey

449

APOLLO 16 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * *: {( APOLLO 16 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;- APOLLO 16 VOICE TRANSCRIPT Pertaining to the geology of the landIng site by N.G. Bai loey and G.E. Ulrich U.s. Geol:ogical Survey Branch of Astrogeology F]agstaff~ Arizona 1915 #12;FORM NTlS·315 UO-70

Rathbun, Julie A.

450

APOLLO 15 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * *: {( APOLLO 15 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 15 VOICE TRANSCRIPT Pertaining to the geology of the landing site ~ N.G. Bailey and G.E. Ulrich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1~5 #12;BIBLIOGRAPHICDATA II. Report No. J2. 3

Rathbun, Julie A.

451

Geology students in Greece for a regional spring course. Are you interested in natural  

E-Print Network [OSTI]

Geology students in Greece for a regional spring course. Are you interested in natural resources reasoning are equally important to the solution? FALL 2013 W&L GEOLOGY Course offerings for FIRST:35p FS: GEN GEOL-FIELD EMPHASIS 4 GREER L Fulfill your Lab Science FDR SL and see what Geology has

Marsh, David

452

APOLLO 14 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * *: {( APOLLO 14 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 14 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bailey and G.E. UI rich U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona 1975 #12;nils fOR.1 ~t.\\) IH. fl.HJ!Hl!ll( ".0

Rathbun, Julie A.

453

Department of Geology and Geophysics, University of Utah Spring 2002 down to earth  

E-Print Network [OSTI]

1 Department of Geology and Geophysics, University of Utah Spring 2002 down to earth Message From of Bill Parry and Duke Picard resulted in openings in both Geological Engineer- ing and Sedimentary Geology. Our search for their replacements has been successful and we are once again at full strength

Johnson, Cari

454

CATHERINE A. RIGSBY Department of Geological Sciences Phone: (252) 328-4297  

E-Print Network [OSTI]

in geology. 1/80-7/80 Credo Oil & Gas, Inc., Beaumont, Texas Development Geologist, East Texas 1CATHERINE A. RIGSBY Department of Geological Sciences Phone: (252) 328-4297 East Carolina, Department of Geology Professor, Sedimentology 1/12-present Adjunct Professor, Ocean and Earth Dynamics

Rigsby, Catherine A.

455

Geology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds a Stronger Department  

E-Print Network [OSTI]

, course-work tracks that equip students for roles in industry, geological engineering, oil and mineralGeology and Geophysics: Building Partnerships Forging New Links and Strengthening Old Ones Builds. The Geology and Geophysics Department at the University of Utah has a long history of successful partnerships

Johnson, Cari

456

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network [OSTI]

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

Hilley, George

457

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-Print Network [OSTI]

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

458

GEOL 467/667/MAST 667 -GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS  

E-Print Network [OSTI]

GEOL 467/667/MAST 667 - GEOLOGICAL ASPECTS OF OFFSHORE WIND PROJECTS **TENTATIVE** COURSE SYLLABUS Description: Investigation of the geological and geotechnical aspects of offshore wind projects. Emphasis will be designed around geological and geotechnical topics that are relevant to the development of offshore wind

Firestone, Jeremy

459

Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites  

E-Print Network [OSTI]

1999. Reichle, D. et al. , Carbon sequestration research andfrom geologic carbon sequestration sites: unsaturated zoneof CO 2 from Geologic Carbon Sequestration Sites Curtis M.

Oldenburg, Curtis M.; Unger, Andre J.A.

2004-01-01T23:59:59.000Z

460

Geologic and hydrologic controls critical to coalbed methane producibility and resource assessment: Williams Fork Formation, Piceance Basin, Northwest Colorado. Topical report, December 1, 1993-November 30, 1995  

SciTech Connect (OSTI)

The objectives of this report are: To further evaluate the interplay of geologic and hydrologic controls on coalbed methane production and resource assessment; to refine and validate our basin-scale coalbed methane producibility model; and to analyze the economics of coalbed methane exploration and development in the Piceance Basin.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk  

SciTech Connect (OSTI)

A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

Oldenburg, Curtis M.

2006-11-27T23:59:59.000Z

462

Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)  

SciTech Connect (OSTI)

The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

1980-01-01T23:59:59.000Z

463

Technical Report TR-014 May 2001 Research Section, Vancouver Forest Region, BCMOF Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife just like Forest Region, BCMOF Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

464

Carbon Trading Protocols for Geologic Sequestration  

SciTech Connect (OSTI)

Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-year phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.

Hoversten, Shanna

2008-08-07T23:59:59.000Z

465

Simulations of Fracture and Fragmentation of Geologic Materials using Combined FEM/DEM Analysis  

SciTech Connect (OSTI)

Results are presented from a study investigating the effect of explosive and impact loading on geological media using the Livermore Distinct Element Code (LDEC). LDEC was initially developed to simulate tunnels and other structures in jointed rock masses with large numbers of intact polyhedral blocks. However, underground structures in jointed rock subjected to explosive loading can fail due to both rock motion along preexisting interfaces and fracture of the intact rock mass itself. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model these types of problems, we have implemented Cosserat point theory and cohesive element formulations into the current version of LDEC, thereby allowing for dynamic fracture and combined finite element/discrete element simulations. Results of a large-scale LLNL simulation of an explosive shock wave impacting an elaborate underground facility are also discussed. It is confirmed that persistent joints lead to an underestimation of the impact energy needed to fill the tunnel systems with rubble. Non-persistent joint patterns, which are typical of real geologies, inhibit shear within the surrounding rock mass and significantly increase the load required to collapse a tunnel.

Morris, J P; Rubin, M B; Block, G I; Bonner, M P

2005-05-26T23:59:59.000Z

466

Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection  

SciTech Connect (OSTI)

This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from possible CO2 leakage. The approach is based on the assumption that HSE risk due to CO2 leakage is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or general information available from published materials along with estimates of uncertainty to evaluate the three basic characteristics in order to screen and rank candidate sites. Application of the framework to the Rio Visa Gas Field, Ventura Oil Field, and Mammoth Mountain demonstrates the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies. Revisions and extensions to improve the approach are anticipated in the near future as it is used and tested by colleagues and collaborators.

Oldenburg, Curtis M.

2005-09-19T23:59:59.000Z

467

Geologic report for the Weldon Spring Raffinate Pits Site  

SciTech Connect (OSTI)

A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures.

none,

1984-10-01T23:59:59.000Z

468

Geology of the Upper Schep Creek area, Mason County, Texas  

E-Print Network [OSTI]

?od the stratigraphy of Texas and encoded tho definition of the Trinity group of tho Lo?or Cretaceous. (ln 1934), Sellards reported on the structure and paleogeography of tho Llano region. This evidenoe indicated a lfississippian age for the beginning of structural... study of the Elleaburger group of central Texas. This report also inoludes stratigraphio studies of the Cretaceous rooks of this region. plunnea" ~ (1900) report on the Carboniferous rocks of this area also included stratigraphy and geologic history...

Marshall, Hollis Dale

1959-01-01T23:59:59.000Z

469

Structural geology of the Henneberry Ridge area, Beaverhead County, Montana  

E-Print Network [OSTI]

) and Weed (1900), helped define the Paleozoic stratigraphy of the Montana-Wyoming area as well as establish tenative type sections, some of which are still in use today. The search for economic deposits of minerals and oil shales provided the impetus...STRUCTURAL GEOLOGY OF THE HENNEBERRY RIDGE AREA, BEAVERHEAD COUNTY, MONTANA A Thesis by JEFFREY JOHN CORYELL Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER...

Coryell, Jeffrey John

1983-01-01T23:59:59.000Z

470

Geology of the Grossville School area, Mason County, Texas  

E-Print Network [OSTI]

~ ~ ~ ~ ~ ~ ~ ~ 53 Rilel Form st 1014 ~ ~ ~ ~ ~ ~ ~ + ~ ~ e ~ ~ ~ a ~ ~ ~ Pefinition and Thickness. 53 53 Hickory . '-'ands tone Bomber, Cak Mount in Limestone Sember Lion . ". ount in iandstons Member. ~ ~ 59 411bern i... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 110 ILLS, " '-" R. . T I&. HS Figure I. loosticn iiap of rossvtDe School Area, aeon C! unty, Geologic lu!p of the Grossville Sciucl Area, Fason County& exes ~ ~ & ~ ~ ~ ~ ~ pooket St rue. urc 'actions ~ III ~ Surf'sce: m, ; resrion...

Fuller, Robert Louis

1957-01-01T23:59:59.000Z

471

Shock compression and dynamic fragmentation of geological materials  

E-Print Network [OSTI]

Granite is a fully dense igneous rock originating from a quarry in Western Australia, Australia, while Gosford Sandstone is a porous sedimentary rock originating from a coal mine in New South Wales, Australia. These two samples were chosen because... , A., “Dynamic fragmentation of Lake Quarry Granite”, Pressure, Energy, Temperature & Extreme Rate Conference, April 2014, London. 2. Kirk, S., Braithwaite, C., Williamson, D. & Jardine, A., “Shock Com- pression of Geological Materials”, Twenty...

Kirk, Simon

2014-11-11T23:59:59.000Z

472

Geologic Sequestration Training and Research Projects | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneralEnergy Geologic

473

The Suitable Geological Formations for Spent Fuel Disposal in Romania  

SciTech Connect (OSTI)

Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

Marunteanu, C. [Bucharest Univ. (Romania); Ionita, G. [ANDRAD, Bucharest (Romania); Durdun, I. [S.C. GEOTEC S.A., Bucharest (Romania)

2007-07-01T23:59:59.000Z

474

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect (OSTI)

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01T23:59:59.000Z

475

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

476

GEO 101N General geology Kathleen M. Harper (Pre or co) with any geo course below 130 GEO 101N General geology TBA Pre or co with any geo course below 131  

E-Print Network [OSTI]

W. or GEO 101N General geology Kathleen M. Harper (Pre or co) with any geo course below 130 GEO 101N General geology TBA Pre or co with any geo course below 131 GEO 102N General geology Laboratory TA TBA none GEO 207 Geological Hazards and Disasters Pre - min C in any 100-level geosciences course

Vonessen, Nikolaus

477

Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration  

SciTech Connect (OSTI)

Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

2013-08-01T23:59:59.000Z

478

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

SciTech Connect (OSTI)

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

2005-12-07T23:59:59.000Z

479

Journal of Geography and Geology; Vol. 4, No. 2; 2012 ISSN 1916-9779 E-ISSN 1916-9787  

E-Print Network [OSTI]

Journal of Geography and Geology; Vol. 4, No. 2; 2012 ISSN 1916-9779 E-ISSN 1916-9787 Published Geology Deprtment, Faculty of Science, Sohag University, Egypt 2 Program Head, Geological Engineering, Missouri University of Science and Technology, Rolla, MO, USA 3 Geological Hazards Department, Applied

Maerz, Norbert H.

480

Reprinted from: Journal of Geoscience Education, v. 46, 1998, p. 30-40. Integrating Computers into the Field Geology Curriculum  

E-Print Network [OSTI]

into the Field Geology Curriculum Roy Walter Schlische and Rolf Vincent Ackermann Department of Geological@rci.rutgers.edu ABSTRACT The Field Geology course at Rutgers University incor- porates computers in all projects, including and map geologic contacts in a clay pit in the New Jersey coastal plain. Station locations are plotted

Note: This page contains sample records for the topic "brophy model geologic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Generated on 04/07/13 by the Office of Institutional Research and Planning. Doctoral Program Profile: Geology  

E-Print Network [OSTI]

Profile: Geology This program is part of the Department of Geology in the College of Liberal Arts & Sciences. Additional information available at http://www.geo.ku.edu/~geology/prospectiveGrads/prospectiveGrads.shtml Department Faculty: Geology Fall 2012 Total Faculty 22 Tenured and Tenure Track Faculty 21 Tenured Faculty 16

482

GEOLOGY, July 2007 623Geology, July 2007; v. 35; no. 7; p. 623626; doi: 10.1130/G23531A.1; 3 figures; Data Repository item 2007165. 2007 The Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.  

E-Print Network [OSTI]

GEOLOGY, July 2007 623Geology, July 2007; v. 35; no. 7; p. 623­626; doi: 10.1130/G23531A.1; 3 figures; Data Repository item 2007165. © 2007 The Geological Society of America. For permission to copy and Hole 1275D in conjunction with geophysical and geological mapping data. Although the mechanisms

Demouchy, Sylvie

483

Feasibility of Optimizing and Reserves from a Mature and Geological Complex Multiple Turbidite Offshore California Reservoir Through the Drilling and Completion of a Trilateral Horizontal Well.  

SciTech Connect (OSTI)

The main objective of this project is to devise an effective redevelopment strategy to combat producibility problems related to the Repetto turbidite sequences of the Carpinteria Field. The lack of adequate reservoir characterization, high-water cut production, and scaling problems have in the past contributed to the field`s low productivity. To improve productivity and enhance recoverable reserves, the following specific goals are proposed: (1) Develop an integrated database of all existing data from work done by the former ownership group. (2) Expand reservoir drainage and reduce sand problems through horizontal well drilling and completion. (3) Operate and validate reservoirs` conceptual model by incorporating new data from the proposed trilateral well. (4) Transfer methodologies employed in geologic modeling and drilling multilateral wells to other operators with similar reservoirs. Since the last progress report (January - March, 1997) additional work has been completed in the area of well log interpretation and geological modeling. During this period an extensive effort was made to refine our 3-D geological model both in the area of a refined attribute model and an enhanced structural model. Also, efforts to refine our drilling plans for budget period 11 were completed during this reporting period.

NONE

1997-08-25T23:59:59.000Z

484

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

SciTech Connect (OSTI)

We have developed a certification framework (CF) for certifying that the risks of geologic carbon sequestration (GCS) sites are below agreed-upon thresholds. The CF is based on effective trapping of CO2, the proposed concept that takes into account both the probability and impact of CO2 leakage. The CF uses probability estimates of the intersection of conductive faults and wells with the CO2 plume along with modeled fluxes or concentrations of CO2 as proxies for impacts to compartments (such as potable groundwater) to calculate CO2 leakage risk. In order to test and refine the approach, we applied the CF to (1) a hypothetical large-scale GCS project in the Texas Gulf Coast, and (2) WESTCARB's Phase III GCS pilot in the southern San Joaquin Valley, California.

Oldenburg, Curtis M.; Nicot, J.-P.; Bryant, S.L.

2008-11-01T23:59:59.000Z

485

Fractal Location and Anomalous Diffusion Dynamics for Oil Wells from the KY Geological Survey  

E-Print Network [OSTI]

Utilizing data available from the Kentucky Geonet (KYGeonet.ky.gov) the fossil fuel mining locations created by the Kentucky Geological Survey geo-locating oil and gas wells are mapped using ESRI ArcGIS in Kentucky single plain 1602 ft projection. This data was then exported into a spreadsheet showing latitude and longitude for each point to be used for modeling at different scales to determine the fractal dimension of the set. Following the porosity and diffusivity studies of Tarafdar and Roy1 we extract fractal dimensions of the fossil fuel mining locations and search for evidence of scaling laws for the set of deposits. The Levy index is used to determine a match to a statistical mechanically motivated generalized probability function for the wells. This probability distribution corresponds to a solution of a dynamical anomalous diffusion equation of fractional order that describes the Levy paths which can be solved in the diffusion limit by the Fox H function ansatz.

Andrew, Keith; Andrew, Kevin A

2009-01-01T23:59:59.000Z

486

Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments  

SciTech Connect (OSTI)

The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

487

Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation  

SciTech Connect (OSTI)

Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

2014-01-15T23:59:59.000Z

488

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

SciTech Connect (OSTI)

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

489

STOMP-ECKEChem: An Engineering Perspective on Reactive Transport in Geologic Media  

SciTech Connect (OSTI)

ECKEChem (Equilibrium, Conservation, Kinetic Equation Chemistry) is a reactive transport module for the STOMP suite of multifluid subsurface flow and transport simulators that was developed from an engineering perspective. STOMP comprises a suite of operational modes that are distinguished by the solved coupled conservation equations with capabilities for a variety of subsurface applications (e.g., environmental remediation and stewardship, geologic sequestration of greenhouse gases, gas hydrate production, and oil shale production). The ECKEChem module was designed to provide integrated reactive transport capabilities across the suite of STOMP simulator operational modes. The initial application for the ECKEChem module was in the simulation of the mineralization reactions that occurred with the injection of supercritical carbon dioxide into deep Columbia River basalt formations, where it was implemented in the STOMP-CO2 simulator. The STOMP-ECKEChem solution approach to modeling reactive transport in multifluid geologic media is founded on an engineering perspective: (1) sequential non-iterative coupling between the flow and reactive transport is sufficient, (2) reactive transport can be modeled by operator splitting with local geochemistry and global transport, (3) geochemistry can be expressed as a system of coupled nonlinear equilibrium, conservation and kinetic equations, (4) a limited number of kinetic equation forms are used in geochemical practice. This chapter describes the conceptual approach to converting a geochemical reaction network into a series of equilibrium, conservation and kinetic equations, the implementation of ECKEChem in STOMP, the numerical solution approach, and a demonstration of the simulator on a complex application involving desorption of uranium from contaminated field-textured sediments.

White, Mark D.; Fang, Yilin

2012-04-04T23:59:59.000Z

490

Geologic evolution of Iron Mountain, central Mojave Desert, California  

E-Print Network [OSTI]

' quadrangle, mapped Iron Mountain [Dibblee, 1967] at a scale of 1:62,500, and presented the first description of many of the rock types at Iron Mountain. Detailed geologic mapping at 1:12,000 of the entire range, undertaken by S.S. Boettcher in the Fall... by coarsely crystalline dolomitic marble that is massive to finely laminated. A distinct, micaceous quartzite unit, up to 50 m thick, forms aprominent marker. It contains abundant, closely spaced, dark laminations ofbiotite, magnetite and other heavy...

Boettcher, Stefan S.; Walker, J. Douglas

1993-04-01T23:59:59.000Z

491

Coal quality activities at the new US Geological Survey  

SciTech Connect (OSTI)

The recently issued Strategic Plan for the U.S. Geological Survey (USGS) calls for many changes including increased emphasis on the quality of natural resources, applied research, technology transfer, and issue-driven studies. To achieve these objectives the USGS will have to rely on partnerships with other Federal agencies, academia, State and local governments, nongovernmental organizations, and private industry. The coal quality activities at the USGS are briefly described and examples of the practical, team-oriented research being pursued are given.

Finkelman, R.B. [Geological Survey, Reston, VA (United States)

1996-12-31T23:59:59.000Z

492

Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for naturalGeneralEnergy GeologicMexico |

493

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdf Flash2010-72.pdfAccomplishmentsFutureGUIDANCEGeneralGenericGeological Carbon

494

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011 Venezia, ItaliaWastes Geological and

495

Geologic CO2 sequestration inhibits microbial growth | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)Unveils High-TechNaturalGeologic CO2

496

The consequences of failure should be considered in siting geologic carbon sequestration projects  

SciTech Connect (OSTI)

Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

Price, P.N.; Oldenburg, C.M.

2009-02-23T23:59:59.000Z

497

Geologic and geomorphic analysis of the Organ Mountains fault, south-central New Mexico  

E-Print Network [OSTI]

GEOLOGIC AND GEOMORPHIC ANALYSIS OF THE ORGAN MOUNTAINS FAULT, SOUTH-CENTRAL NEW MEXICO A Thesis by TERRI S. BEEHNER Submited to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1989 Major Subject: Geology GEOLOGIC AND GEOMORPHIC ANALYSIS OF THE ORGAN MOUNTAINS FAULT, SOUTH-CENTRAL NEW MEXICO A Thesis by TERRI S. BEEHNER Approved as to style and content by Norman R. Tilfor (Chair of Com ' e...

Beehner, Terri S.

1989-01-01T23:59:59.000Z

498

Geology and hydrogeology of the Edwards Aquifer Transition Zone, Bexar County, Texas  

E-Print Network [OSTI]

GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Submitted to the Office of Graduate Studies of Texas AQh University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1989 Major Subject: Geology GEOLOGY AND HYDROGEOLOGY OF THE EDWARDS AQUIFER TRANSITION ZONE, BEXAR COUNTY, TEXAS A Thesis by JEFFREY STEPHEN HEATHERY Approved as to style and content by: Chris pher C. Mathewson...

Neathery, Jeffrey Stephen

1989-01-01T23:59:59.000Z

499

U.S. Department of the Interior U.S. Geological Survey  

E-Print Network [OSTI]

, William C. Burton, Kevin F. Dennehy, Norman G. Grannemann, Tien Grauch, Mary C. Hill, Randall J. Hunt in the U.S. Geological Survey By W.E. Sanford, J.S. Caine, D.A. Wilcox, H.C. McWreath, and J.R. Nicholas Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological

500

Preliminary site studies for critical facilities using geotechnical units derived from engineering geologic analyses  

E-Print Network [OSTI]

PRELIMINARY SITE STUDIES FOR CRITICAL FACILITIES USING GEOTECHNICAL UNITS DERIVED FROM ENGINEERING GEOLOG'C ANALYSES A Thesis DALE EVERETTE CONOVER Submitted to the Graduate College of Texas AAM University i n partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Geology PRELIMINARY SITE STUDIES FOR CRITICAL FACILITIES USING GEOTECHNICAL UNITS DERIVED FROM ENGINEERING GEOLOGIC ANALYSES A Thesis by DALE EVERETTE CONOVER Approved...

Conover, Dale Everette

2012-06-07T23:59:59.000Z